/* * top - a top users display for Unix * * SYNOPSIS: For FreeBSD-2.x system * * DESCRIPTION: * Originally written for BSD4.4 system by Christos Zoulas. * Ported to FreeBSD 2.x by Steven Wallace && Wolfram Schneider * Order support hacked in from top-3.5beta6/machine/m_aix41.c * by Monte Mitzelfelt (for latest top see http://www.groupsys.com/topinfo/) * * This is the machine-dependent module for FreeBSD 2.2 * Works for: * FreeBSD 2.2, and probably FreeBSD 2.1.x * * LIBS: -lkvm * * AUTHOR: Christos Zoulas * Steven Wallace * Wolfram Schneider * * $Id: machine.c,v 1.13 1998/08/04 14:10:30 des Exp $ */ #include #include #include #include "os.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* Swap */ #include #include #include #include /* for changes in kernel structures */ #include "top.h" #include "machine.h" static int check_nlist __P((struct nlist *)); static int getkval __P((unsigned long, int *, int, char *)); extern char* printable __P((char *)); int swapmode __P((int *retavail, int *retfree)); static int smpmode; static int namelength; static int cmdlength; /* get_process_info passes back a handle. This is what it looks like: */ struct handle { struct kinfo_proc **next_proc; /* points to next valid proc pointer */ int remaining; /* number of pointers remaining */ }; /* declarations for load_avg */ #include "loadavg.h" #define PP(pp, field) ((pp)->kp_proc . field) #define EP(pp, field) ((pp)->kp_eproc . field) #define VP(pp, field) ((pp)->kp_eproc.e_vm . field) /* define what weighted cpu is. */ #define weighted_cpu(pct, pp) (PP((pp), p_swtime) == 0 ? 0.0 : \ ((pct) / (1.0 - exp(PP((pp), p_swtime) * logcpu)))) /* what we consider to be process size: */ #define PROCSIZE(pp) (VP((pp), vm_map.size) / 1024) /* definitions for indices in the nlist array */ static struct nlist nlst[] = { #define X_CCPU 0 { "_ccpu" }, /* 0 */ #define X_CP_TIME 1 { "_cp_time" }, /* 1 */ #define X_HZ 2 { "_hz" }, /* 2 */ #define X_STATHZ 3 { "_stathz" }, /* 3 */ #define X_AVENRUN 4 { "_averunnable" }, /* 4 */ /* Swap */ #define VM_SWAPLIST 5 { "_swaplist" },/* list of free swap areas */ #define VM_SWDEVT 6 { "_swdevt" }, /* list of swap devices and sizes */ #define VM_NSWAP 7 { "_nswap" }, /* size of largest swap device */ #define VM_NSWDEV 8 { "_nswdev" }, /* number of swap devices */ #define VM_DMMAX 9 { "_dmmax" }, /* maximum size of a swap block */ #define X_BUFSPACE 10 { "_bufspace" }, /* K in buffer cache */ #define X_CNT 11 { "_cnt" }, /* struct vmmeter cnt */ /* Last pid */ #define X_LASTPID 12 { "_nextpid" }, { 0 } }; /* * These definitions control the format of the per-process area */ static char smp_header[] = " PID %-*.*s PRI NICE SIZE RES STATE C TIME WCPU CPU COMMAND"; #define smp_Proc_format \ "%5d %-*.*s %3d %3d%7s %6s %-6.6s %1x%7s %5.2f%% %5.2f%% %.*s" static char up_header[] = " PID %-*.*s PRI NICE SIZE RES STATE TIME WCPU CPU COMMAND"; #define up_Proc_format \ "%5d %-*.*s %3d %3d%7s %6s %-6.6s%.0d%7s %5.2f%% %5.2f%% %.*s" /* process state names for the "STATE" column of the display */ /* the extra nulls in the string "run" are for adding a slash and the processor number when needed */ char *state_abbrev[] = { "", "START", "RUN\0\0\0", "SLEEP", "STOP", "ZOMB", }; static kvm_t *kd; /* values that we stash away in _init and use in later routines */ static double logcpu; /* these are retrieved from the kernel in _init */ static long hz; static load_avg ccpu; /* these are offsets obtained via nlist and used in the get_ functions */ static unsigned long cp_time_offset; static unsigned long avenrun_offset; static unsigned long lastpid_offset; static long lastpid; static unsigned long cnt_offset; static unsigned long bufspace_offset; static long cnt; /* these are for calculating cpu state percentages */ static long cp_time[CPUSTATES]; static long cp_old[CPUSTATES]; static long cp_diff[CPUSTATES]; /* these are for detailing the process states */ int process_states[6]; char *procstatenames[] = { "", " starting, ", " running, ", " sleeping, ", " stopped, ", " zombie, ", NULL }; /* these are for detailing the cpu states */ int cpu_states[CPUSTATES]; char *cpustatenames[] = { "user", "nice", "system", "interrupt", "idle", NULL }; /* these are for detailing the memory statistics */ int memory_stats[7]; char *memorynames[] = { "K Active, ", "K Inact, ", "K Wired, ", "K Cache, ", "K Buf, ", "K Free", NULL }; int swap_stats[7]; char *swapnames[] = { /* 0 1 2 3 4 5 */ "K Total, ", "K Used, ", "K Free, ", "% Inuse, ", "K In, ", "K Out", NULL }; /* these are for keeping track of the proc array */ static int nproc; static int onproc = -1; static int pref_len; static struct kinfo_proc *pbase; static struct kinfo_proc **pref; /* these are for getting the memory statistics */ static int pageshift; /* log base 2 of the pagesize */ /* define pagetok in terms of pageshift */ #define pagetok(size) ((size) << pageshift) /* useful externals */ long percentages(); #ifdef ORDER /* sorting orders. first is default */ char *ordernames[] = { "cpu", "size", "res", "time", "pri", NULL }; #endif int machine_init(statics) struct statics *statics; { register int i = 0; register int pagesize; int modelen; struct passwd *pw; modelen = sizeof(smpmode); if ((sysctlbyname("machdep.smp_active", &smpmode, &modelen, NULL, 0) < 0 && sysctlbyname("smp.smp_active", &smpmode, &modelen, NULL, 0) < 0) || modelen != sizeof(smpmode)) smpmode = 0; while ((pw = getpwent()) != NULL) { if (strlen(pw->pw_name) > namelength) namelength = strlen(pw->pw_name); } if (namelength < 8) namelength = 8; if (namelength > 16) namelength = 16; if ((kd = kvm_open(NULL, NULL, NULL, O_RDONLY, "kvm_open")) == NULL) return -1; /* get the list of symbols we want to access in the kernel */ (void) kvm_nlist(kd, nlst); if (nlst[0].n_type == 0) { fprintf(stderr, "top: nlist failed\n"); return(-1); } /* make sure they were all found */ if (i > 0 && check_nlist(nlst) > 0) { return(-1); } /* get the symbol values out of kmem */ (void) getkval(nlst[X_STATHZ].n_value, (int *)(&hz), sizeof(hz), "!"); if (!hz) { (void) getkval(nlst[X_HZ].n_value, (int *)(&hz), sizeof(hz), nlst[X_HZ].n_name); } (void) getkval(nlst[X_CCPU].n_value, (int *)(&ccpu), sizeof(ccpu), nlst[X_CCPU].n_name); /* stash away certain offsets for later use */ cp_time_offset = nlst[X_CP_TIME].n_value; avenrun_offset = nlst[X_AVENRUN].n_value; lastpid_offset = nlst[X_LASTPID].n_value; cnt_offset = nlst[X_CNT].n_value; bufspace_offset = nlst[X_BUFSPACE].n_value; /* this is used in calculating WCPU -- calculate it ahead of time */ logcpu = log(loaddouble(ccpu)); pbase = NULL; pref = NULL; nproc = 0; onproc = -1; /* get the page size with "getpagesize" and calculate pageshift from it */ pagesize = getpagesize(); pageshift = 0; while (pagesize > 1) { pageshift++; pagesize >>= 1; } /* we only need the amount of log(2)1024 for our conversion */ pageshift -= LOG1024; /* fill in the statics information */ statics->procstate_names = procstatenames; statics->cpustate_names = cpustatenames; statics->memory_names = memorynames; statics->swap_names = swapnames; #ifdef ORDER statics->order_names = ordernames; #endif /* all done! */ return(0); } char *format_header(uname_field) register char *uname_field; { register char *ptr; static char Header[128]; snprintf(Header, sizeof(Header), smpmode ? smp_header : up_header, namelength, namelength, uname_field); cmdlength = 80 - strlen(Header) + 6; return Header; } static int swappgsin = -1; static int swappgsout = -1; extern struct timeval timeout; void get_system_info(si) struct system_info *si; { long total; load_avg avenrun[3]; /* get the cp_time array */ (void) getkval(cp_time_offset, (int *)cp_time, sizeof(cp_time), nlst[X_CP_TIME].n_name); (void) getkval(avenrun_offset, (int *)avenrun, sizeof(avenrun), nlst[X_AVENRUN].n_name); (void) getkval(lastpid_offset, (int *)(&lastpid), sizeof(lastpid), "!"); /* convert load averages to doubles */ { register int i; register double *infoloadp; load_avg *avenrunp; #ifdef notyet struct loadavg sysload; int size; getkerninfo(KINFO_LOADAVG, &sysload, &size, 0); #endif infoloadp = si->load_avg; avenrunp = avenrun; for (i = 0; i < 3; i++) { #ifdef notyet *infoloadp++ = ((double) sysload.ldavg[i]) / sysload.fscale; #endif *infoloadp++ = loaddouble(*avenrunp++); } } /* convert cp_time counts to percentages */ total = percentages(CPUSTATES, cpu_states, cp_time, cp_old, cp_diff); /* sum memory & swap statistics */ { struct vmmeter sum; static unsigned int swap_delay = 0; static int swapavail = 0; static int swapfree = 0; static int bufspace = 0; (void) getkval(cnt_offset, (int *)(&sum), sizeof(sum), "_cnt"); (void) getkval(bufspace_offset, (int *)(&bufspace), sizeof(bufspace), "_bufspace"); /* convert memory stats to Kbytes */ memory_stats[0] = pagetok(sum.v_active_count); memory_stats[1] = pagetok(sum.v_inactive_count); memory_stats[2] = pagetok(sum.v_wire_count); memory_stats[3] = pagetok(sum.v_cache_count); memory_stats[4] = bufspace / 1024; memory_stats[5] = pagetok(sum.v_free_count); memory_stats[6] = -1; /* first interval */ if (swappgsin < 0) { swap_stats[4] = 0; swap_stats[5] = 0; } /* compute differences between old and new swap statistic */ else { swap_stats[4] = pagetok(((sum.v_swappgsin - swappgsin))); swap_stats[5] = pagetok(((sum.v_swappgsout - swappgsout))); } swappgsin = sum.v_swappgsin; swappgsout = sum.v_swappgsout; /* call CPU heavy swapmode() only for changes */ if (swap_stats[4] > 0 || swap_stats[5] > 0 || swap_delay == 0) { swap_stats[3] = swapmode(&swapavail, &swapfree); swap_stats[0] = swapavail; swap_stats[1] = swapavail - swapfree; swap_stats[2] = swapfree; } swap_delay = 1; swap_stats[6] = -1; } /* set arrays and strings */ si->cpustates = cpu_states; si->memory = memory_stats; si->swap = swap_stats; if(lastpid > 0) { si->last_pid = lastpid; } else { si->last_pid = -1; } } static struct handle handle; caddr_t get_process_info(si, sel, compare) struct system_info *si; struct process_select *sel; int (*compare)(); { register int i; register int total_procs; register int active_procs; register struct kinfo_proc **prefp; register struct kinfo_proc *pp; /* these are copied out of sel for speed */ int show_idle; int show_self; int show_system; int show_uid; int show_command; pbase = kvm_getprocs(kd, KERN_PROC_ALL, 0, &nproc); if (nproc > onproc) pref = (struct kinfo_proc **) realloc(pref, sizeof(struct kinfo_proc *) * (onproc = nproc)); if (pref == NULL || pbase == NULL) { (void) fprintf(stderr, "top: Out of memory.\n"); quit(23); } /* get a pointer to the states summary array */ si->procstates = process_states; /* set up flags which define what we are going to select */ show_idle = sel->idle; show_self = sel->self; show_system = sel->system; show_uid = sel->uid != -1; show_command = sel->command != NULL; /* count up process states and get pointers to interesting procs */ total_procs = 0; active_procs = 0; memset((char *)process_states, 0, sizeof(process_states)); prefp = pref; for (pp = pbase, i = 0; i < nproc; pp++, i++) { /* * Place pointers to each valid proc structure in pref[]. * Process slots that are actually in use have a non-zero * status field. Processes with P_SYSTEM set are system * processes---these get ignored unless show_sysprocs is set. */ if (PP(pp, p_stat) != 0 && (show_self != PP(pp, p_pid)) && (show_system || ((PP(pp, p_flag) & P_SYSTEM) == 0))) { total_procs++; process_states[(unsigned char) PP(pp, p_stat)]++; if ((PP(pp, p_stat) != SZOMB) && (show_idle || (PP(pp, p_pctcpu) != 0) || (PP(pp, p_stat) == SRUN)) && (!show_uid || EP(pp, e_pcred.p_ruid) == (uid_t)sel->uid)) { *prefp++ = pp; active_procs++; } } } /* if requested, sort the "interesting" processes */ if (compare != NULL) { qsort((char *)pref, active_procs, sizeof(struct kinfo_proc *), compare); } /* remember active and total counts */ si->p_total = total_procs; si->p_active = pref_len = active_procs; /* pass back a handle */ handle.next_proc = pref; handle.remaining = active_procs; return((caddr_t)&handle); } char fmt[128]; /* static area where result is built */ char *format_next_process(handle, get_userid) caddr_t handle; char *(*get_userid)(); { register struct kinfo_proc *pp; register long cputime; register double pct; struct handle *hp; char status[16]; /* find and remember the next proc structure */ hp = (struct handle *)handle; pp = *(hp->next_proc++); hp->remaining--; /* get the process's user struct and set cputime */ if ((PP(pp, p_flag) & P_INMEM) == 0) { /* * Print swapped processes as */ char *comm = PP(pp, p_comm); #define COMSIZ sizeof(PP(pp, p_comm)) char buf[COMSIZ]; (void) strncpy(buf, comm, COMSIZ); comm[0] = '<'; (void) strncpy(&comm[1], buf, COMSIZ - 2); comm[COMSIZ - 2] = '\0'; (void) strncat(comm, ">", COMSIZ - 1); comm[COMSIZ - 1] = '\0'; } #if 0 /* This does not produce the correct results */ cputime = PP(pp, p_uticks) + PP(pp, p_sticks) + PP(pp, p_iticks); #endif /* This does not count interrupts */ cputime = (PP(pp, p_runtime) / 1000 + 500) / 1000; /* calculate the base for cpu percentages */ pct = pctdouble(PP(pp, p_pctcpu)); /* generate "STATE" field */ switch (PP(pp, p_stat)) { case SRUN: if (smpmode && PP(pp, p_oncpu) >= 0) sprintf(status, "CPU%d", PP(pp, p_oncpu)); else strcpy(status, "RUN"); break; case SSLEEP: if (PP(pp, p_wmesg) != NULL) { sprintf(status, "%.6s", EP(pp, e_wmesg)); break; } /* fall through */ default: sprintf(status, "%.6s", state_abbrev[(unsigned char) PP(pp, p_stat)]); break; } /* format this entry */ sprintf(fmt, smpmode ? smp_Proc_format : up_Proc_format, PP(pp, p_pid), namelength, namelength, (*get_userid)(EP(pp, e_pcred.p_ruid)), PP(pp, p_priority) - PZERO, /* * normal time -> nice value -20 - +20 * real time 0 - 31 -> nice value -52 - -21 * idle time 0 - 31 -> nice value +21 - +52 */ (PP(pp, p_rtprio.type) == RTP_PRIO_NORMAL ? PP(pp, p_nice) - NZERO : (PP(pp, p_rtprio.type) == RTP_PRIO_REALTIME ? (PRIO_MIN - 1 - RTP_PRIO_MAX + PP(pp, p_rtprio.prio)) : (PRIO_MAX + 1 + PP(pp, p_rtprio.prio)))), format_k2(PROCSIZE(pp)), format_k2(pagetok(VP(pp, vm_rssize))), status, smpmode ? PP(pp, p_lastcpu) : 0, format_time(cputime), 10000.0 * weighted_cpu(pct, pp) / hz, 10000.0 * pct / hz, cmdlength, printable(PP(pp, p_comm))); /* return the result */ return(fmt); } /* * check_nlist(nlst) - checks the nlist to see if any symbols were not * found. For every symbol that was not found, a one-line * message is printed to stderr. The routine returns the * number of symbols NOT found. */ static int check_nlist(nlst) register struct nlist *nlst; { register int i; /* check to see if we got ALL the symbols we requested */ /* this will write one line to stderr for every symbol not found */ i = 0; while (nlst->n_name != NULL) { if (nlst->n_type == 0) { /* this one wasn't found */ (void) fprintf(stderr, "kernel: no symbol named `%s'\n", nlst->n_name); i = 1; } nlst++; } return(i); } /* * getkval(offset, ptr, size, refstr) - get a value out of the kernel. * "offset" is the byte offset into the kernel for the desired value, * "ptr" points to a buffer into which the value is retrieved, * "size" is the size of the buffer (and the object to retrieve), * "refstr" is a reference string used when printing error meessages, * if "refstr" starts with a '!', then a failure on read will not * be fatal (this may seem like a silly way to do things, but I * really didn't want the overhead of another argument). * */ static int getkval(offset, ptr, size, refstr) unsigned long offset; int *ptr; int size; char *refstr; { if (kvm_read(kd, offset, (char *) ptr, size) != size) { if (*refstr == '!') { return(0); } else { fprintf(stderr, "top: kvm_read for %s: %s\n", refstr, strerror(errno)); quit(23); } } return(1); } /* comparison routines for qsort */ /* * proc_compare - comparison function for "qsort" * Compares the resource consumption of two processes using five * distinct keys. The keys (in descending order of importance) are: * percent cpu, cpu ticks, state, resident set size, total virtual * memory usage. The process states are ordered as follows (from least * to most important): WAIT, zombie, sleep, stop, start, run. The * array declaration below maps a process state index into a number * that reflects this ordering. */ static unsigned char sorted_state[] = { 0, /* not used */ 3, /* sleep */ 1, /* ABANDONED (WAIT) */ 6, /* run */ 5, /* start */ 2, /* zombie */ 4 /* stop */ }; #define ORDERKEY_PCTCPU \ if (lresult = PP(p2, p_pctcpu) - PP(p1, p_pctcpu), \ (result = lresult > 0 ? 1 : lresult < 0 ? -1 : 0) == 0) #define ORDERKEY_CPTICKS \ if ((result = PP(p2, p_runtime) - PP(p1, p_runtime)) == 0) #define ORDERKEY_STATE \ if ((result = sorted_state[(unsigned char) PP(p2, p_stat)] - \ sorted_state[(unsigned char) PP(p1, p_stat)]) == 0) #define ORDERKEY_PRIO \ if ((result = PP(p2, p_priority) - PP(p1, p_priority)) == 0) #define ORDERKEY_RSSIZE \ if ((result = VP(p2, vm_rssize) - VP(p1, vm_rssize)) == 0) #define ORDERKEY_MEM \ if ( (result = PROCSIZE(p2) - PROCSIZE(p1)) == 0 ) /* compare_cpu - the comparison function for sorting by cpu percentage */ int #ifdef ORDER compare_cpu(pp1, pp2) #else proc_compare(pp1, pp2) #endif struct proc **pp1; struct proc **pp2; { register struct kinfo_proc *p1; register struct kinfo_proc *p2; register int result; register pctcpu lresult; /* remove one level of indirection */ p1 = *(struct kinfo_proc **) pp1; p2 = *(struct kinfo_proc **) pp2; ORDERKEY_PCTCPU ORDERKEY_CPTICKS ORDERKEY_STATE ORDERKEY_PRIO ORDERKEY_RSSIZE ORDERKEY_MEM ; return(result); } #ifdef ORDER /* compare routines */ int compare_size(), compare_res(), compare_time(), compare_prio(); int (*proc_compares[])() = { compare_cpu, compare_size, compare_res, compare_time, compare_prio, NULL }; /* compare_size - the comparison function for sorting by total memory usage */ int compare_size(pp1, pp2) struct proc **pp1; struct proc **pp2; { register struct kinfo_proc *p1; register struct kinfo_proc *p2; register int result; register pctcpu lresult; /* remove one level of indirection */ p1 = *(struct kinfo_proc **) pp1; p2 = *(struct kinfo_proc **) pp2; ORDERKEY_MEM ORDERKEY_RSSIZE ORDERKEY_PCTCPU ORDERKEY_CPTICKS ORDERKEY_STATE ORDERKEY_PRIO ; return(result); } /* compare_res - the comparison function for sorting by resident set size */ int compare_res(pp1, pp2) struct proc **pp1; struct proc **pp2; { register struct kinfo_proc *p1; register struct kinfo_proc *p2; register int result; register pctcpu lresult; /* remove one level of indirection */ p1 = *(struct kinfo_proc **) pp1; p2 = *(struct kinfo_proc **) pp2; ORDERKEY_RSSIZE ORDERKEY_MEM ORDERKEY_PCTCPU ORDERKEY_CPTICKS ORDERKEY_STATE ORDERKEY_PRIO ; return(result); } /* compare_time - the comparison function for sorting by total cpu time */ int compare_time(pp1, pp2) struct proc **pp1; struct proc **pp2; { register struct kinfo_proc *p1; register struct kinfo_proc *p2; register int result; register pctcpu lresult; /* remove one level of indirection */ p1 = *(struct kinfo_proc **) pp1; p2 = *(struct kinfo_proc **) pp2; ORDERKEY_CPTICKS ORDERKEY_PCTCPU ORDERKEY_STATE ORDERKEY_PRIO ORDERKEY_RSSIZE ORDERKEY_MEM ; return(result); } /* compare_prio - the comparison function for sorting by cpu percentage */ int compare_prio(pp1, pp2) struct proc **pp1; struct proc **pp2; { register struct kinfo_proc *p1; register struct kinfo_proc *p2; register int result; register pctcpu lresult; /* remove one level of indirection */ p1 = *(struct kinfo_proc **) pp1; p2 = *(struct kinfo_proc **) pp2; ORDERKEY_PRIO ORDERKEY_CPTICKS ORDERKEY_PCTCPU ORDERKEY_STATE ORDERKEY_RSSIZE ORDERKEY_MEM ; return(result); } #endif /* * proc_owner(pid) - returns the uid that owns process "pid", or -1 if * the process does not exist. * It is EXTREMLY IMPORTANT that this function work correctly. * If top runs setuid root (as in SVR4), then this function * is the only thing that stands in the way of a serious * security problem. It validates requests for the "kill" * and "renice" commands. */ int proc_owner(pid) int pid; { register int cnt; register struct kinfo_proc **prefp; register struct kinfo_proc *pp; prefp = pref; cnt = pref_len; while (--cnt >= 0) { pp = *prefp++; if (PP(pp, p_pid) == (pid_t)pid) { return((int)EP(pp, e_pcred.p_ruid)); } } return(-1); } /* * swapmode is based on a program called swapinfo written * by Kevin Lahey . */ #define SVAR(var) __STRING(var) /* to force expansion */ #define KGET(idx, var) \ KGET1(idx, &var, sizeof(var), SVAR(var)) #define KGET1(idx, p, s, msg) \ KGET2(nlst[idx].n_value, p, s, msg) #define KGET2(addr, p, s, msg) \ if (kvm_read(kd, (u_long)(addr), p, s) != s) { \ warnx("cannot read %s: %s", msg, kvm_geterr(kd)); \ return (0); \ } #define KGETRET(addr, p, s, msg) \ if (kvm_read(kd, (u_long)(addr), p, s) != s) { \ warnx("cannot read %s: %s", msg, kvm_geterr(kd)); \ return (0); \ } int swapmode(retavail, retfree) int *retavail; int *retfree; { char *header; int hlen, nswap, nswdev, dmmax; int i, div, avail, nfree, npfree, used; struct swdevt *sw; long blocksize, *perdev; u_long ptr; struct rlist head; #if __FreeBSD_version >= 220000 struct rlisthdr swaplist; #else struct rlist *swaplist; #endif struct rlist *swapptr; /* * Counter for error messages. If we reach the limit, * stop reading information from swap devices and * return zero. This prevent endless 'bad address' * messages. */ static warning = 10; if (warning <= 0) { /* a single warning */ if (!warning) { warning--; fprintf(stderr, "Too much errors, stop reading swap devices ...\n"); (void)sleep(3); } return(0); } warning--; /* decrease counter, see end of function */ KGET(VM_NSWAP, nswap); if (!nswap) { fprintf(stderr, "No swap space available\n"); return(0); } KGET(VM_NSWDEV, nswdev); KGET(VM_DMMAX, dmmax); KGET1(VM_SWAPLIST, &swaplist, sizeof(swaplist), "swaplist"); if ((sw = (struct swdevt *)malloc(nswdev * sizeof(*sw))) == NULL || (perdev = (long *)malloc(nswdev * sizeof(*perdev))) == NULL) err(1, "malloc"); KGET1(VM_SWDEVT, &ptr, sizeof ptr, "swdevt"); KGET2(ptr, sw, nswdev * sizeof(*sw), "*swdevt"); /* Count up swap space. */ nfree = 0; memset(perdev, 0, nswdev * sizeof(*perdev)); #if __FreeBSD_version >= 220000 swapptr = swaplist.rlh_list; while (swapptr) { #else while (swaplist) { #endif int top, bottom, next_block; #if __FreeBSD_version >= 220000 KGET2(swapptr, &head, sizeof(struct rlist), "swapptr"); #else KGET2(swaplist, &head, sizeof(struct rlist), "swaplist"); #endif top = head.rl_end; bottom = head.rl_start; nfree += top - bottom + 1; /* * Swap space is split up among the configured disks. * * For interleaved swap devices, the first dmmax blocks * of swap space some from the first disk, the next dmmax * blocks from the next, and so on up to nswap blocks. * * The list of free space joins adjacent free blocks, * ignoring device boundries. If we want to keep track * of this information per device, we'll just have to * extract it ourselves. */ while (top / dmmax != bottom / dmmax) { next_block = ((bottom + dmmax) / dmmax); perdev[(bottom / dmmax) % nswdev] += next_block * dmmax - bottom; bottom = next_block * dmmax; } perdev[(bottom / dmmax) % nswdev] += top - bottom + 1; #if __FreeBSD_version >= 220000 swapptr = head.rl_next; #else swaplist = head.rl_next; #endif } header = getbsize(&hlen, &blocksize); div = blocksize / 512; avail = npfree = 0; for (i = 0; i < nswdev; i++) { int xsize, xfree; /* * Don't report statistics for partitions which have not * yet been activated via swapon(8). */ xsize = sw[i].sw_nblks; xfree = perdev[i]; used = xsize - xfree; npfree++; avail += xsize; } /* * If only one partition has been set up via swapon(8), we don't * need to bother with totals. */ *retavail = avail / 2; *retfree = nfree / 2; used = avail - nfree; free(sw); free(perdev); /* increase counter, no errors occurs */ warning++; return (int)(((double)used / (double)avail * 100.0) + 0.5); }