/* * Copyright (c) 1989, 1993 * The Regents of the University of California. All rights reserved. * * This code is derived from software contributed * to Berkeley by John Heidemann of the UCLA Ficus project. * * Source: * @(#)i405_init.c 2.10 92/04/27 UCLA Ficus project * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by the University of * California, Berkeley and its contributors. * 4. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * * $FreeBSD$ */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include static int vop_nolookup(struct vop_lookup_args *); static int vop_nostrategy(struct vop_strategy_args *); static int vop_nospecstrategy(struct vop_specstrategy_args *); /* * This vnode table stores what we want to do if the filesystem doesn't * implement a particular VOP. * * If there is no specific entry here, we will return EOPNOTSUPP. * */ vop_t **default_vnodeop_p; static struct vnodeopv_entry_desc default_vnodeop_entries[] = { { &vop_default_desc, (vop_t *) vop_eopnotsupp }, { &vop_advlock_desc, (vop_t *) vop_einval }, { &vop_bmap_desc, (vop_t *) vop_stdbmap }, { &vop_close_desc, (vop_t *) vop_null }, { &vop_createvobject_desc, (vop_t *) vop_stdcreatevobject }, { &vop_destroyvobject_desc, (vop_t *) vop_stddestroyvobject }, { &vop_fsync_desc, (vop_t *) vop_null }, { &vop_getpages_desc, (vop_t *) vop_stdgetpages }, { &vop_getvobject_desc, (vop_t *) vop_stdgetvobject }, { &vop_inactive_desc, (vop_t *) vop_stdinactive }, { &vop_ioctl_desc, (vop_t *) vop_enotty }, { &vop_islocked_desc, (vop_t *) vop_stdislocked }, { &vop_lease_desc, (vop_t *) vop_null }, { &vop_lock_desc, (vop_t *) vop_stdlock }, { &vop_lookup_desc, (vop_t *) vop_nolookup }, { &vop_open_desc, (vop_t *) vop_null }, { &vop_pathconf_desc, (vop_t *) vop_einval }, { &vop_poll_desc, (vop_t *) vop_nopoll }, { &vop_putpages_desc, (vop_t *) vop_stdputpages }, { &vop_readlink_desc, (vop_t *) vop_einval }, { &vop_revoke_desc, (vop_t *) vop_revoke }, { &vop_specstrategy_desc, (vop_t *) vop_nospecstrategy }, { &vop_strategy_desc, (vop_t *) vop_nostrategy }, { &vop_unlock_desc, (vop_t *) vop_stdunlock }, { NULL, NULL } }; static struct vnodeopv_desc default_vnodeop_opv_desc = { &default_vnodeop_p, default_vnodeop_entries }; VNODEOP_SET(default_vnodeop_opv_desc); /* * Series of placeholder functions for various error returns for * VOPs. */ int vop_eopnotsupp(struct vop_generic_args *ap) { /* printf("vop_notsupp[%s]\n", ap->a_desc->vdesc_name); */ return (EOPNOTSUPP); } int vop_ebadf(struct vop_generic_args *ap) { return (EBADF); } int vop_enotty(struct vop_generic_args *ap) { return (ENOTTY); } int vop_einval(struct vop_generic_args *ap) { return (EINVAL); } int vop_null(struct vop_generic_args *ap) { return (0); } /* * Used to make a defined VOP fall back to the default VOP. */ int vop_defaultop(struct vop_generic_args *ap) { return (VOCALL(default_vnodeop_p, ap->a_desc->vdesc_offset, ap)); } /* * Helper function to panic on some bad VOPs in some filesystems. */ int vop_panic(struct vop_generic_args *ap) { panic("filesystem goof: vop_panic[%s]", ap->a_desc->vdesc_name); } /* * vop_std and vop_no are default functions for use by * filesystems that need the "default reasonable" implementation for a * particular operation. * * The documentation for the operations they implement exists (if it exists) * in the VOP_(9) manpage (all uppercase). */ /* * Default vop for filesystems that do not support name lookup */ static int vop_nolookup(ap) struct vop_lookup_args /* { struct vnode *a_dvp; struct vnode **a_vpp; struct componentname *a_cnp; } */ *ap; { *ap->a_vpp = NULL; return (ENOTDIR); } /* * vop_nostrategy: * * Strategy routine for VFS devices that have none. * * BIO_ERROR and B_INVAL must be cleared prior to calling any strategy * routine. Typically this is done for a BIO_READ strategy call. * Typically B_INVAL is assumed to already be clear prior to a write * and should not be cleared manually unless you just made the buffer * invalid. BIO_ERROR should be cleared either way. */ static int vop_nostrategy (struct vop_strategy_args *ap) { printf("No strategy for buffer at %p\n", ap->a_bp); vprint("vnode", ap->a_vp); vprint("device vnode", ap->a_bp->b_vp); ap->a_bp->b_ioflags |= BIO_ERROR; ap->a_bp->b_error = EOPNOTSUPP; bufdone(ap->a_bp); return (EOPNOTSUPP); } /* * vop_nospecstrategy: * * This shouldn't happen. VOP_SPECSTRATEGY should always have a VCHR * argument vnode, and thos have a method for specstrategy over in * specfs, so we only ever get here if somebody botched it. * Pass the call to VOP_STRATEGY() and get on with life. * The first time we print some info useful for debugging. */ static int vop_nospecstrategy (struct vop_specstrategy_args *ap) { static int once; if (!once) { vprint("VOP_SPECSTRATEGY on non-VCHR", ap->a_vp); backtrace(); once++; } return VOP_STRATEGY(ap->a_vp, ap->a_bp); } /* * vop_stdpathconf: * * Standard implementation of POSIX pathconf, to get information about limits * for a filesystem. * Override per filesystem for the case where the filesystem has smaller * limits. */ int vop_stdpathconf(ap) struct vop_pathconf_args /* { struct vnode *a_vp; int a_name; int *a_retval; } */ *ap; { switch (ap->a_name) { case _PC_LINK_MAX: *ap->a_retval = LINK_MAX; return (0); case _PC_MAX_CANON: *ap->a_retval = MAX_CANON; return (0); case _PC_MAX_INPUT: *ap->a_retval = MAX_INPUT; return (0); case _PC_PIPE_BUF: *ap->a_retval = PIPE_BUF; return (0); case _PC_CHOWN_RESTRICTED: *ap->a_retval = 1; return (0); case _PC_VDISABLE: *ap->a_retval = _POSIX_VDISABLE; return (0); default: return (EINVAL); } /* NOTREACHED */ } /* * Standard lock, unlock and islocked functions. */ int vop_stdlock(ap) struct vop_lock_args /* { struct vnode *a_vp; int a_flags; struct thread *a_td; } */ *ap; { struct vnode *vp = ap->a_vp; #ifndef DEBUG_LOCKS return (lockmgr(vp->v_vnlock, ap->a_flags, VI_MTX(vp), ap->a_td)); #else return (debuglockmgr(vp->v_vnlock, ap->a_flags, VI_MTX(vp), ap->a_td, "vop_stdlock", vp->filename, vp->line)); #endif } /* See above. */ int vop_stdunlock(ap) struct vop_unlock_args /* { struct vnode *a_vp; int a_flags; struct thread *a_td; } */ *ap; { struct vnode *vp = ap->a_vp; return (lockmgr(vp->v_vnlock, ap->a_flags | LK_RELEASE, VI_MTX(vp), ap->a_td)); } /* See above. */ int vop_stdislocked(ap) struct vop_islocked_args /* { struct vnode *a_vp; struct thread *a_td; } */ *ap; { return (lockstatus(ap->a_vp->v_vnlock, ap->a_td)); } /* Mark the vnode inactive */ int vop_stdinactive(ap) struct vop_inactive_args /* { struct vnode *a_vp; struct thread *a_td; } */ *ap; { VOP_UNLOCK(ap->a_vp, 0, ap->a_td); return (0); } /* * Return true for select/poll. */ int vop_nopoll(ap) struct vop_poll_args /* { struct vnode *a_vp; int a_events; struct ucred *a_cred; struct thread *a_td; } */ *ap; { /* * Return true for read/write. If the user asked for something * special, return POLLNVAL, so that clients have a way of * determining reliably whether or not the extended * functionality is present without hard-coding knowledge * of specific filesystem implementations. */ if (ap->a_events & ~POLLSTANDARD) return (POLLNVAL); return (ap->a_events & (POLLIN | POLLOUT | POLLRDNORM | POLLWRNORM)); } /* * Implement poll for local filesystems that support it. */ int vop_stdpoll(ap) struct vop_poll_args /* { struct vnode *a_vp; int a_events; struct ucred *a_cred; struct thread *a_td; } */ *ap; { if (ap->a_events & ~POLLSTANDARD) return (vn_pollrecord(ap->a_vp, ap->a_td, ap->a_events)); return (ap->a_events & (POLLIN | POLLOUT | POLLRDNORM | POLLWRNORM)); } /* * Stubs to use when there is no locking to be done on the underlying object. * A minimal shared lock is necessary to ensure that the underlying object * is not revoked while an operation is in progress. So, an active shared * count is maintained in an auxillary vnode lock structure. */ int vop_sharedlock(ap) struct vop_lock_args /* { struct vnode *a_vp; int a_flags; struct thread *a_td; } */ *ap; { /* * This code cannot be used until all the non-locking filesystems * (notably NFS) are converted to properly lock and release nodes. * Also, certain vnode operations change the locking state within * the operation (create, mknod, remove, link, rename, mkdir, rmdir, * and symlink). Ideally these operations should not change the * lock state, but should be changed to let the caller of the * function unlock them. Otherwise all intermediate vnode layers * (such as union, umapfs, etc) must catch these functions to do * the necessary locking at their layer. Note that the inactive * and lookup operations also change their lock state, but this * cannot be avoided, so these two operations will always need * to be handled in intermediate layers. */ struct vnode *vp = ap->a_vp; int vnflags, flags = ap->a_flags; switch (flags & LK_TYPE_MASK) { case LK_DRAIN: vnflags = LK_DRAIN; break; case LK_EXCLUSIVE: #ifdef DEBUG_VFS_LOCKS /* * Normally, we use shared locks here, but that confuses * the locking assertions. */ vnflags = LK_EXCLUSIVE; break; #endif case LK_SHARED: vnflags = LK_SHARED; break; case LK_UPGRADE: case LK_EXCLUPGRADE: case LK_DOWNGRADE: return (0); case LK_RELEASE: default: panic("vop_sharedlock: bad operation %d", flags & LK_TYPE_MASK); } vnflags |= flags & (LK_INTERLOCK | LK_EXTFLG_MASK); #ifndef DEBUG_LOCKS return (lockmgr(vp->v_vnlock, vnflags, VI_MTX(vp), ap->a_td)); #else return (debuglockmgr(vp->v_vnlock, vnflags, VI_MTX(vp), ap->a_td, "vop_sharedlock", vp->filename, vp->line)); #endif } /* * Stubs to use when there is no locking to be done on the underlying object. * A minimal shared lock is necessary to ensure that the underlying object * is not revoked while an operation is in progress. So, an active shared * count is maintained in an auxillary vnode lock structure. */ int vop_nolock(ap) struct vop_lock_args /* { struct vnode *a_vp; int a_flags; struct thread *a_td; } */ *ap; { #ifdef notyet /* * This code cannot be used until all the non-locking filesystems * (notably NFS) are converted to properly lock and release nodes. * Also, certain vnode operations change the locking state within * the operation (create, mknod, remove, link, rename, mkdir, rmdir, * and symlink). Ideally these operations should not change the * lock state, but should be changed to let the caller of the * function unlock them. Otherwise all intermediate vnode layers * (such as union, umapfs, etc) must catch these functions to do * the necessary locking at their layer. Note that the inactive * and lookup operations also change their lock state, but this * cannot be avoided, so these two operations will always need * to be handled in intermediate layers. */ struct vnode *vp = ap->a_vp; int vnflags, flags = ap->a_flags; switch (flags & LK_TYPE_MASK) { case LK_DRAIN: vnflags = LK_DRAIN; break; case LK_EXCLUSIVE: case LK_SHARED: vnflags = LK_SHARED; break; case LK_UPGRADE: case LK_EXCLUPGRADE: case LK_DOWNGRADE: return (0); case LK_RELEASE: default: panic("vop_nolock: bad operation %d", flags & LK_TYPE_MASK); } vnflags |= flags & (LK_INTERLOCK | LK_EXTFLG_MASK); return(lockmgr(vp->v_vnlock, vnflags, VI_MTX(vp), ap->a_td)); #else /* for now */ /* * Since we are not using the lock manager, we must clear * the interlock here. */ if (ap->a_flags & LK_INTERLOCK) VI_UNLOCK(ap->a_vp); return (0); #endif } /* * Do the inverse of vop_nolock, handling the interlock in a compatible way. */ int vop_nounlock(ap) struct vop_unlock_args /* { struct vnode *a_vp; int a_flags; struct thread *a_td; } */ *ap; { /* * Since we are not using the lock manager, we must clear * the interlock here. */ if (ap->a_flags & LK_INTERLOCK) VI_UNLOCK(ap->a_vp); return (0); } /* * Return whether or not the node is in use. */ int vop_noislocked(ap) struct vop_islocked_args /* { struct vnode *a_vp; struct thread *a_td; } */ *ap; { return (0); } /* * Return our mount point, as we will take charge of the writes. */ int vop_stdgetwritemount(ap) struct vop_getwritemount_args /* { struct vnode *a_vp; struct mount **a_mpp; } */ *ap; { *(ap->a_mpp) = ap->a_vp->v_mount; return (0); } /* Create the VM system backing object for this vnode */ int vop_stdcreatevobject(ap) struct vop_createvobject_args /* { struct vnode *vp; struct ucred *cred; struct thread *td; } */ *ap; { struct vnode *vp = ap->a_vp; struct ucred *cred = ap->a_cred; struct thread *td = ap->a_td; struct vattr vat; vm_object_t object; int error = 0; GIANT_REQUIRED; if (!vn_isdisk(vp, NULL) && vn_canvmio(vp) == FALSE) return (0); retry: if ((object = vp->v_object) == NULL) { if (vp->v_type == VREG || vp->v_type == VDIR) { if ((error = VOP_GETATTR(vp, &vat, cred, td)) != 0) goto retn; object = vnode_pager_alloc(vp, vat.va_size, 0, 0); } else if (devsw(vp->v_rdev) != NULL) { /* * This simply allocates the biggest object possible * for a disk vnode. This should be fixed, but doesn't * cause any problems (yet). */ object = vnode_pager_alloc(vp, IDX_TO_OFF(INT_MAX), 0, 0); } else { goto retn; } /* * Dereference the reference we just created. This assumes * that the object is associated with the vp. */ VM_OBJECT_LOCK(object); object->ref_count--; VM_OBJECT_UNLOCK(object); vrele(vp); } else { if (object->flags & OBJ_DEAD) { VOP_UNLOCK(vp, 0, td); tsleep(object, PVM, "vodead", 0); vn_lock(vp, LK_EXCLUSIVE | LK_RETRY, td); goto retry; } } KASSERT(vp->v_object != NULL, ("vfs_object_create: NULL object")); vp->v_vflag |= VV_OBJBUF; retn: return (error); } /* Destroy the VM system object associated with this vnode */ int vop_stddestroyvobject(ap) struct vop_destroyvobject_args /* { struct vnode *vp; } */ *ap; { struct vnode *vp = ap->a_vp; vm_object_t obj = vp->v_object; GIANT_REQUIRED; if (obj == NULL) return (0); VM_OBJECT_LOCK(obj); if (obj->ref_count == 0) { /* * vclean() may be called twice. The first time * removes the primary reference to the object, * the second time goes one further and is a * special-case to terminate the object. * * don't double-terminate the object */ if ((obj->flags & OBJ_DEAD) == 0) vm_object_terminate(obj); else VM_OBJECT_UNLOCK(obj); } else { VM_OBJECT_UNLOCK(obj); /* * Woe to the process that tries to page now :-). */ vm_pager_deallocate(obj); } return (0); } /* * Return the underlying VM object. This routine may be called with or * without the vnode interlock held. If called without, the returned * object is not guarenteed to be valid. The syncer typically gets the * object without holding the interlock in order to quickly test whether * it might be dirty before going heavy-weight. vm_object's use zalloc * and thus stable-storage, so this is safe. */ int vop_stdgetvobject(ap) struct vop_getvobject_args /* { struct vnode *vp; struct vm_object **objpp; } */ *ap; { struct vnode *vp = ap->a_vp; struct vm_object **objpp = ap->a_objpp; if (objpp) *objpp = vp->v_object; return (vp->v_object ? 0 : EINVAL); } /* XXX Needs good comment and VOP_BMAP(9) manpage */ int vop_stdbmap(ap) struct vop_bmap_args /* { struct vnode *a_vp; daddr_t a_bn; struct vnode **a_vpp; daddr_t *a_bnp; int *a_runp; int *a_runb; } */ *ap; { if (ap->a_vpp != NULL) *ap->a_vpp = ap->a_vp; if (ap->a_bnp != NULL) *ap->a_bnp = ap->a_bn * btodb(ap->a_vp->v_mount->mnt_stat.f_iosize); if (ap->a_runp != NULL) *ap->a_runp = 0; if (ap->a_runb != NULL) *ap->a_runb = 0; return (0); } int vop_stdfsync(ap) struct vop_fsync_args /* { struct vnode *a_vp; struct ucred *a_cred; int a_waitfor; struct thread *a_td; } */ *ap; { struct vnode *vp = ap->a_vp; struct buf *bp; struct buf *nbp; int s, error = 0; int maxretry = 100; /* large, arbitrarily chosen */ VI_LOCK(vp); loop1: /* * MARK/SCAN initialization to avoid infinite loops. */ s = splbio(); TAILQ_FOREACH(bp, &vp->v_dirtyblkhd, b_vnbufs) { bp->b_vflags &= ~BV_SCANNED; bp->b_error = 0; } splx(s); /* * Flush all dirty buffers associated with a block device. */ loop2: s = splbio(); for (bp = TAILQ_FIRST(&vp->v_dirtyblkhd); bp != NULL; bp = nbp) { nbp = TAILQ_NEXT(bp, b_vnbufs); if ((bp->b_vflags & BV_SCANNED) != 0) continue; bp->b_vflags |= BV_SCANNED; if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL)) continue; VI_UNLOCK(vp); if ((bp->b_flags & B_DELWRI) == 0) panic("fsync: not dirty"); if ((vp->v_vflag & VV_OBJBUF) && (bp->b_flags & B_CLUSTEROK)) { vfs_bio_awrite(bp); splx(s); } else { bremfree(bp); splx(s); bawrite(bp); } VI_LOCK(vp); goto loop2; } /* * If synchronous the caller expects us to completely resolve all * dirty buffers in the system. Wait for in-progress I/O to * complete (which could include background bitmap writes), then * retry if dirty blocks still exist. */ if (ap->a_waitfor == MNT_WAIT) { while (vp->v_numoutput) { vp->v_iflag |= VI_BWAIT; msleep((caddr_t)&vp->v_numoutput, VI_MTX(vp), PRIBIO + 1, "fsync", 0); } if (!TAILQ_EMPTY(&vp->v_dirtyblkhd)) { /* * If we are unable to write any of these buffers * then we fail now rather than trying endlessly * to write them out. */ TAILQ_FOREACH(bp, &vp->v_dirtyblkhd, b_vnbufs) if ((error = bp->b_error) == 0) continue; if (error == 0 && --maxretry >= 0) { splx(s); goto loop1; } vprint("fsync: giving up on dirty", vp); error = EAGAIN; } } VI_UNLOCK(vp); splx(s); return (error); } /* XXX Needs good comment and more info in the manpage (VOP_GETPAGES(9)). */ int vop_stdgetpages(ap) struct vop_getpages_args /* { struct vnode *a_vp; vm_page_t *a_m; int a_count; int a_reqpage; vm_ooffset_t a_offset; } */ *ap; { return vnode_pager_generic_getpages(ap->a_vp, ap->a_m, ap->a_count, ap->a_reqpage); } /* XXX Needs good comment and more info in the manpage (VOP_PUTPAGES(9)). */ int vop_stdputpages(ap) struct vop_putpages_args /* { struct vnode *a_vp; vm_page_t *a_m; int a_count; int a_sync; int *a_rtvals; vm_ooffset_t a_offset; } */ *ap; { return vnode_pager_generic_putpages(ap->a_vp, ap->a_m, ap->a_count, ap->a_sync, ap->a_rtvals); } /* * vfs default ops * used to fill the vfs function table to get reasonable default return values. */ int vfs_stdroot (mp, vpp) struct mount *mp; struct vnode **vpp; { return (EOPNOTSUPP); } int vfs_stdstatfs (mp, sbp, td) struct mount *mp; struct statfs *sbp; struct thread *td; { return (EOPNOTSUPP); } int vfs_stdvptofh (vp, fhp) struct vnode *vp; struct fid *fhp; { return (EOPNOTSUPP); } int vfs_stdstart (mp, flags, td) struct mount *mp; int flags; struct thread *td; { return (0); } int vfs_stdquotactl (mp, cmds, uid, arg, td) struct mount *mp; int cmds; uid_t uid; caddr_t arg; struct thread *td; { return (EOPNOTSUPP); } int vfs_stdsync(mp, waitfor, cred, td) struct mount *mp; int waitfor; struct ucred *cred; struct thread *td; { struct vnode *vp, *nvp; int error, lockreq, allerror = 0; lockreq = LK_EXCLUSIVE | LK_INTERLOCK; if (waitfor != MNT_WAIT) lockreq |= LK_NOWAIT; /* * Force stale buffer cache information to be flushed. */ mtx_lock(&mntvnode_mtx); loop: for (vp = TAILQ_FIRST(&mp->mnt_nvnodelist); vp != NULL; vp = nvp) { /* * If the vnode that we are about to sync is no longer * associated with this mount point, start over. */ if (vp->v_mount != mp) goto loop; nvp = TAILQ_NEXT(vp, v_nmntvnodes); VI_LOCK(vp); if (TAILQ_EMPTY(&vp->v_dirtyblkhd)) { VI_UNLOCK(vp); continue; } mtx_unlock(&mntvnode_mtx); if ((error = vget(vp, lockreq, td)) != 0) { if (error == ENOENT) goto loop; continue; } error = VOP_FSYNC(vp, cred, waitfor, td); if (error) allerror = error; mtx_lock(&mntvnode_mtx); if (nvp != TAILQ_NEXT(vp, v_nmntvnodes)) { vput(vp); goto loop; } vput(vp); } mtx_unlock(&mntvnode_mtx); return (allerror); } int vfs_stdnosync (mp, waitfor, cred, td) struct mount *mp; int waitfor; struct ucred *cred; struct thread *td; { return (0); } int vfs_stdvget (mp, ino, flags, vpp) struct mount *mp; ino_t ino; int flags; struct vnode **vpp; { return (EOPNOTSUPP); } int vfs_stdfhtovp (mp, fhp, vpp) struct mount *mp; struct fid *fhp; struct vnode **vpp; { return (EOPNOTSUPP); } int vfs_stdinit (vfsp) struct vfsconf *vfsp; { return (0); } int vfs_stduninit (vfsp) struct vfsconf *vfsp; { return(0); } int vfs_stdextattrctl(mp, cmd, filename_vp, attrnamespace, attrname, td) struct mount *mp; int cmd; struct vnode *filename_vp; int attrnamespace; const char *attrname; struct thread *td; { if (filename_vp != NULL) VOP_UNLOCK(filename_vp, 0, td); return(EOPNOTSUPP); } /* end of vfs default ops */