/*- * Copyright (c) 2017 Broadcom. All rights reserved. * The term "Broadcom" refers to Broadcom Limited and/or its subsidiaries. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * 3. Neither the name of the copyright holder nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. * * $FreeBSD$ */ /** * @file * FC transport API * */ #include "ocs.h" #include "ocs_device.h" static void ocs_xport_link_stats_cb(int32_t status, uint32_t num_counters, ocs_hw_link_stat_counts_t *counters, void *arg); static void ocs_xport_host_stats_cb(int32_t status, uint32_t num_counters, ocs_hw_host_stat_counts_t *counters, void *arg); /** * @brief Post node event callback argument. */ typedef struct { ocs_sem_t sem; ocs_node_t *node; ocs_sm_event_t evt; void *context; } ocs_xport_post_node_event_t; /** * @brief Allocate a transport object. * * @par Description * A transport object is allocated, and associated with a device instance. * * @param ocs Pointer to device instance. * * @return Returns the pointer to the allocated transport object, or NULL if failed. */ ocs_xport_t * ocs_xport_alloc(ocs_t *ocs) { ocs_xport_t *xport; ocs_assert(ocs, NULL); xport = ocs_malloc(ocs, sizeof(*xport), OCS_M_ZERO); if (xport != NULL) { xport->ocs = ocs; } return xport; } /** * @brief Create the RQ threads and the circular buffers used to pass sequences. * * @par Description * Creates the circular buffers and the servicing threads for RQ processing. * * @param xport Pointer to transport object * * @return Returns 0 on success, or a non-zero value on failure. */ static void ocs_xport_rq_threads_teardown(ocs_xport_t *xport) { ocs_t *ocs = xport->ocs; uint32_t i; if (xport->num_rq_threads == 0 || xport->rq_thread_info == NULL) { return; } /* Abort any threads */ for (i = 0; i < xport->num_rq_threads; i++) { if (xport->rq_thread_info[i].thread_started) { ocs_thread_terminate(&xport->rq_thread_info[i].thread); /* wait for the thread to exit */ ocs_log_debug(ocs, "wait for thread %d to exit\n", i); while (xport->rq_thread_info[i].thread_started) { ocs_udelay(10000); } ocs_log_debug(ocs, "thread %d to exited\n", i); } if (xport->rq_thread_info[i].seq_cbuf != NULL) { ocs_cbuf_free(xport->rq_thread_info[i].seq_cbuf); xport->rq_thread_info[i].seq_cbuf = NULL; } } } /** * @brief Create the RQ threads and the circular buffers used to pass sequences. * * @par Description * Creates the circular buffers and the servicing threads for RQ processing. * * @param xport Pointer to transport object. * @param num_rq_threads Number of RQ processing threads that the * driver creates. * * @return Returns 0 on success, or a non-zero value on failure. */ static int32_t ocs_xport_rq_threads_create(ocs_xport_t *xport, uint32_t num_rq_threads) { ocs_t *ocs = xport->ocs; int32_t rc = 0; uint32_t i; xport->num_rq_threads = num_rq_threads; ocs_log_debug(ocs, "number of RQ threads %d\n", num_rq_threads); if (num_rq_threads == 0) { return 0; } /* Allocate the space for the thread objects */ xport->rq_thread_info = ocs_malloc(ocs, sizeof(ocs_xport_rq_thread_info_t) * num_rq_threads, OCS_M_ZERO); if (xport->rq_thread_info == NULL) { ocs_log_err(ocs, "memory allocation failure\n"); return -1; } /* Create the circular buffers and threads. */ for (i = 0; i < num_rq_threads; i++) { xport->rq_thread_info[i].ocs = ocs; xport->rq_thread_info[i].seq_cbuf = ocs_cbuf_alloc(ocs, OCS_HW_RQ_NUM_HDR); if (xport->rq_thread_info[i].seq_cbuf == NULL) { goto ocs_xport_rq_threads_create_error; } ocs_snprintf(xport->rq_thread_info[i].thread_name, sizeof(xport->rq_thread_info[i].thread_name), "ocs_unsol_rq:%d:%d", ocs->instance_index, i); rc = ocs_thread_create(ocs, &xport->rq_thread_info[i].thread, ocs_unsol_rq_thread, xport->rq_thread_info[i].thread_name, &xport->rq_thread_info[i], OCS_THREAD_RUN); if (rc) { ocs_log_err(ocs, "ocs_thread_create failed: %d\n", rc); goto ocs_xport_rq_threads_create_error; } xport->rq_thread_info[i].thread_started = TRUE; } return 0; ocs_xport_rq_threads_create_error: ocs_xport_rq_threads_teardown(xport); return -1; } /** * @brief Do as much allocation as possible, but do not initialization the device. * * @par Description * Performs the functions required to get a device ready to run. * * @param xport Pointer to transport object. * * @return Returns 0 on success, or a non-zero value on failure. */ int32_t ocs_xport_attach(ocs_xport_t *xport) { ocs_t *ocs = xport->ocs; int32_t rc; uint32_t max_sgl; uint32_t n_sgl; uint32_t i; uint32_t value; uint32_t max_remote_nodes; /* booleans used for cleanup if initialization fails */ uint8_t io_pool_created = FALSE; uint8_t node_pool_created = FALSE; uint8_t rq_threads_created = FALSE; ocs_list_init(&ocs->domain_list, ocs_domain_t, link); for (i = 0; i < SLI4_MAX_FCFI; i++) { xport->fcfi[i].hold_frames = 1; ocs_lock_init(ocs, &xport->fcfi[i].pend_frames_lock, "xport pend_frames[%d]", i); ocs_list_init(&xport->fcfi[i].pend_frames, ocs_hw_sequence_t, link); } rc = ocs_hw_set_ptr(&ocs->hw, OCS_HW_WAR_VERSION, ocs->hw_war_version); if (rc) { ocs_log_test(ocs, "can't set OCS_HW_WAR_VERSION\n"); return -1; } rc = ocs_hw_setup(&ocs->hw, ocs, SLI4_PORT_TYPE_FC); if (rc) { ocs_log_err(ocs, "%s: Can't setup hardware\n", ocs->desc); return -1; } else if (ocs->ctrlmask & OCS_CTRLMASK_CRASH_RESET) { ocs_log_debug(ocs, "stopping after ocs_hw_setup\n"); return -1; } ocs_hw_set(&ocs->hw, OCS_HW_BOUNCE, ocs->hw_bounce); ocs_log_debug(ocs, "HW bounce: %d\n", ocs->hw_bounce); ocs_hw_set(&ocs->hw, OCS_HW_RQ_SELECTION_POLICY, ocs->rq_selection_policy); ocs_hw_set(&ocs->hw, OCS_HW_RR_QUANTA, ocs->rr_quanta); ocs_hw_get(&ocs->hw, OCS_HW_RQ_SELECTION_POLICY, &value); ocs_log_debug(ocs, "RQ Selection Policy: %d\n", value); ocs_hw_set_ptr(&ocs->hw, OCS_HW_FILTER_DEF, (void*) ocs->filter_def); ocs_hw_get(&ocs->hw, OCS_HW_MAX_SGL, &max_sgl); max_sgl -= SLI4_SGE_MAX_RESERVED; n_sgl = MIN(OCS_FC_MAX_SGL, max_sgl); /* EVT: For chained SGL testing */ if (ocs->ctrlmask & OCS_CTRLMASK_TEST_CHAINED_SGLS) { n_sgl = 4; } /* Note: number of SGLs must be set for ocs_node_create_pool */ if (ocs_hw_set(&ocs->hw, OCS_HW_N_SGL, n_sgl) != OCS_HW_RTN_SUCCESS) { ocs_log_err(ocs, "%s: Can't set number of SGLs\n", ocs->desc); return -1; } else { ocs_log_debug(ocs, "%s: Configured for %d SGLs\n", ocs->desc, n_sgl); } ocs_hw_get(&ocs->hw, OCS_HW_MAX_NODES, &max_remote_nodes); if (!ocs->max_remote_nodes) ocs->max_remote_nodes = max_remote_nodes; rc = ocs_node_create_pool(ocs, ocs->max_remote_nodes); if (rc) { ocs_log_err(ocs, "Can't allocate node pool\n"); goto ocs_xport_attach_cleanup; } else { node_pool_created = TRUE; } /* EVT: if testing chained SGLs allocate OCS_FC_MAX_SGL SGE's in the IO */ xport->io_pool = ocs_io_pool_create(ocs, ocs->num_scsi_ios, (ocs->ctrlmask & OCS_CTRLMASK_TEST_CHAINED_SGLS) ? OCS_FC_MAX_SGL : n_sgl); if (xport->io_pool == NULL) { ocs_log_err(ocs, "Can't allocate IO pool\n"); goto ocs_xport_attach_cleanup; } else { io_pool_created = TRUE; } /* * setup the RQ processing threads */ if (ocs_xport_rq_threads_create(xport, ocs->rq_threads) != 0) { ocs_log_err(ocs, "failure creating RQ threads\n"); goto ocs_xport_attach_cleanup; } rq_threads_created = TRUE; return 0; ocs_xport_attach_cleanup: if (io_pool_created) { ocs_io_pool_free(xport->io_pool); } if (node_pool_created) { ocs_node_free_pool(ocs); } return -1; } /** * @brief Determines how to setup auto Xfer ready. * * @par Description * @param xport Pointer to transport object. * * @return Returns 0 on success or a non-zero value on failure. */ static int32_t ocs_xport_initialize_auto_xfer_ready(ocs_xport_t *xport) { ocs_t *ocs = xport->ocs; uint32_t auto_xfer_rdy; char prop_buf[32]; uint32_t ramdisc_blocksize = 512; uint8_t p_type = 0; ocs_hw_get(&ocs->hw, OCS_HW_AUTO_XFER_RDY_CAPABLE, &auto_xfer_rdy); if (!auto_xfer_rdy) { ocs->auto_xfer_rdy_size = 0; ocs_log_test(ocs, "Cannot enable auto xfer rdy for this port\n"); return 0; } if (ocs_hw_set(&ocs->hw, OCS_HW_AUTO_XFER_RDY_SIZE, ocs->auto_xfer_rdy_size)) { ocs_log_test(ocs, "%s: Can't set auto xfer rdy mode\n", ocs->desc); return -1; } /* * Determine if we are doing protection in the backend. We are looking * at the modules parameters here. The backend cannot allow a format * command to change the protection mode when using this feature, * otherwise the firmware will not do the proper thing. */ if (ocs_get_property("p_type", prop_buf, sizeof(prop_buf)) == 0) { p_type = ocs_strtoul(prop_buf, 0, 0); } if (ocs_get_property("ramdisc_blocksize", prop_buf, sizeof(prop_buf)) == 0) { ramdisc_blocksize = ocs_strtoul(prop_buf, 0, 0); } if (ocs_get_property("external_dif", prop_buf, sizeof(prop_buf)) == 0) { if(ocs_strlen(prop_buf)) { if (p_type == 0) { p_type = 1; } } } if (p_type != 0) { if (ocs_hw_set(&ocs->hw, OCS_HW_AUTO_XFER_RDY_T10_ENABLE, TRUE)) { ocs_log_test(ocs, "%s: Can't set auto xfer rdy mode\n", ocs->desc); return -1; } if (ocs_hw_set(&ocs->hw, OCS_HW_AUTO_XFER_RDY_BLK_SIZE, ramdisc_blocksize)) { ocs_log_test(ocs, "%s: Can't set auto xfer rdy blk size\n", ocs->desc); return -1; } if (ocs_hw_set(&ocs->hw, OCS_HW_AUTO_XFER_RDY_P_TYPE, p_type)) { ocs_log_test(ocs, "%s: Can't set auto xfer rdy mode\n", ocs->desc); return -1; } if (ocs_hw_set(&ocs->hw, OCS_HW_AUTO_XFER_RDY_REF_TAG_IS_LBA, TRUE)) { ocs_log_test(ocs, "%s: Can't set auto xfer rdy ref tag\n", ocs->desc); return -1; } if (ocs_hw_set(&ocs->hw, OCS_HW_AUTO_XFER_RDY_APP_TAG_VALID, FALSE)) { ocs_log_test(ocs, "%s: Can't set auto xfer rdy app tag valid\n", ocs->desc); return -1; } } ocs_log_debug(ocs, "Auto xfer rdy is enabled, p_type=%d, blksize=%d\n", p_type, ramdisc_blocksize); return 0; } /** * @brief Initialize link topology config * * @par Description * Topology can be fetched from mod-param or Persistet Topology(PT). * a. Mod-param value is used when the value is 1(P2P) or 2(LOOP). * a. PT is used if mod-param is not provided( i.e, default value of AUTO) * Also, if mod-param is used, update PT. * * @param ocs Pointer to ocs * * @return Returns 0 on success, or a non-zero value on failure. */ static int ocs_topology_setup(ocs_t *ocs) { uint32_t topology; if (ocs->topology == OCS_HW_TOPOLOGY_AUTO) { topology = ocs_hw_get_config_persistent_topology(&ocs->hw); } else { topology = ocs->topology; /* ignore failure here. link will come-up either in auto mode * if PT is not supported or last saved PT value */ ocs_hw_set_persistent_topology(&ocs->hw, topology, OCS_CMD_POLL); } return ocs_hw_set(&ocs->hw, OCS_HW_TOPOLOGY, topology); } /** * @brief Initializes the device. * * @par Description * Performs the functions required to make a device functional. * * @param xport Pointer to transport object. * * @return Returns 0 on success, or a non-zero value on failure. */ int32_t ocs_xport_initialize(ocs_xport_t *xport) { ocs_t *ocs = xport->ocs; int32_t rc; uint32_t i; uint32_t max_hw_io; uint32_t max_sgl; uint32_t hlm; uint32_t rq_limit; uint32_t dif_capable; uint8_t dif_separate = 0; char prop_buf[32]; /* booleans used for cleanup if initialization fails */ uint8_t ini_device_set = FALSE; uint8_t tgt_device_set = FALSE; uint8_t hw_initialized = FALSE; ocs_hw_get(&ocs->hw, OCS_HW_MAX_IO, &max_hw_io); if (ocs_hw_set(&ocs->hw, OCS_HW_N_IO, max_hw_io) != OCS_HW_RTN_SUCCESS) { ocs_log_err(ocs, "%s: Can't set number of IOs\n", ocs->desc); return -1; } ocs_hw_get(&ocs->hw, OCS_HW_MAX_SGL, &max_sgl); max_sgl -= SLI4_SGE_MAX_RESERVED; if (ocs->enable_hlm) { ocs_hw_get(&ocs->hw, OCS_HW_HIGH_LOGIN_MODE, &hlm); if (!hlm) { ocs->enable_hlm = FALSE; ocs_log_err(ocs, "Cannot enable high login mode for this port\n"); } else { ocs_log_debug(ocs, "High login mode is enabled\n"); if (ocs_hw_set(&ocs->hw, OCS_HW_HIGH_LOGIN_MODE, TRUE)) { ocs_log_err(ocs, "%s: Can't set high login mode\n", ocs->desc); return -1; } } } /* validate the auto xfer_rdy size */ if (ocs->auto_xfer_rdy_size > 0 && (ocs->auto_xfer_rdy_size < 2048 || ocs->auto_xfer_rdy_size > 65536)) { ocs_log_err(ocs, "Auto XFER_RDY size is out of range (2K-64K)\n"); return -1; } ocs_hw_get(&ocs->hw, OCS_HW_MAX_IO, &max_hw_io); if (ocs->auto_xfer_rdy_size > 0) { if (ocs_xport_initialize_auto_xfer_ready(xport)) { ocs_log_err(ocs, "%s: Failed auto xfer ready setup\n", ocs->desc); return -1; } if (ocs->esoc){ ocs_hw_set(&ocs->hw, OCS_ESOC, TRUE); } } if (ocs->explicit_buffer_list) { /* Are pre-registered SGL's required? */ ocs_hw_get(&ocs->hw, OCS_HW_PREREGISTER_SGL, &i); if (i == TRUE) { ocs_log_err(ocs, "Explicit Buffer List not supported on this device, not enabled\n"); } else { ocs_hw_set(&ocs->hw, OCS_HW_PREREGISTER_SGL, FALSE); } } /* Setup persistent topology based on topology mod-param value */ rc = ocs_topology_setup(ocs); if (rc) { ocs_log_err(ocs, "%s: Can't set the toplogy\n", ocs->desc); return -1; } if (ocs_hw_set(&ocs->hw, OCS_HW_TOPOLOGY, ocs->topology) != OCS_HW_RTN_SUCCESS) { ocs_log_err(ocs, "%s: Can't set the toplogy\n", ocs->desc); return -1; } ocs_hw_set(&ocs->hw, OCS_HW_RQ_DEFAULT_BUFFER_SIZE, OCS_FC_RQ_SIZE_DEFAULT); if (ocs_hw_set(&ocs->hw, OCS_HW_LINK_SPEED, ocs->speed) != OCS_HW_RTN_SUCCESS) { ocs_log_err(ocs, "%s: Can't set the link speed\n", ocs->desc); return -1; } if (ocs_hw_set(&ocs->hw, OCS_HW_ETH_LICENSE, ocs->ethernet_license) != OCS_HW_RTN_SUCCESS) { ocs_log_err(ocs, "%s: Can't set the ethernet license\n", ocs->desc); return -1; } /* currently only lancer support setting the CRC seed value */ if (ocs->hw.sli.asic_type == SLI4_ASIC_TYPE_LANCER) { if (ocs_hw_set(&ocs->hw, OCS_HW_DIF_SEED, OCS_FC_DIF_SEED) != OCS_HW_RTN_SUCCESS) { ocs_log_err(ocs, "%s: Can't set the DIF seed\n", ocs->desc); return -1; } } /* Set the Dif mode */ if (0 == ocs_hw_get(&ocs->hw, OCS_HW_DIF_CAPABLE, &dif_capable)) { if (dif_capable) { if (ocs_get_property("dif_separate", prop_buf, sizeof(prop_buf)) == 0) { dif_separate = ocs_strtoul(prop_buf, 0, 0); } if ((rc = ocs_hw_set(&ocs->hw, OCS_HW_DIF_MODE, (dif_separate == 0 ? OCS_HW_DIF_MODE_INLINE : OCS_HW_DIF_MODE_SEPARATE)))) { ocs_log_err(ocs, "Requested DIF MODE not supported\n"); } } } if (ocs->target_io_timer_sec) { ocs_log_debug(ocs, "setting target io timer=%d\n", ocs->target_io_timer_sec); ocs_hw_set(&ocs->hw, OCS_HW_EMULATE_TARGET_WQE_TIMEOUT, TRUE); } ocs_hw_callback(&ocs->hw, OCS_HW_CB_DOMAIN, ocs_domain_cb, ocs); ocs_hw_callback(&ocs->hw, OCS_HW_CB_REMOTE_NODE, ocs_remote_node_cb, ocs); ocs_hw_callback(&ocs->hw, OCS_HW_CB_UNSOLICITED, ocs_unsolicited_cb, ocs); ocs_hw_callback(&ocs->hw, OCS_HW_CB_PORT, ocs_port_cb, ocs); ocs->fw_version = (const char*) ocs_hw_get_ptr(&ocs->hw, OCS_HW_FW_REV); /* Initialize vport list */ ocs_list_init(&xport->vport_list, ocs_vport_spec_t, link); ocs_lock_init(ocs, &xport->io_pending_lock, "io_pending_lock[%d]", ocs->instance_index); ocs_list_init(&xport->io_pending_list, ocs_io_t, io_pending_link); ocs_atomic_init(&xport->io_active_count, 0); ocs_atomic_init(&xport->io_pending_count, 0); ocs_atomic_init(&xport->io_total_free, 0); ocs_atomic_init(&xport->io_total_pending, 0); ocs_atomic_init(&xport->io_alloc_failed_count, 0); ocs_atomic_init(&xport->io_pending_recursing, 0); ocs_lock_init(ocs, &ocs->hw.watchdog_lock, " Watchdog Lock[%d]", ocs_instance(ocs)); rc = ocs_hw_init(&ocs->hw); if (rc) { ocs_log_err(ocs, "ocs_hw_init failure\n"); goto ocs_xport_init_cleanup; } else { hw_initialized = TRUE; } rq_limit = max_hw_io/2; if (ocs_hw_set(&ocs->hw, OCS_HW_RQ_PROCESS_LIMIT, rq_limit) != OCS_HW_RTN_SUCCESS) { ocs_log_err(ocs, "%s: Can't set the RQ process limit\n", ocs->desc); } if (ocs->config_tgt) { rc = ocs_scsi_tgt_new_device(ocs); if (rc) { ocs_log_err(ocs, "failed to initialize target\n"); goto ocs_xport_init_cleanup; } else { tgt_device_set = TRUE; } } if (ocs->enable_ini) { rc = ocs_scsi_ini_new_device(ocs); if (rc) { ocs_log_err(ocs, "failed to initialize initiator\n"); goto ocs_xport_init_cleanup; } else { ini_device_set = TRUE; } } /* Add vports */ if (ocs->num_vports != 0) { uint32_t max_vports; ocs_hw_get(&ocs->hw, OCS_HW_MAX_VPORTS, &max_vports); if (ocs->num_vports < max_vports) { ocs_log_debug(ocs, "Provisioning %d vports\n", ocs->num_vports); for (i = 0; i < ocs->num_vports; i++) { ocs_vport_create_spec(ocs, 0, 0, UINT32_MAX, ocs->enable_ini, ocs->enable_tgt, NULL, NULL); } } else { ocs_log_err(ocs, "failed to create vports. num_vports range should be (1-%d) \n", max_vports-1); goto ocs_xport_init_cleanup; } } return 0; ocs_xport_init_cleanup: if (ini_device_set) { ocs_scsi_ini_del_device(ocs); } if (tgt_device_set) { ocs_scsi_tgt_del_device(ocs); } if (hw_initialized) { /* ocs_hw_teardown can only execute after ocs_hw_init */ ocs_hw_teardown(&ocs->hw); } return -1; } /** * @brief Detaches the transport from the device. * * @par Description * Performs the functions required to shut down a device. * * @param xport Pointer to transport object. * * @return Returns 0 on success or a non-zero value on failure. */ int32_t ocs_xport_detach(ocs_xport_t *xport) { ocs_t *ocs = xport->ocs; /* free resources associated with target-server and initiator-client */ if (ocs->config_tgt) ocs_scsi_tgt_del_device(ocs); if (ocs->enable_ini) { ocs_scsi_ini_del_device(ocs); /*Shutdown FC Statistics timer*/ if (ocs_timer_pending(&ocs->xport->stats_timer)) ocs_del_timer(&ocs->xport->stats_timer); } ocs_hw_teardown(&ocs->hw); return 0; } /** * @brief domain list empty callback * * @par Description * Function is invoked when the device domain list goes empty. By convention * @c arg points to an ocs_sem_t instance, that is incremented. * * @param ocs Pointer to device object. * @param arg Pointer to semaphore instance. * * @return None. */ static void ocs_xport_domain_list_empty_cb(ocs_t *ocs, void *arg) { ocs_sem_t *sem = arg; ocs_assert(ocs); ocs_assert(sem); ocs_sem_v(sem); } /** * @brief post node event callback * * @par Description * This function is called from the mailbox completion interrupt context to post an * event to a node object. By doing this in the interrupt context, it has * the benefit of only posting events in the interrupt context, deferring the need to * create a per event node lock. * * @param hw Pointer to HW structure. * @param status Completion status for mailbox command. * @param mqe Mailbox queue completion entry. * @param arg Callback argument. * * @return Returns 0 on success, a negative error code value on failure. */ static int32_t ocs_xport_post_node_event_cb(ocs_hw_t *hw, int32_t status, uint8_t *mqe, void *arg) { ocs_xport_post_node_event_t *payload = arg; if (payload != NULL) { ocs_node_post_event(payload->node, payload->evt, payload->context); ocs_sem_v(&payload->sem); } return 0; } /** * @brief Initiate force free. * * @par Description * Perform force free of OCS. * * @param xport Pointer to transport object. * * @return None. */ static void ocs_xport_force_free(ocs_xport_t *xport) { ocs_t *ocs = xport->ocs; ocs_domain_t *domain; ocs_domain_t *next; ocs_log_debug(ocs, "reset required, do force shutdown\n"); ocs_device_lock(ocs); ocs_list_foreach_safe(&ocs->domain_list, domain, next) { ocs_domain_force_free(domain); } ocs_device_unlock(ocs); } /** * @brief Perform transport attach function. * * @par Description * Perform the attach function, which for the FC transport makes a HW call * to bring up the link. * * @param xport pointer to transport object. * @param cmd command to execute. * * ocs_xport_control(ocs_xport_t *xport, OCS_XPORT_PORT_ONLINE) * ocs_xport_control(ocs_xport_t *xport, OCS_XPORT_PORT_OFFLINE) * ocs_xport_control(ocs_xport_t *xport, OCS_XPORT_PORT_SHUTDOWN) * ocs_xport_control(ocs_xport_t *xport, OCS_XPORT_POST_NODE_EVENT, ocs_node_t *node, ocs_sm_event_t, void *context) * * @return Returns 0 on success, or a negative error code value on failure. */ int32_t ocs_xport_control(ocs_xport_t *xport, ocs_xport_ctrl_e cmd, ...) { uint32_t rc = 0; ocs_t *ocs = NULL; va_list argp; ocs_assert(xport, -1); ocs_assert(xport->ocs, -1); ocs = xport->ocs; switch (cmd) { case OCS_XPORT_PORT_ONLINE: { /* Bring the port on-line */ rc = ocs_hw_port_control(&ocs->hw, OCS_HW_PORT_INIT, 0, NULL, NULL); if (rc) { ocs_log_err(ocs, "%s: Can't init port\n", ocs->desc); } else { xport->configured_link_state = cmd; } break; } case OCS_XPORT_PORT_OFFLINE: { if (ocs_hw_port_control(&ocs->hw, OCS_HW_PORT_SHUTDOWN, 0, NULL, NULL)) { ocs_log_err(ocs, "port shutdown failed\n"); } else { xport->configured_link_state = cmd; } break; } case OCS_XPORT_SHUTDOWN: { ocs_sem_t sem; uint32_t reset_required; /* if a PHYSDEV reset was performed (e.g. hw dump), will affect * all PCI functions; orderly shutdown won't work, just force free */ /* TODO: need to poll this regularly... */ if (ocs_hw_get(&ocs->hw, OCS_HW_RESET_REQUIRED, &reset_required) != OCS_HW_RTN_SUCCESS) { reset_required = 0; } if (reset_required) { ocs_log_debug(ocs, "reset required, do force shutdown\n"); ocs_xport_force_free(xport); break; } ocs_sem_init(&sem, 0, "domain_list_sem"); ocs_register_domain_list_empty_cb(ocs, ocs_xport_domain_list_empty_cb, &sem); if (ocs_hw_port_control(&ocs->hw, OCS_HW_PORT_SHUTDOWN, 0, NULL, NULL)) { ocs_log_debug(ocs, "port shutdown failed, do force shutdown\n"); ocs_xport_force_free(xport); } else { ocs_log_debug(ocs, "Waiting %d seconds for domain shutdown.\n", (OCS_FC_DOMAIN_SHUTDOWN_TIMEOUT_USEC/1000000)); rc = ocs_sem_p(&sem, OCS_FC_DOMAIN_SHUTDOWN_TIMEOUT_USEC); if (rc) { ocs_log_debug(ocs, "Note: Domain shutdown timed out\n"); ocs_xport_force_free(xport); } } ocs_register_domain_list_empty_cb(ocs, NULL, NULL); /* Free up any saved virtual ports */ ocs_vport_del_all(ocs); break; } /* * POST_NODE_EVENT: post an event to a node object * * This transport function is used to post an event to a node object. It does * this by submitting a NOP mailbox command to defer execution to the * interrupt context (thereby enforcing the serialized execution of event posting * to the node state machine instances) * * A counting semaphore is used to make the call synchronous (we wait until * the callback increments the semaphore before returning (or times out) */ case OCS_XPORT_POST_NODE_EVENT: { ocs_node_t *node; ocs_sm_event_t evt; void *context; ocs_xport_post_node_event_t payload; ocs_t *ocs; ocs_hw_t *hw; /* Retrieve arguments */ va_start(argp, cmd); node = va_arg(argp, ocs_node_t*); evt = va_arg(argp, ocs_sm_event_t); context = va_arg(argp, void *); va_end(argp); ocs_assert(node, -1); ocs_assert(node->ocs, -1); ocs = node->ocs; hw = &ocs->hw; /* if node's state machine is disabled, don't bother continuing */ if (!node->sm.current_state) { ocs_log_test(ocs, "node %p state machine disabled\n", node); return -1; } /* Setup payload */ ocs_memset(&payload, 0, sizeof(payload)); ocs_sem_init(&payload.sem, 0, "xport_post_node_Event"); payload.node = node; payload.evt = evt; payload.context = context; if (ocs_hw_async_call(hw, ocs_xport_post_node_event_cb, &payload)) { ocs_log_test(ocs, "ocs_hw_async_call failed\n"); rc = -1; break; } /* Wait for completion */ if (ocs_sem_p(&payload.sem, OCS_SEM_FOREVER)) { ocs_log_test(ocs, "POST_NODE_EVENT: sem wait failed\n"); rc = -1; } break; } /* * Set wwnn for the port. This will be used instead of the default provided by FW. */ case OCS_XPORT_WWNN_SET: { uint64_t wwnn; /* Retrieve arguments */ va_start(argp, cmd); wwnn = va_arg(argp, uint64_t); va_end(argp); ocs_log_debug(ocs, " WWNN %016" PRIx64 "\n", wwnn); xport->req_wwnn = wwnn; break; } /* * Set wwpn for the port. This will be used instead of the default provided by FW. */ case OCS_XPORT_WWPN_SET: { uint64_t wwpn; /* Retrieve arguments */ va_start(argp, cmd); wwpn = va_arg(argp, uint64_t); va_end(argp); ocs_log_debug(ocs, " WWPN %016" PRIx64 "\n", wwpn); xport->req_wwpn = wwpn; break; } default: break; } return rc; } /** * @brief Return status on a link. * * @par Description * Returns status information about a link. * * @param xport Pointer to transport object. * @param cmd Command to execute. * @param result Pointer to result value. * * ocs_xport_status(ocs_xport_t *xport, OCS_XPORT_PORT_STATUS) * ocs_xport_status(ocs_xport_t *xport, OCS_XPORT_LINK_SPEED, ocs_xport_stats_t *result) * return link speed in MB/sec * ocs_xport_status(ocs_xport_t *xport, OCS_XPORT_IS_SUPPORTED_LINK_SPEED, ocs_xport_stats_t *result) * [in] *result is speed to check in MB/s * returns 1 if supported, 0 if not * ocs_xport_status(ocs_xport_t *xport, OCS_XPORT_LINK_STATISTICS, ocs_xport_stats_t *result) * return link/host port stats * ocs_xport_status(ocs_xport_t *xport, OCS_XPORT_LINK_STAT_RESET, ocs_xport_stats_t *result) * resets link/host stats * * * @return Returns 0 on success, or a negative error code value on failure. */ int32_t ocs_xport_status(ocs_xport_t *xport, ocs_xport_status_e cmd, ocs_xport_stats_t *result) { uint32_t rc = 0; ocs_t *ocs = NULL; ocs_xport_stats_t value; ocs_hw_rtn_e hw_rc; ocs_assert(xport, -1); ocs_assert(xport->ocs, -1); ocs = xport->ocs; switch (cmd) { case OCS_XPORT_CONFIG_PORT_STATUS: ocs_assert(result, -1); if (xport->configured_link_state == 0) { /* Initial state is offline. configured_link_state is */ /* set to online explicitly when port is brought online. */ xport->configured_link_state = OCS_XPORT_PORT_OFFLINE; } result->value = xport->configured_link_state; break; case OCS_XPORT_PORT_STATUS: ocs_assert(result, -1); /* Determine port status based on link speed. */ hw_rc = ocs_hw_get(&(ocs->hw), OCS_HW_LINK_SPEED, &value.value); if (hw_rc == OCS_HW_RTN_SUCCESS) { if (value.value == 0) { result->value = 0; } else { result->value = 1; } rc = 0; } else { rc = -1; } break; case OCS_XPORT_LINK_SPEED: { uint32_t speed; ocs_assert(result, -1); result->value = 0; rc = ocs_hw_get(&ocs->hw, OCS_HW_LINK_SPEED, &speed); if (rc == 0) { result->value = speed; } break; } case OCS_XPORT_IS_SUPPORTED_LINK_SPEED: { uint32_t speed; uint32_t link_module_type; ocs_assert(result, -1); speed = result->value; rc = ocs_hw_get(&ocs->hw, OCS_HW_LINK_MODULE_TYPE, &link_module_type); if (rc == 0) { switch(speed) { case 1000: rc = (link_module_type & OCS_HW_LINK_MODULE_TYPE_1GB) != 0; break; case 2000: rc = (link_module_type & OCS_HW_LINK_MODULE_TYPE_2GB) != 0; break; case 4000: rc = (link_module_type & OCS_HW_LINK_MODULE_TYPE_4GB) != 0; break; case 8000: rc = (link_module_type & OCS_HW_LINK_MODULE_TYPE_8GB) != 0; break; case 10000: rc = (link_module_type & OCS_HW_LINK_MODULE_TYPE_10GB) != 0; break; case 16000: rc = (link_module_type & OCS_HW_LINK_MODULE_TYPE_16GB) != 0; break; case 32000: rc = (link_module_type & OCS_HW_LINK_MODULE_TYPE_32GB) != 0; break; default: rc = 0; break; } } else { rc = 0; } break; } case OCS_XPORT_LINK_STATISTICS: ocs_device_lock(ocs); ocs_memcpy((void *)result, &ocs->xport->fc_xport_stats, sizeof(ocs_xport_stats_t)); ocs_device_unlock(ocs); break; case OCS_XPORT_LINK_STAT_RESET: { /* Create a semaphore to synchronize the stat reset process. */ ocs_sem_init(&(result->stats.semaphore), 0, "fc_stats_reset"); /* First reset the link stats */ if ((rc = ocs_hw_get_link_stats(&ocs->hw, 0, 1, 1, ocs_xport_link_stats_cb, result)) != 0) { ocs_log_err(ocs, "%s: Failed to reset link statistics\n", __func__); break; } /* Wait for semaphore to be signaled when the command completes */ /* TODO: Should there be a timeout on this? If so, how long? */ if (ocs_sem_p(&(result->stats.semaphore), OCS_SEM_FOREVER) != 0) { /* Undefined failure */ ocs_log_test(ocs, "ocs_sem_p failed\n"); rc = -ENXIO; break; } /* Next reset the host stats */ if ((rc = ocs_hw_get_host_stats(&ocs->hw, 1, ocs_xport_host_stats_cb, result)) != 0) { ocs_log_err(ocs, "%s: Failed to reset host statistics\n", __func__); break; } /* Wait for semaphore to be signaled when the command completes */ if (ocs_sem_p(&(result->stats.semaphore), OCS_SEM_FOREVER) != 0) { /* Undefined failure */ ocs_log_test(ocs, "ocs_sem_p failed\n"); rc = -ENXIO; break; } break; } case OCS_XPORT_IS_QUIESCED: ocs_device_lock(ocs); result->value = ocs_list_empty(&ocs->domain_list); ocs_device_unlock(ocs); break; default: rc = -1; break; } return rc; } static void ocs_xport_link_stats_cb(int32_t status, uint32_t num_counters, ocs_hw_link_stat_counts_t *counters, void *arg) { ocs_xport_stats_t *result = arg; result->stats.link_stats.link_failure_error_count = counters[OCS_HW_LINK_STAT_LINK_FAILURE_COUNT].counter; result->stats.link_stats.loss_of_sync_error_count = counters[OCS_HW_LINK_STAT_LOSS_OF_SYNC_COUNT].counter; result->stats.link_stats.primitive_sequence_error_count = counters[OCS_HW_LINK_STAT_PRIMITIVE_SEQ_COUNT].counter; result->stats.link_stats.invalid_transmission_word_error_count = counters[OCS_HW_LINK_STAT_INVALID_XMIT_WORD_COUNT].counter; result->stats.link_stats.crc_error_count = counters[OCS_HW_LINK_STAT_CRC_COUNT].counter; ocs_sem_v(&(result->stats.semaphore)); } static void ocs_xport_host_stats_cb(int32_t status, uint32_t num_counters, ocs_hw_host_stat_counts_t *counters, void *arg) { ocs_xport_stats_t *result = arg; result->stats.host_stats.transmit_kbyte_count = counters[OCS_HW_HOST_STAT_TX_KBYTE_COUNT].counter; result->stats.host_stats.receive_kbyte_count = counters[OCS_HW_HOST_STAT_RX_KBYTE_COUNT].counter; result->stats.host_stats.transmit_frame_count = counters[OCS_HW_HOST_STAT_TX_FRAME_COUNT].counter; result->stats.host_stats.receive_frame_count = counters[OCS_HW_HOST_STAT_RX_FRAME_COUNT].counter; ocs_sem_v(&(result->stats.semaphore)); } /** * @brief Free a transport object. * * @par Description * The transport object is freed. * * @param xport Pointer to transport object. * * @return None. */ void ocs_xport_free(ocs_xport_t *xport) { ocs_t *ocs; uint32_t i; if (xport) { ocs = xport->ocs; ocs_io_pool_free(xport->io_pool); ocs_node_free_pool(ocs); if(mtx_initialized(&xport->io_pending_lock.lock)) ocs_lock_free(&xport->io_pending_lock); for (i = 0; i < SLI4_MAX_FCFI; i++) { ocs_lock_free(&xport->fcfi[i].pend_frames_lock); } ocs_xport_rq_threads_teardown(xport); ocs_free(ocs, xport, sizeof(*xport)); } }