/* * Copyright (c) 1997, 1998, 1999 * Bill Paul . All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by Bill Paul. * 4. Neither the name of the author nor the names of any co-contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF * THE POSSIBILITY OF SUCH DAMAGE. * * $FreeBSD$ */ /* * Alteon Networks Tigon PCI gigabit ethernet driver for FreeBSD. * Manuals, sample driver and firmware source kits are available * from http://www.alteon.com/support/openkits. * * Written by Bill Paul * Electrical Engineering Department * Columbia University, New York City */ /* * The Alteon Networks Tigon chip contains an embedded R4000 CPU, * gigabit MAC, dual DMA channels and a PCI interface unit. NICs * using the Tigon may have anywhere from 512K to 2MB of SRAM. The * Tigon supports hardware IP, TCP and UCP checksumming, multicast * filtering and jumbo (9014 byte) frames. The hardware is largely * controlled by firmware, which must be loaded into the NIC during * initialization. * * The Tigon 2 contains 2 R4000 CPUs and requires a newer firmware * revision, which supports new features such as extended commands, * extended jumbo receive ring desciptors and a mini receive ring. * * Alteon Networks is to be commended for releasing such a vast amount * of development material for the Tigon NIC without requiring an NDA * (although they really should have done it a long time ago). With * any luck, the other vendors will finally wise up and follow Alteon's * stellar example. * * The firmware for the Tigon 1 and 2 NICs is compiled directly into * this driver by #including it as a C header file. This bloats the * driver somewhat, but it's the easiest method considering that the * driver code and firmware code need to be kept in sync. The source * for the firmware is not provided with the FreeBSD distribution since * compiling it requires a GNU toolchain targeted for mips-sgi-irix5.3. * * The following people deserve special thanks: * - Terry Murphy of 3Com, for providing a 3c985 Tigon 1 board * for testing * - Raymond Lee of Netgear, for providing a pair of Netgear * GA620 Tigon 2 boards for testing * - Ulf Zimmermann, for bringing the GA260 to my attention and * convincing me to write this driver. * - Andrew Gallatin for providing FreeBSD/Alpha support. */ #include "vlan.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #if NVLAN > 0 #include #include #endif #include #include #include #include /* for vtophys */ #include /* for vtophys */ #include /* for DELAY */ #include #include #include #include #include #include #include #include #include #include #define TI_CSUM_FEATURES (CSUM_IP | CSUM_TCP | CSUM_UDP | CSUM_IP_FRAGS) #if !defined(lint) static const char rcsid[] = "$FreeBSD$"; #endif /* * Various supported device vendors/types and their names. */ static struct ti_type ti_devs[] = { { ALT_VENDORID, ALT_DEVICEID_ACENIC, "Alteon AceNIC 1000baseSX Gigabit Ethernet" }, { ALT_VENDORID, ALT_DEVICEID_ACENIC_COPPER, "Alteon AceNIC 1000baseT Gigabit Ethernet" }, { TC_VENDORID, TC_DEVICEID_3C985, "3Com 3c985-SX Gigabit Ethernet" }, { NG_VENDORID, NG_DEVICEID_GA620, "Netgear GA620 Gigabit Ethernet" }, { SGI_VENDORID, SGI_DEVICEID_TIGON, "Silicon Graphics Gigabit Ethernet" }, { DEC_VENDORID, DEC_DEVICEID_FARALLON_PN9000SX, "Farallon PN9000SX Gigabit Ethernet" }, { 0, 0, NULL } }; static int ti_probe __P((device_t)); static int ti_attach __P((device_t)); static int ti_detach __P((device_t)); static void ti_txeof __P((struct ti_softc *)); static void ti_rxeof __P((struct ti_softc *)); static void ti_stats_update __P((struct ti_softc *)); static int ti_encap __P((struct ti_softc *, struct mbuf *, u_int32_t *)); static void ti_intr __P((void *)); static void ti_start __P((struct ifnet *)); static int ti_ioctl __P((struct ifnet *, u_long, caddr_t)); static void ti_init __P((void *)); static void ti_init2 __P((struct ti_softc *)); static void ti_stop __P((struct ti_softc *)); static void ti_watchdog __P((struct ifnet *)); static void ti_shutdown __P((device_t)); static int ti_ifmedia_upd __P((struct ifnet *)); static void ti_ifmedia_sts __P((struct ifnet *, struct ifmediareq *)); static u_int32_t ti_eeprom_putbyte __P((struct ti_softc *, int)); static u_int8_t ti_eeprom_getbyte __P((struct ti_softc *, int, u_int8_t *)); static int ti_read_eeprom __P((struct ti_softc *, caddr_t, int, int)); static void ti_add_mcast __P((struct ti_softc *, struct ether_addr *)); static void ti_del_mcast __P((struct ti_softc *, struct ether_addr *)); static void ti_setmulti __P((struct ti_softc *)); static void ti_mem __P((struct ti_softc *, u_int32_t, u_int32_t, caddr_t)); static void ti_loadfw __P((struct ti_softc *)); static void ti_cmd __P((struct ti_softc *, struct ti_cmd_desc *)); static void ti_cmd_ext __P((struct ti_softc *, struct ti_cmd_desc *, caddr_t, int)); static void ti_handle_events __P((struct ti_softc *)); static int ti_alloc_jumbo_mem __P((struct ti_softc *)); static void *ti_jalloc __P((struct ti_softc *)); static void ti_jfree __P((caddr_t, u_int)); static void ti_jref __P((caddr_t, u_int)); static int ti_newbuf_std __P((struct ti_softc *, int, struct mbuf *)); static int ti_newbuf_mini __P((struct ti_softc *, int, struct mbuf *)); static int ti_newbuf_jumbo __P((struct ti_softc *, int, struct mbuf *)); static int ti_init_rx_ring_std __P((struct ti_softc *)); static void ti_free_rx_ring_std __P((struct ti_softc *)); static int ti_init_rx_ring_jumbo __P((struct ti_softc *)); static void ti_free_rx_ring_jumbo __P((struct ti_softc *)); static int ti_init_rx_ring_mini __P((struct ti_softc *)); static void ti_free_rx_ring_mini __P((struct ti_softc *)); static void ti_free_tx_ring __P((struct ti_softc *)); static int ti_init_tx_ring __P((struct ti_softc *)); static int ti_64bitslot_war __P((struct ti_softc *)); static int ti_chipinit __P((struct ti_softc *)); static int ti_gibinit __P((struct ti_softc *)); static device_method_t ti_methods[] = { /* Device interface */ DEVMETHOD(device_probe, ti_probe), DEVMETHOD(device_attach, ti_attach), DEVMETHOD(device_detach, ti_detach), DEVMETHOD(device_shutdown, ti_shutdown), { 0, 0 } }; static driver_t ti_driver = { "ti", ti_methods, sizeof(struct ti_softc) }; static devclass_t ti_devclass; DRIVER_MODULE(if_ti, pci, ti_driver, ti_devclass, 0, 0); /* * Send an instruction or address to the EEPROM, check for ACK. */ static u_int32_t ti_eeprom_putbyte(sc, byte) struct ti_softc *sc; int byte; { register int i, ack = 0; /* * Make sure we're in TX mode. */ TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_TXEN); /* * Feed in each bit and stobe the clock. */ for (i = 0x80; i; i >>= 1) { if (byte & i) { TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_DOUT); } else { TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_DOUT); } DELAY(1); TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK); DELAY(1); TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK); } /* * Turn off TX mode. */ TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_TXEN); /* * Check for ack. */ TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK); ack = CSR_READ_4(sc, TI_MISC_LOCAL_CTL) & TI_MLC_EE_DIN; TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK); return(ack); } /* * Read a byte of data stored in the EEPROM at address 'addr.' * We have to send two address bytes since the EEPROM can hold * more than 256 bytes of data. */ static u_int8_t ti_eeprom_getbyte(sc, addr, dest) struct ti_softc *sc; int addr; u_int8_t *dest; { register int i; u_int8_t byte = 0; EEPROM_START; /* * Send write control code to EEPROM. */ if (ti_eeprom_putbyte(sc, EEPROM_CTL_WRITE)) { printf("ti%d: failed to send write command, status: %x\n", sc->ti_unit, CSR_READ_4(sc, TI_MISC_LOCAL_CTL)); return(1); } /* * Send first byte of address of byte we want to read. */ if (ti_eeprom_putbyte(sc, (addr >> 8) & 0xFF)) { printf("ti%d: failed to send address, status: %x\n", sc->ti_unit, CSR_READ_4(sc, TI_MISC_LOCAL_CTL)); return(1); } /* * Send second byte address of byte we want to read. */ if (ti_eeprom_putbyte(sc, addr & 0xFF)) { printf("ti%d: failed to send address, status: %x\n", sc->ti_unit, CSR_READ_4(sc, TI_MISC_LOCAL_CTL)); return(1); } EEPROM_STOP; EEPROM_START; /* * Send read control code to EEPROM. */ if (ti_eeprom_putbyte(sc, EEPROM_CTL_READ)) { printf("ti%d: failed to send read command, status: %x\n", sc->ti_unit, CSR_READ_4(sc, TI_MISC_LOCAL_CTL)); return(1); } /* * Start reading bits from EEPROM. */ TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_TXEN); for (i = 0x80; i; i >>= 1) { TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK); DELAY(1); if (CSR_READ_4(sc, TI_MISC_LOCAL_CTL) & TI_MLC_EE_DIN) byte |= i; TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK); DELAY(1); } EEPROM_STOP; /* * No ACK generated for read, so just return byte. */ *dest = byte; return(0); } /* * Read a sequence of bytes from the EEPROM. */ static int ti_read_eeprom(sc, dest, off, cnt) struct ti_softc *sc; caddr_t dest; int off; int cnt; { int err = 0, i; u_int8_t byte = 0; for (i = 0; i < cnt; i++) { err = ti_eeprom_getbyte(sc, off + i, &byte); if (err) break; *(dest + i) = byte; } return(err ? 1 : 0); } /* * NIC memory access function. Can be used to either clear a section * of NIC local memory or (if buf is non-NULL) copy data into it. */ static void ti_mem(sc, addr, len, buf) struct ti_softc *sc; u_int32_t addr, len; caddr_t buf; { int segptr, segsize, cnt; caddr_t ti_winbase, ptr; segptr = addr; cnt = len; ti_winbase = (caddr_t)(sc->ti_vhandle + TI_WINDOW); ptr = buf; while(cnt) { if (cnt < TI_WINLEN) segsize = cnt; else segsize = TI_WINLEN - (segptr % TI_WINLEN); CSR_WRITE_4(sc, TI_WINBASE, (segptr & ~(TI_WINLEN - 1))); if (buf == NULL) bzero((char *)ti_winbase + (segptr & (TI_WINLEN - 1)), segsize); else { bcopy((char *)ptr, (char *)ti_winbase + (segptr & (TI_WINLEN - 1)), segsize); ptr += segsize; } segptr += segsize; cnt -= segsize; } return; } /* * Load firmware image into the NIC. Check that the firmware revision * is acceptable and see if we want the firmware for the Tigon 1 or * Tigon 2. */ static void ti_loadfw(sc) struct ti_softc *sc; { switch(sc->ti_hwrev) { case TI_HWREV_TIGON: if (tigonFwReleaseMajor != TI_FIRMWARE_MAJOR || tigonFwReleaseMinor != TI_FIRMWARE_MINOR || tigonFwReleaseFix != TI_FIRMWARE_FIX) { printf("ti%d: firmware revision mismatch; want " "%d.%d.%d, got %d.%d.%d\n", sc->ti_unit, TI_FIRMWARE_MAJOR, TI_FIRMWARE_MINOR, TI_FIRMWARE_FIX, tigonFwReleaseMajor, tigonFwReleaseMinor, tigonFwReleaseFix); return; } ti_mem(sc, tigonFwTextAddr, tigonFwTextLen, (caddr_t)tigonFwText); ti_mem(sc, tigonFwDataAddr, tigonFwDataLen, (caddr_t)tigonFwData); ti_mem(sc, tigonFwRodataAddr, tigonFwRodataLen, (caddr_t)tigonFwRodata); ti_mem(sc, tigonFwBssAddr, tigonFwBssLen, NULL); ti_mem(sc, tigonFwSbssAddr, tigonFwSbssLen, NULL); CSR_WRITE_4(sc, TI_CPU_PROGRAM_COUNTER, tigonFwStartAddr); break; case TI_HWREV_TIGON_II: if (tigon2FwReleaseMajor != TI_FIRMWARE_MAJOR || tigon2FwReleaseMinor != TI_FIRMWARE_MINOR || tigon2FwReleaseFix != TI_FIRMWARE_FIX) { printf("ti%d: firmware revision mismatch; want " "%d.%d.%d, got %d.%d.%d\n", sc->ti_unit, TI_FIRMWARE_MAJOR, TI_FIRMWARE_MINOR, TI_FIRMWARE_FIX, tigon2FwReleaseMajor, tigon2FwReleaseMinor, tigon2FwReleaseFix); return; } ti_mem(sc, tigon2FwTextAddr, tigon2FwTextLen, (caddr_t)tigon2FwText); ti_mem(sc, tigon2FwDataAddr, tigon2FwDataLen, (caddr_t)tigon2FwData); ti_mem(sc, tigon2FwRodataAddr, tigon2FwRodataLen, (caddr_t)tigon2FwRodata); ti_mem(sc, tigon2FwBssAddr, tigon2FwBssLen, NULL); ti_mem(sc, tigon2FwSbssAddr, tigon2FwSbssLen, NULL); CSR_WRITE_4(sc, TI_CPU_PROGRAM_COUNTER, tigon2FwStartAddr); break; default: printf("ti%d: can't load firmware: unknown hardware rev\n", sc->ti_unit); break; } return; } /* * Send the NIC a command via the command ring. */ static void ti_cmd(sc, cmd) struct ti_softc *sc; struct ti_cmd_desc *cmd; { u_int32_t index; if (sc->ti_rdata->ti_cmd_ring == NULL) return; index = sc->ti_cmd_saved_prodidx; CSR_WRITE_4(sc, TI_GCR_CMDRING + (index * 4), *(u_int32_t *)(cmd)); TI_INC(index, TI_CMD_RING_CNT); CSR_WRITE_4(sc, TI_MB_CMDPROD_IDX, index); sc->ti_cmd_saved_prodidx = index; return; } /* * Send the NIC an extended command. The 'len' parameter specifies the * number of command slots to include after the initial command. */ static void ti_cmd_ext(sc, cmd, arg, len) struct ti_softc *sc; struct ti_cmd_desc *cmd; caddr_t arg; int len; { u_int32_t index; register int i; if (sc->ti_rdata->ti_cmd_ring == NULL) return; index = sc->ti_cmd_saved_prodidx; CSR_WRITE_4(sc, TI_GCR_CMDRING + (index * 4), *(u_int32_t *)(cmd)); TI_INC(index, TI_CMD_RING_CNT); for (i = 0; i < len; i++) { CSR_WRITE_4(sc, TI_GCR_CMDRING + (index * 4), *(u_int32_t *)(&arg[i * 4])); TI_INC(index, TI_CMD_RING_CNT); } CSR_WRITE_4(sc, TI_MB_CMDPROD_IDX, index); sc->ti_cmd_saved_prodidx = index; return; } /* * Handle events that have triggered interrupts. */ static void ti_handle_events(sc) struct ti_softc *sc; { struct ti_event_desc *e; if (sc->ti_rdata->ti_event_ring == NULL) return; while (sc->ti_ev_saved_considx != sc->ti_ev_prodidx.ti_idx) { e = &sc->ti_rdata->ti_event_ring[sc->ti_ev_saved_considx]; switch(e->ti_event) { case TI_EV_LINKSTAT_CHANGED: sc->ti_linkstat = e->ti_code; if (e->ti_code == TI_EV_CODE_LINK_UP) printf("ti%d: 10/100 link up\n", sc->ti_unit); else if (e->ti_code == TI_EV_CODE_GIG_LINK_UP) printf("ti%d: gigabit link up\n", sc->ti_unit); else if (e->ti_code == TI_EV_CODE_LINK_DOWN) printf("ti%d: link down\n", sc->ti_unit); break; case TI_EV_ERROR: if (e->ti_code == TI_EV_CODE_ERR_INVAL_CMD) printf("ti%d: invalid command\n", sc->ti_unit); else if (e->ti_code == TI_EV_CODE_ERR_UNIMP_CMD) printf("ti%d: unknown command\n", sc->ti_unit); else if (e->ti_code == TI_EV_CODE_ERR_BADCFG) printf("ti%d: bad config data\n", sc->ti_unit); break; case TI_EV_FIRMWARE_UP: ti_init2(sc); break; case TI_EV_STATS_UPDATED: ti_stats_update(sc); break; case TI_EV_RESET_JUMBO_RING: case TI_EV_MCAST_UPDATED: /* Who cares. */ break; default: printf("ti%d: unknown event: %d\n", sc->ti_unit, e->ti_event); break; } /* Advance the consumer index. */ TI_INC(sc->ti_ev_saved_considx, TI_EVENT_RING_CNT); CSR_WRITE_4(sc, TI_GCR_EVENTCONS_IDX, sc->ti_ev_saved_considx); } return; } /* * Memory management for the jumbo receive ring is a pain in the * butt. We need to allocate at least 9018 bytes of space per frame, * _and_ it has to be contiguous (unless you use the extended * jumbo descriptor format). Using malloc() all the time won't * work: malloc() allocates memory in powers of two, which means we * would end up wasting a considerable amount of space by allocating * 9K chunks. We don't have a jumbo mbuf cluster pool. Thus, we have * to do our own memory management. * * The driver needs to allocate a contiguous chunk of memory at boot * time. We then chop this up ourselves into 9K pieces and use them * as external mbuf storage. * * One issue here is how much memory to allocate. The jumbo ring has * 256 slots in it, but at 9K per slot than can consume over 2MB of * RAM. This is a bit much, especially considering we also need * RAM for the standard ring and mini ring (on the Tigon 2). To * save space, we only actually allocate enough memory for 64 slots * by default, which works out to between 500 and 600K. This can * be tuned by changing a #define in if_tireg.h. */ static int ti_alloc_jumbo_mem(sc) struct ti_softc *sc; { caddr_t ptr; register int i; struct ti_jpool_entry *entry; /* Grab a big chunk o' storage. */ sc->ti_cdata.ti_jumbo_buf = contigmalloc(TI_JMEM, M_DEVBUF, M_NOWAIT, 0, 0xffffffff, PAGE_SIZE, 0); if (sc->ti_cdata.ti_jumbo_buf == NULL) { printf("ti%d: no memory for jumbo buffers!\n", sc->ti_unit); return(ENOBUFS); } SLIST_INIT(&sc->ti_jfree_listhead); SLIST_INIT(&sc->ti_jinuse_listhead); /* * Now divide it up into 9K pieces and save the addresses * in an array. Note that we play an evil trick here by using * the first few bytes in the buffer to hold the the address * of the softc structure for this interface. This is because * ti_jfree() needs it, but it is called by the mbuf management * code which will not pass it to us explicitly. */ ptr = sc->ti_cdata.ti_jumbo_buf; for (i = 0; i < TI_JSLOTS; i++) { u_int64_t **aptr; aptr = (u_int64_t **)ptr; aptr[0] = (u_int64_t *)sc; ptr += sizeof(u_int64_t); sc->ti_cdata.ti_jslots[i].ti_buf = ptr; sc->ti_cdata.ti_jslots[i].ti_inuse = 0; ptr += (TI_JLEN - sizeof(u_int64_t)); entry = malloc(sizeof(struct ti_jpool_entry), M_DEVBUF, M_NOWAIT); if (entry == NULL) { contigfree(sc->ti_cdata.ti_jumbo_buf, TI_JMEM, M_DEVBUF); sc->ti_cdata.ti_jumbo_buf = NULL; printf("ti%d: no memory for jumbo " "buffer queue!\n", sc->ti_unit); return(ENOBUFS); } entry->slot = i; SLIST_INSERT_HEAD(&sc->ti_jfree_listhead, entry, jpool_entries); } return(0); } /* * Allocate a jumbo buffer. */ static void *ti_jalloc(sc) struct ti_softc *sc; { struct ti_jpool_entry *entry; entry = SLIST_FIRST(&sc->ti_jfree_listhead); if (entry == NULL) { printf("ti%d: no free jumbo buffers\n", sc->ti_unit); return(NULL); } SLIST_REMOVE_HEAD(&sc->ti_jfree_listhead, jpool_entries); SLIST_INSERT_HEAD(&sc->ti_jinuse_listhead, entry, jpool_entries); sc->ti_cdata.ti_jslots[entry->slot].ti_inuse = 1; return(sc->ti_cdata.ti_jslots[entry->slot].ti_buf); } /* * Adjust usage count on a jumbo buffer. In general this doesn't * get used much because our jumbo buffers don't get passed around * too much, but it's implemented for correctness. */ static void ti_jref(buf, size) caddr_t buf; u_int size; { struct ti_softc *sc; u_int64_t **aptr; register int i; /* Extract the softc struct pointer. */ aptr = (u_int64_t **)(buf - sizeof(u_int64_t)); sc = (struct ti_softc *)(aptr[0]); if (sc == NULL) panic("ti_jref: can't find softc pointer!"); if (size != TI_JUMBO_FRAMELEN) panic("ti_jref: adjusting refcount of buf of wrong size!"); /* calculate the slot this buffer belongs to */ i = ((vm_offset_t)aptr - (vm_offset_t)sc->ti_cdata.ti_jumbo_buf) / TI_JLEN; if ((i < 0) || (i >= TI_JSLOTS)) panic("ti_jref: asked to reference buffer " "that we don't manage!"); else if (sc->ti_cdata.ti_jslots[i].ti_inuse == 0) panic("ti_jref: buffer already free!"); else sc->ti_cdata.ti_jslots[i].ti_inuse++; return; } /* * Release a jumbo buffer. */ static void ti_jfree(buf, size) caddr_t buf; u_int size; { struct ti_softc *sc; u_int64_t **aptr; int i; struct ti_jpool_entry *entry; /* Extract the softc struct pointer. */ aptr = (u_int64_t **)(buf - sizeof(u_int64_t)); sc = (struct ti_softc *)(aptr[0]); if (sc == NULL) panic("ti_jfree: can't find softc pointer!"); if (size != TI_JUMBO_FRAMELEN) panic("ti_jfree: freeing buffer of wrong size!"); /* calculate the slot this buffer belongs to */ i = ((vm_offset_t)aptr - (vm_offset_t)sc->ti_cdata.ti_jumbo_buf) / TI_JLEN; if ((i < 0) || (i >= TI_JSLOTS)) panic("ti_jfree: asked to free buffer that we don't manage!"); else if (sc->ti_cdata.ti_jslots[i].ti_inuse == 0) panic("ti_jfree: buffer already free!"); else { sc->ti_cdata.ti_jslots[i].ti_inuse--; if(sc->ti_cdata.ti_jslots[i].ti_inuse == 0) { entry = SLIST_FIRST(&sc->ti_jinuse_listhead); if (entry == NULL) panic("ti_jfree: buffer not in use!"); entry->slot = i; SLIST_REMOVE_HEAD(&sc->ti_jinuse_listhead, jpool_entries); SLIST_INSERT_HEAD(&sc->ti_jfree_listhead, entry, jpool_entries); } } return; } /* * Intialize a standard receive ring descriptor. */ static int ti_newbuf_std(sc, i, m) struct ti_softc *sc; int i; struct mbuf *m; { struct mbuf *m_new = NULL; struct ti_rx_desc *r; if (m == NULL) { MGETHDR(m_new, M_DONTWAIT, MT_DATA); if (m_new == NULL) { printf("ti%d: mbuf allocation failed " "-- packet dropped!\n", sc->ti_unit); return(ENOBUFS); } MCLGET(m_new, M_DONTWAIT); if (!(m_new->m_flags & M_EXT)) { printf("ti%d: cluster allocation failed " "-- packet dropped!\n", sc->ti_unit); m_freem(m_new); return(ENOBUFS); } m_new->m_len = m_new->m_pkthdr.len = MCLBYTES; } else { m_new = m; m_new->m_len = m_new->m_pkthdr.len = MCLBYTES; m_new->m_data = m_new->m_ext.ext_buf; } m_adj(m_new, ETHER_ALIGN); sc->ti_cdata.ti_rx_std_chain[i] = m_new; r = &sc->ti_rdata->ti_rx_std_ring[i]; TI_HOSTADDR(r->ti_addr) = vtophys(mtod(m_new, caddr_t)); r->ti_type = TI_BDTYPE_RECV_BD; r->ti_flags = 0; if (sc->arpcom.ac_if.if_hwassist) r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM | TI_BDFLAG_IP_CKSUM; r->ti_len = m_new->m_len; r->ti_idx = i; return(0); } /* * Intialize a mini receive ring descriptor. This only applies to * the Tigon 2. */ static int ti_newbuf_mini(sc, i, m) struct ti_softc *sc; int i; struct mbuf *m; { struct mbuf *m_new = NULL; struct ti_rx_desc *r; if (m == NULL) { MGETHDR(m_new, M_DONTWAIT, MT_DATA); if (m_new == NULL) { printf("ti%d: mbuf allocation failed " "-- packet dropped!\n", sc->ti_unit); return(ENOBUFS); } m_new->m_len = m_new->m_pkthdr.len = MHLEN; } else { m_new = m; m_new->m_data = m_new->m_pktdat; m_new->m_len = m_new->m_pkthdr.len = MHLEN; } m_adj(m_new, ETHER_ALIGN); r = &sc->ti_rdata->ti_rx_mini_ring[i]; sc->ti_cdata.ti_rx_mini_chain[i] = m_new; TI_HOSTADDR(r->ti_addr) = vtophys(mtod(m_new, caddr_t)); r->ti_type = TI_BDTYPE_RECV_BD; r->ti_flags = TI_BDFLAG_MINI_RING; if (sc->arpcom.ac_if.if_hwassist) r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM | TI_BDFLAG_IP_CKSUM; r->ti_len = m_new->m_len; r->ti_idx = i; return(0); } /* * Initialize a jumbo receive ring descriptor. This allocates * a jumbo buffer from the pool managed internally by the driver. */ static int ti_newbuf_jumbo(sc, i, m) struct ti_softc *sc; int i; struct mbuf *m; { struct mbuf *m_new = NULL; struct ti_rx_desc *r; if (m == NULL) { caddr_t *buf = NULL; /* Allocate the mbuf. */ MGETHDR(m_new, M_DONTWAIT, MT_DATA); if (m_new == NULL) { printf("ti%d: mbuf allocation failed " "-- packet dropped!\n", sc->ti_unit); return(ENOBUFS); } /* Allocate the jumbo buffer */ buf = ti_jalloc(sc); if (buf == NULL) { m_freem(m_new); printf("ti%d: jumbo allocation failed " "-- packet dropped!\n", sc->ti_unit); return(ENOBUFS); } /* Attach the buffer to the mbuf. */ m_new->m_data = m_new->m_ext.ext_buf = (void *)buf; m_new->m_flags |= M_EXT; m_new->m_len = m_new->m_pkthdr.len = m_new->m_ext.ext_size = TI_JUMBO_FRAMELEN; m_new->m_ext.ext_free = ti_jfree; m_new->m_ext.ext_ref = ti_jref; } else { m_new = m; m_new->m_data = m_new->m_ext.ext_buf; m_new->m_ext.ext_size = TI_JUMBO_FRAMELEN; } m_adj(m_new, ETHER_ALIGN); /* Set up the descriptor. */ r = &sc->ti_rdata->ti_rx_jumbo_ring[i]; sc->ti_cdata.ti_rx_jumbo_chain[i] = m_new; TI_HOSTADDR(r->ti_addr) = vtophys(mtod(m_new, caddr_t)); r->ti_type = TI_BDTYPE_RECV_JUMBO_BD; r->ti_flags = TI_BDFLAG_JUMBO_RING; if (sc->arpcom.ac_if.if_hwassist) r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM | TI_BDFLAG_IP_CKSUM; r->ti_len = m_new->m_len; r->ti_idx = i; return(0); } /* * The standard receive ring has 512 entries in it. At 2K per mbuf cluster, * that's 1MB or memory, which is a lot. For now, we fill only the first * 256 ring entries and hope that our CPU is fast enough to keep up with * the NIC. */ static int ti_init_rx_ring_std(sc) struct ti_softc *sc; { register int i; struct ti_cmd_desc cmd; for (i = 0; i < TI_SSLOTS; i++) { if (ti_newbuf_std(sc, i, NULL) == ENOBUFS) return(ENOBUFS); }; TI_UPDATE_STDPROD(sc, i - 1); sc->ti_std = i - 1; return(0); } static void ti_free_rx_ring_std(sc) struct ti_softc *sc; { register int i; for (i = 0; i < TI_STD_RX_RING_CNT; i++) { if (sc->ti_cdata.ti_rx_std_chain[i] != NULL) { m_freem(sc->ti_cdata.ti_rx_std_chain[i]); sc->ti_cdata.ti_rx_std_chain[i] = NULL; } bzero((char *)&sc->ti_rdata->ti_rx_std_ring[i], sizeof(struct ti_rx_desc)); } return; } static int ti_init_rx_ring_jumbo(sc) struct ti_softc *sc; { register int i; struct ti_cmd_desc cmd; for (i = 0; i < TI_JUMBO_RX_RING_CNT; i++) { if (ti_newbuf_jumbo(sc, i, NULL) == ENOBUFS) return(ENOBUFS); }; TI_UPDATE_JUMBOPROD(sc, i - 1); sc->ti_jumbo = i - 1; return(0); } static void ti_free_rx_ring_jumbo(sc) struct ti_softc *sc; { register int i; for (i = 0; i < TI_JUMBO_RX_RING_CNT; i++) { if (sc->ti_cdata.ti_rx_jumbo_chain[i] != NULL) { m_freem(sc->ti_cdata.ti_rx_jumbo_chain[i]); sc->ti_cdata.ti_rx_jumbo_chain[i] = NULL; } bzero((char *)&sc->ti_rdata->ti_rx_jumbo_ring[i], sizeof(struct ti_rx_desc)); } return; } static int ti_init_rx_ring_mini(sc) struct ti_softc *sc; { register int i; for (i = 0; i < TI_MSLOTS; i++) { if (ti_newbuf_mini(sc, i, NULL) == ENOBUFS) return(ENOBUFS); }; TI_UPDATE_MINIPROD(sc, i - 1); sc->ti_mini = i - 1; return(0); } static void ti_free_rx_ring_mini(sc) struct ti_softc *sc; { register int i; for (i = 0; i < TI_MINI_RX_RING_CNT; i++) { if (sc->ti_cdata.ti_rx_mini_chain[i] != NULL) { m_freem(sc->ti_cdata.ti_rx_mini_chain[i]); sc->ti_cdata.ti_rx_mini_chain[i] = NULL; } bzero((char *)&sc->ti_rdata->ti_rx_mini_ring[i], sizeof(struct ti_rx_desc)); } return; } static void ti_free_tx_ring(sc) struct ti_softc *sc; { register int i; if (sc->ti_rdata->ti_tx_ring == NULL) return; for (i = 0; i < TI_TX_RING_CNT; i++) { if (sc->ti_cdata.ti_tx_chain[i] != NULL) { m_freem(sc->ti_cdata.ti_tx_chain[i]); sc->ti_cdata.ti_tx_chain[i] = NULL; } bzero((char *)&sc->ti_rdata->ti_tx_ring[i], sizeof(struct ti_tx_desc)); } return; } static int ti_init_tx_ring(sc) struct ti_softc *sc; { sc->ti_txcnt = 0; sc->ti_tx_saved_considx = 0; CSR_WRITE_4(sc, TI_MB_SENDPROD_IDX, 0); return(0); } /* * The Tigon 2 firmware has a new way to add/delete multicast addresses, * but we have to support the old way too so that Tigon 1 cards will * work. */ void ti_add_mcast(sc, addr) struct ti_softc *sc; struct ether_addr *addr; { struct ti_cmd_desc cmd; u_int16_t *m; u_int32_t ext[2] = {0, 0}; m = (u_int16_t *)&addr->octet[0]; switch(sc->ti_hwrev) { case TI_HWREV_TIGON: CSR_WRITE_4(sc, TI_GCR_MAR0, htons(m[0])); CSR_WRITE_4(sc, TI_GCR_MAR1, (htons(m[1]) << 16) | htons(m[2])); TI_DO_CMD(TI_CMD_ADD_MCAST_ADDR, 0, 0); break; case TI_HWREV_TIGON_II: ext[0] = htons(m[0]); ext[1] = (htons(m[1]) << 16) | htons(m[2]); TI_DO_CMD_EXT(TI_CMD_EXT_ADD_MCAST, 0, 0, (caddr_t)&ext, 2); break; default: printf("ti%d: unknown hwrev\n", sc->ti_unit); break; } return; } void ti_del_mcast(sc, addr) struct ti_softc *sc; struct ether_addr *addr; { struct ti_cmd_desc cmd; u_int16_t *m; u_int32_t ext[2] = {0, 0}; m = (u_int16_t *)&addr->octet[0]; switch(sc->ti_hwrev) { case TI_HWREV_TIGON: CSR_WRITE_4(sc, TI_GCR_MAR0, htons(m[0])); CSR_WRITE_4(sc, TI_GCR_MAR1, (htons(m[1]) << 16) | htons(m[2])); TI_DO_CMD(TI_CMD_DEL_MCAST_ADDR, 0, 0); break; case TI_HWREV_TIGON_II: ext[0] = htons(m[0]); ext[1] = (htons(m[1]) << 16) | htons(m[2]); TI_DO_CMD_EXT(TI_CMD_EXT_DEL_MCAST, 0, 0, (caddr_t)&ext, 2); break; default: printf("ti%d: unknown hwrev\n", sc->ti_unit); break; } return; } /* * Configure the Tigon's multicast address filter. * * The actual multicast table management is a bit of a pain, thanks to * slight brain damage on the part of both Alteon and us. With our * multicast code, we are only alerted when the multicast address table * changes and at that point we only have the current list of addresses: * we only know the current state, not the previous state, so we don't * actually know what addresses were removed or added. The firmware has * state, but we can't get our grubby mits on it, and there is no 'delete * all multicast addresses' command. Hence, we have to maintain our own * state so we know what addresses have been programmed into the NIC at * any given time. */ static void ti_setmulti(sc) struct ti_softc *sc; { struct ifnet *ifp; struct ifmultiaddr *ifma; struct ti_cmd_desc cmd; struct ti_mc_entry *mc; u_int32_t intrs; ifp = &sc->arpcom.ac_if; if (ifp->if_flags & IFF_ALLMULTI) { TI_DO_CMD(TI_CMD_SET_ALLMULTI, TI_CMD_CODE_ALLMULTI_ENB, 0); return; } else { TI_DO_CMD(TI_CMD_SET_ALLMULTI, TI_CMD_CODE_ALLMULTI_DIS, 0); } /* Disable interrupts. */ intrs = CSR_READ_4(sc, TI_MB_HOSTINTR); CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1); /* First, zot all the existing filters. */ while (sc->ti_mc_listhead.slh_first != NULL) { mc = sc->ti_mc_listhead.slh_first; ti_del_mcast(sc, &mc->mc_addr); SLIST_REMOVE_HEAD(&sc->ti_mc_listhead, mc_entries); free(mc, M_DEVBUF); } /* Now program new ones. */ for (ifma = ifp->if_multiaddrs.lh_first; ifma != NULL; ifma = ifma->ifma_link.le_next) { if (ifma->ifma_addr->sa_family != AF_LINK) continue; mc = malloc(sizeof(struct ti_mc_entry), M_DEVBUF, M_NOWAIT); bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr), (char *)&mc->mc_addr, ETHER_ADDR_LEN); SLIST_INSERT_HEAD(&sc->ti_mc_listhead, mc, mc_entries); ti_add_mcast(sc, &mc->mc_addr); } /* Re-enable interrupts. */ CSR_WRITE_4(sc, TI_MB_HOSTINTR, intrs); return; } /* * Check to see if the BIOS has configured us for a 64 bit slot when * we aren't actually in one. If we detect this condition, we can work * around it on the Tigon 2 by setting a bit in the PCI state register, * but for the Tigon 1 we must give up and abort the interface attach. */ static int ti_64bitslot_war(sc) struct ti_softc *sc; { if (!(CSR_READ_4(sc, TI_PCI_STATE) & TI_PCISTATE_32BIT_BUS)) { CSR_WRITE_4(sc, 0x600, 0); CSR_WRITE_4(sc, 0x604, 0); CSR_WRITE_4(sc, 0x600, 0x5555AAAA); if (CSR_READ_4(sc, 0x604) == 0x5555AAAA) { if (sc->ti_hwrev == TI_HWREV_TIGON) return(EINVAL); else { TI_SETBIT(sc, TI_PCI_STATE, TI_PCISTATE_32BIT_BUS); return(0); } } } return(0); } /* * Do endian, PCI and DMA initialization. Also check the on-board ROM * self-test results. */ static int ti_chipinit(sc) struct ti_softc *sc; { u_int32_t cacheline; u_int32_t pci_writemax = 0; /* Initialize link to down state. */ sc->ti_linkstat = TI_EV_CODE_LINK_DOWN; sc->arpcom.ac_if.if_hwassist = TI_CSUM_FEATURES; /* Set endianness before we access any non-PCI registers. */ #if BYTE_ORDER == BIG_ENDIAN CSR_WRITE_4(sc, TI_MISC_HOST_CTL, TI_MHC_BIGENDIAN_INIT | (TI_MHC_BIGENDIAN_INIT << 24)); #else CSR_WRITE_4(sc, TI_MISC_HOST_CTL, TI_MHC_LITTLEENDIAN_INIT | (TI_MHC_LITTLEENDIAN_INIT << 24)); #endif /* Check the ROM failed bit to see if self-tests passed. */ if (CSR_READ_4(sc, TI_CPU_STATE) & TI_CPUSTATE_ROMFAIL) { printf("ti%d: board self-diagnostics failed!\n", sc->ti_unit); return(ENODEV); } /* Halt the CPU. */ TI_SETBIT(sc, TI_CPU_STATE, TI_CPUSTATE_HALT); /* Figure out the hardware revision. */ switch(CSR_READ_4(sc, TI_MISC_HOST_CTL) & TI_MHC_CHIP_REV_MASK) { case TI_REV_TIGON_I: sc->ti_hwrev = TI_HWREV_TIGON; break; case TI_REV_TIGON_II: sc->ti_hwrev = TI_HWREV_TIGON_II; break; default: printf("ti%d: unsupported chip revision\n", sc->ti_unit); return(ENODEV); } /* Do special setup for Tigon 2. */ if (sc->ti_hwrev == TI_HWREV_TIGON_II) { TI_SETBIT(sc, TI_CPU_CTL_B, TI_CPUSTATE_HALT); TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_SRAM_BANK_256K); TI_SETBIT(sc, TI_MISC_CONF, TI_MCR_SRAM_SYNCHRONOUS); } /* Set up the PCI state register. */ CSR_WRITE_4(sc, TI_PCI_STATE, TI_PCI_READ_CMD|TI_PCI_WRITE_CMD); if (sc->ti_hwrev == TI_HWREV_TIGON_II) { TI_SETBIT(sc, TI_PCI_STATE, TI_PCISTATE_USE_MEM_RD_MULT); } /* Clear the read/write max DMA parameters. */ TI_CLRBIT(sc, TI_PCI_STATE, (TI_PCISTATE_WRITE_MAXDMA| TI_PCISTATE_READ_MAXDMA)); /* Get cache line size. */ cacheline = CSR_READ_4(sc, TI_PCI_BIST) & 0xFF; /* * If the system has set enabled the PCI memory write * and invalidate command in the command register, set * the write max parameter accordingly. This is necessary * to use MWI with the Tigon 2. */ if (CSR_READ_4(sc, TI_PCI_CMDSTAT) & PCIM_CMD_MWIEN) { switch(cacheline) { case 1: case 4: case 8: case 16: case 32: case 64: break; default: /* Disable PCI memory write and invalidate. */ if (bootverbose) printf("ti%d: cache line size %d not " "supported; disabling PCI MWI\n", sc->ti_unit, cacheline); CSR_WRITE_4(sc, TI_PCI_CMDSTAT, CSR_READ_4(sc, TI_PCI_CMDSTAT) & ~PCIM_CMD_MWIEN); break; } } #ifdef __brokenalpha__ /* * From the Alteon sample driver: * Must insure that we do not cross an 8K (bytes) boundary * for DMA reads. Our highest limit is 1K bytes. This is a * restriction on some ALPHA platforms with early revision * 21174 PCI chipsets, such as the AlphaPC 164lx */ TI_SETBIT(sc, TI_PCI_STATE, pci_writemax|TI_PCI_READMAX_1024); #else TI_SETBIT(sc, TI_PCI_STATE, pci_writemax); #endif /* This sets the min dma param all the way up (0xff). */ TI_SETBIT(sc, TI_PCI_STATE, TI_PCISTATE_MINDMA); /* Configure DMA variables. */ #if BYTE_ORDER == BIG_ENDIAN CSR_WRITE_4(sc, TI_GCR_OPMODE, TI_OPMODE_BYTESWAP_BD | TI_OPMODE_BYTESWAP_DATA | TI_OPMODE_WORDSWAP_BD | TI_OPMODE_WARN_ENB | TI_OPMODE_FATAL_ENB | TI_OPMODE_DONT_FRAG_JUMBO); #else CSR_WRITE_4(sc, TI_GCR_OPMODE, TI_OPMODE_BYTESWAP_DATA| TI_OPMODE_WORDSWAP_BD|TI_OPMODE_DONT_FRAG_JUMBO| TI_OPMODE_WARN_ENB|TI_OPMODE_FATAL_ENB); #endif /* * Only allow 1 DMA channel to be active at a time. * I don't think this is a good idea, but without it * the firmware racks up lots of nicDmaReadRingFull * errors. This is not compatible with hardware checksums. */ if (sc->arpcom.ac_if.if_hwassist == 0) TI_SETBIT(sc, TI_GCR_OPMODE, TI_OPMODE_1_DMA_ACTIVE); /* Recommended settings from Tigon manual. */ CSR_WRITE_4(sc, TI_GCR_DMA_WRITECFG, TI_DMA_STATE_THRESH_8W); CSR_WRITE_4(sc, TI_GCR_DMA_READCFG, TI_DMA_STATE_THRESH_8W); if (ti_64bitslot_war(sc)) { printf("ti%d: bios thinks we're in a 64 bit slot, " "but we aren't", sc->ti_unit); return(EINVAL); } return(0); } /* * Initialize the general information block and firmware, and * start the CPU(s) running. */ static int ti_gibinit(sc) struct ti_softc *sc; { struct ti_rcb *rcb; int i; struct ifnet *ifp; ifp = &sc->arpcom.ac_if; /* Disable interrupts for now. */ CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1); /* Tell the chip where to find the general information block. */ CSR_WRITE_4(sc, TI_GCR_GENINFO_HI, 0); CSR_WRITE_4(sc, TI_GCR_GENINFO_LO, vtophys(&sc->ti_rdata->ti_info)); /* Load the firmware into SRAM. */ ti_loadfw(sc); /* Set up the contents of the general info and ring control blocks. */ /* Set up the event ring and producer pointer. */ rcb = &sc->ti_rdata->ti_info.ti_ev_rcb; TI_HOSTADDR(rcb->ti_hostaddr) = vtophys(&sc->ti_rdata->ti_event_ring); rcb->ti_flags = 0; TI_HOSTADDR(sc->ti_rdata->ti_info.ti_ev_prodidx_ptr) = vtophys(&sc->ti_ev_prodidx); sc->ti_ev_prodidx.ti_idx = 0; CSR_WRITE_4(sc, TI_GCR_EVENTCONS_IDX, 0); sc->ti_ev_saved_considx = 0; /* Set up the command ring and producer mailbox. */ rcb = &sc->ti_rdata->ti_info.ti_cmd_rcb; sc->ti_rdata->ti_cmd_ring = (struct ti_cmd_desc *)(sc->ti_vhandle + TI_GCR_CMDRING); TI_HOSTADDR(rcb->ti_hostaddr) = TI_GCR_NIC_ADDR(TI_GCR_CMDRING); rcb->ti_flags = 0; rcb->ti_max_len = 0; for (i = 0; i < TI_CMD_RING_CNT; i++) { CSR_WRITE_4(sc, TI_GCR_CMDRING + (i * 4), 0); } CSR_WRITE_4(sc, TI_GCR_CMDCONS_IDX, 0); CSR_WRITE_4(sc, TI_MB_CMDPROD_IDX, 0); sc->ti_cmd_saved_prodidx = 0; /* * Assign the address of the stats refresh buffer. * We re-use the current stats buffer for this to * conserve memory. */ TI_HOSTADDR(sc->ti_rdata->ti_info.ti_refresh_stats_ptr) = vtophys(&sc->ti_rdata->ti_info.ti_stats); /* Set up the standard receive ring. */ rcb = &sc->ti_rdata->ti_info.ti_std_rx_rcb; TI_HOSTADDR(rcb->ti_hostaddr) = vtophys(&sc->ti_rdata->ti_rx_std_ring); rcb->ti_max_len = TI_FRAMELEN; rcb->ti_flags = 0; if (sc->arpcom.ac_if.if_hwassist) rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM | TI_RCB_FLAG_IP_CKSUM | TI_RCB_FLAG_NO_PHDR_CKSUM; #if NVLAN > 0 rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST; #endif /* Set up the jumbo receive ring. */ rcb = &sc->ti_rdata->ti_info.ti_jumbo_rx_rcb; TI_HOSTADDR(rcb->ti_hostaddr) = vtophys(&sc->ti_rdata->ti_rx_jumbo_ring); rcb->ti_max_len = TI_JUMBO_FRAMELEN; rcb->ti_flags = 0; if (sc->arpcom.ac_if.if_hwassist) rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM | TI_RCB_FLAG_IP_CKSUM | TI_RCB_FLAG_NO_PHDR_CKSUM; #if NVLAN > 0 rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST; #endif /* * Set up the mini ring. Only activated on the * Tigon 2 but the slot in the config block is * still there on the Tigon 1. */ rcb = &sc->ti_rdata->ti_info.ti_mini_rx_rcb; TI_HOSTADDR(rcb->ti_hostaddr) = vtophys(&sc->ti_rdata->ti_rx_mini_ring); rcb->ti_max_len = MHLEN - ETHER_ALIGN; if (sc->ti_hwrev == TI_HWREV_TIGON) rcb->ti_flags = TI_RCB_FLAG_RING_DISABLED; else rcb->ti_flags = 0; if (sc->arpcom.ac_if.if_hwassist) rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM | TI_RCB_FLAG_IP_CKSUM | TI_RCB_FLAG_NO_PHDR_CKSUM; #if NVLAN > 0 rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST; #endif /* * Set up the receive return ring. */ rcb = &sc->ti_rdata->ti_info.ti_return_rcb; TI_HOSTADDR(rcb->ti_hostaddr) = vtophys(&sc->ti_rdata->ti_rx_return_ring); rcb->ti_flags = 0; rcb->ti_max_len = TI_RETURN_RING_CNT; TI_HOSTADDR(sc->ti_rdata->ti_info.ti_return_prodidx_ptr) = vtophys(&sc->ti_return_prodidx); /* * Set up the tx ring. Note: for the Tigon 2, we have the option * of putting the transmit ring in the host's address space and * letting the chip DMA it instead of leaving the ring in the NIC's * memory and accessing it through the shared memory region. We * do this for the Tigon 2, but it doesn't work on the Tigon 1, * so we have to revert to the shared memory scheme if we detect * a Tigon 1 chip. */ CSR_WRITE_4(sc, TI_WINBASE, TI_TX_RING_BASE); if (sc->ti_hwrev == TI_HWREV_TIGON) { sc->ti_rdata->ti_tx_ring_nic = (struct ti_tx_desc *)(sc->ti_vhandle + TI_WINDOW); } bzero((char *)sc->ti_rdata->ti_tx_ring, TI_TX_RING_CNT * sizeof(struct ti_tx_desc)); rcb = &sc->ti_rdata->ti_info.ti_tx_rcb; if (sc->ti_hwrev == TI_HWREV_TIGON) rcb->ti_flags = 0; else rcb->ti_flags = TI_RCB_FLAG_HOST_RING; #if NVLAN > 0 rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST; #endif if (sc->arpcom.ac_if.if_hwassist) rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM | TI_RCB_FLAG_IP_CKSUM | TI_RCB_FLAG_NO_PHDR_CKSUM; rcb->ti_max_len = TI_TX_RING_CNT; if (sc->ti_hwrev == TI_HWREV_TIGON) TI_HOSTADDR(rcb->ti_hostaddr) = TI_TX_RING_BASE; else TI_HOSTADDR(rcb->ti_hostaddr) = vtophys(&sc->ti_rdata->ti_tx_ring); TI_HOSTADDR(sc->ti_rdata->ti_info.ti_tx_considx_ptr) = vtophys(&sc->ti_tx_considx); /* Set up tuneables */ if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN)) CSR_WRITE_4(sc, TI_GCR_RX_COAL_TICKS, (sc->ti_rx_coal_ticks / 10)); else CSR_WRITE_4(sc, TI_GCR_RX_COAL_TICKS, sc->ti_rx_coal_ticks); CSR_WRITE_4(sc, TI_GCR_TX_COAL_TICKS, sc->ti_tx_coal_ticks); CSR_WRITE_4(sc, TI_GCR_STAT_TICKS, sc->ti_stat_ticks); CSR_WRITE_4(sc, TI_GCR_RX_MAX_COAL_BD, sc->ti_rx_max_coal_bds); CSR_WRITE_4(sc, TI_GCR_TX_MAX_COAL_BD, sc->ti_tx_max_coal_bds); CSR_WRITE_4(sc, TI_GCR_TX_BUFFER_RATIO, sc->ti_tx_buf_ratio); /* Turn interrupts on. */ CSR_WRITE_4(sc, TI_GCR_MASK_INTRS, 0); CSR_WRITE_4(sc, TI_MB_HOSTINTR, 0); /* Start CPU. */ TI_CLRBIT(sc, TI_CPU_STATE, (TI_CPUSTATE_HALT|TI_CPUSTATE_STEP)); return(0); } /* * Probe for a Tigon chip. Check the PCI vendor and device IDs * against our list and return its name if we find a match. */ static int ti_probe(dev) device_t dev; { struct ti_type *t; t = ti_devs; while(t->ti_name != NULL) { if ((pci_get_vendor(dev) == t->ti_vid) && (pci_get_device(dev) == t->ti_did)) { device_set_desc(dev, t->ti_name); return(0); } t++; } return(ENXIO); } static int ti_attach(dev) device_t dev; { int s; u_int32_t command; struct ifnet *ifp; struct ti_softc *sc; int unit, error = 0, rid; s = splimp(); sc = device_get_softc(dev); unit = device_get_unit(dev); bzero(sc, sizeof(struct ti_softc)); /* * Map control/status registers. */ command = pci_read_config(dev, PCIR_COMMAND, 4); command |= (PCIM_CMD_MEMEN|PCIM_CMD_BUSMASTEREN); pci_write_config(dev, PCIR_COMMAND, command, 4); command = pci_read_config(dev, PCIR_COMMAND, 4); if (!(command & PCIM_CMD_MEMEN)) { printf("ti%d: failed to enable memory mapping!\n", unit); error = ENXIO; goto fail; } rid = TI_PCI_LOMEM; sc->ti_res = bus_alloc_resource(dev, SYS_RES_MEMORY, &rid, 0, ~0, 1, RF_ACTIVE); if (sc->ti_res == NULL) { printf ("ti%d: couldn't map memory\n", unit); error = ENXIO; goto fail; } sc->ti_btag = rman_get_bustag(sc->ti_res); sc->ti_bhandle = rman_get_bushandle(sc->ti_res); sc->ti_vhandle = (vm_offset_t)rman_get_virtual(sc->ti_res); /* * XXX FIXME: rman_get_virtual() on the alpha is currently * broken and returns a physical address instead of a kernel * virtual address. Consequently, we need to do a little * extra mangling of the vhandle on the alpha. This should * eventually be fixed! The whole idea here is to get rid * of platform dependencies. */ #ifdef __alpha__ if (pci_cvt_to_bwx(sc->ti_vhandle)) sc->ti_vhandle = pci_cvt_to_bwx(sc->ti_vhandle); else sc->ti_vhandle = pci_cvt_to_dense(sc->ti_vhandle); sc->ti_vhandle = ALPHA_PHYS_TO_K0SEG(sc->ti_vhandle); #endif /* Allocate interrupt */ rid = 0; sc->ti_irq = bus_alloc_resource(dev, SYS_RES_IRQ, &rid, 0, ~0, 1, RF_SHAREABLE | RF_ACTIVE); if (sc->ti_irq == NULL) { printf("ti%d: couldn't map interrupt\n", unit); error = ENXIO; goto fail; } error = bus_setup_intr(dev, sc->ti_irq, INTR_TYPE_NET, ti_intr, sc, &sc->ti_intrhand); if (error) { bus_release_resource(dev, SYS_RES_IRQ, 0, sc->ti_irq); bus_release_resource(dev, SYS_RES_MEMORY, TI_PCI_LOMEM, sc->ti_res); printf("ti%d: couldn't set up irq\n", unit); goto fail; } sc->ti_unit = unit; if (ti_chipinit(sc)) { printf("ti%d: chip initialization failed\n", sc->ti_unit); bus_teardown_intr(dev, sc->ti_irq, sc->ti_intrhand); bus_release_resource(dev, SYS_RES_IRQ, 0, sc->ti_irq); bus_release_resource(dev, SYS_RES_MEMORY, TI_PCI_LOMEM, sc->ti_res); error = ENXIO; goto fail; } /* Zero out the NIC's on-board SRAM. */ ti_mem(sc, 0x2000, 0x100000 - 0x2000, NULL); /* Init again -- zeroing memory may have clobbered some registers. */ if (ti_chipinit(sc)) { printf("ti%d: chip initialization failed\n", sc->ti_unit); bus_teardown_intr(dev, sc->ti_irq, sc->ti_intrhand); bus_release_resource(dev, SYS_RES_IRQ, 0, sc->ti_irq); bus_release_resource(dev, SYS_RES_MEMORY, TI_PCI_LOMEM, sc->ti_res); error = ENXIO; goto fail; } /* * Get station address from the EEPROM. Note: the manual states * that the MAC address is at offset 0x8c, however the data is * stored as two longwords (since that's how it's loaded into * the NIC). This means the MAC address is actually preceeded * by two zero bytes. We need to skip over those. */ if (ti_read_eeprom(sc, (caddr_t)&sc->arpcom.ac_enaddr, TI_EE_MAC_OFFSET + 2, ETHER_ADDR_LEN)) { printf("ti%d: failed to read station address\n", unit); bus_teardown_intr(dev, sc->ti_irq, sc->ti_intrhand); bus_release_resource(dev, SYS_RES_IRQ, 0, sc->ti_irq); bus_release_resource(dev, SYS_RES_MEMORY, TI_PCI_LOMEM, sc->ti_res); error = ENXIO; goto fail; } /* * A Tigon chip was detected. Inform the world. */ printf("ti%d: Ethernet address: %6D\n", unit, sc->arpcom.ac_enaddr, ":"); /* Allocate the general information block and ring buffers. */ sc->ti_rdata = contigmalloc(sizeof(struct ti_ring_data), M_DEVBUF, M_NOWAIT, 0, 0xffffffff, PAGE_SIZE, 0); if (sc->ti_rdata == NULL) { bus_teardown_intr(dev, sc->ti_irq, sc->ti_intrhand); bus_release_resource(dev, SYS_RES_IRQ, 0, sc->ti_irq); bus_release_resource(dev, SYS_RES_MEMORY, TI_PCI_LOMEM, sc->ti_res); error = ENXIO; printf("ti%d: no memory for list buffers!\n", sc->ti_unit); goto fail; } bzero(sc->ti_rdata, sizeof(struct ti_ring_data)); /* Try to allocate memory for jumbo buffers. */ if (ti_alloc_jumbo_mem(sc)) { printf("ti%d: jumbo buffer allocation failed\n", sc->ti_unit); bus_teardown_intr(dev, sc->ti_irq, sc->ti_intrhand); bus_release_resource(dev, SYS_RES_IRQ, 0, sc->ti_irq); bus_release_resource(dev, SYS_RES_MEMORY, TI_PCI_LOMEM, sc->ti_res); contigfree(sc->ti_rdata, sizeof(struct ti_ring_data), M_DEVBUF); error = ENXIO; goto fail; } /* * We really need a better way to tell a 1000baseTX card * from a 1000baseSX one, since in theory there could be * OEMed 1000baseTX cards from lame vendors who aren't * clever enough to change the PCI ID. For the moment * though, the AceNIC is the only copper card available. */ if (pci_get_vendor(dev) == ALT_VENDORID && pci_get_device(dev) == ALT_DEVICEID_ACENIC_COPPER) sc->ti_copper = 1; /* Set default tuneable values. */ sc->ti_stat_ticks = 2 * TI_TICKS_PER_SEC; sc->ti_rx_coal_ticks = TI_TICKS_PER_SEC / 5000; sc->ti_tx_coal_ticks = TI_TICKS_PER_SEC / 500; sc->ti_rx_max_coal_bds = 64; sc->ti_tx_max_coal_bds = 128; sc->ti_tx_buf_ratio = 21; /* Set up ifnet structure */ ifp = &sc->arpcom.ac_if; ifp->if_softc = sc; ifp->if_unit = sc->ti_unit; ifp->if_name = "ti"; ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; ifp->if_ioctl = ti_ioctl; ifp->if_output = ether_output; ifp->if_start = ti_start; ifp->if_watchdog = ti_watchdog; ifp->if_init = ti_init; ifp->if_mtu = ETHERMTU; ifp->if_snd.ifq_maxlen = TI_TX_RING_CNT - 1; /* Set up ifmedia support. */ ifmedia_init(&sc->ifmedia, IFM_IMASK, ti_ifmedia_upd, ti_ifmedia_sts); if (sc->ti_copper) { /* * Copper cards allow manual 10/100 mode selection, * but not manual 1000baseTX mode selection. Why? * Becuase currently there's no way to specify the * master/slave setting through the firmware interface, * so Alteon decided to just bag it and handle it * via autonegotiation. */ ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_10_T, 0, NULL); ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_10_T|IFM_FDX, 0, NULL); ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_100_TX, 0, NULL); ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_100_TX|IFM_FDX, 0, NULL); ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_1000_TX, 0, NULL); ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_1000_TX|IFM_FDX, 0, NULL); } else { /* Fiber cards don't support 10/100 modes. */ ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_1000_SX, 0, NULL); ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_1000_SX|IFM_FDX, 0, NULL); } ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_AUTO, 0, NULL); ifmedia_set(&sc->ifmedia, IFM_ETHER|IFM_AUTO); /* * Call MI attach routine. */ ether_ifattach(ifp, ETHER_BPF_SUPPORTED); fail: splx(s); return(error); } static int ti_detach(dev) device_t dev; { struct ti_softc *sc; struct ifnet *ifp; int s; s = splimp(); sc = device_get_softc(dev); ifp = &sc->arpcom.ac_if; ether_ifdetach(ifp, ETHER_BPF_SUPPORTED); ti_stop(sc); bus_teardown_intr(dev, sc->ti_irq, sc->ti_intrhand); bus_release_resource(dev, SYS_RES_IRQ, 0, sc->ti_irq); bus_release_resource(dev, SYS_RES_MEMORY, TI_PCI_LOMEM, sc->ti_res); contigfree(sc->ti_cdata.ti_jumbo_buf, TI_JMEM, M_DEVBUF); contigfree(sc->ti_rdata, sizeof(struct ti_ring_data), M_DEVBUF); ifmedia_removeall(&sc->ifmedia); splx(s); return(0); } /* * Frame reception handling. This is called if there's a frame * on the receive return list. * * Note: we have to be able to handle three possibilities here: * 1) the frame is from the mini receive ring (can only happen) * on Tigon 2 boards) * 2) the frame is from the jumbo recieve ring * 3) the frame is from the standard receive ring */ static void ti_rxeof(sc) struct ti_softc *sc; { struct ifnet *ifp; struct ti_cmd_desc cmd; ifp = &sc->arpcom.ac_if; while(sc->ti_rx_saved_considx != sc->ti_return_prodidx.ti_idx) { struct ti_rx_desc *cur_rx; u_int32_t rxidx; struct ether_header *eh; struct mbuf *m = NULL; #if NVLAN > 0 u_int16_t vlan_tag = 0; int have_tag = 0; #endif cur_rx = &sc->ti_rdata->ti_rx_return_ring[sc->ti_rx_saved_considx]; rxidx = cur_rx->ti_idx; TI_INC(sc->ti_rx_saved_considx, TI_RETURN_RING_CNT); #if NVLAN > 0 if (cur_rx->ti_flags & TI_BDFLAG_VLAN_TAG) { have_tag = 1; vlan_tag = cur_rx->ti_vlan_tag; } #endif if (cur_rx->ti_flags & TI_BDFLAG_JUMBO_RING) { TI_INC(sc->ti_jumbo, TI_JUMBO_RX_RING_CNT); m = sc->ti_cdata.ti_rx_jumbo_chain[rxidx]; sc->ti_cdata.ti_rx_jumbo_chain[rxidx] = NULL; if (cur_rx->ti_flags & TI_BDFLAG_ERROR) { ifp->if_ierrors++; ti_newbuf_jumbo(sc, sc->ti_jumbo, m); continue; } if (ti_newbuf_jumbo(sc, sc->ti_jumbo, NULL) == ENOBUFS) { ifp->if_ierrors++; ti_newbuf_jumbo(sc, sc->ti_jumbo, m); continue; } } else if (cur_rx->ti_flags & TI_BDFLAG_MINI_RING) { TI_INC(sc->ti_mini, TI_MINI_RX_RING_CNT); m = sc->ti_cdata.ti_rx_mini_chain[rxidx]; sc->ti_cdata.ti_rx_mini_chain[rxidx] = NULL; if (cur_rx->ti_flags & TI_BDFLAG_ERROR) { ifp->if_ierrors++; ti_newbuf_mini(sc, sc->ti_mini, m); continue; } if (ti_newbuf_mini(sc, sc->ti_mini, NULL) == ENOBUFS) { ifp->if_ierrors++; ti_newbuf_mini(sc, sc->ti_mini, m); continue; } } else { TI_INC(sc->ti_std, TI_STD_RX_RING_CNT); m = sc->ti_cdata.ti_rx_std_chain[rxidx]; sc->ti_cdata.ti_rx_std_chain[rxidx] = NULL; if (cur_rx->ti_flags & TI_BDFLAG_ERROR) { ifp->if_ierrors++; ti_newbuf_std(sc, sc->ti_std, m); continue; } if (ti_newbuf_std(sc, sc->ti_std, NULL) == ENOBUFS) { ifp->if_ierrors++; ti_newbuf_std(sc, sc->ti_std, m); continue; } } m->m_pkthdr.len = m->m_len = cur_rx->ti_len; ifp->if_ipackets++; eh = mtod(m, struct ether_header *); m->m_pkthdr.rcvif = ifp; /* Remove header from mbuf and pass it on. */ m_adj(m, sizeof(struct ether_header)); if (ifp->if_hwassist) { m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED | CSUM_DATA_VALID; if ((cur_rx->ti_ip_cksum ^ 0xffff) == 0) m->m_pkthdr.csum_flags |= CSUM_IP_VALID; m->m_pkthdr.csum_data = cur_rx->ti_tcp_udp_cksum; } #if NVLAN > 0 /* * If we received a packet with a vlan tag, pass it * to vlan_input() instead of ether_input(). */ if (have_tag) { vlan_input_tag(eh, m, vlan_tag); have_tag = vlan_tag = 0; continue; } #endif ether_input(ifp, eh, m); } /* Only necessary on the Tigon 1. */ if (sc->ti_hwrev == TI_HWREV_TIGON) CSR_WRITE_4(sc, TI_GCR_RXRETURNCONS_IDX, sc->ti_rx_saved_considx); TI_UPDATE_STDPROD(sc, sc->ti_std); TI_UPDATE_MINIPROD(sc, sc->ti_mini); TI_UPDATE_JUMBOPROD(sc, sc->ti_jumbo); return; } static void ti_txeof(sc) struct ti_softc *sc; { struct ti_tx_desc *cur_tx = NULL; struct ifnet *ifp; ifp = &sc->arpcom.ac_if; /* * Go through our tx ring and free mbufs for those * frames that have been sent. */ while (sc->ti_tx_saved_considx != sc->ti_tx_considx.ti_idx) { u_int32_t idx = 0; idx = sc->ti_tx_saved_considx; if (sc->ti_hwrev == TI_HWREV_TIGON) { if (idx > 383) CSR_WRITE_4(sc, TI_WINBASE, TI_TX_RING_BASE + 6144); else if (idx > 255) CSR_WRITE_4(sc, TI_WINBASE, TI_TX_RING_BASE + 4096); else if (idx > 127) CSR_WRITE_4(sc, TI_WINBASE, TI_TX_RING_BASE + 2048); else CSR_WRITE_4(sc, TI_WINBASE, TI_TX_RING_BASE); cur_tx = &sc->ti_rdata->ti_tx_ring_nic[idx % 128]; } else cur_tx = &sc->ti_rdata->ti_tx_ring[idx]; if (cur_tx->ti_flags & TI_BDFLAG_END) ifp->if_opackets++; if (sc->ti_cdata.ti_tx_chain[idx] != NULL) { m_freem(sc->ti_cdata.ti_tx_chain[idx]); sc->ti_cdata.ti_tx_chain[idx] = NULL; } sc->ti_txcnt--; TI_INC(sc->ti_tx_saved_considx, TI_TX_RING_CNT); ifp->if_timer = 0; } if (cur_tx != NULL) ifp->if_flags &= ~IFF_OACTIVE; return; } static void ti_intr(xsc) void *xsc; { struct ti_softc *sc; struct ifnet *ifp; sc = xsc; ifp = &sc->arpcom.ac_if; #ifdef notdef /* Avoid this for now -- checking this register is expensive. */ /* Make sure this is really our interrupt. */ if (!(CSR_READ_4(sc, TI_MISC_HOST_CTL) & TI_MHC_INTSTATE)) return; #endif /* Ack interrupt and stop others from occuring. */ CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1); if (ifp->if_flags & IFF_RUNNING) { /* Check RX return ring producer/consumer */ ti_rxeof(sc); /* Check TX ring producer/consumer */ ti_txeof(sc); } ti_handle_events(sc); /* Re-enable interrupts. */ CSR_WRITE_4(sc, TI_MB_HOSTINTR, 0); if (ifp->if_flags & IFF_RUNNING && ifp->if_snd.ifq_head != NULL) ti_start(ifp); return; } static void ti_stats_update(sc) struct ti_softc *sc; { struct ifnet *ifp; ifp = &sc->arpcom.ac_if; ifp->if_collisions += (sc->ti_rdata->ti_info.ti_stats.dot3StatsSingleCollisionFrames + sc->ti_rdata->ti_info.ti_stats.dot3StatsMultipleCollisionFrames + sc->ti_rdata->ti_info.ti_stats.dot3StatsExcessiveCollisions + sc->ti_rdata->ti_info.ti_stats.dot3StatsLateCollisions) - ifp->if_collisions; return; } /* * Encapsulate an mbuf chain in the tx ring by coupling the mbuf data * pointers to descriptors. */ static int ti_encap(sc, m_head, txidx) struct ti_softc *sc; struct mbuf *m_head; u_int32_t *txidx; { struct ti_tx_desc *f = NULL; struct mbuf *m; u_int32_t frag, cur, cnt = 0; u_int16_t csum_flags = 0; #if NVLAN > 0 struct ifvlan *ifv = NULL; if ((m_head->m_flags & (M_PROTO1|M_PKTHDR)) == (M_PROTO1|M_PKTHDR) && m_head->m_pkthdr.rcvif != NULL && m_head->m_pkthdr.rcvif->if_type == IFT_8021_VLAN) ifv = m_head->m_pkthdr.rcvif->if_softc; #endif m = m_head; cur = frag = *txidx; if (m_head->m_pkthdr.csum_flags) { if (m_head->m_pkthdr.csum_flags & CSUM_IP) csum_flags |= TI_BDFLAG_IP_CKSUM; if (m_head->m_pkthdr.csum_flags & (CSUM_TCP | CSUM_UDP)) csum_flags |= TI_BDFLAG_TCP_UDP_CKSUM; if (m_head->m_flags & M_LASTFRAG) csum_flags |= TI_BDFLAG_IP_FRAG_END; else if (m_head->m_flags & M_FRAG) csum_flags |= TI_BDFLAG_IP_FRAG; } /* * Start packing the mbufs in this chain into * the fragment pointers. Stop when we run out * of fragments or hit the end of the mbuf chain. */ for (m = m_head; m != NULL; m = m->m_next) { if (m->m_len != 0) { if (sc->ti_hwrev == TI_HWREV_TIGON) { if (frag > 383) CSR_WRITE_4(sc, TI_WINBASE, TI_TX_RING_BASE + 6144); else if (frag > 255) CSR_WRITE_4(sc, TI_WINBASE, TI_TX_RING_BASE + 4096); else if (frag > 127) CSR_WRITE_4(sc, TI_WINBASE, TI_TX_RING_BASE + 2048); else CSR_WRITE_4(sc, TI_WINBASE, TI_TX_RING_BASE); f = &sc->ti_rdata->ti_tx_ring_nic[frag % 128]; } else f = &sc->ti_rdata->ti_tx_ring[frag]; if (sc->ti_cdata.ti_tx_chain[frag] != NULL) break; TI_HOSTADDR(f->ti_addr) = vtophys(mtod(m, vm_offset_t)); f->ti_len = m->m_len; f->ti_flags = csum_flags; #if NVLAN > 0 if (ifv != NULL) { f->ti_flags |= TI_BDFLAG_VLAN_TAG; f->ti_vlan_tag = ifv->ifv_tag; } else { f->ti_vlan_tag = 0; } #endif /* * Sanity check: avoid coming within 16 descriptors * of the end of the ring. */ if ((TI_TX_RING_CNT - (sc->ti_txcnt + cnt)) < 16) return(ENOBUFS); cur = frag; TI_INC(frag, TI_TX_RING_CNT); cnt++; } } if (m != NULL) return(ENOBUFS); if (frag == sc->ti_tx_saved_considx) return(ENOBUFS); if (sc->ti_hwrev == TI_HWREV_TIGON) sc->ti_rdata->ti_tx_ring_nic[cur % 128].ti_flags |= TI_BDFLAG_END; else sc->ti_rdata->ti_tx_ring[cur].ti_flags |= TI_BDFLAG_END; sc->ti_cdata.ti_tx_chain[cur] = m_head; sc->ti_txcnt += cnt; *txidx = frag; return(0); } /* * Main transmit routine. To avoid having to do mbuf copies, we put pointers * to the mbuf data regions directly in the transmit descriptors. */ static void ti_start(ifp) struct ifnet *ifp; { struct ti_softc *sc; struct mbuf *m_head = NULL; u_int32_t prodidx = 0; sc = ifp->if_softc; prodidx = CSR_READ_4(sc, TI_MB_SENDPROD_IDX); while(sc->ti_cdata.ti_tx_chain[prodidx] == NULL) { IF_DEQUEUE(&ifp->if_snd, m_head); if (m_head == NULL) break; /* * XXX * safety overkill. If this is a fragmented packet chain * with delayed TCP/UDP checksums, then only encapsulate * it if we have enough descriptors to handle the entire * chain at once. * (paranoia -- may not actually be needed) */ if (m_head->m_flags & M_FIRSTFRAG && m_head->m_pkthdr.csum_flags & (CSUM_DELAY_DATA)) { if ((TI_TX_RING_CNT - sc->ti_txcnt) < m_head->m_pkthdr.csum_data + 16) { IF_PREPEND(&ifp->if_snd, m_head); ifp->if_flags |= IFF_OACTIVE; break; } } /* * Pack the data into the transmit ring. If we * don't have room, set the OACTIVE flag and wait * for the NIC to drain the ring. */ if (ti_encap(sc, m_head, &prodidx)) { IF_PREPEND(&ifp->if_snd, m_head); ifp->if_flags |= IFF_OACTIVE; break; } /* * If there's a BPF listener, bounce a copy of this frame * to him. */ if (ifp->if_bpf) bpf_mtap(ifp, m_head); } /* Transmit */ CSR_WRITE_4(sc, TI_MB_SENDPROD_IDX, prodidx); /* * Set a timeout in case the chip goes out to lunch. */ ifp->if_timer = 5; return; } static void ti_init(xsc) void *xsc; { struct ti_softc *sc = xsc; int s; s = splimp(); /* Cancel pending I/O and flush buffers. */ ti_stop(sc); /* Init the gen info block, ring control blocks and firmware. */ if (ti_gibinit(sc)) { printf("ti%d: initialization failure\n", sc->ti_unit); splx(s); return; } splx(s); return; } static void ti_init2(sc) struct ti_softc *sc; { struct ti_cmd_desc cmd; struct ifnet *ifp; u_int16_t *m; struct ifmedia *ifm; int tmp; ifp = &sc->arpcom.ac_if; /* Specify MTU and interface index. */ CSR_WRITE_4(sc, TI_GCR_IFINDEX, ifp->if_unit); CSR_WRITE_4(sc, TI_GCR_IFMTU, ifp->if_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN); TI_DO_CMD(TI_CMD_UPDATE_GENCOM, 0, 0); /* Load our MAC address. */ m = (u_int16_t *)&sc->arpcom.ac_enaddr[0]; CSR_WRITE_4(sc, TI_GCR_PAR0, htons(m[0])); CSR_WRITE_4(sc, TI_GCR_PAR1, (htons(m[1]) << 16) | htons(m[2])); TI_DO_CMD(TI_CMD_SET_MAC_ADDR, 0, 0); /* Enable or disable promiscuous mode as needed. */ if (ifp->if_flags & IFF_PROMISC) { TI_DO_CMD(TI_CMD_SET_PROMISC_MODE, TI_CMD_CODE_PROMISC_ENB, 0); } else { TI_DO_CMD(TI_CMD_SET_PROMISC_MODE, TI_CMD_CODE_PROMISC_DIS, 0); } /* Program multicast filter. */ ti_setmulti(sc); /* * If this is a Tigon 1, we should tell the * firmware to use software packet filtering. */ if (sc->ti_hwrev == TI_HWREV_TIGON) { TI_DO_CMD(TI_CMD_FDR_FILTERING, TI_CMD_CODE_FILT_ENB, 0); } /* Init RX ring. */ ti_init_rx_ring_std(sc); /* Init jumbo RX ring. */ if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN)) ti_init_rx_ring_jumbo(sc); /* * If this is a Tigon 2, we can also configure the * mini ring. */ if (sc->ti_hwrev == TI_HWREV_TIGON_II) ti_init_rx_ring_mini(sc); CSR_WRITE_4(sc, TI_GCR_RXRETURNCONS_IDX, 0); sc->ti_rx_saved_considx = 0; /* Init TX ring. */ ti_init_tx_ring(sc); /* Tell firmware we're alive. */ TI_DO_CMD(TI_CMD_HOST_STATE, TI_CMD_CODE_STACK_UP, 0); /* Enable host interrupts. */ CSR_WRITE_4(sc, TI_MB_HOSTINTR, 0); ifp->if_flags |= IFF_RUNNING; ifp->if_flags &= ~IFF_OACTIVE; /* * Make sure to set media properly. We have to do this * here since we have to issue commands in order to set * the link negotiation and we can't issue commands until * the firmware is running. */ ifm = &sc->ifmedia; tmp = ifm->ifm_media; ifm->ifm_media = ifm->ifm_cur->ifm_media; ti_ifmedia_upd(ifp); ifm->ifm_media = tmp; return; } /* * Set media options. */ static int ti_ifmedia_upd(ifp) struct ifnet *ifp; { struct ti_softc *sc; struct ifmedia *ifm; struct ti_cmd_desc cmd; sc = ifp->if_softc; ifm = &sc->ifmedia; if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER) return(EINVAL); switch(IFM_SUBTYPE(ifm->ifm_media)) { case IFM_AUTO: CSR_WRITE_4(sc, TI_GCR_GLINK, TI_GLNK_PREF|TI_GLNK_1000MB| TI_GLNK_FULL_DUPLEX|TI_GLNK_RX_FLOWCTL_Y| TI_GLNK_AUTONEGENB|TI_GLNK_ENB); CSR_WRITE_4(sc, TI_GCR_LINK, TI_LNK_100MB|TI_LNK_10MB| TI_LNK_FULL_DUPLEX|TI_LNK_HALF_DUPLEX| TI_LNK_AUTONEGENB|TI_LNK_ENB); TI_DO_CMD(TI_CMD_LINK_NEGOTIATION, TI_CMD_CODE_NEGOTIATE_BOTH, 0); break; case IFM_1000_SX: case IFM_1000_TX: CSR_WRITE_4(sc, TI_GCR_GLINK, TI_GLNK_PREF|TI_GLNK_1000MB| TI_GLNK_RX_FLOWCTL_Y|TI_GLNK_ENB); CSR_WRITE_4(sc, TI_GCR_LINK, 0); if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) { TI_SETBIT(sc, TI_GCR_GLINK, TI_GLNK_FULL_DUPLEX); } TI_DO_CMD(TI_CMD_LINK_NEGOTIATION, TI_CMD_CODE_NEGOTIATE_GIGABIT, 0); break; case IFM_100_FX: case IFM_10_FL: case IFM_100_TX: case IFM_10_T: CSR_WRITE_4(sc, TI_GCR_GLINK, 0); CSR_WRITE_4(sc, TI_GCR_LINK, TI_LNK_ENB|TI_LNK_PREF); if (IFM_SUBTYPE(ifm->ifm_media) == IFM_100_FX || IFM_SUBTYPE(ifm->ifm_media) == IFM_100_TX) { TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_100MB); } else { TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_10MB); } if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) { TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_FULL_DUPLEX); } else { TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_HALF_DUPLEX); } TI_DO_CMD(TI_CMD_LINK_NEGOTIATION, TI_CMD_CODE_NEGOTIATE_10_100, 0); break; } return(0); } /* * Report current media status. */ static void ti_ifmedia_sts(ifp, ifmr) struct ifnet *ifp; struct ifmediareq *ifmr; { struct ti_softc *sc; u_int32_t media = 0; sc = ifp->if_softc; ifmr->ifm_status = IFM_AVALID; ifmr->ifm_active = IFM_ETHER; if (sc->ti_linkstat == TI_EV_CODE_LINK_DOWN) return; ifmr->ifm_status |= IFM_ACTIVE; if (sc->ti_linkstat == TI_EV_CODE_GIG_LINK_UP) { media = CSR_READ_4(sc, TI_GCR_GLINK_STAT); if (sc->ti_copper) ifmr->ifm_active |= IFM_1000_TX; else ifmr->ifm_active |= IFM_1000_SX; if (media & TI_GLNK_FULL_DUPLEX) ifmr->ifm_active |= IFM_FDX; else ifmr->ifm_active |= IFM_HDX; } else if (sc->ti_linkstat == TI_EV_CODE_LINK_UP) { media = CSR_READ_4(sc, TI_GCR_LINK_STAT); if (sc->ti_copper) { if (media & TI_LNK_100MB) ifmr->ifm_active |= IFM_100_TX; if (media & TI_LNK_10MB) ifmr->ifm_active |= IFM_10_T; } else { if (media & TI_LNK_100MB) ifmr->ifm_active |= IFM_100_FX; if (media & TI_LNK_10MB) ifmr->ifm_active |= IFM_10_FL; } if (media & TI_LNK_FULL_DUPLEX) ifmr->ifm_active |= IFM_FDX; if (media & TI_LNK_HALF_DUPLEX) ifmr->ifm_active |= IFM_HDX; } return; } static int ti_ioctl(ifp, command, data) struct ifnet *ifp; u_long command; caddr_t data; { struct ti_softc *sc = ifp->if_softc; struct ifreq *ifr = (struct ifreq *) data; int s, error = 0; struct ti_cmd_desc cmd; s = splimp(); switch(command) { case SIOCSIFADDR: case SIOCGIFADDR: error = ether_ioctl(ifp, command, data); break; case SIOCSIFMTU: if (ifr->ifr_mtu > TI_JUMBO_MTU) error = EINVAL; else { ifp->if_mtu = ifr->ifr_mtu; ti_init(sc); } break; case SIOCSIFFLAGS: if (ifp->if_flags & IFF_UP) { /* * If only the state of the PROMISC flag changed, * then just use the 'set promisc mode' command * instead of reinitializing the entire NIC. Doing * a full re-init means reloading the firmware and * waiting for it to start up, which may take a * second or two. */ if (ifp->if_flags & IFF_RUNNING && ifp->if_flags & IFF_PROMISC && !(sc->ti_if_flags & IFF_PROMISC)) { TI_DO_CMD(TI_CMD_SET_PROMISC_MODE, TI_CMD_CODE_PROMISC_ENB, 0); } else if (ifp->if_flags & IFF_RUNNING && !(ifp->if_flags & IFF_PROMISC) && sc->ti_if_flags & IFF_PROMISC) { TI_DO_CMD(TI_CMD_SET_PROMISC_MODE, TI_CMD_CODE_PROMISC_DIS, 0); } else ti_init(sc); } else { if (ifp->if_flags & IFF_RUNNING) { ti_stop(sc); } } sc->ti_if_flags = ifp->if_flags; error = 0; break; case SIOCADDMULTI: case SIOCDELMULTI: if (ifp->if_flags & IFF_RUNNING) { ti_setmulti(sc); error = 0; } break; case SIOCSIFMEDIA: case SIOCGIFMEDIA: error = ifmedia_ioctl(ifp, ifr, &sc->ifmedia, command); break; default: error = EINVAL; break; } (void)splx(s); return(error); } static void ti_watchdog(ifp) struct ifnet *ifp; { struct ti_softc *sc; sc = ifp->if_softc; printf("ti%d: watchdog timeout -- resetting\n", sc->ti_unit); ti_stop(sc); ti_init(sc); ifp->if_oerrors++; return; } /* * Stop the adapter and free any mbufs allocated to the * RX and TX lists. */ static void ti_stop(sc) struct ti_softc *sc; { struct ifnet *ifp; struct ti_cmd_desc cmd; ifp = &sc->arpcom.ac_if; /* Disable host interrupts. */ CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1); /* * Tell firmware we're shutting down. */ TI_DO_CMD(TI_CMD_HOST_STATE, TI_CMD_CODE_STACK_DOWN, 0); /* Halt and reinitialize. */ ti_chipinit(sc); ti_mem(sc, 0x2000, 0x100000 - 0x2000, NULL); ti_chipinit(sc); /* Free the RX lists. */ ti_free_rx_ring_std(sc); /* Free jumbo RX list. */ ti_free_rx_ring_jumbo(sc); /* Free mini RX list. */ ti_free_rx_ring_mini(sc); /* Free TX buffers. */ ti_free_tx_ring(sc); sc->ti_ev_prodidx.ti_idx = 0; sc->ti_return_prodidx.ti_idx = 0; sc->ti_tx_considx.ti_idx = 0; sc->ti_tx_saved_considx = TI_TXCONS_UNSET; ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE); return; } /* * Stop all chip I/O so that the kernel's probe routines don't * get confused by errant DMAs when rebooting. */ static void ti_shutdown(dev) device_t dev; { struct ti_softc *sc; sc = device_get_softc(dev); ti_chipinit(sc); return; }