/* * Copyright (c) 2003 Marcel Moolenaar * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include __FBSDID("$FreeBSD$"); #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "uart_if.h" #define UART_MINOR_CALLOUT 0x10000 static cn_probe_t uart_cnprobe; static cn_init_t uart_cninit; static cn_term_t uart_cnterm; static cn_getc_t uart_cngetc; static cn_checkc_t uart_cncheckc; static cn_putc_t uart_cnputc; CONS_DRIVER(uart, uart_cnprobe, uart_cninit, uart_cnterm, uart_cngetc, uart_cncheckc, uart_cnputc, NULL); static d_open_t uart_tty_open; static d_close_t uart_tty_close; static d_ioctl_t uart_tty_ioctl; static struct cdevsw uart_cdevsw = { .d_open = uart_tty_open, .d_close = uart_tty_close, .d_read = ttyread, .d_write = ttywrite, .d_ioctl = uart_tty_ioctl, .d_poll = ttypoll, .d_name = uart_driver_name, .d_flags = D_TTY, .d_kqfilter = ttykqfilter, }; static struct uart_devinfo uart_console; static void uart_cnprobe(struct consdev *cp) { cp->cn_pri = CN_DEAD; KASSERT(uart_console.cookie == NULL, ("foo")); if (uart_cpu_getdev(UART_DEV_CONSOLE, &uart_console)) return; if (uart_probe(&uart_console)) return; cp->cn_pri = (boothowto & RB_SERIAL) ? CN_REMOTE : CN_NORMAL; cp->cn_arg = &uart_console; } static void uart_cninit(struct consdev *cp) { struct uart_devinfo *di; /* * Yedi trick: we need to be able to define cn_dev before we go * single- or multi-user. The problem is that we don't know at * this time what the device will be. Hence, we need to link from * the uart_devinfo to the consdev that corresponds to it so that * we can define cn_dev in uart_bus_attach() when we find the * device during bus enumeration. That's when we'll know what the * the unit number will be. */ di = cp->cn_arg; KASSERT(di->cookie == NULL, ("foo")); di->cookie = cp; di->type = UART_DEV_CONSOLE; uart_add_sysdev(di); uart_init(di); } static void uart_cnterm(struct consdev *cp) { uart_term(cp->cn_arg); } static void uart_cnputc(struct consdev *cp, int c) { uart_putc(cp->cn_arg, c); } static int uart_cncheckc(struct consdev *cp) { return (uart_poll(cp->cn_arg)); } static int uart_cngetc(struct consdev *cp) { return (uart_getc(cp->cn_arg)); } static void uart_tty_oproc(struct tty *tp) { struct uart_softc *sc; KASSERT(tp->t_dev != NULL, ("foo")); sc = tp->t_dev->si_drv1; if (sc == NULL || sc->sc_leaving) return; /* * Handle input flow control. Note that if we have hardware support, * we don't do anything here. We continue to receive until our buffer * is full. At that time we cannot empty the UART itself and it will * de-assert RTS for us. In that situation we're completely stuffed. * Without hardware support, we need to toggle RTS ourselves. */ if ((tp->t_cflag & CRTS_IFLOW) && !sc->sc_hwiflow) { if ((tp->t_state & TS_TBLOCK) && (sc->sc_hwsig & UART_SIG_RTS)) UART_SETSIG(sc, UART_SIG_DRTS); else if (!(tp->t_state & TS_TBLOCK) && !(sc->sc_hwsig & UART_SIG_RTS)) UART_SETSIG(sc, UART_SIG_DRTS|UART_SIG_RTS); } if (tp->t_state & TS_TTSTOP) return; if ((tp->t_state & TS_BUSY) || sc->sc_txbusy) return; if (tp->t_outq.c_cc == 0) { ttwwakeup(tp); return; } sc->sc_txdatasz = q_to_b(&tp->t_outq, sc->sc_txbuf, sc->sc_txfifosz); tp->t_state |= TS_BUSY; UART_TRANSMIT(sc); ttwwakeup(tp); } static int uart_tty_param(struct tty *tp, struct termios *t) { struct uart_softc *sc; int databits, parity, stopbits; KASSERT(tp->t_dev != NULL, ("foo")); sc = tp->t_dev->si_drv1; if (sc == NULL || sc->sc_leaving) return (ENODEV); if (t->c_ispeed != t->c_ospeed && t->c_ospeed != 0) return (EINVAL); /* Fixate certain parameters for system devices. */ if (sc->sc_sysdev != NULL) { t->c_ispeed = t->c_ospeed = sc->sc_sysdev->baudrate; t->c_cflag |= CLOCAL; t->c_cflag &= ~HUPCL; } if (t->c_ospeed == 0) { UART_SETSIG(sc, UART_SIG_DDTR | UART_SIG_DRTS); return (0); } switch (t->c_cflag & CSIZE) { case CS5: databits = 5; break; case CS6: databits = 6; break; case CS7: databits = 7; break; default: databits = 8; break; } stopbits = (t->c_cflag & CSTOPB) ? 2 : 1; if (t->c_cflag & PARENB) parity = (t->c_cflag & PARODD) ? UART_PARITY_ODD : UART_PARITY_EVEN; else parity = UART_PARITY_NONE; UART_PARAM(sc, t->c_ospeed, databits, stopbits, parity); UART_SETSIG(sc, UART_SIG_DDTR | UART_SIG_DTR); /* Set input flow control state. */ if (!sc->sc_hwiflow) { if ((t->c_cflag & CRTS_IFLOW) && (tp->t_state & TS_TBLOCK)) UART_SETSIG(sc, UART_SIG_DRTS); else UART_SETSIG(sc, UART_SIG_DRTS | UART_SIG_RTS); } else UART_IOCTL(sc, UART_IOCTL_IFLOW, (t->c_cflag & CRTS_IFLOW)); /* Set output flow control state. */ if (sc->sc_hwoflow) UART_IOCTL(sc, UART_IOCTL_OFLOW, (t->c_cflag & CCTS_OFLOW)); ttsetwater(tp); return (0); } static void uart_tty_stop(struct tty *tp, int rw) { struct uart_softc *sc; KASSERT(tp->t_dev != NULL, ("foo")); sc = tp->t_dev->si_drv1; if (sc == NULL || sc->sc_leaving) return; if (rw & FWRITE) { if (sc->sc_txbusy) { sc->sc_txbusy = 0; UART_FLUSH(sc, UART_FLUSH_TRANSMITTER); } tp->t_state &= ~TS_BUSY; } if (rw & FREAD) { UART_FLUSH(sc, UART_FLUSH_RECEIVER); sc->sc_rxget = sc->sc_rxput = 0; } } void uart_tty_intr(void *arg) { struct uart_softc *sc = arg; struct tty *tp; int c, pend, sig, xc; if (sc->sc_leaving) return; pend = atomic_readandclear_32(&sc->sc_ttypend); if (!(pend & UART_IPEND_MASK)) return; tp = sc->sc_u.u_tty.tp; if (pend & UART_IPEND_RXREADY) { while (!uart_rx_empty(sc) && !(tp->t_state & TS_TBLOCK)) { xc = uart_rx_get(sc); c = xc & 0xff; if (xc & UART_STAT_FRAMERR) c |= TTY_FE; if (xc & UART_STAT_PARERR) c |= TTY_PE; (*linesw[tp->t_line].l_rint)(c, tp); } } if (pend & UART_IPEND_BREAK) { if (tp != NULL && !(tp->t_iflag & IGNBRK)) (*linesw[tp->t_line].l_rint)(0, tp); } if (pend & UART_IPEND_SIGCHG) { sig = pend & UART_IPEND_SIGMASK; if (sig & UART_SIG_DDCD) (*linesw[tp->t_line].l_modem)(tp, sig & UART_SIG_DCD); if ((sig & UART_SIG_DCTS) && (tp->t_cflag & CCTS_OFLOW) && !sc->sc_hwoflow) { if (sig & UART_SIG_CTS) { tp->t_state &= ~TS_TTSTOP; (*linesw[tp->t_line].l_start)(tp); } else tp->t_state |= TS_TTSTOP; } } if (pend & UART_IPEND_TXIDLE) { tp->t_state &= ~TS_BUSY; (*linesw[tp->t_line].l_start)(tp); } } int uart_tty_attach(struct uart_softc *sc) { struct tty *tp; tp = ttymalloc(NULL); sc->sc_u.u_tty.tp = tp; sc->sc_u.u_tty.si[0] = make_dev(&uart_cdevsw, device_get_unit(sc->sc_dev), UID_ROOT, GID_WHEEL, 0600, "ttyu%r", device_get_unit(sc->sc_dev)); sc->sc_u.u_tty.si[0]->si_drv1 = sc; sc->sc_u.u_tty.si[0]->si_tty = tp; sc->sc_u.u_tty.si[1] = make_dev(&uart_cdevsw, device_get_unit(sc->sc_dev) | UART_MINOR_CALLOUT, UID_UUCP, GID_DIALER, 0660, "uart%r", device_get_unit(sc->sc_dev)); sc->sc_u.u_tty.si[1]->si_drv1 = sc; sc->sc_u.u_tty.si[1]->si_tty = tp; tp->t_oproc = uart_tty_oproc; tp->t_param = uart_tty_param; tp->t_stop = uart_tty_stop; if (sc->sc_sysdev != NULL && sc->sc_sysdev->type == UART_DEV_CONSOLE) { sprintf(((struct consdev *)sc->sc_sysdev->cookie)->cn_name, "ttyu%r", device_get_unit(sc->sc_dev)); } swi_add(&tty_ithd, uart_driver_name, uart_tty_intr, sc, SWI_TTY, INTR_TYPE_TTY, &sc->sc_softih); return (0); } int uart_tty_detach(struct uart_softc *sc) { ithread_remove_handler(sc->sc_softih); destroy_dev(sc->sc_u.u_tty.si[0]); destroy_dev(sc->sc_u.u_tty.si[1]); /* ttyfree(sc->sc_u.u_tty.tp); */ return (0); } static int uart_tty_open(dev_t dev, int flags, int mode, struct thread *td) { struct uart_softc *sc; struct tty *tp; int error; sc = dev->si_drv1; if (sc == NULL || sc->sc_leaving) return (ENODEV); tp = dev->si_tty; loop: if (sc->sc_opened) { KASSERT(tp->t_state & TS_ISOPEN, ("foo")); /* * The device is open, so everything has been initialized. * Handle conflicts. */ if (minor(dev) & UART_MINOR_CALLOUT) { if (!sc->sc_callout) return (EBUSY); } else { if (sc->sc_callout) { if (flags & O_NONBLOCK) return (EBUSY); error = tsleep(sc, TTIPRI|PCATCH, "uartbi", 0); if (error) return (error); sc = dev->si_drv1; if (sc == NULL || sc->sc_leaving) return (ENODEV); goto loop; } } if (tp->t_state & TS_XCLUDE && suser(td) != 0) return (EBUSY); } else { KASSERT(!(tp->t_state & TS_ISOPEN), ("foo")); /* * The device isn't open, so there are no conflicts. * Initialize it. Initialization is done twice in many * cases: to preempt sleeping callin opens if we are * callout, and to complete a callin open after DCD rises. */ sc->sc_callout = (minor(dev) & UART_MINOR_CALLOUT) ? 1 : 0; tp->t_dev = dev; tp->t_cflag = TTYDEF_CFLAG; tp->t_iflag = TTYDEF_IFLAG; tp->t_lflag = TTYDEF_LFLAG; tp->t_oflag = TTYDEF_OFLAG; tp->t_ispeed = tp->t_ospeed = TTYDEF_SPEED; ttychars(tp); error = uart_tty_param(tp, &tp->t_termios); if (error) return (error); /* * Handle initial DCD. */ if ((sc->sc_hwsig & UART_SIG_DCD) || sc->sc_callout) (*linesw[tp->t_line].l_modem)(tp, 1); } /* * Wait for DCD if necessary. */ if (!(tp->t_state & TS_CARR_ON) && !sc->sc_callout && !(tp->t_cflag & CLOCAL) && !(flags & O_NONBLOCK)) { error = tsleep(TSA_CARR_ON(tp), TTIPRI|PCATCH, "uartdcd", 0); if (error) return (error); sc = dev->si_drv1; if (sc == NULL || sc->sc_leaving) return (ENODEV); goto loop; } error = ttyopen(dev, tp); if (error) return (error); error = (*linesw[tp->t_line].l_open)(dev, tp); if (error) return (error); KASSERT(tp->t_state & TS_ISOPEN, ("foo")); sc->sc_opened = 1; return (0); } static int uart_tty_close(dev_t dev, int flags, int mode, struct thread *td) { struct uart_softc *sc; struct tty *tp; sc = dev->si_drv1; if (sc == NULL || sc->sc_leaving) return (ENODEV); tp = dev->si_tty; if (!sc->sc_opened) { KASSERT(!(tp->t_state & TS_ISOPEN), ("foo")); return (0); } KASSERT(tp->t_state & TS_ISOPEN, ("foo")); if (sc->sc_hwiflow) UART_IOCTL(sc, UART_IOCTL_IFLOW, 0); if (sc->sc_hwoflow) UART_IOCTL(sc, UART_IOCTL_OFLOW, 0); if (sc->sc_sysdev == NULL) UART_SETSIG(sc, UART_SIG_DDTR | UART_SIG_DRTS); /* Disable pulse capturing. */ sc->sc_pps.ppsparam.mode = 0; (*linesw[tp->t_line].l_close)(tp, flags); ttyclose(tp); wakeup(sc); wakeup(TSA_CARR_ON(tp)); KASSERT(!(tp->t_state & TS_ISOPEN), ("foo")); sc->sc_opened = 0; return (0); } static int uart_tty_ioctl(dev_t dev, u_long cmd, caddr_t data, int flags, struct thread *td) { struct uart_softc *sc; struct tty *tp; int bits, error, sig; sc = dev->si_drv1; if (sc == NULL || sc->sc_leaving) return (ENODEV); tp = dev->si_tty; error = (*linesw[tp->t_line].l_ioctl)(tp, cmd, data, flags, td); if (error != ENOIOCTL) return (error); error = ttioctl(tp, cmd, data, flags); if (error != ENOIOCTL) return (error); error = 0; switch (cmd) { case TIOCSBRK: UART_IOCTL(sc, UART_IOCTL_BREAK, 1); break; case TIOCCBRK: UART_IOCTL(sc, UART_IOCTL_BREAK, 0); break; case TIOCSDTR: UART_SETSIG(sc, UART_SIG_DDTR | UART_SIG_DTR); break; case TIOCCDTR: UART_SETSIG(sc, UART_SIG_DDTR); break; case TIOCMSET: bits = *(int*)data; sig = UART_SIG_DDTR | UART_SIG_DRTS; if (bits & TIOCM_DTR) sig |= UART_SIG_DTR; if (bits & TIOCM_RTS) sig |= UART_SIG_RTS; UART_SETSIG(sc, sig); break; case TIOCMBIS: bits = *(int*)data; sig = 0; if (bits & TIOCM_DTR) sig |= UART_SIG_DDTR | UART_SIG_DTR; if (bits & TIOCM_RTS) sig |= UART_SIG_DRTS | UART_SIG_RTS; UART_SETSIG(sc, sig); break; case TIOCMBIC: bits = *(int*)data; sig = 0; if (bits & TIOCM_DTR) sig |= UART_SIG_DDTR; if (bits & TIOCM_RTS) sig |= UART_SIG_DRTS; UART_SETSIG(sc, sig); break; case TIOCMGET: sig = sc->sc_hwsig; bits = TIOCM_LE; if (sig & UART_SIG_DTR) bits |= TIOCM_DTR; if (sig & UART_SIG_RTS) bits |= TIOCM_RTS; if (sig & UART_SIG_DSR) bits |= TIOCM_DSR; if (sig & UART_SIG_CTS) bits |= TIOCM_CTS; if (sig & UART_SIG_DCD) bits |= TIOCM_CD; if (sig & (UART_SIG_DRI | UART_SIG_RI)) bits |= TIOCM_RI; *(int*)data = bits; break; default: error = pps_ioctl(cmd, data, &sc->sc_pps); if (error == ENODEV) error = ENOTTY; break; } return (error); }