/* * spkr.c -- device driver for console speaker * * v1.4 by Eric S. Raymond (esr@snark.thyrsus.com) Aug 1993 * modified for FreeBSD by Andrew A. Chernov * * $Id: spkr.c,v 1.24 1996/03/27 19:07:33 bde Exp $ */ #include "speaker.h" #if NSPEAKER > 0 #include #include #include #include #include #include #include #include #include #include #include #include #ifdef DEVFS #include void *devfs_token; #endif static d_open_t spkropen; static d_close_t spkrclose; static d_write_t spkrwrite; static d_ioctl_t spkrioctl; #define CDEV_MAJOR 26 static struct cdevsw spkr_cdevsw = { spkropen, spkrclose, noread, spkrwrite, /*26*/ spkrioctl, nostop, nullreset, nodevtotty,/* spkr */ seltrue, nommap, NULL, "spkr", NULL, -1 }; /**************** MACHINE DEPENDENT PART STARTS HERE ************************* * * This section defines a function tone() which causes a tone of given * frequency and duration from the 80x86's console speaker. * Another function endtone() is defined to force sound off, and there is * also a rest() entry point to do pauses. * * Audible sound is generated using the Programmable Interval Timer (PIT) and * Programmable Peripheral Interface (PPI) attached to the 80x86's speaker. The * PPI controls whether sound is passed through at all; the PIT's channel 2 is * used to generate clicks (a square wave) of whatever frequency is desired. */ /* * PIT and PPI port addresses and control values * * Most of the magic is hidden in the TIMER_PREP value, which selects PIT * channel 2, frequency LSB first, square-wave mode and binary encoding. * The encoding is as follows: * * +----------+----------+---------------+-----+ * | 1 0 | 1 1 | 0 1 1 | 0 | * | SC1 SC0 | RW1 RW0 | M2 M1 M0 | BCD | * +----------+----------+---------------+-----+ * Counter Write Mode 3 Binary * Channel 2 LSB first, (Square Wave) Encoding * MSB second */ #define PPI_SPKR 0x03 /* turn these PPI bits on to pass sound */ #define PIT_MODE 0xB6 /* set timer mode for sound generation */ /* * Magic numbers for timer control. */ #define TIMER_CLK 1193180L /* corresponds to 18.2 MHz tick rate */ #define SPKRPRI PSOCK static char endtone, endrest; static void tone __P((unsigned int thz, unsigned int ticks)); static void rest __P((int ticks)); static void playinit __P((void)); static void playtone __P((int pitch, int value, int sustain)); static int abs __P((int n)); static void playstring __P((char *cp, size_t slen)); /* emit tone of frequency thz for given number of ticks */ static void tone(thz, ticks) unsigned int thz, ticks; { unsigned int divisor; int sps; if (thz <= 0) return; divisor = TIMER_CLK / thz; #ifdef DEBUG (void) printf("tone: thz=%d ticks=%d\n", thz, ticks); #endif /* DEBUG */ /* set timer to generate clicks at given frequency in Hertz */ sps = splclock(); if (acquire_timer2(PIT_MODE)) { /* enter list of waiting procs ??? */ splx(sps); return; } splx(sps); disable_intr(); outb(TIMER_CNTR2, (divisor & 0xff)); /* send lo byte */ outb(TIMER_CNTR2, (divisor >> 8)); /* send hi byte */ enable_intr(); /* turn the speaker on */ outb(IO_PPI, inb(IO_PPI) | PPI_SPKR); /* * Set timeout to endtone function, then give up the timeslice. * This is so other processes can execute while the tone is being * emitted. */ if (ticks > 0) tsleep((caddr_t)&endtone, SPKRPRI | PCATCH, "spkrtn", ticks); outb(IO_PPI, inb(IO_PPI) & ~PPI_SPKR); sps = splclock(); release_timer2(); splx(sps); } /* rest for given number of ticks */ static void rest(ticks) int ticks; { /* * Set timeout to endrest function, then give up the timeslice. * This is so other processes can execute while the rest is being * waited out. */ #ifdef DEBUG (void) printf("rest: %d\n", ticks); #endif /* DEBUG */ if (ticks > 0) tsleep((caddr_t)&endrest, SPKRPRI | PCATCH, "spkrrs", ticks); } /**************** PLAY STRING INTERPRETER BEGINS HERE ********************** * * Play string interpretation is modelled on IBM BASIC 2.0's PLAY statement; * M[LNS] are missing; the ~ synonym and the _ slur mark and the octave- * tracking facility are added. * Requires tone(), rest(), and endtone(). String play is not interruptible * except possibly at physical block boundaries. */ typedef int bool; #define TRUE 1 #define FALSE 0 #define toupper(c) ((c) - ' ' * (((c) >= 'a') && ((c) <= 'z'))) #define isdigit(c) (((c) >= '0') && ((c) <= '9')) #define dtoi(c) ((c) - '0') static int octave; /* currently selected octave */ static int whole; /* whole-note time at current tempo, in ticks */ static int value; /* whole divisor for note time, quarter note = 1 */ static int fill; /* controls spacing of notes */ static bool octtrack; /* octave-tracking on? */ static bool octprefix; /* override current octave-tracking state? */ /* * Magic number avoidance... */ #define SECS_PER_MIN 60 /* seconds per minute */ #define WHOLE_NOTE 4 /* quarter notes per whole note */ #define MIN_VALUE 64 /* the most we can divide a note by */ #define DFLT_VALUE 4 /* default value (quarter-note) */ #define FILLTIME 8 /* for articulation, break note in parts */ #define STACCATO 6 /* 6/8 = 3/4 of note is filled */ #define NORMAL 7 /* 7/8ths of note interval is filled */ #define LEGATO 8 /* all of note interval is filled */ #define DFLT_OCTAVE 4 /* default octave */ #define MIN_TEMPO 32 /* minimum tempo */ #define DFLT_TEMPO 120 /* default tempo */ #define MAX_TEMPO 255 /* max tempo */ #define NUM_MULT 3 /* numerator of dot multiplier */ #define DENOM_MULT 2 /* denominator of dot multiplier */ /* letter to half-tone: A B C D E F G */ static int notetab[8] = {9, 11, 0, 2, 4, 5, 7}; /* * This is the American Standard A440 Equal-Tempered scale with frequencies * rounded to nearest integer. Thank Goddess for the good ol' CRC Handbook... * our octave 0 is standard octave 2. */ #define OCTAVE_NOTES 12 /* semitones per octave */ static int pitchtab[] = { /* C C# D D# E F F# G G# A A# B*/ /* 0 */ 65, 69, 73, 78, 82, 87, 93, 98, 103, 110, 117, 123, /* 1 */ 131, 139, 147, 156, 165, 175, 185, 196, 208, 220, 233, 247, /* 2 */ 262, 277, 294, 311, 330, 349, 370, 392, 415, 440, 466, 494, /* 3 */ 523, 554, 587, 622, 659, 698, 740, 784, 831, 880, 932, 988, /* 4 */ 1047, 1109, 1175, 1245, 1319, 1397, 1480, 1568, 1661, 1760, 1865, 1975, /* 5 */ 2093, 2217, 2349, 2489, 2637, 2794, 2960, 3136, 3322, 3520, 3729, 3951, /* 6 */ 4186, 4435, 4698, 4978, 5274, 5588, 5920, 6272, 6644, 7040, 7459, 7902, }; static void playinit() { octave = DFLT_OCTAVE; whole = (hz * SECS_PER_MIN * WHOLE_NOTE) / DFLT_TEMPO; fill = NORMAL; value = DFLT_VALUE; octtrack = FALSE; octprefix = TRUE; /* act as though there was an initial O(n) */ } /* play tone of proper duration for current rhythm signature */ static void playtone(pitch, value, sustain) int pitch, value, sustain; { register int sound, silence, snum = 1, sdenom = 1; /* this weirdness avoids floating-point arithmetic */ for (; sustain; sustain--) { /* See the BUGS section in the man page for discussion */ snum *= NUM_MULT; sdenom *= DENOM_MULT; } if (value == 0 || sdenom == 0) return; if (pitch == -1) rest(whole * snum / (value * sdenom)); else { sound = (whole * snum) / (value * sdenom) - (whole * (FILLTIME - fill)) / (value * FILLTIME); silence = whole * (FILLTIME-fill) * snum / (FILLTIME * value * sdenom); #ifdef DEBUG (void) printf("playtone: pitch %d for %d ticks, rest for %d ticks\n", pitch, sound, silence); #endif /* DEBUG */ tone(pitchtab[pitch], sound); if (fill != LEGATO) rest(silence); } } static int abs(n) int n; { if (n < 0) return(-n); else return(n); } /* interpret and play an item from a notation string */ static void playstring(cp, slen) char *cp; size_t slen; { int pitch, oldfill, lastpitch = OCTAVE_NOTES * DFLT_OCTAVE; #define GETNUM(cp, v) for(v=0; isdigit(cp[1]) && slen > 0; ) \ {v = v * 10 + (*++cp - '0'); slen--;} for (; slen--; cp++) { int sustain, timeval, tempo; register char c = toupper(*cp); #ifdef DEBUG (void) printf("playstring: %c (%x)\n", c, c); #endif /* DEBUG */ switch (c) { case 'A': case 'B': case 'C': case 'D': case 'E': case 'F': case 'G': /* compute pitch */ pitch = notetab[c - 'A'] + octave * OCTAVE_NOTES; /* this may be followed by an accidental sign */ if (cp[1] == '#' || cp[1] == '+') { ++pitch; ++cp; slen--; } else if (cp[1] == '-') { --pitch; ++cp; slen--; } /* * If octave-tracking mode is on, and there has been no octave- * setting prefix, find the version of the current letter note * closest to the last regardless of octave. */ if (octtrack && !octprefix) { if (abs(pitch-lastpitch) > abs(pitch+OCTAVE_NOTES-lastpitch)) { ++octave; pitch += OCTAVE_NOTES; } if (abs(pitch-lastpitch) > abs((pitch-OCTAVE_NOTES)-lastpitch)) { --octave; pitch -= OCTAVE_NOTES; } } octprefix = FALSE; lastpitch = pitch; /* ...which may in turn be followed by an override time value */ GETNUM(cp, timeval); if (timeval <= 0 || timeval > MIN_VALUE) timeval = value; /* ...and/or sustain dots */ for (sustain = 0; cp[1] == '.'; cp++) { slen--; sustain++; } /* ...and/or a slur mark */ oldfill = fill; if (cp[1] == '_') { fill = LEGATO; ++cp; slen--; } /* time to emit the actual tone */ playtone(pitch, timeval, sustain); fill = oldfill; break; case 'O': if (cp[1] == 'N' || cp[1] == 'n') { octprefix = octtrack = FALSE; ++cp; slen--; } else if (cp[1] == 'L' || cp[1] == 'l') { octtrack = TRUE; ++cp; slen--; } else { GETNUM(cp, octave); if (octave >= sizeof(pitchtab) / sizeof(pitchtab[0]) / OCTAVE_NOTES) octave = DFLT_OCTAVE; octprefix = TRUE; } break; case '>': if (octave < sizeof(pitchtab) / sizeof(pitchtab[0]) / OCTAVE_NOTES - 1) octave++; octprefix = TRUE; break; case '<': if (octave > 0) octave--; octprefix = TRUE; break; case 'N': GETNUM(cp, pitch); for (sustain = 0; cp[1] == '.'; cp++) { slen--; sustain++; } oldfill = fill; if (cp[1] == '_') { fill = LEGATO; ++cp; slen--; } playtone(pitch - 1, value, sustain); fill = oldfill; break; case 'L': GETNUM(cp, value); if (value <= 0 || value > MIN_VALUE) value = DFLT_VALUE; break; case 'P': case '~': /* this may be followed by an override time value */ GETNUM(cp, timeval); if (timeval <= 0 || timeval > MIN_VALUE) timeval = value; for (sustain = 0; cp[1] == '.'; cp++) { slen--; sustain++; } playtone(-1, timeval, sustain); break; case 'T': GETNUM(cp, tempo); if (tempo < MIN_TEMPO || tempo > MAX_TEMPO) tempo = DFLT_TEMPO; whole = (hz * SECS_PER_MIN * WHOLE_NOTE) / tempo; break; case 'M': if (cp[1] == 'N' || cp[1] == 'n') { fill = NORMAL; ++cp; slen--; } else if (cp[1] == 'L' || cp[1] == 'l') { fill = LEGATO; ++cp; slen--; } else if (cp[1] == 'S' || cp[1] == 's') { fill = STACCATO; ++cp; slen--; } break; } } } /******************* UNIX DRIVER HOOKS BEGIN HERE ************************** * * This section implements driver hooks to run playstring() and the tone(), * endtone(), and rest() functions defined above. */ static int spkr_active = FALSE; /* exclusion flag */ static struct buf *spkr_inbuf; /* incoming buf */ int spkropen(dev, flags, fmt, p) dev_t dev; int flags; int fmt; struct proc *p; { #ifdef DEBUG (void) printf("spkropen: entering with dev = %x\n", dev); #endif /* DEBUG */ if (minor(dev) != 0) return(ENXIO); else if (spkr_active) return(EBUSY); else { #ifdef DEBUG (void) printf("spkropen: about to perform play initialization\n"); #endif /* DEBUG */ playinit(); spkr_inbuf = geteblk(DEV_BSIZE); spkr_active = TRUE; return(0); } } int spkrwrite(dev, uio, ioflag) dev_t dev; struct uio *uio; int ioflag; { #ifdef DEBUG printf("spkrwrite: entering with dev = %x, count = %d\n", dev, uio->uio_resid); #endif /* DEBUG */ if (minor(dev) != 0) return(ENXIO); else if (uio->uio_resid > DEV_BSIZE) /* prevent system crashes */ return(E2BIG); else { unsigned n; char *cp; int error; n = uio->uio_resid; cp = spkr_inbuf->b_un.b_addr; if (!(error = uiomove(cp, n, uio))) playstring(cp, n); return(error); } } int spkrclose(dev, flags, fmt, p) dev_t dev; int flags; int fmt; struct proc *p; { #ifdef DEBUG (void) printf("spkrclose: entering with dev = %x\n", dev); #endif /* DEBUG */ if (minor(dev) != 0) return(ENXIO); else { wakeup((caddr_t)&endtone); wakeup((caddr_t)&endrest); brelse(spkr_inbuf); spkr_active = FALSE; return(0); } } int spkrioctl(dev, cmd, cmdarg, flags, p) dev_t dev; int cmd; caddr_t cmdarg; int flags; struct proc *p; { #ifdef DEBUG (void) printf("spkrioctl: entering with dev = %x, cmd = %x\n"); #endif /* DEBUG */ if (minor(dev) != 0) return(ENXIO); else if (cmd == SPKRTONE) { tone_t *tp = (tone_t *)cmdarg; if (tp->frequency == 0) rest(tp->duration); else tone(tp->frequency, tp->duration); return 0; } else if (cmd == SPKRTUNE) { tone_t *tp = (tone_t *)(*(caddr_t *)cmdarg); tone_t ttp; int error; for (; ; tp++) { error = copyin(tp, &ttp, sizeof(tone_t)); if (error) return(error); if (ttp.duration == 0) break; if (ttp.frequency == 0) rest(ttp.duration); else tone(ttp.frequency, ttp.duration); } return(0); } return(EINVAL); } static spkr_devsw_installed = 0; static void spkr_drvinit(void *unused) { dev_t dev; if( ! spkr_devsw_installed ) { dev = makedev(CDEV_MAJOR, 0); cdevsw_add(&dev,&spkr_cdevsw, NULL); spkr_devsw_installed = 1; #ifdef DEVFS devfs_token = devfs_add_devswf(&spkr_cdevsw, 0, DV_CHR, UID_ROOT, GID_WHEEL, 0600, "speaker"); #endif } } SYSINIT(spkrdev,SI_SUB_DRIVERS,SI_ORDER_MIDDLE+CDEV_MAJOR,spkr_drvinit,NULL) #endif /* NSPEAKER > 0 */ /* spkr.c ends here */