/*- * Copyright (c) 2000 Mark Murray * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer * in this position and unchanged. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * $FreeBSD$ */ /* NOTE NOTE NOTE - This is not finished! It will supply numbers, but it is not yet cryptographically secure!! */ #include #include #include #include #include #include #include #include #include #include void generator_gate(void); void reseed(void); void randominit(void); /* This is the beastie that needs protecting. It contains all of the * state that we are excited about. */ struct state state; void randominit(void) { /* XXX much more to come */ state.gengateinterval = 10; } void reseed(void) { unsigned char v[BINS][KEYSIZE]; /* v[i] */ unsigned char hash[KEYSIZE]; /* h' */ BF_KEY hashkey; unsigned char ivec[8]; unsigned char temp[KEYSIZE]; int i, j; /* 1. Hash the accumulated entropy into v[0] */ /* XXX to be done properly */ bzero((void *)&v[0], KEYSIZE); for (j = 0; j < sizeof(state.randomstuff); j += KEYSIZE) { BF_set_key(&hashkey, KEYSIZE, &state.randomstuff[j]); BF_cbc_encrypt(v[0], temp, KEYSIZE, &hashkey, ivec, BF_ENCRYPT); memcpy(&v[0], temp, KEYSIZE); } /* 2. Compute hash values for all v. _Supposed_ to be computationally */ /* intensive. */ for (i = 1; i < BINS; i++) { bzero((void *)&v[i], KEYSIZE); for (j = 0; j < sizeof(state.randomstuff); j += KEYSIZE) { /* v[i] #= h(v[i-1]) */ BF_set_key(&hashkey, KEYSIZE, v[i - 1]); BF_cbc_encrypt(v[i], temp, KEYSIZE, &hashkey, ivec, BF_ENCRYPT); memcpy(&v[i], temp, KEYSIZE); /* v[i] #= h(v[0]) */ BF_set_key(&hashkey, KEYSIZE, v[0]); BF_cbc_encrypt(v[i], temp, KEYSIZE, &hashkey, ivec, BF_ENCRYPT); memcpy(&v[i], temp, KEYSIZE); /* v[i] #= h(i) */ BF_set_key(&hashkey, sizeof(int), (unsigned char *)&i); BF_cbc_encrypt(v[i], temp, KEYSIZE, &hashkey, ivec, BF_ENCRYPT); memcpy(&v[i], temp, KEYSIZE); } } /* 3. Compute a new Key. */ bzero((void *)hash, KEYSIZE); BF_set_key(&hashkey, KEYSIZE, (unsigned char *)&state.key); BF_cbc_encrypt(hash, temp, KEYSIZE, &hashkey, ivec, BF_ENCRYPT); memcpy(hash, temp, KEYSIZE); for (i = 1; i < BINS; i++) { BF_set_key(&hashkey, KEYSIZE, v[i]); BF_cbc_encrypt(hash, temp, KEYSIZE, &hashkey, ivec, BF_ENCRYPT); memcpy(hash, temp, KEYSIZE); } BF_set_key(&state.key, KEYSIZE, hash); /* 4. Recompute the counter */ state.counter = 0; BF_cbc_encrypt((unsigned char *)&state.counter, temp, sizeof(state.counter), &state.key, state.ivec, BF_ENCRYPT); memcpy(&state.counter, temp, state.counter); /* 5. Reset all entropy estimate accumulators to zero */ bzero((void *)state.randomstuff, sizeof(state.randomstuff)); /* 6. Wipe memory of intermediate values */ bzero((void *)v, sizeof(v)); bzero((void *)temp, sizeof(temp)); bzero((void *)hash, sizeof(hash)); /* 7. Dump to seed file (XXX done by external process?) */ } u_int read_random(char *buf, u_int count) { static int cur = 0; static int gate = 1; u_int i; u_int retval; u_int64_t genval; if (gate) { generator_gate(); state.outputblocks = 0; gate = 0; } if (count >= sizeof(state.counter)) { retval = 0; for (i = 0; i < count; i += sizeof(state.counter)) { state.counter++; BF_cbc_encrypt((unsigned char *)&state.counter, (unsigned char *)&genval, sizeof(state.counter), &state.key, state.ivec, BF_ENCRYPT); memcpy(&buf[i], &genval, sizeof(state.counter)); if (++state.outputblocks >= state.gengateinterval) { generator_gate(); state.outputblocks = 0; } retval += sizeof(state.counter); } } else { if (!cur) { state.counter++; BF_cbc_encrypt((unsigned char *)&state.counter, (unsigned char *)&genval, sizeof(state.counter), &state.key, state.ivec, BF_ENCRYPT); memcpy(buf, &genval, count); cur = sizeof(state.counter) - count; if (++state.outputblocks >= state.gengateinterval) { generator_gate(); state.outputblocks = 0; } retval = count; } else { retval = cur < count ? cur : count; memcpy(buf, (char *)&state.counter + (sizeof(state.counter) - retval), retval); cur -= retval; } } return retval; } void generator_gate(void) { int i; unsigned char temp[KEYSIZE]; for (i = 0; i < KEYSIZE; i += sizeof(state.counter)) { state.counter++; BF_cbc_encrypt((unsigned char *)&state.counter, &temp[i], sizeof(state.counter), &state.key, state.ivec, BF_ENCRYPT); } BF_set_key(&state.key, KEYSIZE, temp); bzero((void *)temp, KEYSIZE); }