/* * Copyright (c) 1988, 1991, 1993 * The Regents of the University of California. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by the University of * California, Berkeley and its contributors. * 4. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)rtsock.c 8.7 (Berkeley) 10/12/95 * $FreeBSD$ */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include MALLOC_DEFINE(M_RTABLE, "routetbl", "routing tables"); /* NB: these are not modified */ static struct sockaddr route_dst = { 2, PF_ROUTE, }; static struct sockaddr route_src = { 2, PF_ROUTE, }; static struct sockaddr sa_zero = { sizeof(sa_zero), AF_INET, }; static struct { int ip_count; /* attacked w/ AF_INET */ int ip6_count; /* attached w/ AF_INET6 */ int ipx_count; /* attached w/ AF_IPX */ int any_count; /* total attached */ } route_cb; struct mtx rtsock_mtx; MTX_SYSINIT(rtsock, &rtsock_mtx, "rtsock route_cb lock", MTX_DEF); #define RTSOCK_LOCK() mtx_lock(&rtsock_mtx) #define RTSOCK_UNLOCK() mtx_unlock(&rtsock_mtx) #define RTSOCK_LOCK_ASSERT() mtx_assert(&rtsock_mtx, MA_OWNED) struct walkarg { int w_tmemsize; int w_op, w_arg; caddr_t w_tmem; struct sysctl_req *w_req; }; static struct mbuf *rt_msg1(int, struct rt_addrinfo *); static int rt_msg2(int, struct rt_addrinfo *, caddr_t, struct walkarg *); static int rt_xaddrs(caddr_t, caddr_t, struct rt_addrinfo *); static int sysctl_dumpentry(struct radix_node *rn, void *vw); static int sysctl_iflist(int af, struct walkarg *w); static int sysctl_ifmalist(int af, struct walkarg *w); static int route_output(struct mbuf *, struct socket *); static void rt_setmetrics(u_long, struct rt_metrics *, struct rt_metrics *); static void rt_dispatch(struct mbuf *, struct sockaddr *); /* * It really doesn't make any sense at all for this code to share much * with raw_usrreq.c, since its functionality is so restricted. XXX */ static int rts_abort(struct socket *so) { int s, error; s = splnet(); error = raw_usrreqs.pru_abort(so); splx(s); return error; } /* pru_accept is EOPNOTSUPP */ static int rts_attach(struct socket *so, int proto, struct thread *td) { struct rawcb *rp; int s, error; if (sotorawcb(so) != 0) return EISCONN; /* XXX panic? */ /* XXX */ MALLOC(rp, struct rawcb *, sizeof *rp, M_PCB, M_WAITOK | M_ZERO); if (rp == 0) return ENOBUFS; /* * The splnet() is necessary to block protocols from sending * error notifications (like RTM_REDIRECT or RTM_LOSING) while * this PCB is extant but incompletely initialized. * Probably we should try to do more of this work beforehand and * eliminate the spl. */ s = splnet(); so->so_pcb = (caddr_t)rp; error = raw_attach(so, proto); rp = sotorawcb(so); if (error) { splx(s); so->so_pcb = NULL; free(rp, M_PCB); return error; } RTSOCK_LOCK(); switch(rp->rcb_proto.sp_protocol) { case AF_INET: route_cb.ip_count++; break; case AF_INET6: route_cb.ip6_count++; break; case AF_IPX: route_cb.ipx_count++; break; } rp->rcb_faddr = &route_src; route_cb.any_count++; RTSOCK_UNLOCK(); soisconnected(so); so->so_options |= SO_USELOOPBACK; splx(s); return 0; } static int rts_bind(struct socket *so, struct sockaddr *nam, struct thread *td) { int s, error; s = splnet(); error = raw_usrreqs.pru_bind(so, nam, td); /* xxx just EINVAL */ splx(s); return error; } static int rts_connect(struct socket *so, struct sockaddr *nam, struct thread *td) { int s, error; s = splnet(); error = raw_usrreqs.pru_connect(so, nam, td); /* XXX just EINVAL */ splx(s); return error; } /* pru_connect2 is EOPNOTSUPP */ /* pru_control is EOPNOTSUPP */ static int rts_detach(struct socket *so) { struct rawcb *rp = sotorawcb(so); int s, error; s = splnet(); if (rp != 0) { RTSOCK_LOCK(); switch(rp->rcb_proto.sp_protocol) { case AF_INET: route_cb.ip_count--; break; case AF_INET6: route_cb.ip6_count--; break; case AF_IPX: route_cb.ipx_count--; break; } route_cb.any_count--; RTSOCK_UNLOCK(); } error = raw_usrreqs.pru_detach(so); splx(s); return error; } static int rts_disconnect(struct socket *so) { int s, error; s = splnet(); error = raw_usrreqs.pru_disconnect(so); splx(s); return error; } /* pru_listen is EOPNOTSUPP */ static int rts_peeraddr(struct socket *so, struct sockaddr **nam) { int s, error; s = splnet(); error = raw_usrreqs.pru_peeraddr(so, nam); splx(s); return error; } /* pru_rcvd is EOPNOTSUPP */ /* pru_rcvoob is EOPNOTSUPP */ static int rts_send(struct socket *so, int flags, struct mbuf *m, struct sockaddr *nam, struct mbuf *control, struct thread *td) { int s, error; s = splnet(); error = raw_usrreqs.pru_send(so, flags, m, nam, control, td); splx(s); return error; } /* pru_sense is null */ static int rts_shutdown(struct socket *so) { int s, error; s = splnet(); error = raw_usrreqs.pru_shutdown(so); splx(s); return error; } static int rts_sockaddr(struct socket *so, struct sockaddr **nam) { int s, error; s = splnet(); error = raw_usrreqs.pru_sockaddr(so, nam); splx(s); return error; } static struct pr_usrreqs route_usrreqs = { rts_abort, pru_accept_notsupp, rts_attach, rts_bind, rts_connect, pru_connect2_notsupp, pru_control_notsupp, rts_detach, rts_disconnect, pru_listen_notsupp, rts_peeraddr, pru_rcvd_notsupp, pru_rcvoob_notsupp, rts_send, pru_sense_null, rts_shutdown, rts_sockaddr, sosend, soreceive, sopoll }; /*ARGSUSED*/ static int route_output(m, so) register struct mbuf *m; struct socket *so; { #define sa_equal(a1, a2) (bcmp((a1), (a2), (a1)->sa_len) == 0) register struct rt_msghdr *rtm = 0; register struct rtentry *rt = 0; struct radix_node_head *rnh; struct rt_addrinfo info; int len, error = 0; struct ifnet *ifp = 0; struct ifaddr *ifa = 0; #define senderr(e) { error = e; goto flush;} if (m == 0 || ((m->m_len < sizeof(long)) && (m = m_pullup(m, sizeof(long))) == 0)) return (ENOBUFS); if ((m->m_flags & M_PKTHDR) == 0) panic("route_output"); len = m->m_pkthdr.len; if (len < sizeof(*rtm) || len != mtod(m, struct rt_msghdr *)->rtm_msglen) { info.rti_info[RTAX_DST] = 0; senderr(EINVAL); } R_Malloc(rtm, struct rt_msghdr *, len); if (rtm == 0) { info.rti_info[RTAX_DST] = 0; senderr(ENOBUFS); } m_copydata(m, 0, len, (caddr_t)rtm); if (rtm->rtm_version != RTM_VERSION) { info.rti_info[RTAX_DST] = 0; senderr(EPROTONOSUPPORT); } rtm->rtm_pid = curproc->p_pid; bzero(&info, sizeof(info)); info.rti_addrs = rtm->rtm_addrs; if (rt_xaddrs((caddr_t)(rtm + 1), len + (caddr_t)rtm, &info)) { info.rti_info[RTAX_DST] = 0; senderr(EINVAL); } info.rti_flags = rtm->rtm_flags; if (info.rti_info[RTAX_DST] == 0 || info.rti_info[RTAX_DST]->sa_family >= AF_MAX || (info.rti_info[RTAX_GATEWAY] != 0 && info.rti_info[RTAX_GATEWAY]->sa_family >= AF_MAX)) senderr(EINVAL); if (info.rti_info[RTAX_GENMASK]) { struct radix_node *t; t = rn_addmask((caddr_t) info.rti_info[RTAX_GENMASK], 0, 1); if (t && Bcmp((caddr_t *) info.rti_info[RTAX_GENMASK] + 1, (caddr_t *)t->rn_key + 1, *(u_char *)t->rn_key - 1) == 0) info.rti_info[RTAX_GENMASK] = (struct sockaddr *)(t->rn_key); else senderr(ENOBUFS); } /* * Verify that the caller has the appropriate privilege; RTM_GET * is the only operation the non-superuser is allowed. */ if (rtm->rtm_type != RTM_GET && (error = suser(curthread)) != 0) senderr(error); switch (rtm->rtm_type) { struct rtentry *saved_nrt; case RTM_ADD: if (info.rti_info[RTAX_GATEWAY] == 0) senderr(EINVAL); saved_nrt = 0; error = rtrequest1(RTM_ADD, &info, &saved_nrt); if (error == 0 && saved_nrt) { RT_LOCK(saved_nrt); rt_setmetrics(rtm->rtm_inits, &rtm->rtm_rmx, &saved_nrt->rt_rmx); saved_nrt->rt_rmx.rmx_locks &= ~(rtm->rtm_inits); saved_nrt->rt_rmx.rmx_locks |= (rtm->rtm_inits & rtm->rtm_rmx.rmx_locks); RT_REMREF(saved_nrt); saved_nrt->rt_genmask = info.rti_info[RTAX_GENMASK]; RT_UNLOCK(saved_nrt); } break; case RTM_DELETE: saved_nrt = 0; error = rtrequest1(RTM_DELETE, &info, &saved_nrt); if (error == 0) { RT_LOCK(saved_nrt); rt = saved_nrt; goto report; } break; case RTM_GET: case RTM_CHANGE: case RTM_LOCK: rnh = rt_tables[info.rti_info[RTAX_DST]->sa_family]; if (rnh == 0) senderr(EAFNOSUPPORT); RADIX_NODE_HEAD_LOCK(rnh); rt = (struct rtentry *) rnh->rnh_lookup(info.rti_info[RTAX_DST], info.rti_info[RTAX_NETMASK], rnh); RADIX_NODE_HEAD_UNLOCK(rnh); if (rt == NULL) /* XXX looks bogus */ senderr(ESRCH); RT_LOCK(rt); RT_ADDREF(rt); switch(rtm->rtm_type) { case RTM_GET: report: RT_LOCK_ASSERT(rt); info.rti_info[RTAX_DST] = rt_key(rt); info.rti_info[RTAX_GATEWAY] = rt->rt_gateway; info.rti_info[RTAX_NETMASK] = rt_mask(rt); info.rti_info[RTAX_GENMASK] = rt->rt_genmask; if (rtm->rtm_addrs & (RTA_IFP | RTA_IFA)) { ifp = rt->rt_ifp; if (ifp) { info.rti_info[RTAX_IFP] = TAILQ_FIRST(&ifp->if_addrhead)->ifa_addr; info.rti_info[RTAX_IFA] = rt->rt_ifa->ifa_addr; if (ifp->if_flags & IFF_POINTOPOINT) info.rti_info[RTAX_BRD] = rt->rt_ifa->ifa_dstaddr; rtm->rtm_index = ifp->if_index; } else { info.rti_info[RTAX_IFP] = 0; info.rti_info[RTAX_IFA] = 0; } } len = rt_msg2(rtm->rtm_type, &info, (caddr_t)0, (struct walkarg *)0); if (len > rtm->rtm_msglen) { struct rt_msghdr *new_rtm; R_Malloc(new_rtm, struct rt_msghdr *, len); if (new_rtm == 0) { RT_UNLOCK(rt); senderr(ENOBUFS); } Bcopy(rtm, new_rtm, rtm->rtm_msglen); Free(rtm); rtm = new_rtm; } (void)rt_msg2(rtm->rtm_type, &info, (caddr_t)rtm, (struct walkarg *)0); rtm->rtm_flags = rt->rt_flags; rtm->rtm_rmx = rt->rt_rmx; rtm->rtm_addrs = info.rti_addrs; break; case RTM_CHANGE: /* * New gateway could require new ifaddr, ifp; * flags may also be different; ifp may be specified * by ll sockaddr when protocol address is ambiguous */ if (((rt->rt_flags & RTF_GATEWAY) && info.rti_info[RTAX_GATEWAY] != NULL) || info.rti_info[RTAX_IFP] != NULL || (info.rti_info[RTAX_IFA] != NULL && !sa_equal(info.rti_info[RTAX_IFA], rt->rt_ifa->ifa_addr))) { if ((error = rt_getifa(&info)) != 0) { RT_UNLOCK(rt); senderr(error); } } if (info.rti_info[RTAX_GATEWAY] != NULL && (error = rt_setgate(rt, rt_key(rt), info.rti_info[RTAX_GATEWAY])) != 0) { RT_UNLOCK(rt); senderr(error); } if ((ifa = info.rti_ifa) != NULL) { struct ifaddr *oifa = rt->rt_ifa; if (oifa != ifa) { if (oifa) { if (oifa->ifa_rtrequest) oifa->ifa_rtrequest( RTM_DELETE, rt, &info); IFAFREE(oifa); } IFAREF(ifa); rt->rt_ifa = ifa; rt->rt_ifp = info.rti_ifp; } } rt_setmetrics(rtm->rtm_inits, &rtm->rtm_rmx, &rt->rt_rmx); if (rt->rt_ifa && rt->rt_ifa->ifa_rtrequest) rt->rt_ifa->ifa_rtrequest(RTM_ADD, rt, &info); if (info.rti_info[RTAX_GENMASK]) rt->rt_genmask = info.rti_info[RTAX_GENMASK]; /* FALLTHROUGH */ case RTM_LOCK: rt->rt_rmx.rmx_locks &= ~(rtm->rtm_inits); rt->rt_rmx.rmx_locks |= (rtm->rtm_inits & rtm->rtm_rmx.rmx_locks); break; } RT_UNLOCK(rt); break; default: senderr(EOPNOTSUPP); } flush: if (rtm) { if (error) rtm->rtm_errno = error; else rtm->rtm_flags |= RTF_DONE; } if (rt) /* XXX can this be true? */ RTFREE(rt); { register struct rawcb *rp = 0; /* * Check to see if we don't want our own messages. */ if ((so->so_options & SO_USELOOPBACK) == 0) { if (route_cb.any_count <= 1) { if (rtm) Free(rtm); m_freem(m); return (error); } /* There is another listener, so construct message */ rp = sotorawcb(so); } if (rtm) { m_copyback(m, 0, rtm->rtm_msglen, (caddr_t)rtm); if (m->m_pkthdr.len < rtm->rtm_msglen) { m_freem(m); m = NULL; } else if (m->m_pkthdr.len > rtm->rtm_msglen) m_adj(m, rtm->rtm_msglen - m->m_pkthdr.len); Free(rtm); } if (m) { if (rp) { /* * XXX insure we don't get a copy by * invalidating our protocol */ unsigned short family = rp->rcb_proto.sp_family; rp->rcb_proto.sp_family = 0; rt_dispatch(m, info.rti_info[RTAX_DST]); rp->rcb_proto.sp_family = family; } else rt_dispatch(m, info.rti_info[RTAX_DST]); } } return (error); #undef sa_equal } static void rt_setmetrics(u_long which, struct rt_metrics *in, struct rt_metrics *out) { #define metric(f, e) if (which & (f)) out->e = in->e; metric(RTV_RPIPE, rmx_recvpipe); metric(RTV_SPIPE, rmx_sendpipe); metric(RTV_SSTHRESH, rmx_ssthresh); metric(RTV_RTT, rmx_rtt); metric(RTV_RTTVAR, rmx_rttvar); metric(RTV_HOPCOUNT, rmx_hopcount); metric(RTV_MTU, rmx_mtu); metric(RTV_EXPIRE, rmx_expire); #undef metric } #define ROUNDUP(a) \ ((a) > 0 ? (1 + (((a) - 1) | (sizeof(long) - 1))) : sizeof(long)) /* * Extract the addresses of the passed sockaddrs. * Do a little sanity checking so as to avoid bad memory references. * This data is derived straight from userland. */ static int rt_xaddrs(caddr_t cp, caddr_t cplim, struct rt_addrinfo *rtinfo) { #define ADVANCE(x, n) (x += ROUNDUP((n)->sa_len)) register struct sockaddr *sa; register int i; for (i = 0; i < RTAX_MAX && cp < cplim; i++) { if ((rtinfo->rti_addrs & (1 << i)) == 0) continue; sa = (struct sockaddr *)cp; /* * It won't fit. */ if (cp + sa->sa_len > cplim) return (EINVAL); /* * there are no more.. quit now * If there are more bits, they are in error. * I've seen this. route(1) can evidently generate these. * This causes kernel to core dump. * for compatibility, If we see this, point to a safe address. */ if (sa->sa_len == 0) { rtinfo->rti_info[i] = &sa_zero; return (0); /* should be EINVAL but for compat */ } /* accept it */ rtinfo->rti_info[i] = sa; ADVANCE(cp, sa); } return (0); #undef ADVANCE } static struct mbuf * rt_msg1(int type, struct rt_addrinfo *rtinfo) { register struct rt_msghdr *rtm; register struct mbuf *m; register int i; register struct sockaddr *sa; int len, dlen; switch (type) { case RTM_DELADDR: case RTM_NEWADDR: len = sizeof(struct ifa_msghdr); break; case RTM_DELMADDR: case RTM_NEWMADDR: len = sizeof(struct ifma_msghdr); break; case RTM_IFINFO: len = sizeof(struct if_msghdr); break; case RTM_IFANNOUNCE: len = sizeof(struct if_announcemsghdr); break; default: len = sizeof(struct rt_msghdr); } if (len > MCLBYTES) panic("rt_msg1"); m = m_gethdr(M_DONTWAIT, MT_DATA); if (m && len > MHLEN) { MCLGET(m, M_DONTWAIT); if ((m->m_flags & M_EXT) == 0) { m_free(m); m = NULL; } } if (m == 0) return (m); m->m_pkthdr.len = m->m_len = len; m->m_pkthdr.rcvif = 0; rtm = mtod(m, struct rt_msghdr *); bzero((caddr_t)rtm, len); for (i = 0; i < RTAX_MAX; i++) { if ((sa = rtinfo->rti_info[i]) == NULL) continue; rtinfo->rti_addrs |= (1 << i); dlen = ROUNDUP(sa->sa_len); m_copyback(m, len, dlen, (caddr_t)sa); len += dlen; } if (m->m_pkthdr.len != len) { m_freem(m); return (NULL); } rtm->rtm_msglen = len; rtm->rtm_version = RTM_VERSION; rtm->rtm_type = type; return (m); } static int rt_msg2(int type, struct rt_addrinfo *rtinfo, caddr_t cp, struct walkarg *w) { register int i; int len, dlen, second_time = 0; caddr_t cp0; rtinfo->rti_addrs = 0; again: switch (type) { case RTM_DELADDR: case RTM_NEWADDR: len = sizeof(struct ifa_msghdr); break; case RTM_IFINFO: len = sizeof(struct if_msghdr); break; case RTM_NEWMADDR: len = sizeof(struct ifma_msghdr); break; default: len = sizeof(struct rt_msghdr); } cp0 = cp; if (cp0) cp += len; for (i = 0; i < RTAX_MAX; i++) { register struct sockaddr *sa; if ((sa = rtinfo->rti_info[i]) == 0) continue; rtinfo->rti_addrs |= (1 << i); dlen = ROUNDUP(sa->sa_len); if (cp) { bcopy((caddr_t)sa, cp, (unsigned)dlen); cp += dlen; } len += dlen; } len = ALIGN(len); if (cp == 0 && w != NULL && !second_time) { register struct walkarg *rw = w; if (rw->w_req) { if (rw->w_tmemsize < len) { if (rw->w_tmem) free(rw->w_tmem, M_RTABLE); rw->w_tmem = (caddr_t) malloc(len, M_RTABLE, M_NOWAIT); if (rw->w_tmem) rw->w_tmemsize = len; } if (rw->w_tmem) { cp = rw->w_tmem; second_time = 1; goto again; } } } if (cp) { register struct rt_msghdr *rtm = (struct rt_msghdr *)cp0; rtm->rtm_version = RTM_VERSION; rtm->rtm_type = type; rtm->rtm_msglen = len; } return (len); } /* * This routine is called to generate a message from the routing * socket indicating that a redirect has occured, a routing lookup * has failed, or that a protocol has detected timeouts to a particular * destination. */ void rt_missmsg(int type, struct rt_addrinfo *rtinfo, int flags, int error) { struct rt_msghdr *rtm; struct mbuf *m; struct sockaddr *sa = rtinfo->rti_info[RTAX_DST]; if (route_cb.any_count == 0) return; m = rt_msg1(type, rtinfo); if (m == 0) return; rtm = mtod(m, struct rt_msghdr *); rtm->rtm_flags = RTF_DONE | flags; rtm->rtm_errno = error; rtm->rtm_addrs = rtinfo->rti_addrs; rt_dispatch(m, sa); } /* * This routine is called to generate a message from the routing * socket indicating that the status of a network interface has changed. */ void rt_ifmsg(struct ifnet *ifp) { struct if_msghdr *ifm; struct mbuf *m; struct rt_addrinfo info; if (route_cb.any_count == 0) return; bzero((caddr_t)&info, sizeof(info)); m = rt_msg1(RTM_IFINFO, &info); if (m == 0) return; ifm = mtod(m, struct if_msghdr *); ifm->ifm_index = ifp->if_index; ifm->ifm_flags = ifp->if_flags; ifm->ifm_data = ifp->if_data; ifm->ifm_addrs = 0; rt_dispatch(m, NULL); } /* * This is called to generate messages from the routing socket * indicating a network interface has had addresses associated with it. * if we ever reverse the logic and replace messages TO the routing * socket indicate a request to configure interfaces, then it will * be unnecessary as the routing socket will automatically generate * copies of it. */ void rt_newaddrmsg(int cmd, struct ifaddr *ifa, int error, struct rtentry *rt) { struct rt_addrinfo info; struct sockaddr *sa = 0; int pass; struct mbuf *m = 0; struct ifnet *ifp = ifa->ifa_ifp; if (route_cb.any_count == 0) return; for (pass = 1; pass < 3; pass++) { bzero((caddr_t)&info, sizeof(info)); if ((cmd == RTM_ADD && pass == 1) || (cmd == RTM_DELETE && pass == 2)) { register struct ifa_msghdr *ifam; int ncmd = cmd == RTM_ADD ? RTM_NEWADDR : RTM_DELADDR; info.rti_info[RTAX_IFA] = sa = ifa->ifa_addr; info.rti_info[RTAX_IFP] = TAILQ_FIRST(&ifp->if_addrhead)->ifa_addr; info.rti_info[RTAX_NETMASK] = ifa->ifa_netmask; info.rti_info[RTAX_BRD] = ifa->ifa_dstaddr; if ((m = rt_msg1(ncmd, &info)) == NULL) continue; ifam = mtod(m, struct ifa_msghdr *); ifam->ifam_index = ifp->if_index; ifam->ifam_metric = ifa->ifa_metric; ifam->ifam_flags = ifa->ifa_flags; ifam->ifam_addrs = info.rti_addrs; } if ((cmd == RTM_ADD && pass == 2) || (cmd == RTM_DELETE && pass == 1)) { register struct rt_msghdr *rtm; if (rt == 0) continue; info.rti_info[RTAX_NETMASK] = rt_mask(rt); info.rti_info[RTAX_DST] = sa = rt_key(rt); info.rti_info[RTAX_GATEWAY] = rt->rt_gateway; if ((m = rt_msg1(cmd, &info)) == NULL) continue; rtm = mtod(m, struct rt_msghdr *); rtm->rtm_index = ifp->if_index; rtm->rtm_flags |= rt->rt_flags; rtm->rtm_errno = error; rtm->rtm_addrs = info.rti_addrs; } rt_dispatch(m, sa); } } /* * This is the analogue to the rt_newaddrmsg which performs the same * function but for multicast group memberhips. This is easier since * there is no route state to worry about. */ void rt_newmaddrmsg(int cmd, struct ifmultiaddr *ifma) { struct rt_addrinfo info; struct mbuf *m = 0; struct ifnet *ifp = ifma->ifma_ifp; struct ifma_msghdr *ifmam; if (route_cb.any_count == 0) return; bzero((caddr_t)&info, sizeof(info)); info.rti_info[RTAX_IFA] = ifma->ifma_addr; if (ifp && TAILQ_FIRST(&ifp->if_addrhead)) info.rti_info[RTAX_IFP] = TAILQ_FIRST(&ifp->if_addrhead)->ifa_addr; else info.rti_info[RTAX_IFP] = NULL; /* * If a link-layer address is present, present it as a ``gateway'' * (similarly to how ARP entries, e.g., are presented). */ info.rti_info[RTAX_GATEWAY] = ifma->ifma_lladdr; m = rt_msg1(cmd, &info); if (m == NULL) return; ifmam = mtod(m, struct ifma_msghdr *); ifmam->ifmam_index = ifp->if_index; ifmam->ifmam_addrs = info.rti_addrs; rt_dispatch(m, ifma->ifma_addr); } /* * This is called to generate routing socket messages indicating * network interface arrival and departure. */ void rt_ifannouncemsg(struct ifnet *ifp, int what) { struct if_announcemsghdr *ifan; struct mbuf *m; struct rt_addrinfo info; if (route_cb.any_count == 0) return; bzero((caddr_t)&info, sizeof(info)); m = rt_msg1(RTM_IFANNOUNCE, &info); if (m == NULL) return; ifan = mtod(m, struct if_announcemsghdr *); ifan->ifan_index = ifp->if_index; strlcpy(ifan->ifan_name, ifp->if_xname, sizeof(ifan->ifan_name)); ifan->ifan_what = what; rt_dispatch(m, NULL); } static void rt_dispatch(struct mbuf *m, struct sockaddr *sa) { struct sockproto route_proto; route_proto.sp_family = PF_ROUTE; route_proto.sp_protocol = sa ? sa->sa_family : 0; raw_input(m, &route_proto, &route_src, &route_dst); } /* * This is used in dumping the kernel table via sysctl(). */ static int sysctl_dumpentry(struct radix_node *rn, void *vw) { struct walkarg *w = vw; struct rtentry *rt = (struct rtentry *)rn; int error = 0, size; struct rt_addrinfo info; if (w->w_op == NET_RT_FLAGS && !(rt->rt_flags & w->w_arg)) return 0; bzero((caddr_t)&info, sizeof(info)); info.rti_info[RTAX_DST] = rt_key(rt); info.rti_info[RTAX_GATEWAY] = rt->rt_gateway; info.rti_info[RTAX_NETMASK] = rt_mask(rt); info.rti_info[RTAX_GENMASK] = rt->rt_genmask; if (rt->rt_ifp) { info.rti_info[RTAX_IFP] = TAILQ_FIRST(&rt->rt_ifp->if_addrhead)->ifa_addr; info.rti_info[RTAX_IFA] = rt->rt_ifa->ifa_addr; if (rt->rt_ifp->if_flags & IFF_POINTOPOINT) info.rti_info[RTAX_BRD] = rt->rt_ifa->ifa_dstaddr; } size = rt_msg2(RTM_GET, &info, 0, w); if (w->w_req && w->w_tmem) { struct rt_msghdr *rtm = (struct rt_msghdr *)w->w_tmem; rtm->rtm_flags = rt->rt_flags; rtm->rtm_use = rt->rt_use; rtm->rtm_rmx = rt->rt_rmx; rtm->rtm_index = rt->rt_ifp->if_index; rtm->rtm_errno = rtm->rtm_pid = rtm->rtm_seq = 0; rtm->rtm_addrs = info.rti_addrs; error = SYSCTL_OUT(w->w_req, (caddr_t)rtm, size); return (error); } return (error); } static int sysctl_iflist(int af, struct walkarg *w) { struct ifnet *ifp; struct ifaddr *ifa; struct rt_addrinfo info; int len, error = 0; bzero((caddr_t)&info, sizeof(info)); /* IFNET_RLOCK(); */ /* could sleep XXX */ TAILQ_FOREACH(ifp, &ifnet, if_link) { if (w->w_arg && w->w_arg != ifp->if_index) continue; ifa = TAILQ_FIRST(&ifp->if_addrhead); info.rti_info[RTAX_IFP] = ifa->ifa_addr; len = rt_msg2(RTM_IFINFO, &info, (caddr_t)0, w); info.rti_info[RTAX_IFP] = 0; if (w->w_req && w->w_tmem) { struct if_msghdr *ifm; ifm = (struct if_msghdr *)w->w_tmem; ifm->ifm_index = ifp->if_index; ifm->ifm_flags = ifp->if_flags; ifm->ifm_data = ifp->if_data; ifm->ifm_addrs = info.rti_addrs; error = SYSCTL_OUT(w->w_req,(caddr_t)ifm, len); if (error) goto done; } while ((ifa = TAILQ_NEXT(ifa, ifa_link)) != 0) { if (af && af != ifa->ifa_addr->sa_family) continue; if (jailed(curthread->td_ucred) && prison_if(curthread->td_ucred, ifa->ifa_addr)) continue; info.rti_info[RTAX_IFA] = ifa->ifa_addr; info.rti_info[RTAX_NETMASK] = ifa->ifa_netmask; info.rti_info[RTAX_BRD] = ifa->ifa_dstaddr; len = rt_msg2(RTM_NEWADDR, &info, 0, w); if (w->w_req && w->w_tmem) { struct ifa_msghdr *ifam; ifam = (struct ifa_msghdr *)w->w_tmem; ifam->ifam_index = ifa->ifa_ifp->if_index; ifam->ifam_flags = ifa->ifa_flags; ifam->ifam_metric = ifa->ifa_metric; ifam->ifam_addrs = info.rti_addrs; error = SYSCTL_OUT(w->w_req, w->w_tmem, len); if (error) goto done; } } info.rti_info[RTAX_IFA] = info.rti_info[RTAX_NETMASK] = info.rti_info[RTAX_BRD] = 0; } done: /* IFNET_RUNLOCK(); */ /* XXX */ return (error); } int sysctl_ifmalist(af, w) int af; register struct walkarg *w; { register struct ifnet *ifp; struct ifmultiaddr *ifma; struct rt_addrinfo info; int len, error = 0; bzero((caddr_t)&info, sizeof(info)); /* IFNET_RLOCK(); */ /* could sleep XXX */ TAILQ_FOREACH(ifp, &ifnet, if_link) { if (w->w_arg && w->w_arg != ifp->if_index) continue; TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { if (af && af != ifma->ifma_addr->sa_family) continue; if (jailed(curproc->p_ucred) && prison_if(curproc->p_ucred, ifma->ifma_addr)) continue; info.rti_addrs = RTA_IFA; info.rti_info[RTAX_IFA] = ifma->ifma_addr; if (TAILQ_FIRST(&ifp->if_addrhead)) { info.rti_addrs |= RTA_IFP; info.rti_info[RTAX_IFP] = TAILQ_FIRST(&ifp->if_addrhead)->ifa_addr; } else info.rti_info[RTAX_IFP] = NULL; if (ifma->ifma_addr->sa_family != AF_LINK) { info.rti_addrs |= RTA_GATEWAY; info.rti_info[RTAX_GATEWAY] = ifma->ifma_lladdr; } else info.rti_info[RTAX_GATEWAY] = NULL; len = rt_msg2(RTM_NEWMADDR, &info, 0, w); if (w->w_req && w->w_tmem) { register struct ifma_msghdr *ifmam; ifmam = (struct ifma_msghdr *)w->w_tmem; ifmam->ifmam_index = ifma->ifma_ifp->if_index; ifmam->ifmam_flags = 0; ifmam->ifmam_addrs = info.rti_addrs; error = SYSCTL_OUT(w->w_req, w->w_tmem, len); if (error) goto done; } } } done: /* IFNET_RUNLOCK(); */ /* XXX */ return (error); } static int sysctl_rtsock(SYSCTL_HANDLER_ARGS) { int *name = (int *)arg1; u_int namelen = arg2; struct radix_node_head *rnh; int i, s, error = EINVAL; u_char af; struct walkarg w; name ++; namelen--; if (req->newptr) return (EPERM); if (namelen != 3) return ((namelen < 3) ? EISDIR : ENOTDIR); af = name[0]; if (af > AF_MAX) return (EINVAL); Bzero(&w, sizeof(w)); w.w_op = name[1]; w.w_arg = name[2]; w.w_req = req; s = splnet(); switch (w.w_op) { case NET_RT_DUMP: case NET_RT_FLAGS: if (af != 0) { if ((rnh = rt_tables[af]) != NULL) { /* RADIX_NODE_HEAD_LOCK(rnh); */ error = rnh->rnh_walktree(rnh, sysctl_dumpentry, &w);/* could sleep XXX */ /* RADIX_NODE_HEAD_UNLOCK(rnh); */ } else error = EAFNOSUPPORT; } else { for (i = 1; i <= AF_MAX; i++) if ((rnh = rt_tables[i]) != NULL) { /* RADIX_NODE_HEAD_LOCK(rnh); */ error = rnh->rnh_walktree(rnh, sysctl_dumpentry, &w); /* RADIX_NODE_HEAD_UNLOCK(rnh); */ if (error) break; } } break; case NET_RT_IFLIST: error = sysctl_iflist(af, &w); break; case NET_RT_IFMALIST: error = sysctl_ifmalist(af, &w); break; } splx(s); if (w.w_tmem) free(w.w_tmem, M_RTABLE); return (error); } SYSCTL_NODE(_net, PF_ROUTE, routetable, CTLFLAG_RD, sysctl_rtsock, ""); /* * Definitions of protocols supported in the ROUTE domain. */ extern struct domain routedomain; /* or at least forward */ static struct protosw routesw[] = { { SOCK_RAW, &routedomain, 0, PR_ATOMIC|PR_ADDR, 0, route_output, raw_ctlinput, 0, 0, raw_init, 0, 0, 0, &route_usrreqs } }; static struct domain routedomain = { PF_ROUTE, "route", 0, 0, 0, routesw, &routesw[sizeof(routesw)/sizeof(routesw[0])] }; DOMAIN_SET(route);