/*- * Copyright (c) 2004 The FreeBSD Foundation * Copyright (c) 2004-2005 Robert N. M. Watson * Copyright (c) 1982, 1986, 1988, 1990, 1993 * The Regents of the University of California. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 4. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)uipc_socket.c 8.3 (Berkeley) 4/15/94 */ #include __FBSDID("$FreeBSD$"); #include "opt_inet.h" #include "opt_mac.h" #include "opt_zero.h" #include #include #include #include #include #include #include #include #include #include #include /* for struct knote */ #include #include #include #include #include #include #include #include #include #include #include #include #include static int soreceive_rcvoob(struct socket *so, struct uio *uio, int flags); static void filt_sordetach(struct knote *kn); static int filt_soread(struct knote *kn, long hint); static void filt_sowdetach(struct knote *kn); static int filt_sowrite(struct knote *kn, long hint); static int filt_solisten(struct knote *kn, long hint); static struct filterops solisten_filtops = { 1, NULL, filt_sordetach, filt_solisten }; static struct filterops soread_filtops = { 1, NULL, filt_sordetach, filt_soread }; static struct filterops sowrite_filtops = { 1, NULL, filt_sowdetach, filt_sowrite }; uma_zone_t socket_zone; so_gen_t so_gencnt; /* generation count for sockets */ MALLOC_DEFINE(M_SONAME, "soname", "socket name"); MALLOC_DEFINE(M_PCB, "pcb", "protocol control block"); SYSCTL_DECL(_kern_ipc); static int somaxconn = SOMAXCONN; static int somaxconn_sysctl(SYSCTL_HANDLER_ARGS); /* XXX: we dont have SYSCTL_USHORT */ SYSCTL_PROC(_kern_ipc, KIPC_SOMAXCONN, somaxconn, CTLTYPE_UINT | CTLFLAG_RW, 0, sizeof(int), somaxconn_sysctl, "I", "Maximum pending socket connection " "queue size"); static int numopensockets; SYSCTL_INT(_kern_ipc, OID_AUTO, numopensockets, CTLFLAG_RD, &numopensockets, 0, "Number of open sockets"); #ifdef ZERO_COPY_SOCKETS /* These aren't static because they're used in other files. */ int so_zero_copy_send = 1; int so_zero_copy_receive = 1; SYSCTL_NODE(_kern_ipc, OID_AUTO, zero_copy, CTLFLAG_RD, 0, "Zero copy controls"); SYSCTL_INT(_kern_ipc_zero_copy, OID_AUTO, receive, CTLFLAG_RW, &so_zero_copy_receive, 0, "Enable zero copy receive"); SYSCTL_INT(_kern_ipc_zero_copy, OID_AUTO, send, CTLFLAG_RW, &so_zero_copy_send, 0, "Enable zero copy send"); #endif /* ZERO_COPY_SOCKETS */ /* * accept_mtx locks down per-socket fields relating to accept queues. See * socketvar.h for an annotation of the protected fields of struct socket. */ struct mtx accept_mtx; MTX_SYSINIT(accept_mtx, &accept_mtx, "accept", MTX_DEF); /* * so_global_mtx protects so_gencnt, numopensockets, and the per-socket * so_gencnt field. */ static struct mtx so_global_mtx; MTX_SYSINIT(so_global_mtx, &so_global_mtx, "so_glabel", MTX_DEF); /* * Socket operation routines. * These routines are called by the routines in * sys_socket.c or from a system process, and * implement the semantics of socket operations by * switching out to the protocol specific routines. */ /* * Get a socket structure from our zone, and initialize it. * Note that it would probably be better to allocate socket * and PCB at the same time, but I'm not convinced that all * the protocols can be easily modified to do this. * * soalloc() returns a socket with a ref count of 0. */ struct socket * soalloc(int mflags) { struct socket *so; so = uma_zalloc(socket_zone, mflags | M_ZERO); if (so != NULL) { #ifdef MAC if (mac_init_socket(so, mflags) != 0) { uma_zfree(socket_zone, so); return (NULL); } #endif SOCKBUF_LOCK_INIT(&so->so_snd, "so_snd"); SOCKBUF_LOCK_INIT(&so->so_rcv, "so_rcv"); /* sx_init(&so->so_sxlock, "socket sxlock"); */ TAILQ_INIT(&so->so_aiojobq); mtx_lock(&so_global_mtx); so->so_gencnt = ++so_gencnt; ++numopensockets; mtx_unlock(&so_global_mtx); } return (so); } /* * socreate returns a socket with a ref count of 1. The socket should be * closed with soclose(). */ int socreate(dom, aso, type, proto, cred, td) int dom; struct socket **aso; int type; int proto; struct ucred *cred; struct thread *td; { struct protosw *prp; struct socket *so; int error; if (proto) prp = pffindproto(dom, proto, type); else prp = pffindtype(dom, type); if (prp == NULL || prp->pr_usrreqs->pru_attach == NULL || prp->pr_usrreqs->pru_attach == pru_attach_notsupp) return (EPROTONOSUPPORT); if (jailed(cred) && jail_socket_unixiproute_only && prp->pr_domain->dom_family != PF_LOCAL && prp->pr_domain->dom_family != PF_INET && prp->pr_domain->dom_family != PF_ROUTE) { return (EPROTONOSUPPORT); } if (prp->pr_type != type) return (EPROTOTYPE); so = soalloc(M_WAITOK); if (so == NULL) return (ENOBUFS); TAILQ_INIT(&so->so_incomp); TAILQ_INIT(&so->so_comp); so->so_type = type; so->so_cred = crhold(cred); so->so_proto = prp; #ifdef MAC mac_create_socket(cred, so); #endif SOCK_LOCK(so); knlist_init(&so->so_rcv.sb_sel.si_note, SOCKBUF_MTX(&so->so_rcv)); knlist_init(&so->so_snd.sb_sel.si_note, SOCKBUF_MTX(&so->so_snd)); soref(so); SOCK_UNLOCK(so); error = (*prp->pr_usrreqs->pru_attach)(so, proto, td); if (error) { ACCEPT_LOCK(); SOCK_LOCK(so); so->so_state |= SS_NOFDREF; sorele(so); return (error); } *aso = so; return (0); } int sobind(so, nam, td) struct socket *so; struct sockaddr *nam; struct thread *td; { return ((*so->so_proto->pr_usrreqs->pru_bind)(so, nam, td)); } void sodealloc(struct socket *so) { KASSERT(so->so_count == 0, ("sodealloc(): so_count %d", so->so_count)); mtx_lock(&so_global_mtx); so->so_gencnt = ++so_gencnt; mtx_unlock(&so_global_mtx); if (so->so_rcv.sb_hiwat) (void)chgsbsize(so->so_cred->cr_uidinfo, &so->so_rcv.sb_hiwat, 0, RLIM_INFINITY); if (so->so_snd.sb_hiwat) (void)chgsbsize(so->so_cred->cr_uidinfo, &so->so_snd.sb_hiwat, 0, RLIM_INFINITY); #ifdef INET /* remove acccept filter if one is present. */ if (so->so_accf != NULL) do_setopt_accept_filter(so, NULL); #endif #ifdef MAC mac_destroy_socket(so); #endif crfree(so->so_cred); SOCKBUF_LOCK_DESTROY(&so->so_snd); SOCKBUF_LOCK_DESTROY(&so->so_rcv); /* sx_destroy(&so->so_sxlock); */ uma_zfree(socket_zone, so); mtx_lock(&so_global_mtx); --numopensockets; mtx_unlock(&so_global_mtx); } /* * solisten() transitions a socket from a non-listening state to a listening * state, but can also be used to update the listen queue depth on an * existing listen socket. The protocol will call back into the sockets * layer using solisten_proto_check() and solisten_proto() to check and set * socket-layer listen state. Call backs are used so that the protocol can * acquire both protocol and socket layer locks in whatever order is reuiqred * by the protocol. * * Protocol implementors are advised to hold the socket lock across the * socket-layer test and set to avoid races at the socket layer. */ int solisten(so, backlog, td) struct socket *so; int backlog; struct thread *td; { int error; error = (*so->so_proto->pr_usrreqs->pru_listen)(so, td); if (error) return (error); /* * XXXRW: The following state adjustment should occur in * solisten_proto(), but we don't currently pass the backlog request * to the protocol via pru_listen(). */ if (backlog < 0 || backlog > somaxconn) backlog = somaxconn; so->so_qlimit = backlog; return (0); } int solisten_proto_check(so) struct socket *so; { SOCK_LOCK_ASSERT(so); if (so->so_state & (SS_ISCONNECTED | SS_ISCONNECTING | SS_ISDISCONNECTING)) return (EINVAL); return (0); } void solisten_proto(so) struct socket *so; { SOCK_LOCK_ASSERT(so); so->so_options |= SO_ACCEPTCONN; } /* * Attempt to free a socket. This should really be sotryfree(). * * We free the socket if the protocol is no longer interested in the socket, * there's no file descriptor reference, and the refcount is 0. While the * calling macro sotryfree() tests the refcount, sofree() has to test it * again as it's possible to race with an accept()ing thread if the socket is * in an listen queue of a listen socket, as being in the listen queue * doesn't elevate the reference count. sofree() acquires the accept mutex * early for this test in order to avoid that race. */ void sofree(so) struct socket *so; { struct socket *head; ACCEPT_LOCK_ASSERT(); SOCK_LOCK_ASSERT(so); if (so->so_pcb != NULL || (so->so_state & SS_NOFDREF) == 0 || so->so_count != 0) { SOCK_UNLOCK(so); ACCEPT_UNLOCK(); return; } head = so->so_head; if (head != NULL) { KASSERT((so->so_qstate & SQ_COMP) != 0 || (so->so_qstate & SQ_INCOMP) != 0, ("sofree: so_head != NULL, but neither SQ_COMP nor " "SQ_INCOMP")); KASSERT((so->so_qstate & SQ_COMP) == 0 || (so->so_qstate & SQ_INCOMP) == 0, ("sofree: so->so_qstate is SQ_COMP and also SQ_INCOMP")); /* * accept(2) is responsible draining the completed * connection queue and freeing those sockets, so * we just return here if this socket is currently * on the completed connection queue. Otherwise, * accept(2) may hang after select(2) has indicating * that a listening socket was ready. If it's an * incomplete connection, we remove it from the queue * and free it; otherwise, it won't be released until * the listening socket is closed. */ if ((so->so_qstate & SQ_COMP) != 0) { SOCK_UNLOCK(so); ACCEPT_UNLOCK(); return; } TAILQ_REMOVE(&head->so_incomp, so, so_list); head->so_incqlen--; so->so_qstate &= ~SQ_INCOMP; so->so_head = NULL; } KASSERT((so->so_qstate & SQ_COMP) == 0 && (so->so_qstate & SQ_INCOMP) == 0, ("sofree: so_head == NULL, but still SQ_COMP(%d) or SQ_INCOMP(%d)", so->so_qstate & SQ_COMP, so->so_qstate & SQ_INCOMP)); SOCK_UNLOCK(so); ACCEPT_UNLOCK(); SOCKBUF_LOCK(&so->so_snd); so->so_snd.sb_flags |= SB_NOINTR; (void)sblock(&so->so_snd, M_WAITOK); /* * socantsendmore_locked() drops the socket buffer mutex so that it * can safely perform wakeups. Re-acquire the mutex before * continuing. */ socantsendmore_locked(so); SOCKBUF_LOCK(&so->so_snd); sbunlock(&so->so_snd); sbrelease_locked(&so->so_snd, so); SOCKBUF_UNLOCK(&so->so_snd); sorflush(so); knlist_destroy(&so->so_rcv.sb_sel.si_note); knlist_destroy(&so->so_snd.sb_sel.si_note); sodealloc(so); } /* * Close a socket on last file table reference removal. * Initiate disconnect if connected. * Free socket when disconnect complete. * * This function will sorele() the socket. Note that soclose() may be * called prior to the ref count reaching zero. The actual socket * structure will not be freed until the ref count reaches zero. */ int soclose(so) struct socket *so; { int error = 0; KASSERT(!(so->so_state & SS_NOFDREF), ("soclose: SS_NOFDREF on enter")); funsetown(&so->so_sigio); if (so->so_options & SO_ACCEPTCONN) { struct socket *sp; ACCEPT_LOCK(); while ((sp = TAILQ_FIRST(&so->so_incomp)) != NULL) { TAILQ_REMOVE(&so->so_incomp, sp, so_list); so->so_incqlen--; sp->so_qstate &= ~SQ_INCOMP; sp->so_head = NULL; ACCEPT_UNLOCK(); (void) soabort(sp); ACCEPT_LOCK(); } while ((sp = TAILQ_FIRST(&so->so_comp)) != NULL) { TAILQ_REMOVE(&so->so_comp, sp, so_list); so->so_qlen--; sp->so_qstate &= ~SQ_COMP; sp->so_head = NULL; ACCEPT_UNLOCK(); (void) soabort(sp); ACCEPT_LOCK(); } ACCEPT_UNLOCK(); } if (so->so_pcb == NULL) goto discard; if (so->so_state & SS_ISCONNECTED) { if ((so->so_state & SS_ISDISCONNECTING) == 0) { error = sodisconnect(so); if (error) goto drop; } if (so->so_options & SO_LINGER) { if ((so->so_state & SS_ISDISCONNECTING) && (so->so_state & SS_NBIO)) goto drop; while (so->so_state & SS_ISCONNECTED) { error = tsleep(&so->so_timeo, PSOCK | PCATCH, "soclos", so->so_linger * hz); if (error) break; } } } drop: if (so->so_pcb != NULL) { int error2 = (*so->so_proto->pr_usrreqs->pru_detach)(so); if (error == 0) error = error2; } discard: ACCEPT_LOCK(); SOCK_LOCK(so); KASSERT((so->so_state & SS_NOFDREF) == 0, ("soclose: NOFDREF")); so->so_state |= SS_NOFDREF; sorele(so); return (error); } /* * soabort() must not be called with any socket locks held, as it calls * into the protocol, which will call back into the socket code causing * it to acquire additional socket locks that may cause recursion or lock * order reversals. */ int soabort(so) struct socket *so; { int error; error = (*so->so_proto->pr_usrreqs->pru_abort)(so); if (error) { ACCEPT_LOCK(); SOCK_LOCK(so); sotryfree(so); /* note: does not decrement the ref count */ return error; } return (0); } int soaccept(so, nam) struct socket *so; struct sockaddr **nam; { int error; SOCK_LOCK(so); KASSERT((so->so_state & SS_NOFDREF) != 0, ("soaccept: !NOFDREF")); so->so_state &= ~SS_NOFDREF; SOCK_UNLOCK(so); error = (*so->so_proto->pr_usrreqs->pru_accept)(so, nam); return (error); } int soconnect(so, nam, td) struct socket *so; struct sockaddr *nam; struct thread *td; { int error; if (so->so_options & SO_ACCEPTCONN) return (EOPNOTSUPP); /* * If protocol is connection-based, can only connect once. * Otherwise, if connected, try to disconnect first. * This allows user to disconnect by connecting to, e.g., * a null address. */ if (so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING) && ((so->so_proto->pr_flags & PR_CONNREQUIRED) || (error = sodisconnect(so)))) { error = EISCONN; } else { /* * Prevent accumulated error from previous connection * from biting us. */ so->so_error = 0; error = (*so->so_proto->pr_usrreqs->pru_connect)(so, nam, td); } return (error); } int soconnect2(so1, so2) struct socket *so1; struct socket *so2; { return ((*so1->so_proto->pr_usrreqs->pru_connect2)(so1, so2)); } int sodisconnect(so) struct socket *so; { int error; if ((so->so_state & SS_ISCONNECTED) == 0) return (ENOTCONN); if (so->so_state & SS_ISDISCONNECTING) return (EALREADY); error = (*so->so_proto->pr_usrreqs->pru_disconnect)(so); return (error); } #define SBLOCKWAIT(f) (((f) & MSG_DONTWAIT) ? M_NOWAIT : M_WAITOK) /* * Send on a socket. * If send must go all at once and message is larger than * send buffering, then hard error. * Lock against other senders. * If must go all at once and not enough room now, then * inform user that this would block and do nothing. * Otherwise, if nonblocking, send as much as possible. * The data to be sent is described by "uio" if nonzero, * otherwise by the mbuf chain "top" (which must be null * if uio is not). Data provided in mbuf chain must be small * enough to send all at once. * * Returns nonzero on error, timeout or signal; callers * must check for short counts if EINTR/ERESTART are returned. * Data and control buffers are freed on return. */ #ifdef ZERO_COPY_SOCKETS struct so_zerocopy_stats{ int size_ok; int align_ok; int found_ifp; }; struct so_zerocopy_stats so_zerocp_stats = {0,0,0}; #include #include #include #include #include #include #endif /*ZERO_COPY_SOCKETS*/ int sosend(so, addr, uio, top, control, flags, td) struct socket *so; struct sockaddr *addr; struct uio *uio; struct mbuf *top; struct mbuf *control; int flags; struct thread *td; { struct mbuf **mp; struct mbuf *m; long space, len = 0, resid; int clen = 0, error, dontroute; int atomic = sosendallatonce(so) || top; #ifdef ZERO_COPY_SOCKETS int cow_send; #endif /* ZERO_COPY_SOCKETS */ if (uio != NULL) resid = uio->uio_resid; else resid = top->m_pkthdr.len; /* * In theory resid should be unsigned. * However, space must be signed, as it might be less than 0 * if we over-committed, and we must use a signed comparison * of space and resid. On the other hand, a negative resid * causes us to loop sending 0-length segments to the protocol. * * Also check to make sure that MSG_EOR isn't used on SOCK_STREAM * type sockets since that's an error. */ if (resid < 0 || (so->so_type == SOCK_STREAM && (flags & MSG_EOR))) { error = EINVAL; goto out; } dontroute = (flags & MSG_DONTROUTE) && (so->so_options & SO_DONTROUTE) == 0 && (so->so_proto->pr_flags & PR_ATOMIC); if (td != NULL) td->td_proc->p_stats->p_ru.ru_msgsnd++; if (control != NULL) clen = control->m_len; #define snderr(errno) { error = (errno); goto release; } SOCKBUF_LOCK(&so->so_snd); restart: SOCKBUF_LOCK_ASSERT(&so->so_snd); error = sblock(&so->so_snd, SBLOCKWAIT(flags)); if (error) goto out_locked; do { SOCKBUF_LOCK_ASSERT(&so->so_snd); if (so->so_snd.sb_state & SBS_CANTSENDMORE) snderr(EPIPE); if (so->so_error) { error = so->so_error; so->so_error = 0; goto release; } if ((so->so_state & SS_ISCONNECTED) == 0) { /* * `sendto' and `sendmsg' is allowed on a connection- * based socket if it supports implied connect. * Return ENOTCONN if not connected and no address is * supplied. */ if ((so->so_proto->pr_flags & PR_CONNREQUIRED) && (so->so_proto->pr_flags & PR_IMPLOPCL) == 0) { if ((so->so_state & SS_ISCONFIRMING) == 0 && !(resid == 0 && clen != 0)) snderr(ENOTCONN); } else if (addr == NULL) snderr(so->so_proto->pr_flags & PR_CONNREQUIRED ? ENOTCONN : EDESTADDRREQ); } space = sbspace(&so->so_snd); if (flags & MSG_OOB) space += 1024; if ((atomic && resid > so->so_snd.sb_hiwat) || clen > so->so_snd.sb_hiwat) snderr(EMSGSIZE); if (space < resid + clen && (atomic || space < so->so_snd.sb_lowat || space < clen)) { if ((so->so_state & SS_NBIO) || (flags & MSG_NBIO)) snderr(EWOULDBLOCK); sbunlock(&so->so_snd); error = sbwait(&so->so_snd); if (error) goto out_locked; goto restart; } SOCKBUF_UNLOCK(&so->so_snd); mp = ⊤ space -= clen; do { if (uio == NULL) { /* * Data is prepackaged in "top". */ resid = 0; if (flags & MSG_EOR) top->m_flags |= M_EOR; } else do { #ifdef ZERO_COPY_SOCKETS cow_send = 0; #endif /* ZERO_COPY_SOCKETS */ if (resid >= MINCLSIZE) { #ifdef ZERO_COPY_SOCKETS if (top == NULL) { MGETHDR(m, M_TRYWAIT, MT_DATA); if (m == NULL) { error = ENOBUFS; SOCKBUF_LOCK(&so->so_snd); goto release; } m->m_pkthdr.len = 0; m->m_pkthdr.rcvif = (struct ifnet *)0; } else { MGET(m, M_TRYWAIT, MT_DATA); if (m == NULL) { error = ENOBUFS; SOCKBUF_LOCK(&so->so_snd); goto release; } } if (so_zero_copy_send && resid>=PAGE_SIZE && space>=PAGE_SIZE && uio->uio_iov->iov_len>=PAGE_SIZE) { so_zerocp_stats.size_ok++; if (!((vm_offset_t) uio->uio_iov->iov_base & PAGE_MASK)){ so_zerocp_stats.align_ok++; cow_send = socow_setup(m, uio); } } if (!cow_send) { MCLGET(m, M_TRYWAIT); if ((m->m_flags & M_EXT) == 0) { m_free(m); m = NULL; } else { len = min(min(MCLBYTES, resid), space); } } else len = PAGE_SIZE; #else /* ZERO_COPY_SOCKETS */ if (top == NULL) { m = m_getcl(M_TRYWAIT, MT_DATA, M_PKTHDR); m->m_pkthdr.len = 0; m->m_pkthdr.rcvif = (struct ifnet *)0; } else m = m_getcl(M_TRYWAIT, MT_DATA, 0); len = min(min(MCLBYTES, resid), space); #endif /* ZERO_COPY_SOCKETS */ } else { if (top == NULL) { m = m_gethdr(M_TRYWAIT, MT_DATA); m->m_pkthdr.len = 0; m->m_pkthdr.rcvif = (struct ifnet *)0; len = min(min(MHLEN, resid), space); /* * For datagram protocols, leave room * for protocol headers in first mbuf. */ if (atomic && m && len < MHLEN) MH_ALIGN(m, len); } else { m = m_get(M_TRYWAIT, MT_DATA); len = min(min(MLEN, resid), space); } } if (m == NULL) { error = ENOBUFS; SOCKBUF_LOCK(&so->so_snd); goto release; } space -= len; #ifdef ZERO_COPY_SOCKETS if (cow_send) error = 0; else #endif /* ZERO_COPY_SOCKETS */ error = uiomove(mtod(m, void *), (int)len, uio); resid = uio->uio_resid; m->m_len = len; *mp = m; top->m_pkthdr.len += len; if (error) { SOCKBUF_LOCK(&so->so_snd); goto release; } mp = &m->m_next; if (resid <= 0) { if (flags & MSG_EOR) top->m_flags |= M_EOR; break; } } while (space > 0 && atomic); if (dontroute) { SOCK_LOCK(so); so->so_options |= SO_DONTROUTE; SOCK_UNLOCK(so); } /* * XXX all the SBS_CANTSENDMORE checks previously * done could be out of date. We could have recieved * a reset packet in an interrupt or maybe we slept * while doing page faults in uiomove() etc. We could * probably recheck again inside the locking protection * here, but there are probably other places that this * also happens. We must rethink this. */ error = (*so->so_proto->pr_usrreqs->pru_send)(so, (flags & MSG_OOB) ? PRUS_OOB : /* * If the user set MSG_EOF, the protocol * understands this flag and nothing left to * send then use PRU_SEND_EOF instead of PRU_SEND. */ ((flags & MSG_EOF) && (so->so_proto->pr_flags & PR_IMPLOPCL) && (resid <= 0)) ? PRUS_EOF : /* If there is more to send set PRUS_MORETOCOME */ (resid > 0 && space > 0) ? PRUS_MORETOCOME : 0, top, addr, control, td); if (dontroute) { SOCK_LOCK(so); so->so_options &= ~SO_DONTROUTE; SOCK_UNLOCK(so); } clen = 0; control = NULL; top = NULL; mp = ⊤ if (error) { SOCKBUF_LOCK(&so->so_snd); goto release; } } while (resid && space > 0); SOCKBUF_LOCK(&so->so_snd); } while (resid); release: SOCKBUF_LOCK_ASSERT(&so->so_snd); sbunlock(&so->so_snd); out_locked: SOCKBUF_LOCK_ASSERT(&so->so_snd); SOCKBUF_UNLOCK(&so->so_snd); out: if (top != NULL) m_freem(top); if (control != NULL) m_freem(control); return (error); } /* * The part of soreceive() that implements reading non-inline out-of-band * data from a socket. For more complete comments, see soreceive(), from * which this code originated. * * Note that soreceive_rcvoob(), unlike the remainder of soreceive(), is * unable to return an mbuf chain to the caller. */ static int soreceive_rcvoob(so, uio, flags) struct socket *so; struct uio *uio; int flags; { struct protosw *pr = so->so_proto; struct mbuf *m; int error; KASSERT(flags & MSG_OOB, ("soreceive_rcvoob: (flags & MSG_OOB) == 0")); m = m_get(M_TRYWAIT, MT_DATA); if (m == NULL) return (ENOBUFS); error = (*pr->pr_usrreqs->pru_rcvoob)(so, m, flags & MSG_PEEK); if (error) goto bad; do { #ifdef ZERO_COPY_SOCKETS if (so_zero_copy_receive) { int disposable; if ((m->m_flags & M_EXT) && (m->m_ext.ext_type == EXT_DISPOSABLE)) disposable = 1; else disposable = 0; error = uiomoveco(mtod(m, void *), min(uio->uio_resid, m->m_len), uio, disposable); } else #endif /* ZERO_COPY_SOCKETS */ error = uiomove(mtod(m, void *), (int) min(uio->uio_resid, m->m_len), uio); m = m_free(m); } while (uio->uio_resid && error == 0 && m); bad: if (m != NULL) m_freem(m); return (error); } /* * Following replacement or removal of the first mbuf on the first mbuf chain * of a socket buffer, push necessary state changes back into the socket * buffer so that other consumers see the values consistently. 'nextrecord' * is the callers locally stored value of the original value of * sb->sb_mb->m_nextpkt which must be restored when the lead mbuf changes. * NOTE: 'nextrecord' may be NULL. */ static __inline void sockbuf_pushsync(struct sockbuf *sb, struct mbuf *nextrecord) { SOCKBUF_LOCK_ASSERT(sb); /* * First, update for the new value of nextrecord. If necessary, make * it the first record. */ if (sb->sb_mb != NULL) sb->sb_mb->m_nextpkt = nextrecord; else sb->sb_mb = nextrecord; /* * Now update any dependent socket buffer fields to reflect the new * state. This is an expanded inline of SB_EMPTY_FIXUP(), with the * addition of a second clause that takes care of the case where * sb_mb has been updated, but remains the last record. */ if (sb->sb_mb == NULL) { sb->sb_mbtail = NULL; sb->sb_lastrecord = NULL; } else if (sb->sb_mb->m_nextpkt == NULL) sb->sb_lastrecord = sb->sb_mb; } /* * Implement receive operations on a socket. * We depend on the way that records are added to the sockbuf * by sbappend*. In particular, each record (mbufs linked through m_next) * must begin with an address if the protocol so specifies, * followed by an optional mbuf or mbufs containing ancillary data, * and then zero or more mbufs of data. * In order to avoid blocking network interrupts for the entire time here, * we splx() while doing the actual copy to user space. * Although the sockbuf is locked, new data may still be appended, * and thus we must maintain consistency of the sockbuf during that time. * * The caller may receive the data as a single mbuf chain by supplying * an mbuf **mp0 for use in returning the chain. The uio is then used * only for the count in uio_resid. */ int soreceive(so, psa, uio, mp0, controlp, flagsp) struct socket *so; struct sockaddr **psa; struct uio *uio; struct mbuf **mp0; struct mbuf **controlp; int *flagsp; { struct mbuf *m, **mp; int flags, len, error, offset; struct protosw *pr = so->so_proto; struct mbuf *nextrecord; int moff, type = 0; int orig_resid = uio->uio_resid; mp = mp0; if (psa != NULL) *psa = NULL; if (controlp != NULL) *controlp = NULL; if (flagsp != NULL) flags = *flagsp &~ MSG_EOR; else flags = 0; if (flags & MSG_OOB) return (soreceive_rcvoob(so, uio, flags)); if (mp != NULL) *mp = NULL; if ((pr->pr_flags & PR_WANTRCVD) && (so->so_state & SS_ISCONFIRMING) && uio->uio_resid) (*pr->pr_usrreqs->pru_rcvd)(so, 0); SOCKBUF_LOCK(&so->so_rcv); restart: SOCKBUF_LOCK_ASSERT(&so->so_rcv); error = sblock(&so->so_rcv, SBLOCKWAIT(flags)); if (error) goto out; m = so->so_rcv.sb_mb; /* * If we have less data than requested, block awaiting more * (subject to any timeout) if: * 1. the current count is less than the low water mark, or * 2. MSG_WAITALL is set, and it is possible to do the entire * receive operation at once if we block (resid <= hiwat). * 3. MSG_DONTWAIT is not set * If MSG_WAITALL is set but resid is larger than the receive buffer, * we have to do the receive in sections, and thus risk returning * a short count if a timeout or signal occurs after we start. */ if (m == NULL || (((flags & MSG_DONTWAIT) == 0 && so->so_rcv.sb_cc < uio->uio_resid) && (so->so_rcv.sb_cc < so->so_rcv.sb_lowat || ((flags & MSG_WAITALL) && uio->uio_resid <= so->so_rcv.sb_hiwat)) && m->m_nextpkt == NULL && (pr->pr_flags & PR_ATOMIC) == 0)) { KASSERT(m != NULL || !so->so_rcv.sb_cc, ("receive: m == %p so->so_rcv.sb_cc == %u", m, so->so_rcv.sb_cc)); if (so->so_error) { if (m != NULL) goto dontblock; error = so->so_error; if ((flags & MSG_PEEK) == 0) so->so_error = 0; goto release; } SOCKBUF_LOCK_ASSERT(&so->so_rcv); if (so->so_rcv.sb_state & SBS_CANTRCVMORE) { if (m) goto dontblock; else goto release; } for (; m != NULL; m = m->m_next) if (m->m_type == MT_OOBDATA || (m->m_flags & M_EOR)) { m = so->so_rcv.sb_mb; goto dontblock; } if ((so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING)) == 0 && (so->so_proto->pr_flags & PR_CONNREQUIRED)) { error = ENOTCONN; goto release; } if (uio->uio_resid == 0) goto release; if ((so->so_state & SS_NBIO) || (flags & (MSG_DONTWAIT|MSG_NBIO))) { error = EWOULDBLOCK; goto release; } SBLASTRECORDCHK(&so->so_rcv); SBLASTMBUFCHK(&so->so_rcv); sbunlock(&so->so_rcv); error = sbwait(&so->so_rcv); if (error) goto out; goto restart; } dontblock: /* * From this point onward, we maintain 'nextrecord' as a cache of the * pointer to the next record in the socket buffer. We must keep the * various socket buffer pointers and local stack versions of the * pointers in sync, pushing out modifications before dropping the * socket buffer mutex, and re-reading them when picking it up. * * Otherwise, we will race with the network stack appending new data * or records onto the socket buffer by using inconsistent/stale * versions of the field, possibly resulting in socket buffer * corruption. * * By holding the high-level sblock(), we prevent simultaneous * readers from pulling off the front of the socket buffer. */ SOCKBUF_LOCK_ASSERT(&so->so_rcv); if (uio->uio_td) uio->uio_td->td_proc->p_stats->p_ru.ru_msgrcv++; KASSERT(m == so->so_rcv.sb_mb, ("soreceive: m != so->so_rcv.sb_mb")); SBLASTRECORDCHK(&so->so_rcv); SBLASTMBUFCHK(&so->so_rcv); nextrecord = m->m_nextpkt; if (pr->pr_flags & PR_ADDR) { KASSERT(m->m_type == MT_SONAME, ("m->m_type == %d", m->m_type)); orig_resid = 0; if (psa != NULL) *psa = sodupsockaddr(mtod(m, struct sockaddr *), M_NOWAIT); if (flags & MSG_PEEK) { m = m->m_next; } else { sbfree(&so->so_rcv, m); so->so_rcv.sb_mb = m_free(m); m = so->so_rcv.sb_mb; sockbuf_pushsync(&so->so_rcv, nextrecord); } } /* * Process one or more MT_CONTROL mbufs present before any data mbufs * in the first mbuf chain on the socket buffer. If MSG_PEEK, we * just copy the data; if !MSG_PEEK, we call into the protocol to * perform externalization (or freeing if controlp == NULL). */ if (m != NULL && m->m_type == MT_CONTROL) { struct mbuf *cm = NULL, *cmn; struct mbuf **cme = &cm; do { if (flags & MSG_PEEK) { if (controlp != NULL) { *controlp = m_copy(m, 0, m->m_len); controlp = &(*controlp)->m_next; } m = m->m_next; } else { sbfree(&so->so_rcv, m); so->so_rcv.sb_mb = m->m_next; m->m_next = NULL; *cme = m; cme = &(*cme)->m_next; m = so->so_rcv.sb_mb; } } while (m != NULL && m->m_type == MT_CONTROL); if ((flags & MSG_PEEK) == 0) sockbuf_pushsync(&so->so_rcv, nextrecord); while (cm != NULL) { cmn = cm->m_next; cm->m_next = NULL; if (pr->pr_domain->dom_externalize != NULL) { SOCKBUF_UNLOCK(&so->so_rcv); error = (*pr->pr_domain->dom_externalize) (cm, controlp); SOCKBUF_LOCK(&so->so_rcv); } else if (controlp != NULL) *controlp = cm; else m_freem(cm); if (controlp != NULL) { orig_resid = 0; while (*controlp != NULL) controlp = &(*controlp)->m_next; } cm = cmn; } nextrecord = so->so_rcv.sb_mb->m_nextpkt; orig_resid = 0; } if (m != NULL) { if ((flags & MSG_PEEK) == 0) { KASSERT(m->m_nextpkt == nextrecord, ("soreceive: post-control, nextrecord !sync")); if (nextrecord == NULL) { KASSERT(so->so_rcv.sb_mb == m, ("soreceive: post-control, sb_mb!=m")); KASSERT(so->so_rcv.sb_lastrecord == m, ("soreceive: post-control, lastrecord!=m")); } } type = m->m_type; if (type == MT_OOBDATA) flags |= MSG_OOB; } else { if ((flags & MSG_PEEK) == 0) { KASSERT(so->so_rcv.sb_mb == nextrecord, ("soreceive: sb_mb != nextrecord")); if (so->so_rcv.sb_mb == NULL) { KASSERT(so->so_rcv.sb_lastrecord == NULL, ("soreceive: sb_lastercord != NULL")); } } } SOCKBUF_LOCK_ASSERT(&so->so_rcv); SBLASTRECORDCHK(&so->so_rcv); SBLASTMBUFCHK(&so->so_rcv); /* * Now continue to read any data mbufs off of the head of the socket * buffer until the read request is satisfied. Note that 'type' is * used to store the type of any mbuf reads that have happened so far * such that soreceive() can stop reading if the type changes, which * causes soreceive() to return only one of regular data and inline * out-of-band data in a single socket receive operation. */ moff = 0; offset = 0; while (m != NULL && uio->uio_resid > 0 && error == 0) { /* * If the type of mbuf has changed since the last mbuf * examined ('type'), end the receive operation. */ SOCKBUF_LOCK_ASSERT(&so->so_rcv); if (m->m_type == MT_OOBDATA) { if (type != MT_OOBDATA) break; } else if (type == MT_OOBDATA) break; else KASSERT(m->m_type == MT_DATA || m->m_type == MT_HEADER, ("m->m_type == %d", m->m_type)); so->so_rcv.sb_state &= ~SBS_RCVATMARK; len = uio->uio_resid; if (so->so_oobmark && len > so->so_oobmark - offset) len = so->so_oobmark - offset; if (len > m->m_len - moff) len = m->m_len - moff; /* * If mp is set, just pass back the mbufs. * Otherwise copy them out via the uio, then free. * Sockbuf must be consistent here (points to current mbuf, * it points to next record) when we drop priority; * we must note any additions to the sockbuf when we * block interrupts again. */ if (mp == NULL) { SOCKBUF_LOCK_ASSERT(&so->so_rcv); SBLASTRECORDCHK(&so->so_rcv); SBLASTMBUFCHK(&so->so_rcv); SOCKBUF_UNLOCK(&so->so_rcv); #ifdef ZERO_COPY_SOCKETS if (so_zero_copy_receive) { int disposable; if ((m->m_flags & M_EXT) && (m->m_ext.ext_type == EXT_DISPOSABLE)) disposable = 1; else disposable = 0; error = uiomoveco(mtod(m, char *) + moff, (int)len, uio, disposable); } else #endif /* ZERO_COPY_SOCKETS */ error = uiomove(mtod(m, char *) + moff, (int)len, uio); SOCKBUF_LOCK(&so->so_rcv); if (error) goto release; } else uio->uio_resid -= len; SOCKBUF_LOCK_ASSERT(&so->so_rcv); if (len == m->m_len - moff) { if (m->m_flags & M_EOR) flags |= MSG_EOR; if (flags & MSG_PEEK) { m = m->m_next; moff = 0; } else { nextrecord = m->m_nextpkt; sbfree(&so->so_rcv, m); if (mp != NULL) { *mp = m; mp = &m->m_next; so->so_rcv.sb_mb = m = m->m_next; *mp = NULL; } else { so->so_rcv.sb_mb = m_free(m); m = so->so_rcv.sb_mb; } if (m != NULL) { m->m_nextpkt = nextrecord; if (nextrecord == NULL) so->so_rcv.sb_lastrecord = m; } else { so->so_rcv.sb_mb = nextrecord; SB_EMPTY_FIXUP(&so->so_rcv); } SBLASTRECORDCHK(&so->so_rcv); SBLASTMBUFCHK(&so->so_rcv); } } else { if (flags & MSG_PEEK) moff += len; else { if (mp != NULL) { int copy_flag; if (flags & MSG_DONTWAIT) copy_flag = M_DONTWAIT; else copy_flag = M_TRYWAIT; if (copy_flag == M_TRYWAIT) SOCKBUF_UNLOCK(&so->so_rcv); *mp = m_copym(m, 0, len, copy_flag); if (copy_flag == M_TRYWAIT) SOCKBUF_LOCK(&so->so_rcv); if (*mp == NULL) { /* * m_copym() couldn't allocate an mbuf. * Adjust uio_resid back (it was adjusted * down by len bytes, which we didn't end * up "copying" over). */ uio->uio_resid += len; break; } } m->m_data += len; m->m_len -= len; so->so_rcv.sb_cc -= len; } } SOCKBUF_LOCK_ASSERT(&so->so_rcv); if (so->so_oobmark) { if ((flags & MSG_PEEK) == 0) { so->so_oobmark -= len; if (so->so_oobmark == 0) { so->so_rcv.sb_state |= SBS_RCVATMARK; break; } } else { offset += len; if (offset == so->so_oobmark) break; } } if (flags & MSG_EOR) break; /* * If the MSG_WAITALL flag is set (for non-atomic socket), * we must not quit until "uio->uio_resid == 0" or an error * termination. If a signal/timeout occurs, return * with a short count but without error. * Keep sockbuf locked against other readers. */ while (flags & MSG_WAITALL && m == NULL && uio->uio_resid > 0 && !sosendallatonce(so) && nextrecord == NULL) { SOCKBUF_LOCK_ASSERT(&so->so_rcv); if (so->so_error || so->so_rcv.sb_state & SBS_CANTRCVMORE) break; /* * Notify the protocol that some data has been * drained before blocking. */ if (pr->pr_flags & PR_WANTRCVD && so->so_pcb != NULL) { SOCKBUF_UNLOCK(&so->so_rcv); (*pr->pr_usrreqs->pru_rcvd)(so, flags); SOCKBUF_LOCK(&so->so_rcv); } SBLASTRECORDCHK(&so->so_rcv); SBLASTMBUFCHK(&so->so_rcv); error = sbwait(&so->so_rcv); if (error) goto release; m = so->so_rcv.sb_mb; if (m != NULL) nextrecord = m->m_nextpkt; } } SOCKBUF_LOCK_ASSERT(&so->so_rcv); if (m != NULL && pr->pr_flags & PR_ATOMIC) { flags |= MSG_TRUNC; if ((flags & MSG_PEEK) == 0) (void) sbdroprecord_locked(&so->so_rcv); } if ((flags & MSG_PEEK) == 0) { if (m == NULL) { /* * First part is an inline SB_EMPTY_FIXUP(). Second * part makes sure sb_lastrecord is up-to-date if * there is still data in the socket buffer. */ so->so_rcv.sb_mb = nextrecord; if (so->so_rcv.sb_mb == NULL) { so->so_rcv.sb_mbtail = NULL; so->so_rcv.sb_lastrecord = NULL; } else if (nextrecord->m_nextpkt == NULL) so->so_rcv.sb_lastrecord = nextrecord; } SBLASTRECORDCHK(&so->so_rcv); SBLASTMBUFCHK(&so->so_rcv); /* * If soreceive() is being done from the socket callback, then * don't need to generate ACK to peer to update window, since * ACK will be generated on return to TCP. */ if (!(flags & MSG_SOCALLBCK) && (pr->pr_flags & PR_WANTRCVD) && so->so_pcb) { SOCKBUF_UNLOCK(&so->so_rcv); (*pr->pr_usrreqs->pru_rcvd)(so, flags); SOCKBUF_LOCK(&so->so_rcv); } } SOCKBUF_LOCK_ASSERT(&so->so_rcv); if (orig_resid == uio->uio_resid && orig_resid && (flags & MSG_EOR) == 0 && (so->so_rcv.sb_state & SBS_CANTRCVMORE) == 0) { sbunlock(&so->so_rcv); goto restart; } if (flagsp != NULL) *flagsp |= flags; release: SOCKBUF_LOCK_ASSERT(&so->so_rcv); sbunlock(&so->so_rcv); out: SOCKBUF_LOCK_ASSERT(&so->so_rcv); SOCKBUF_UNLOCK(&so->so_rcv); return (error); } int soshutdown(so, how) struct socket *so; int how; { struct protosw *pr = so->so_proto; if (!(how == SHUT_RD || how == SHUT_WR || how == SHUT_RDWR)) return (EINVAL); if (how != SHUT_WR) sorflush(so); if (how != SHUT_RD) return ((*pr->pr_usrreqs->pru_shutdown)(so)); return (0); } void sorflush(so) struct socket *so; { struct sockbuf *sb = &so->so_rcv; struct protosw *pr = so->so_proto; struct sockbuf asb; /* * XXXRW: This is quite ugly. Previously, this code made a copy of * the socket buffer, then zero'd the original to clear the buffer * fields. However, with mutexes in the socket buffer, this causes * problems. We only clear the zeroable bits of the original; * however, we have to initialize and destroy the mutex in the copy * so that dom_dispose() and sbrelease() can lock t as needed. */ SOCKBUF_LOCK(sb); sb->sb_flags |= SB_NOINTR; (void) sblock(sb, M_WAITOK); /* * socantrcvmore_locked() drops the socket buffer mutex so that it * can safely perform wakeups. Re-acquire the mutex before * continuing. */ socantrcvmore_locked(so); SOCKBUF_LOCK(sb); sbunlock(sb); /* * Invalidate/clear most of the sockbuf structure, but leave * selinfo and mutex data unchanged. */ bzero(&asb, offsetof(struct sockbuf, sb_startzero)); bcopy(&sb->sb_startzero, &asb.sb_startzero, sizeof(*sb) - offsetof(struct sockbuf, sb_startzero)); bzero(&sb->sb_startzero, sizeof(*sb) - offsetof(struct sockbuf, sb_startzero)); SOCKBUF_UNLOCK(sb); SOCKBUF_LOCK_INIT(&asb, "so_rcv"); if (pr->pr_flags & PR_RIGHTS && pr->pr_domain->dom_dispose != NULL) (*pr->pr_domain->dom_dispose)(asb.sb_mb); sbrelease(&asb, so); SOCKBUF_LOCK_DESTROY(&asb); } /* * Perhaps this routine, and sooptcopyout(), below, ought to come in * an additional variant to handle the case where the option value needs * to be some kind of integer, but not a specific size. * In addition to their use here, these functions are also called by the * protocol-level pr_ctloutput() routines. */ int sooptcopyin(sopt, buf, len, minlen) struct sockopt *sopt; void *buf; size_t len; size_t minlen; { size_t valsize; /* * If the user gives us more than we wanted, we ignore it, * but if we don't get the minimum length the caller * wants, we return EINVAL. On success, sopt->sopt_valsize * is set to however much we actually retrieved. */ if ((valsize = sopt->sopt_valsize) < minlen) return EINVAL; if (valsize > len) sopt->sopt_valsize = valsize = len; if (sopt->sopt_td != NULL) return (copyin(sopt->sopt_val, buf, valsize)); bcopy(sopt->sopt_val, buf, valsize); return 0; } /* * Kernel version of setsockopt(2)/ * XXX: optlen is size_t, not socklen_t */ int so_setsockopt(struct socket *so, int level, int optname, void *optval, size_t optlen) { struct sockopt sopt; sopt.sopt_level = level; sopt.sopt_name = optname; sopt.sopt_dir = SOPT_SET; sopt.sopt_val = optval; sopt.sopt_valsize = optlen; sopt.sopt_td = NULL; return (sosetopt(so, &sopt)); } int sosetopt(so, sopt) struct socket *so; struct sockopt *sopt; { int error, optval; struct linger l; struct timeval tv; u_long val; #ifdef MAC struct mac extmac; #endif error = 0; if (sopt->sopt_level != SOL_SOCKET) { if (so->so_proto && so->so_proto->pr_ctloutput) return ((*so->so_proto->pr_ctloutput) (so, sopt)); error = ENOPROTOOPT; } else { switch (sopt->sopt_name) { #ifdef INET case SO_ACCEPTFILTER: error = do_setopt_accept_filter(so, sopt); if (error) goto bad; break; #endif case SO_LINGER: error = sooptcopyin(sopt, &l, sizeof l, sizeof l); if (error) goto bad; SOCK_LOCK(so); so->so_linger = l.l_linger; if (l.l_onoff) so->so_options |= SO_LINGER; else so->so_options &= ~SO_LINGER; SOCK_UNLOCK(so); break; case SO_DEBUG: case SO_KEEPALIVE: case SO_DONTROUTE: case SO_USELOOPBACK: case SO_BROADCAST: case SO_REUSEADDR: case SO_REUSEPORT: case SO_OOBINLINE: case SO_TIMESTAMP: case SO_BINTIME: case SO_NOSIGPIPE: error = sooptcopyin(sopt, &optval, sizeof optval, sizeof optval); if (error) goto bad; SOCK_LOCK(so); if (optval) so->so_options |= sopt->sopt_name; else so->so_options &= ~sopt->sopt_name; SOCK_UNLOCK(so); break; case SO_SNDBUF: case SO_RCVBUF: case SO_SNDLOWAT: case SO_RCVLOWAT: error = sooptcopyin(sopt, &optval, sizeof optval, sizeof optval); if (error) goto bad; /* * Values < 1 make no sense for any of these * options, so disallow them. */ if (optval < 1) { error = EINVAL; goto bad; } switch (sopt->sopt_name) { case SO_SNDBUF: case SO_RCVBUF: if (sbreserve(sopt->sopt_name == SO_SNDBUF ? &so->so_snd : &so->so_rcv, (u_long)optval, so, curthread) == 0) { error = ENOBUFS; goto bad; } break; /* * Make sure the low-water is never greater than * the high-water. */ case SO_SNDLOWAT: SOCKBUF_LOCK(&so->so_snd); so->so_snd.sb_lowat = (optval > so->so_snd.sb_hiwat) ? so->so_snd.sb_hiwat : optval; SOCKBUF_UNLOCK(&so->so_snd); break; case SO_RCVLOWAT: SOCKBUF_LOCK(&so->so_rcv); so->so_rcv.sb_lowat = (optval > so->so_rcv.sb_hiwat) ? so->so_rcv.sb_hiwat : optval; SOCKBUF_UNLOCK(&so->so_rcv); break; } break; case SO_SNDTIMEO: case SO_RCVTIMEO: error = sooptcopyin(sopt, &tv, sizeof tv, sizeof tv); if (error) goto bad; /* assert(hz > 0); */ if (tv.tv_sec < 0 || tv.tv_sec > INT_MAX / hz || tv.tv_usec < 0 || tv.tv_usec >= 1000000) { error = EDOM; goto bad; } /* assert(tick > 0); */ /* assert(ULONG_MAX - INT_MAX >= 1000000); */ val = (u_long)(tv.tv_sec * hz) + tv.tv_usec / tick; if (val > INT_MAX) { error = EDOM; goto bad; } if (val == 0 && tv.tv_usec != 0) val = 1; switch (sopt->sopt_name) { case SO_SNDTIMEO: so->so_snd.sb_timeo = val; break; case SO_RCVTIMEO: so->so_rcv.sb_timeo = val; break; } break; case SO_LABEL: #ifdef MAC error = sooptcopyin(sopt, &extmac, sizeof extmac, sizeof extmac); if (error) goto bad; error = mac_setsockopt_label(sopt->sopt_td->td_ucred, so, &extmac); #else error = EOPNOTSUPP; #endif break; default: error = ENOPROTOOPT; break; } if (error == 0 && so->so_proto != NULL && so->so_proto->pr_ctloutput != NULL) { (void) ((*so->so_proto->pr_ctloutput) (so, sopt)); } } bad: return (error); } /* Helper routine for getsockopt */ int sooptcopyout(struct sockopt *sopt, const void *buf, size_t len) { int error; size_t valsize; error = 0; /* * Documented get behavior is that we always return a value, * possibly truncated to fit in the user's buffer. * Traditional behavior is that we always tell the user * precisely how much we copied, rather than something useful * like the total amount we had available for her. * Note that this interface is not idempotent; the entire answer must * generated ahead of time. */ valsize = min(len, sopt->sopt_valsize); sopt->sopt_valsize = valsize; if (sopt->sopt_val != NULL) { if (sopt->sopt_td != NULL) error = copyout(buf, sopt->sopt_val, valsize); else bcopy(buf, sopt->sopt_val, valsize); } return error; } int sogetopt(so, sopt) struct socket *so; struct sockopt *sopt; { int error, optval; struct linger l; struct timeval tv; #ifdef INET struct accept_filter_arg *afap; #endif #ifdef MAC struct mac extmac; #endif error = 0; if (sopt->sopt_level != SOL_SOCKET) { if (so->so_proto && so->so_proto->pr_ctloutput) { return ((*so->so_proto->pr_ctloutput) (so, sopt)); } else return (ENOPROTOOPT); } else { switch (sopt->sopt_name) { #ifdef INET case SO_ACCEPTFILTER: /* Unlocked read. */ if ((so->so_options & SO_ACCEPTCONN) == 0) return (EINVAL); MALLOC(afap, struct accept_filter_arg *, sizeof(*afap), M_TEMP, M_WAITOK | M_ZERO); SOCK_LOCK(so); if ((so->so_options & SO_ACCEPTFILTER) != 0) { strcpy(afap->af_name, so->so_accf->so_accept_filter->accf_name); if (so->so_accf->so_accept_filter_str != NULL) strcpy(afap->af_arg, so->so_accf->so_accept_filter_str); } SOCK_UNLOCK(so); error = sooptcopyout(sopt, afap, sizeof(*afap)); FREE(afap, M_TEMP); break; #endif case SO_LINGER: SOCK_LOCK(so); l.l_onoff = so->so_options & SO_LINGER; l.l_linger = so->so_linger; SOCK_UNLOCK(so); error = sooptcopyout(sopt, &l, sizeof l); break; case SO_USELOOPBACK: case SO_DONTROUTE: case SO_DEBUG: case SO_KEEPALIVE: case SO_REUSEADDR: case SO_REUSEPORT: case SO_BROADCAST: case SO_OOBINLINE: case SO_TIMESTAMP: case SO_BINTIME: case SO_NOSIGPIPE: optval = so->so_options & sopt->sopt_name; integer: error = sooptcopyout(sopt, &optval, sizeof optval); break; case SO_TYPE: optval = so->so_type; goto integer; case SO_ERROR: optval = so->so_error; so->so_error = 0; goto integer; case SO_SNDBUF: optval = so->so_snd.sb_hiwat; goto integer; case SO_RCVBUF: optval = so->so_rcv.sb_hiwat; goto integer; case SO_SNDLOWAT: optval = so->so_snd.sb_lowat; goto integer; case SO_RCVLOWAT: optval = so->so_rcv.sb_lowat; goto integer; case SO_SNDTIMEO: case SO_RCVTIMEO: optval = (sopt->sopt_name == SO_SNDTIMEO ? so->so_snd.sb_timeo : so->so_rcv.sb_timeo); tv.tv_sec = optval / hz; tv.tv_usec = (optval % hz) * tick; error = sooptcopyout(sopt, &tv, sizeof tv); break; case SO_LABEL: #ifdef MAC error = sooptcopyin(sopt, &extmac, sizeof(extmac), sizeof(extmac)); if (error) return (error); error = mac_getsockopt_label(sopt->sopt_td->td_ucred, so, &extmac); if (error) return (error); error = sooptcopyout(sopt, &extmac, sizeof extmac); #else error = EOPNOTSUPP; #endif break; case SO_PEERLABEL: #ifdef MAC error = sooptcopyin(sopt, &extmac, sizeof(extmac), sizeof(extmac)); if (error) return (error); error = mac_getsockopt_peerlabel( sopt->sopt_td->td_ucred, so, &extmac); if (error) return (error); error = sooptcopyout(sopt, &extmac, sizeof extmac); #else error = EOPNOTSUPP; #endif break; default: error = ENOPROTOOPT; break; } return (error); } } /* XXX; prepare mbuf for (__FreeBSD__ < 3) routines. */ int soopt_getm(struct sockopt *sopt, struct mbuf **mp) { struct mbuf *m, *m_prev; int sopt_size = sopt->sopt_valsize; MGET(m, sopt->sopt_td ? M_TRYWAIT : M_DONTWAIT, MT_DATA); if (m == NULL) return ENOBUFS; if (sopt_size > MLEN) { MCLGET(m, sopt->sopt_td ? M_TRYWAIT : M_DONTWAIT); if ((m->m_flags & M_EXT) == 0) { m_free(m); return ENOBUFS; } m->m_len = min(MCLBYTES, sopt_size); } else { m->m_len = min(MLEN, sopt_size); } sopt_size -= m->m_len; *mp = m; m_prev = m; while (sopt_size) { MGET(m, sopt->sopt_td ? M_TRYWAIT : M_DONTWAIT, MT_DATA); if (m == NULL) { m_freem(*mp); return ENOBUFS; } if (sopt_size > MLEN) { MCLGET(m, sopt->sopt_td != NULL ? M_TRYWAIT : M_DONTWAIT); if ((m->m_flags & M_EXT) == 0) { m_freem(m); m_freem(*mp); return ENOBUFS; } m->m_len = min(MCLBYTES, sopt_size); } else { m->m_len = min(MLEN, sopt_size); } sopt_size -= m->m_len; m_prev->m_next = m; m_prev = m; } return 0; } /* XXX; copyin sopt data into mbuf chain for (__FreeBSD__ < 3) routines. */ int soopt_mcopyin(struct sockopt *sopt, struct mbuf *m) { struct mbuf *m0 = m; if (sopt->sopt_val == NULL) return 0; while (m != NULL && sopt->sopt_valsize >= m->m_len) { if (sopt->sopt_td != NULL) { int error; error = copyin(sopt->sopt_val, mtod(m, char *), m->m_len); if (error != 0) { m_freem(m0); return(error); } } else bcopy(sopt->sopt_val, mtod(m, char *), m->m_len); sopt->sopt_valsize -= m->m_len; sopt->sopt_val = (char *)sopt->sopt_val + m->m_len; m = m->m_next; } if (m != NULL) /* should be allocated enoughly at ip6_sooptmcopyin() */ panic("ip6_sooptmcopyin"); return 0; } /* XXX; copyout mbuf chain data into soopt for (__FreeBSD__ < 3) routines. */ int soopt_mcopyout(struct sockopt *sopt, struct mbuf *m) { struct mbuf *m0 = m; size_t valsize = 0; if (sopt->sopt_val == NULL) return 0; while (m != NULL && sopt->sopt_valsize >= m->m_len) { if (sopt->sopt_td != NULL) { int error; error = copyout(mtod(m, char *), sopt->sopt_val, m->m_len); if (error != 0) { m_freem(m0); return(error); } } else bcopy(mtod(m, char *), sopt->sopt_val, m->m_len); sopt->sopt_valsize -= m->m_len; sopt->sopt_val = (char *)sopt->sopt_val + m->m_len; valsize += m->m_len; m = m->m_next; } if (m != NULL) { /* enough soopt buffer should be given from user-land */ m_freem(m0); return(EINVAL); } sopt->sopt_valsize = valsize; return 0; } void sohasoutofband(so) struct socket *so; { if (so->so_sigio != NULL) pgsigio(&so->so_sigio, SIGURG, 0); selwakeuppri(&so->so_rcv.sb_sel, PSOCK); } int sopoll(struct socket *so, int events, struct ucred *active_cred, struct thread *td) { int revents = 0; SOCKBUF_LOCK(&so->so_snd); SOCKBUF_LOCK(&so->so_rcv); if (events & (POLLIN | POLLRDNORM)) if (soreadable(so)) revents |= events & (POLLIN | POLLRDNORM); if (events & POLLINIGNEOF) if (so->so_rcv.sb_cc >= so->so_rcv.sb_lowat || !TAILQ_EMPTY(&so->so_comp) || so->so_error) revents |= POLLINIGNEOF; if (events & (POLLOUT | POLLWRNORM)) if (sowriteable(so)) revents |= events & (POLLOUT | POLLWRNORM); if (events & (POLLPRI | POLLRDBAND)) if (so->so_oobmark || (so->so_rcv.sb_state & SBS_RCVATMARK)) revents |= events & (POLLPRI | POLLRDBAND); if (revents == 0) { if (events & (POLLIN | POLLINIGNEOF | POLLPRI | POLLRDNORM | POLLRDBAND)) { selrecord(td, &so->so_rcv.sb_sel); so->so_rcv.sb_flags |= SB_SEL; } if (events & (POLLOUT | POLLWRNORM)) { selrecord(td, &so->so_snd.sb_sel); so->so_snd.sb_flags |= SB_SEL; } } SOCKBUF_UNLOCK(&so->so_rcv); SOCKBUF_UNLOCK(&so->so_snd); return (revents); } int soo_kqfilter(struct file *fp, struct knote *kn) { struct socket *so = kn->kn_fp->f_data; struct sockbuf *sb; switch (kn->kn_filter) { case EVFILT_READ: if (so->so_options & SO_ACCEPTCONN) kn->kn_fop = &solisten_filtops; else kn->kn_fop = &soread_filtops; sb = &so->so_rcv; break; case EVFILT_WRITE: kn->kn_fop = &sowrite_filtops; sb = &so->so_snd; break; default: return (EINVAL); } SOCKBUF_LOCK(sb); knlist_add(&sb->sb_sel.si_note, kn, 1); sb->sb_flags |= SB_KNOTE; SOCKBUF_UNLOCK(sb); return (0); } static void filt_sordetach(struct knote *kn) { struct socket *so = kn->kn_fp->f_data; SOCKBUF_LOCK(&so->so_rcv); knlist_remove(&so->so_rcv.sb_sel.si_note, kn, 1); if (knlist_empty(&so->so_rcv.sb_sel.si_note)) so->so_rcv.sb_flags &= ~SB_KNOTE; SOCKBUF_UNLOCK(&so->so_rcv); } /*ARGSUSED*/ static int filt_soread(struct knote *kn, long hint) { struct socket *so; so = kn->kn_fp->f_data; SOCKBUF_LOCK_ASSERT(&so->so_rcv); kn->kn_data = so->so_rcv.sb_cc - so->so_rcv.sb_ctl; if (so->so_rcv.sb_state & SBS_CANTRCVMORE) { kn->kn_flags |= EV_EOF; kn->kn_fflags = so->so_error; return (1); } else if (so->so_error) /* temporary udp error */ return (1); else if (kn->kn_sfflags & NOTE_LOWAT) return (kn->kn_data >= kn->kn_sdata); else return (so->so_rcv.sb_cc >= so->so_rcv.sb_lowat); } static void filt_sowdetach(struct knote *kn) { struct socket *so = kn->kn_fp->f_data; SOCKBUF_LOCK(&so->so_snd); knlist_remove(&so->so_snd.sb_sel.si_note, kn, 1); if (knlist_empty(&so->so_snd.sb_sel.si_note)) so->so_snd.sb_flags &= ~SB_KNOTE; SOCKBUF_UNLOCK(&so->so_snd); } /*ARGSUSED*/ static int filt_sowrite(struct knote *kn, long hint) { struct socket *so; so = kn->kn_fp->f_data; SOCKBUF_LOCK_ASSERT(&so->so_snd); kn->kn_data = sbspace(&so->so_snd); if (so->so_snd.sb_state & SBS_CANTSENDMORE) { kn->kn_flags |= EV_EOF; kn->kn_fflags = so->so_error; return (1); } else if (so->so_error) /* temporary udp error */ return (1); else if (((so->so_state & SS_ISCONNECTED) == 0) && (so->so_proto->pr_flags & PR_CONNREQUIRED)) return (0); else if (kn->kn_sfflags & NOTE_LOWAT) return (kn->kn_data >= kn->kn_sdata); else return (kn->kn_data >= so->so_snd.sb_lowat); } /*ARGSUSED*/ static int filt_solisten(struct knote *kn, long hint) { struct socket *so = kn->kn_fp->f_data; kn->kn_data = so->so_qlen; return (! TAILQ_EMPTY(&so->so_comp)); } int socheckuid(struct socket *so, uid_t uid) { if (so == NULL) return (EPERM); if (so->so_cred->cr_uid != uid) return (EPERM); return (0); } static int somaxconn_sysctl(SYSCTL_HANDLER_ARGS) { int error; int val; val = somaxconn; error = sysctl_handle_int(oidp, &val, sizeof(int), req); if (error || !req->newptr ) return (error); if (val < 1 || val > USHRT_MAX) return (EINVAL); somaxconn = val; return (0); }