/*- * Copyright (c) 1982, 1986, 1989, 1993 * The Regents of the University of California. All rights reserved. * (c) UNIX System Laboratories, Inc. * All or some portions of this file are derived from material licensed * to the University of California by American Telephone and Telegraph * Co. or Unix System Laboratories, Inc. and are reproduced herein with * the permission of UNIX System Laboratories, Inc. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 4. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)sys_generic.c 8.5 (Berkeley) 1/21/94 */ #include __FBSDID("$FreeBSD$"); #include "opt_ktrace.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef KTRACE #include #endif #include #include static MALLOC_DEFINE(M_IOCTLOPS, "ioctlops", "ioctl data buffer"); static MALLOC_DEFINE(M_SELECT, "select", "select() buffer"); MALLOC_DEFINE(M_IOV, "iov", "large iov's"); static int pollscan(struct thread *, struct pollfd *, u_int); static int selscan(struct thread *, fd_mask **, fd_mask **, int); static int dofileread(struct thread *, struct file *, int, void *, size_t, off_t, int); static int dofilewrite(struct thread *, struct file *, int, const void *, size_t, off_t, int); static void doselwakeup(struct selinfo *, int); /* * Read system call. */ #ifndef _SYS_SYSPROTO_H_ struct read_args { int fd; void *buf; size_t nbyte; }; #endif /* * MPSAFE */ int read(td, uap) struct thread *td; struct read_args *uap; { struct file *fp; int error; if ((error = fget_read(td, uap->fd, &fp)) == 0) { error = dofileread(td, fp, uap->fd, uap->buf, uap->nbyte, (off_t)-1, 0); fdrop(fp, td); } return(error); } /* * Pread system call */ #ifndef _SYS_SYSPROTO_H_ struct pread_args { int fd; void *buf; size_t nbyte; int pad; off_t offset; }; #endif /* * MPSAFE */ int pread(td, uap) struct thread *td; struct pread_args *uap; { struct file *fp; int error; if ((error = fget_read(td, uap->fd, &fp)) != 0) return (error); if (!(fp->f_ops->fo_flags & DFLAG_SEEKABLE)) error = ESPIPE; else if (uap->offset < 0 && fp->f_vnode->v_type != VCHR) error = EINVAL; else { error = dofileread(td, fp, uap->fd, uap->buf, uap->nbyte, uap->offset, FOF_OFFSET); } fdrop(fp, td); return(error); } /* * Code common for read and pread */ static int dofileread(td, fp, fd, buf, nbyte, offset, flags) struct thread *td; struct file *fp; int fd, flags; void *buf; size_t nbyte; off_t offset; { struct uio auio; struct iovec aiov; long cnt, error = 0; #ifdef KTRACE struct uio *ktruio = NULL; #endif /* Finish zero length reads right here */ if (nbyte == 0) { td->td_retval[0] = 0; return(0); } aiov.iov_base = buf; aiov.iov_len = nbyte; auio.uio_iov = &aiov; auio.uio_iovcnt = 1; auio.uio_offset = offset; if (nbyte > INT_MAX) return (EINVAL); auio.uio_resid = nbyte; auio.uio_rw = UIO_READ; auio.uio_segflg = UIO_USERSPACE; auio.uio_td = td; #ifdef KTRACE if (KTRPOINT(td, KTR_GENIO)) ktruio = cloneuio(&auio); #endif cnt = nbyte; if ((error = fo_read(fp, &auio, td->td_ucred, flags, td))) { if (auio.uio_resid != cnt && (error == ERESTART || error == EINTR || error == EWOULDBLOCK)) error = 0; } cnt -= auio.uio_resid; #ifdef KTRACE if (ktruio != NULL) { ktruio->uio_resid = cnt; ktrgenio(fd, UIO_READ, ktruio, error); } #endif td->td_retval[0] = cnt; return (error); } /* * Scatter read system call. */ #ifndef _SYS_SYSPROTO_H_ struct readv_args { int fd; struct iovec *iovp; u_int iovcnt; }; #endif /* * MPSAFE */ int readv(struct thread *td, struct readv_args *uap) { struct file *fp; struct uio *auio = NULL; long cnt; int error; #ifdef KTRACE struct uio *ktruio = NULL; #endif error = fget_read(td, uap->fd, &fp); if (error) return (error); error = copyinuio(uap->iovp, uap->iovcnt, &auio); if (error) { fdrop(fp, td); return (error); } /* Finish zero length reads right here */ if (auio->uio_resid == 0) { td->td_retval[0] = 0; free(auio, M_IOV); fdrop(fp, td); return(0); } auio->uio_rw = UIO_READ; auio->uio_td = td; #ifdef KTRACE if (KTRPOINT(td, KTR_GENIO)) ktruio = cloneuio(auio); #endif cnt = auio->uio_resid; if ((error = fo_read(fp, auio, td->td_ucred, 0, td))) { if (auio->uio_resid != cnt && (error == ERESTART || error == EINTR || error == EWOULDBLOCK)) error = 0; } cnt -= auio->uio_resid; #ifdef KTRACE if (ktruio != NULL) { ktruio->uio_resid = cnt; ktrgenio(uap->fd, UIO_READ, ktruio, error); } #endif td->td_retval[0] = cnt; free(auio, M_IOV); fdrop(fp, td); return (error); } /* * Write system call */ #ifndef _SYS_SYSPROTO_H_ struct write_args { int fd; const void *buf; size_t nbyte; }; #endif /* * MPSAFE */ int write(td, uap) struct thread *td; struct write_args *uap; { struct file *fp; int error; if ((error = fget_write(td, uap->fd, &fp)) == 0) { error = dofilewrite(td, fp, uap->fd, uap->buf, uap->nbyte, (off_t)-1, 0); fdrop(fp, td); } else { error = EBADF; /* XXX this can't be right */ } return(error); } /* * Pwrite system call */ #ifndef _SYS_SYSPROTO_H_ struct pwrite_args { int fd; const void *buf; size_t nbyte; int pad; off_t offset; }; #endif /* * MPSAFE */ int pwrite(td, uap) struct thread *td; struct pwrite_args *uap; { struct file *fp; int error; if ((error = fget_write(td, uap->fd, &fp)) == 0) { if (!(fp->f_ops->fo_flags & DFLAG_SEEKABLE)) error = ESPIPE; else if (uap->offset < 0 && fp->f_vnode->v_type != VCHR) error = EINVAL; else { error = dofilewrite(td, fp, uap->fd, uap->buf, uap->nbyte, uap->offset, FOF_OFFSET); } fdrop(fp, td); } else { error = EBADF; /* this can't be right */ } return(error); } static int dofilewrite(td, fp, fd, buf, nbyte, offset, flags) struct thread *td; struct file *fp; int fd, flags; const void *buf; size_t nbyte; off_t offset; { struct uio auio; struct iovec aiov; long cnt, error = 0; #ifdef KTRACE struct uio *ktruio = NULL; #endif aiov.iov_base = (void *)(uintptr_t)buf; aiov.iov_len = nbyte; auio.uio_iov = &aiov; auio.uio_iovcnt = 1; auio.uio_offset = offset; if (nbyte > INT_MAX) return (EINVAL); auio.uio_resid = nbyte; auio.uio_rw = UIO_WRITE; auio.uio_segflg = UIO_USERSPACE; auio.uio_td = td; #ifdef KTRACE if (KTRPOINT(td, KTR_GENIO)) ktruio = cloneuio(&auio); #endif cnt = nbyte; if (fp->f_type == DTYPE_VNODE) bwillwrite(); if ((error = fo_write(fp, &auio, td->td_ucred, flags, td))) { if (auio.uio_resid != cnt && (error == ERESTART || error == EINTR || error == EWOULDBLOCK)) error = 0; /* Socket layer is responsible for issuing SIGPIPE. */ if (error == EPIPE && fp->f_type != DTYPE_SOCKET) { PROC_LOCK(td->td_proc); psignal(td->td_proc, SIGPIPE); PROC_UNLOCK(td->td_proc); } } cnt -= auio.uio_resid; #ifdef KTRACE if (ktruio != NULL) { ktruio->uio_resid = cnt; ktrgenio(fd, UIO_WRITE, ktruio, error); } #endif td->td_retval[0] = cnt; return (error); } /* * Gather write system call */ #ifndef _SYS_SYSPROTO_H_ struct writev_args { int fd; struct iovec *iovp; u_int iovcnt; }; #endif /* * MPSAFE */ int writev(struct thread *td, struct writev_args *uap) { struct file *fp; struct uio *auio = NULL; long cnt; int error; #ifdef KTRACE struct uio *ktruio = NULL; #endif error = fget_write(td, uap->fd, &fp); if (error) return (EBADF); error = copyinuio(uap->iovp, uap->iovcnt, &auio); if (error) { fdrop(fp, td); return (error); } auio->uio_rw = UIO_WRITE; auio->uio_td = td; #ifdef KTRACE if (KTRPOINT(td, KTR_GENIO)) ktruio = cloneuio(auio); #endif cnt = auio->uio_resid; if (fp->f_type == DTYPE_VNODE) bwillwrite(); if ((error = fo_write(fp, auio, td->td_ucred, 0, td))) { if (auio->uio_resid != cnt && (error == ERESTART || error == EINTR || error == EWOULDBLOCK)) error = 0; if (error == EPIPE) { PROC_LOCK(td->td_proc); psignal(td->td_proc, SIGPIPE); PROC_UNLOCK(td->td_proc); } } cnt -= auio->uio_resid; #ifdef KTRACE if (ktruio != NULL) { ktruio->uio_resid = cnt; ktrgenio(uap->fd, UIO_WRITE, ktruio, error); } #endif td->td_retval[0] = cnt; fdrop(fp, td); free(auio, M_IOV); return (error); } /* * Ioctl system call */ #ifndef _SYS_SYSPROTO_H_ struct ioctl_args { int fd; u_long com; caddr_t data; }; #endif /* * MPSAFE */ /* ARGSUSED */ int ioctl(struct thread *td, struct ioctl_args *uap) { struct file *fp; struct filedesc *fdp; u_long com; int error = 0; u_int size; caddr_t data, memp; int tmp; if (uap->com > 0xffffffff) { printf( "WARNING pid %d (%s): ioctl sign-extension ioctl %lx\n", td->td_proc->p_pid, td->td_proc->p_comm, uap->com); uap->com &= 0xffffffff; } if ((error = fget(td, uap->fd, &fp)) != 0) return (error); if ((fp->f_flag & (FREAD | FWRITE)) == 0) { fdrop(fp, td); return (EBADF); } fdp = td->td_proc->p_fd; switch (com = uap->com) { case FIONCLEX: FILEDESC_LOCK_FAST(fdp); fdp->fd_ofileflags[uap->fd] &= ~UF_EXCLOSE; FILEDESC_UNLOCK_FAST(fdp); fdrop(fp, td); return (0); case FIOCLEX: FILEDESC_LOCK_FAST(fdp); fdp->fd_ofileflags[uap->fd] |= UF_EXCLOSE; FILEDESC_UNLOCK_FAST(fdp); fdrop(fp, td); return (0); } /* * Interpret high order word to find amount of data to be * copied to/from the user's address space. */ size = IOCPARM_LEN(com); if ((size > IOCPARM_MAX) || ((com & (IOC_VOID | IOC_IN | IOC_OUT)) == 0) || ((com & IOC_VOID) && size > 0) || ((com & (IOC_IN | IOC_OUT)) && size == 0)) { fdrop(fp, td); return (ENOTTY); } if (size > 0) { memp = malloc((u_long)size, M_IOCTLOPS, M_WAITOK); data = memp; } else { memp = NULL; data = (void *)&uap->data; } if (com & IOC_IN) { error = copyin(uap->data, data, (u_int)size); if (error) { free(memp, M_IOCTLOPS); fdrop(fp, td); return (error); } } else if (com & IOC_OUT) { /* * Zero the buffer so the user always * gets back something deterministic. */ bzero(data, size); } if (com == FIONBIO) { FILE_LOCK(fp); if ((tmp = *(int *)data)) fp->f_flag |= FNONBLOCK; else fp->f_flag &= ~FNONBLOCK; FILE_UNLOCK(fp); data = (void *)&tmp; } else if (com == FIOASYNC) { FILE_LOCK(fp); if ((tmp = *(int *)data)) fp->f_flag |= FASYNC; else fp->f_flag &= ~FASYNC; FILE_UNLOCK(fp); data = (void *)&tmp; } error = fo_ioctl(fp, com, data, td->td_ucred, td); if (error == 0 && (com & IOC_OUT)) error = copyout(data, uap->data, (u_int)size); if (memp != NULL) free(memp, M_IOCTLOPS); fdrop(fp, td); return (error); } /* * sellock and selwait are initialized in selectinit() via SYSINIT. */ struct mtx sellock; struct cv selwait; u_int nselcoll; /* Select collisions since boot */ SYSCTL_UINT(_kern, OID_AUTO, nselcoll, CTLFLAG_RD, &nselcoll, 0, ""); /* * Select system call. */ #ifndef _SYS_SYSPROTO_H_ struct select_args { int nd; fd_set *in, *ou, *ex; struct timeval *tv; }; #endif /* * MPSAFE */ int select(td, uap) register struct thread *td; register struct select_args *uap; { struct timeval tv, *tvp; int error; if (uap->tv != NULL) { error = copyin(uap->tv, &tv, sizeof(tv)); if (error) return (error); tvp = &tv; } else tvp = NULL; return (kern_select(td, uap->nd, uap->in, uap->ou, uap->ex, tvp)); } int kern_select(struct thread *td, int nd, fd_set *fd_in, fd_set *fd_ou, fd_set *fd_ex, struct timeval *tvp) { struct filedesc *fdp; /* * The magic 2048 here is chosen to be just enough for FD_SETSIZE * infds with the new FD_SETSIZE of 1024, and more than enough for * FD_SETSIZE infds, outfds and exceptfds with the old FD_SETSIZE * of 256. */ fd_mask s_selbits[howmany(2048, NFDBITS)]; fd_mask *ibits[3], *obits[3], *selbits, *sbp; struct timeval atv, rtv, ttv; int error, timo; u_int ncoll, nbufbytes, ncpbytes, nfdbits; if (nd < 0) return (EINVAL); fdp = td->td_proc->p_fd; FILEDESC_LOCK_FAST(fdp); if (nd > td->td_proc->p_fd->fd_nfiles) nd = td->td_proc->p_fd->fd_nfiles; /* forgiving; slightly wrong */ FILEDESC_UNLOCK_FAST(fdp); /* * Allocate just enough bits for the non-null fd_sets. Use the * preallocated auto buffer if possible. */ nfdbits = roundup(nd, NFDBITS); ncpbytes = nfdbits / NBBY; nbufbytes = 0; if (fd_in != NULL) nbufbytes += 2 * ncpbytes; if (fd_ou != NULL) nbufbytes += 2 * ncpbytes; if (fd_ex != NULL) nbufbytes += 2 * ncpbytes; if (nbufbytes <= sizeof s_selbits) selbits = &s_selbits[0]; else selbits = malloc(nbufbytes, M_SELECT, M_WAITOK); /* * Assign pointers into the bit buffers and fetch the input bits. * Put the output buffers together so that they can be bzeroed * together. */ sbp = selbits; #define getbits(name, x) \ do { \ if (name == NULL) \ ibits[x] = NULL; \ else { \ ibits[x] = sbp + nbufbytes / 2 / sizeof *sbp; \ obits[x] = sbp; \ sbp += ncpbytes / sizeof *sbp; \ error = copyin(name, ibits[x], ncpbytes); \ if (error != 0) \ goto done_nosellock; \ } \ } while (0) getbits(fd_in, 0); getbits(fd_ou, 1); getbits(fd_ex, 2); #undef getbits if (nbufbytes != 0) bzero(selbits, nbufbytes / 2); if (tvp != NULL) { atv = *tvp; if (itimerfix(&atv)) { error = EINVAL; goto done_nosellock; } getmicrouptime(&rtv); timevaladd(&atv, &rtv); } else { atv.tv_sec = 0; atv.tv_usec = 0; } timo = 0; TAILQ_INIT(&td->td_selq); mtx_lock(&sellock); retry: ncoll = nselcoll; mtx_lock_spin(&sched_lock); td->td_flags |= TDF_SELECT; mtx_unlock_spin(&sched_lock); mtx_unlock(&sellock); error = selscan(td, ibits, obits, nd); mtx_lock(&sellock); if (error || td->td_retval[0]) goto done; if (atv.tv_sec || atv.tv_usec) { getmicrouptime(&rtv); if (timevalcmp(&rtv, &atv, >=)) goto done; ttv = atv; timevalsub(&ttv, &rtv); timo = ttv.tv_sec > 24 * 60 * 60 ? 24 * 60 * 60 * hz : tvtohz(&ttv); } /* * An event of interest may occur while we do not hold * sellock, so check TDF_SELECT and the number of * collisions and rescan the file descriptors if * necessary. */ mtx_lock_spin(&sched_lock); if ((td->td_flags & TDF_SELECT) == 0 || nselcoll != ncoll) { mtx_unlock_spin(&sched_lock); goto retry; } mtx_unlock_spin(&sched_lock); if (timo > 0) error = cv_timedwait_sig(&selwait, &sellock, timo); else error = cv_wait_sig(&selwait, &sellock); if (error == 0) goto retry; done: clear_selinfo_list(td); mtx_lock_spin(&sched_lock); td->td_flags &= ~TDF_SELECT; mtx_unlock_spin(&sched_lock); mtx_unlock(&sellock); done_nosellock: /* select is not restarted after signals... */ if (error == ERESTART) error = EINTR; if (error == EWOULDBLOCK) error = 0; #define putbits(name, x) \ if (name && (error2 = copyout(obits[x], name, ncpbytes))) \ error = error2; if (error == 0) { int error2; putbits(fd_in, 0); putbits(fd_ou, 1); putbits(fd_ex, 2); #undef putbits } if (selbits != &s_selbits[0]) free(selbits, M_SELECT); return (error); } static int selscan(td, ibits, obits, nfd) struct thread *td; fd_mask **ibits, **obits; int nfd; { int msk, i, fd; fd_mask bits; struct file *fp; int n = 0; /* Note: backend also returns POLLHUP/POLLERR if appropriate. */ static int flag[3] = { POLLRDNORM, POLLWRNORM, POLLRDBAND }; struct filedesc *fdp = td->td_proc->p_fd; FILEDESC_LOCK(fdp); for (msk = 0; msk < 3; msk++) { if (ibits[msk] == NULL) continue; for (i = 0; i < nfd; i += NFDBITS) { bits = ibits[msk][i/NFDBITS]; /* ffs(int mask) not portable, fd_mask is long */ for (fd = i; bits && fd < nfd; fd++, bits >>= 1) { if (!(bits & 1)) continue; if ((fp = fget_locked(fdp, fd)) == NULL) { FILEDESC_UNLOCK(fdp); return (EBADF); } if (fo_poll(fp, flag[msk], td->td_ucred, td)) { obits[msk][(fd)/NFDBITS] |= ((fd_mask)1 << ((fd) % NFDBITS)); n++; } } } } FILEDESC_UNLOCK(fdp); td->td_retval[0] = n; return (0); } /* * Poll system call. */ #ifndef _SYS_SYSPROTO_H_ struct poll_args { struct pollfd *fds; u_int nfds; int timeout; }; #endif /* * MPSAFE */ int poll(td, uap) struct thread *td; struct poll_args *uap; { struct pollfd *bits; struct pollfd smallbits[32]; struct timeval atv, rtv, ttv; int error = 0, timo; u_int ncoll, nfds; size_t ni; nfds = uap->nfds; /* * This is kinda bogus. We have fd limits, but that is not * really related to the size of the pollfd array. Make sure * we let the process use at least FD_SETSIZE entries and at * least enough for the current limits. We want to be reasonably * safe, but not overly restrictive. */ PROC_LOCK(td->td_proc); if ((nfds > lim_cur(td->td_proc, RLIMIT_NOFILE)) && (nfds > FD_SETSIZE)) { PROC_UNLOCK(td->td_proc); error = EINVAL; goto done2; } PROC_UNLOCK(td->td_proc); ni = nfds * sizeof(struct pollfd); if (ni > sizeof(smallbits)) bits = malloc(ni, M_TEMP, M_WAITOK); else bits = smallbits; error = copyin(uap->fds, bits, ni); if (error) goto done_nosellock; if (uap->timeout != INFTIM) { atv.tv_sec = uap->timeout / 1000; atv.tv_usec = (uap->timeout % 1000) * 1000; if (itimerfix(&atv)) { error = EINVAL; goto done_nosellock; } getmicrouptime(&rtv); timevaladd(&atv, &rtv); } else { atv.tv_sec = 0; atv.tv_usec = 0; } timo = 0; TAILQ_INIT(&td->td_selq); mtx_lock(&sellock); retry: ncoll = nselcoll; mtx_lock_spin(&sched_lock); td->td_flags |= TDF_SELECT; mtx_unlock_spin(&sched_lock); mtx_unlock(&sellock); error = pollscan(td, bits, nfds); mtx_lock(&sellock); if (error || td->td_retval[0]) goto done; if (atv.tv_sec || atv.tv_usec) { getmicrouptime(&rtv); if (timevalcmp(&rtv, &atv, >=)) goto done; ttv = atv; timevalsub(&ttv, &rtv); timo = ttv.tv_sec > 24 * 60 * 60 ? 24 * 60 * 60 * hz : tvtohz(&ttv); } /* * An event of interest may occur while we do not hold * sellock, so check TDF_SELECT and the number of collisions * and rescan the file descriptors if necessary. */ mtx_lock_spin(&sched_lock); if ((td->td_flags & TDF_SELECT) == 0 || nselcoll != ncoll) { mtx_unlock_spin(&sched_lock); goto retry; } mtx_unlock_spin(&sched_lock); if (timo > 0) error = cv_timedwait_sig(&selwait, &sellock, timo); else error = cv_wait_sig(&selwait, &sellock); if (error == 0) goto retry; done: clear_selinfo_list(td); mtx_lock_spin(&sched_lock); td->td_flags &= ~TDF_SELECT; mtx_unlock_spin(&sched_lock); mtx_unlock(&sellock); done_nosellock: /* poll is not restarted after signals... */ if (error == ERESTART) error = EINTR; if (error == EWOULDBLOCK) error = 0; if (error == 0) { error = copyout(bits, uap->fds, ni); if (error) goto out; } out: if (ni > sizeof(smallbits)) free(bits, M_TEMP); done2: return (error); } static int pollscan(td, fds, nfd) struct thread *td; struct pollfd *fds; u_int nfd; { register struct filedesc *fdp = td->td_proc->p_fd; int i; struct file *fp; int n = 0; FILEDESC_LOCK(fdp); for (i = 0; i < nfd; i++, fds++) { if (fds->fd >= fdp->fd_nfiles) { fds->revents = POLLNVAL; n++; } else if (fds->fd < 0) { fds->revents = 0; } else { fp = fdp->fd_ofiles[fds->fd]; if (fp == NULL) { fds->revents = POLLNVAL; n++; } else { /* * Note: backend also returns POLLHUP and * POLLERR if appropriate. */ fds->revents = fo_poll(fp, fds->events, td->td_ucred, td); if (fds->revents != 0) n++; } } } FILEDESC_UNLOCK(fdp); td->td_retval[0] = n; return (0); } /* * OpenBSD poll system call. * XXX this isn't quite a true representation.. OpenBSD uses select ops. */ #ifndef _SYS_SYSPROTO_H_ struct openbsd_poll_args { struct pollfd *fds; u_int nfds; int timeout; }; #endif /* * MPSAFE */ int openbsd_poll(td, uap) register struct thread *td; register struct openbsd_poll_args *uap; { return (poll(td, (struct poll_args *)uap)); } /* * Remove the references to the thread from all of the objects * we were polling. * * This code assumes that the underlying owner of the selinfo * structure will hold sellock before it changes it, and that * it will unlink itself from our list if it goes away. */ void clear_selinfo_list(td) struct thread *td; { struct selinfo *si; mtx_assert(&sellock, MA_OWNED); TAILQ_FOREACH(si, &td->td_selq, si_thrlist) si->si_thread = NULL; TAILQ_INIT(&td->td_selq); } /* * Record a select request. */ void selrecord(selector, sip) struct thread *selector; struct selinfo *sip; { mtx_lock(&sellock); /* * If the selinfo's thread pointer is NULL then take ownership of it. * * If the thread pointer is not NULL and it points to another * thread, then we have a collision. * * If the thread pointer is not NULL and points back to us then leave * it alone as we've already added pointed it at us and added it to * our list. */ if (sip->si_thread == NULL) { sip->si_thread = selector; TAILQ_INSERT_TAIL(&selector->td_selq, sip, si_thrlist); } else if (sip->si_thread != selector) { sip->si_flags |= SI_COLL; } mtx_unlock(&sellock); } /* Wake up a selecting thread. */ void selwakeup(sip) struct selinfo *sip; { doselwakeup(sip, -1); } /* Wake up a selecting thread, and set its priority. */ void selwakeuppri(sip, pri) struct selinfo *sip; int pri; { doselwakeup(sip, pri); } /* * Do a wakeup when a selectable event occurs. */ static void doselwakeup(sip, pri) struct selinfo *sip; int pri; { struct thread *td; mtx_lock(&sellock); td = sip->si_thread; if ((sip->si_flags & SI_COLL) != 0) { nselcoll++; sip->si_flags &= ~SI_COLL; cv_broadcastpri(&selwait, pri); } if (td == NULL) { mtx_unlock(&sellock); return; } TAILQ_REMOVE(&td->td_selq, sip, si_thrlist); sip->si_thread = NULL; mtx_lock_spin(&sched_lock); td->td_flags &= ~TDF_SELECT; mtx_unlock_spin(&sched_lock); sleepq_remove(td, &selwait); mtx_unlock(&sellock); } static void selectinit(void *); SYSINIT(select, SI_SUB_LOCK, SI_ORDER_FIRST, selectinit, NULL) /* ARGSUSED*/ static void selectinit(dummy) void *dummy; { cv_init(&selwait, "select"); mtx_init(&sellock, "sellck", NULL, MTX_DEF); }