/* $FreeBSD$ */ /*- * Copyright (c) 2004, 2005 * Damien Bergamini . All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice unmodified, this list of conditions, and the following * disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include __FBSDID("$FreeBSD$"); /*- * Intel(R) PRO/Wireless 2100 MiniPCI driver * http://www.intel.com/network/connectivity/products/wireless/prowireless_mobile.htm */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef IPW_DEBUG #define DPRINTF(x) do { if (ipw_debug > 0) printf x; } while (0) #define DPRINTFN(n, x) do { if (ipw_debug >= (n)) printf x; } while (0) int ipw_debug = 0; SYSCTL_INT(_debug, OID_AUTO, ipw, CTLFLAG_RW, &ipw_debug, 0, "ipw debug level"); #else #define DPRINTF(x) #define DPRINTFN(n, x) #endif MODULE_DEPEND(ipw, pci, 1, 1, 1); MODULE_DEPEND(ipw, wlan, 1, 1, 1); struct ipw_ident { uint16_t vendor; uint16_t device; const char *name; }; static const struct ipw_ident ipw_ident_table[] = { { 0x8086, 0x1043, "Intel(R) PRO/Wireless 2100 MiniPCI" }, { 0, 0, NULL } }; static int ipw_dma_alloc(struct ipw_softc *); static void ipw_release(struct ipw_softc *); static int ipw_media_change(struct ifnet *); static void ipw_media_status(struct ifnet *, struct ifmediareq *); static int ipw_newstate(struct ieee80211com *, enum ieee80211_state, int); static uint16_t ipw_read_prom_word(struct ipw_softc *, uint8_t); static void ipw_command_intr(struct ipw_softc *, struct ipw_soft_buf *); static void ipw_newstate_intr(struct ipw_softc *, struct ipw_soft_buf *); static void ipw_data_intr(struct ipw_softc *, struct ipw_status *, struct ipw_soft_bd *, struct ipw_soft_buf *); static void ipw_rx_intr(struct ipw_softc *); static void ipw_release_sbd(struct ipw_softc *, struct ipw_soft_bd *); static void ipw_tx_intr(struct ipw_softc *); static void ipw_intr(void *); static void ipw_dma_map_addr(void *, bus_dma_segment_t *, int, int); static int ipw_cmd(struct ipw_softc *, uint32_t, void *, uint32_t); static int ipw_tx_start(struct ifnet *, struct mbuf *, struct ieee80211_node *); static void ipw_start(struct ifnet *); static void ipw_watchdog(struct ifnet *); static int ipw_ioctl(struct ifnet *, u_long, caddr_t); static void ipw_stop_master(struct ipw_softc *); static int ipw_reset(struct ipw_softc *); static int ipw_load_ucode(struct ipw_softc *, u_char *, int); static int ipw_load_firmware(struct ipw_softc *, u_char *, int); static int ipw_cache_firmware(struct ipw_softc *, void *); static void ipw_free_firmware(struct ipw_softc *); static int ipw_config(struct ipw_softc *); static void ipw_init(void *); static void ipw_stop(void *); #ifdef IPW_DEBUG static int ipw_sysctl_stats(SYSCTL_HANDLER_ARGS); #endif static int ipw_sysctl_radio(SYSCTL_HANDLER_ARGS); static uint32_t ipw_read_table1(struct ipw_softc *, uint32_t); static void ipw_write_table1(struct ipw_softc *, uint32_t, uint32_t); static int ipw_read_table2(struct ipw_softc *, uint32_t, void *, uint32_t *); static void ipw_read_mem_1(struct ipw_softc *, bus_size_t, uint8_t *, bus_size_t); static void ipw_write_mem_1(struct ipw_softc *, bus_size_t, uint8_t *, bus_size_t); static int ipw_probe(device_t); static int ipw_attach(device_t); static int ipw_detach(device_t); static int ipw_shutdown(device_t); static int ipw_suspend(device_t); static int ipw_resume(device_t); static device_method_t ipw_methods[] = { /* Device interface */ DEVMETHOD(device_probe, ipw_probe), DEVMETHOD(device_attach, ipw_attach), DEVMETHOD(device_detach, ipw_detach), DEVMETHOD(device_shutdown, ipw_shutdown), DEVMETHOD(device_suspend, ipw_suspend), DEVMETHOD(device_resume, ipw_resume), { 0, 0 } }; static driver_t ipw_driver = { "ipw", ipw_methods, sizeof (struct ipw_softc) }; static devclass_t ipw_devclass; DRIVER_MODULE(ipw, pci, ipw_driver, ipw_devclass, 0, 0); /* * Supported rates for 802.11b mode (in 500Kbps unit). */ static const struct ieee80211_rateset ipw_rateset_11b = { 4, { 2, 4, 11, 22 } }; static __inline uint8_t MEM_READ_1(struct ipw_softc *sc, uint32_t addr) { CSR_WRITE_4(sc, IPW_CSR_INDIRECT_ADDR, addr); return CSR_READ_1(sc, IPW_CSR_INDIRECT_DATA); } static __inline uint32_t MEM_READ_4(struct ipw_softc *sc, uint32_t addr) { CSR_WRITE_4(sc, IPW_CSR_INDIRECT_ADDR, addr); return CSR_READ_4(sc, IPW_CSR_INDIRECT_DATA); } static int ipw_probe(device_t dev) { const struct ipw_ident *ident; for (ident = ipw_ident_table; ident->name != NULL; ident++) { if (pci_get_vendor(dev) == ident->vendor && pci_get_device(dev) == ident->device) { device_set_desc(dev, ident->name); return 0; } } return ENXIO; } /* Base Address Register */ #define IPW_PCI_BAR0 0x10 static int ipw_attach(device_t dev) { struct ipw_softc *sc = device_get_softc(dev); struct ifnet *ifp; struct ieee80211com *ic = &sc->sc_ic; uint16_t val; int error, i; sc->sc_dev = dev; mtx_init(&sc->sc_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK, MTX_DEF | MTX_RECURSE); if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) { device_printf(dev, "chip is in D%d power mode " "-- setting to D0\n", pci_get_powerstate(dev)); pci_set_powerstate(dev, PCI_POWERSTATE_D0); } pci_write_config(dev, 0x41, 0, 1); /* enable bus-mastering */ pci_enable_busmaster(dev); sc->mem_rid = IPW_PCI_BAR0; sc->mem = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &sc->mem_rid, RF_ACTIVE); if (sc->mem == NULL) { device_printf(dev, "could not allocate memory resource\n"); goto fail; } sc->sc_st = rman_get_bustag(sc->mem); sc->sc_sh = rman_get_bushandle(sc->mem); sc->irq_rid = 0; sc->irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &sc->irq_rid, RF_ACTIVE | RF_SHAREABLE); if (sc->irq == NULL) { device_printf(dev, "could not allocate interrupt resource\n"); goto fail; } if (ipw_reset(sc) != 0) { device_printf(dev, "could not reset adapter\n"); goto fail; } if (ipw_dma_alloc(sc) != 0) { device_printf(dev, "could not allocate DMA resources\n"); goto fail; } ifp = sc->sc_ifp = if_alloc(IFT_ETHER); if (ifp == NULL) { device_printf(dev, "can not if_alloc()\n"); goto fail; } ifp->if_softc = sc; if_initname(ifp, device_get_name(dev), device_get_unit(dev)); ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; ifp->if_init = ipw_init; ifp->if_ioctl = ipw_ioctl; ifp->if_start = ipw_start; ifp->if_watchdog = ipw_watchdog; IFQ_SET_MAXLEN(&ifp->if_snd, IFQ_MAXLEN); ifp->if_snd.ifq_drv_maxlen = IFQ_MAXLEN; IFQ_SET_READY(&ifp->if_snd); ic->ic_ifp = ifp; ic->ic_phytype = IEEE80211_T_DS; ic->ic_opmode = IEEE80211_M_STA; ic->ic_state = IEEE80211_S_INIT; /* set device capabilities */ ic->ic_caps = IEEE80211_C_SHPREAMBLE | IEEE80211_C_TXPMGT | IEEE80211_C_PMGT | IEEE80211_C_IBSS | IEEE80211_C_MONITOR | IEEE80211_C_WPA; /* read MAC address from EEPROM */ val = ipw_read_prom_word(sc, IPW_EEPROM_MAC + 0); ic->ic_myaddr[0] = val >> 8; ic->ic_myaddr[1] = val & 0xff; val = ipw_read_prom_word(sc, IPW_EEPROM_MAC + 1); ic->ic_myaddr[2] = val >> 8; ic->ic_myaddr[3] = val & 0xff; val = ipw_read_prom_word(sc, IPW_EEPROM_MAC + 2); ic->ic_myaddr[4] = val >> 8; ic->ic_myaddr[5] = val & 0xff; /* set supported .11b rates */ ic->ic_sup_rates[IEEE80211_MODE_11B] = ipw_rateset_11b; /* set supported .11b channels (read from EEPROM) */ if ((val = ipw_read_prom_word(sc, IPW_EEPROM_CHANNEL_LIST)) == 0) val = 0x7ff; /* default to channels 1-11 */ val <<= 1; for (i = 1; i < 16; i++) { if (val & (1 << i)) { ic->ic_channels[i].ic_freq = ieee80211_ieee2mhz(i, IEEE80211_CHAN_B); ic->ic_channels[i].ic_flags = IEEE80211_CHAN_B; } } /* check support for radio transmitter switch in EEPROM */ if (!(ipw_read_prom_word(sc, IPW_EEPROM_RADIO) & 8)) sc->flags |= IPW_FLAG_HAS_RADIO_SWITCH; ieee80211_ifattach(ic); /* override state transition machine */ sc->sc_newstate = ic->ic_newstate; ic->ic_newstate = ipw_newstate; ieee80211_media_init(ic, ipw_media_change, ipw_media_status); bpfattach2(ifp, DLT_IEEE802_11_RADIO, sizeof (struct ieee80211_frame) + 64, &sc->sc_drvbpf); sc->sc_rxtap_len = sizeof sc->sc_rxtapu; sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len); sc->sc_rxtap.wr_ihdr.it_present = htole32(IPW_RX_RADIOTAP_PRESENT); sc->sc_txtap_len = sizeof sc->sc_txtapu; sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len); sc->sc_txtap.wt_ihdr.it_present = htole32(IPW_TX_RADIOTAP_PRESENT); /* * Add a few sysctl knobs. */ sc->dwelltime = 100; SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev), SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO, "radio", CTLTYPE_INT | CTLFLAG_RD, sc, 0, ipw_sysctl_radio, "I", "radio transmitter switch state (0=off, 1=on)"); #ifdef IPW_DEBUG SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev), SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO, "stats", CTLTYPE_OPAQUE | CTLFLAG_RD, sc, 0, ipw_sysctl_stats, "S", "statistics"); #endif SYSCTL_ADD_INT(device_get_sysctl_ctx(dev), SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO, "dwell", CTLFLAG_RW, &sc->dwelltime, 0, "channel dwell time (ms) for AP/station scanning"); /* * Hook our interrupt after all initialization is complete. */ error = bus_setup_intr(dev, sc->irq, INTR_TYPE_NET | INTR_MPSAFE, ipw_intr, sc, &sc->sc_ih); if (error != 0) { device_printf(dev, "could not set up interrupt\n"); goto fail; } if (bootverbose) ieee80211_announce(ic); return 0; fail: ipw_detach(dev); return ENXIO; } static int ipw_detach(device_t dev) { struct ipw_softc *sc = device_get_softc(dev); struct ieee80211com *ic = &sc->sc_ic; struct ifnet *ifp = ic->ic_ifp; IPW_LOCK(sc); ipw_stop(sc); ipw_free_firmware(sc); IPW_UNLOCK(sc); if (ifp != NULL) { bpfdetach(ifp); ieee80211_ifdetach(ic); if_free(ifp); } ipw_release(sc); if (sc->irq != NULL) { bus_teardown_intr(dev, sc->irq, sc->sc_ih); bus_release_resource(dev, SYS_RES_IRQ, sc->irq_rid, sc->irq); } if (sc->mem != NULL) bus_release_resource(dev, SYS_RES_MEMORY, sc->mem_rid, sc->mem); mtx_destroy(&sc->sc_mtx); return 0; } static int ipw_dma_alloc(struct ipw_softc *sc) { struct ipw_soft_bd *sbd; struct ipw_soft_hdr *shdr; struct ipw_soft_buf *sbuf; bus_addr_t physaddr; int error, i; /* * Allocate and map tx ring. */ error = bus_dma_tag_create(NULL, 4, 0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, IPW_TBD_SZ, 1, IPW_TBD_SZ, 0, NULL, NULL, &sc->tbd_dmat); if (error != 0) { device_printf(sc->sc_dev, "could not create tx ring DMA tag\n"); goto fail; } error = bus_dmamem_alloc(sc->tbd_dmat, (void **)&sc->tbd_list, BUS_DMA_NOWAIT | BUS_DMA_ZERO, &sc->tbd_map); if (error != 0) { device_printf(sc->sc_dev, "could not allocate tx ring DMA memory\n"); goto fail; } error = bus_dmamap_load(sc->tbd_dmat, sc->tbd_map, sc->tbd_list, IPW_TBD_SZ, ipw_dma_map_addr, &sc->tbd_phys, 0); if (error != 0) { device_printf(sc->sc_dev, "could not map tx ring DMA memory\n"); goto fail; } /* * Allocate and map rx ring. */ error = bus_dma_tag_create(NULL, 4, 0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, IPW_RBD_SZ, 1, IPW_RBD_SZ, 0, NULL, NULL, &sc->rbd_dmat); if (error != 0) { device_printf(sc->sc_dev, "could not create rx ring DMA tag\n"); goto fail; } error = bus_dmamem_alloc(sc->rbd_dmat, (void **)&sc->rbd_list, BUS_DMA_NOWAIT | BUS_DMA_ZERO, &sc->rbd_map); if (error != 0) { device_printf(sc->sc_dev, "could not allocate rx ring DMA memory\n"); goto fail; } error = bus_dmamap_load(sc->rbd_dmat, sc->rbd_map, sc->rbd_list, IPW_RBD_SZ, ipw_dma_map_addr, &sc->rbd_phys, 0); if (error != 0) { device_printf(sc->sc_dev, "could not map rx ring DMA memory\n"); goto fail; } /* * Allocate and map status ring. */ error = bus_dma_tag_create(NULL, 4, 0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, IPW_STATUS_SZ, 1, IPW_STATUS_SZ, 0, NULL, NULL, &sc->status_dmat); if (error != 0) { device_printf(sc->sc_dev, "could not create status ring DMA tag\n"); goto fail; } error = bus_dmamem_alloc(sc->status_dmat, (void **)&sc->status_list, BUS_DMA_NOWAIT | BUS_DMA_ZERO, &sc->status_map); if (error != 0) { device_printf(sc->sc_dev, "could not allocate status ring DMA memory\n"); goto fail; } error = bus_dmamap_load(sc->status_dmat, sc->status_map, sc->status_list, IPW_STATUS_SZ, ipw_dma_map_addr, &sc->status_phys, 0); if (error != 0) { device_printf(sc->sc_dev, "could not map status ring DMA memory\n"); goto fail; } /* * Allocate command DMA map. */ error = bus_dma_tag_create(NULL, 1, 0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, sizeof (struct ipw_cmd), 1, sizeof (struct ipw_cmd), 0, NULL, NULL, &sc->cmd_dmat); if (error != 0) { device_printf(sc->sc_dev, "could not create command DMA tag\n"); goto fail; } error = bus_dmamap_create(sc->cmd_dmat, 0, &sc->cmd_map); if (error != 0) { device_printf(sc->sc_dev, "could not create command DMA map\n"); goto fail; } /* * Allocate headers DMA maps. */ error = bus_dma_tag_create(NULL, 1, 0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, sizeof (struct ipw_hdr), 1, sizeof (struct ipw_hdr), 0, NULL, NULL, &sc->hdr_dmat); if (error != 0) { device_printf(sc->sc_dev, "could not create header DMA tag\n"); goto fail; } SLIST_INIT(&sc->free_shdr); for (i = 0; i < IPW_NDATA; i++) { shdr = &sc->shdr_list[i]; error = bus_dmamap_create(sc->hdr_dmat, 0, &shdr->map); if (error != 0) { device_printf(sc->sc_dev, "could not create header DMA map\n"); goto fail; } SLIST_INSERT_HEAD(&sc->free_shdr, shdr, next); } /* * Allocate tx buffers DMA maps. */ error = bus_dma_tag_create(NULL, 1, 0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES, IPW_MAX_NSEG, MCLBYTES, 0, NULL, NULL, &sc->txbuf_dmat); if (error != 0) { device_printf(sc->sc_dev, "could not create tx DMA tag\n"); goto fail; } SLIST_INIT(&sc->free_sbuf); for (i = 0; i < IPW_NDATA; i++) { sbuf = &sc->tx_sbuf_list[i]; error = bus_dmamap_create(sc->txbuf_dmat, 0, &sbuf->map); if (error != 0) { device_printf(sc->sc_dev, "could not create tx DMA map\n"); goto fail; } SLIST_INSERT_HEAD(&sc->free_sbuf, sbuf, next); } /* * Initialize tx ring. */ for (i = 0; i < IPW_NTBD; i++) { sbd = &sc->stbd_list[i]; sbd->bd = &sc->tbd_list[i]; sbd->type = IPW_SBD_TYPE_NOASSOC; } /* * Pre-allocate rx buffers and DMA maps. */ error = bus_dma_tag_create(NULL, 1, 0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES, 1, MCLBYTES, 0, NULL, NULL, &sc->rxbuf_dmat); if (error != 0) { device_printf(sc->sc_dev, "could not create rx DMA tag\n"); goto fail; } for (i = 0; i < IPW_NRBD; i++) { sbd = &sc->srbd_list[i]; sbuf = &sc->rx_sbuf_list[i]; sbd->bd = &sc->rbd_list[i]; sbuf->m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR); if (sbuf->m == NULL) { device_printf(sc->sc_dev, "could not allocate rx mbuf\n"); error = ENOMEM; goto fail; } error = bus_dmamap_create(sc->rxbuf_dmat, 0, &sbuf->map); if (error != 0) { device_printf(sc->sc_dev, "could not create rx DMA map\n"); goto fail; } error = bus_dmamap_load(sc->rxbuf_dmat, sbuf->map, mtod(sbuf->m, void *), MCLBYTES, ipw_dma_map_addr, &physaddr, 0); if (error != 0) { device_printf(sc->sc_dev, "could not map rx DMA memory\n"); goto fail; } sbd->type = IPW_SBD_TYPE_DATA; sbd->priv = sbuf; sbd->bd->physaddr = htole32(physaddr); sbd->bd->len = htole32(MCLBYTES); } bus_dmamap_sync(sc->rbd_dmat, sc->rbd_map, BUS_DMASYNC_PREWRITE); return 0; fail: ipw_release(sc); return error; } static void ipw_release(struct ipw_softc *sc) { struct ipw_soft_buf *sbuf; int i; if (sc->tbd_dmat != NULL) { if (sc->stbd_list != NULL) { bus_dmamap_unload(sc->tbd_dmat, sc->tbd_map); bus_dmamem_free(sc->tbd_dmat, sc->tbd_list, sc->tbd_map); } bus_dma_tag_destroy(sc->tbd_dmat); } if (sc->rbd_dmat != NULL) { if (sc->rbd_list != NULL) { bus_dmamap_unload(sc->rbd_dmat, sc->rbd_map); bus_dmamem_free(sc->rbd_dmat, sc->rbd_list, sc->rbd_map); } bus_dma_tag_destroy(sc->rbd_dmat); } if (sc->status_dmat != NULL) { if (sc->status_list != NULL) { bus_dmamap_unload(sc->status_dmat, sc->status_map); bus_dmamem_free(sc->status_dmat, sc->status_list, sc->status_map); } bus_dma_tag_destroy(sc->status_dmat); } for (i = 0; i < IPW_NTBD; i++) ipw_release_sbd(sc, &sc->stbd_list[i]); if (sc->cmd_dmat != NULL) { bus_dmamap_destroy(sc->cmd_dmat, sc->cmd_map); bus_dma_tag_destroy(sc->cmd_dmat); } if (sc->hdr_dmat != NULL) { for (i = 0; i < IPW_NDATA; i++) bus_dmamap_destroy(sc->hdr_dmat, sc->shdr_list[i].map); bus_dma_tag_destroy(sc->hdr_dmat); } if (sc->txbuf_dmat != NULL) { for (i = 0; i < IPW_NDATA; i++) { bus_dmamap_destroy(sc->txbuf_dmat, sc->tx_sbuf_list[i].map); } bus_dma_tag_destroy(sc->txbuf_dmat); } if (sc->rxbuf_dmat != NULL) { for (i = 0; i < IPW_NRBD; i++) { sbuf = &sc->rx_sbuf_list[i]; if (sbuf->m != NULL) { bus_dmamap_sync(sc->rxbuf_dmat, sbuf->map, BUS_DMASYNC_POSTREAD); bus_dmamap_unload(sc->rxbuf_dmat, sbuf->map); m_freem(sbuf->m); } bus_dmamap_destroy(sc->rxbuf_dmat, sbuf->map); } bus_dma_tag_destroy(sc->rxbuf_dmat); } } static int ipw_shutdown(device_t dev) { struct ipw_softc *sc = device_get_softc(dev); ipw_stop(sc); return 0; } static int ipw_suspend(device_t dev) { struct ipw_softc *sc = device_get_softc(dev); ipw_stop(sc); return 0; } static int ipw_resume(device_t dev) { struct ipw_softc *sc = device_get_softc(dev); struct ifnet *ifp = sc->sc_ic.ic_ifp; IPW_LOCK(sc); pci_write_config(dev, 0x41, 0, 1); if (ifp->if_flags & IFF_UP) { ifp->if_init(ifp->if_softc); if (ifp->if_flags & IFF_RUNNING) ifp->if_start(ifp); } IPW_UNLOCK(sc); return 0; } static int ipw_media_change(struct ifnet *ifp) { struct ipw_softc *sc = ifp->if_softc; int error; IPW_LOCK(sc); error = ieee80211_media_change(ifp); if (error != ENETRESET) { IPW_UNLOCK(sc); return error; } if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING)) ipw_init(sc); IPW_UNLOCK(sc); return 0; } /* * The firmware automaticly adapt the transmit speed. We report the current * transmit speed here. */ static void ipw_media_status(struct ifnet *ifp, struct ifmediareq *imr) { #define N(a) (sizeof (a) / sizeof (a[0])) struct ipw_softc *sc = ifp->if_softc; struct ieee80211com *ic = &sc->sc_ic; static const struct { uint32_t val; int rate; } rates[] = { { IPW_RATE_DS1, 2 }, { IPW_RATE_DS2, 4 }, { IPW_RATE_DS5, 11 }, { IPW_RATE_DS11, 22 }, }; uint32_t val; int rate, i; imr->ifm_status = IFM_AVALID; imr->ifm_active = IFM_IEEE80211; if (ic->ic_state == IEEE80211_S_RUN) imr->ifm_status |= IFM_ACTIVE; /* read current transmission rate from adapter */ val = ipw_read_table1(sc, IPW_INFO_CURRENT_TX_RATE) & 0xf; /* convert ipw rate to 802.11 rate */ for (i = 0; i < N(rates) && rates[i].val != val; i++); rate = (i < N(rates)) ? rates[i].rate : 0; imr->ifm_active |= IFM_IEEE80211_11B; imr->ifm_active |= ieee80211_rate2media(ic, rate, IEEE80211_MODE_11B); switch (ic->ic_opmode) { case IEEE80211_M_STA: break; case IEEE80211_M_IBSS: imr->ifm_active |= IFM_IEEE80211_IBSS; break; case IEEE80211_M_MONITOR: imr->ifm_active |= IFM_IEEE80211_MONITOR; break; case IEEE80211_M_AHDEMO: case IEEE80211_M_HOSTAP: /* should not get there */ break; } #undef N } static int ipw_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg) { struct ifnet *ifp = ic->ic_ifp; struct ipw_softc *sc = ifp->if_softc; struct ieee80211_node *ni; uint8_t macaddr[IEEE80211_ADDR_LEN]; uint32_t len; switch (nstate) { case IEEE80211_S_RUN: DELAY(200); /* firmware needs a short delay here */ len = IEEE80211_ADDR_LEN; ipw_read_table2(sc, IPW_INFO_CURRENT_BSSID, macaddr, &len); ni = ieee80211_find_node(&ic->ic_scan, macaddr); if (ni == NULL) break; ieee80211_ref_node(ni); ieee80211_sta_join(ic, ni); ieee80211_node_authorize(ni); if (ic->ic_opmode == IEEE80211_M_STA) ieee80211_notify_node_join(ic, ni, 1); break; case IEEE80211_S_INIT: case IEEE80211_S_SCAN: case IEEE80211_S_AUTH: case IEEE80211_S_ASSOC: break; } ic->ic_state = nstate; return 0; } /* * Read 16 bits at address 'addr' from the serial EEPROM. */ static uint16_t ipw_read_prom_word(struct ipw_softc *sc, uint8_t addr) { uint32_t tmp; uint16_t val; int n; /* clock C once before the first command */ IPW_EEPROM_CTL(sc, 0); IPW_EEPROM_CTL(sc, IPW_EEPROM_S); IPW_EEPROM_CTL(sc, IPW_EEPROM_S | IPW_EEPROM_C); IPW_EEPROM_CTL(sc, IPW_EEPROM_S); /* write start bit (1) */ IPW_EEPROM_CTL(sc, IPW_EEPROM_S | IPW_EEPROM_D); IPW_EEPROM_CTL(sc, IPW_EEPROM_S | IPW_EEPROM_D | IPW_EEPROM_C); /* write READ opcode (10) */ IPW_EEPROM_CTL(sc, IPW_EEPROM_S | IPW_EEPROM_D); IPW_EEPROM_CTL(sc, IPW_EEPROM_S | IPW_EEPROM_D | IPW_EEPROM_C); IPW_EEPROM_CTL(sc, IPW_EEPROM_S); IPW_EEPROM_CTL(sc, IPW_EEPROM_S | IPW_EEPROM_C); /* write address A7-A0 */ for (n = 7; n >= 0; n--) { IPW_EEPROM_CTL(sc, IPW_EEPROM_S | (((addr >> n) & 1) << IPW_EEPROM_SHIFT_D)); IPW_EEPROM_CTL(sc, IPW_EEPROM_S | (((addr >> n) & 1) << IPW_EEPROM_SHIFT_D) | IPW_EEPROM_C); } IPW_EEPROM_CTL(sc, IPW_EEPROM_S); /* read data Q15-Q0 */ val = 0; for (n = 15; n >= 0; n--) { IPW_EEPROM_CTL(sc, IPW_EEPROM_S | IPW_EEPROM_C); IPW_EEPROM_CTL(sc, IPW_EEPROM_S); tmp = MEM_READ_4(sc, IPW_MEM_EEPROM_CTL); val |= ((tmp & IPW_EEPROM_Q) >> IPW_EEPROM_SHIFT_Q) << n; } IPW_EEPROM_CTL(sc, 0); /* clear Chip Select and clock C */ IPW_EEPROM_CTL(sc, IPW_EEPROM_S); IPW_EEPROM_CTL(sc, 0); IPW_EEPROM_CTL(sc, IPW_EEPROM_C); return le16toh(val); } static void ipw_command_intr(struct ipw_softc *sc, struct ipw_soft_buf *sbuf) { struct ipw_cmd *cmd; bus_dmamap_sync(sc->rxbuf_dmat, sbuf->map, BUS_DMASYNC_POSTREAD); cmd = mtod(sbuf->m, struct ipw_cmd *); DPRINTFN(2, ("cmd ack'ed (%u, %u, %u, %u, %u)\n", le32toh(cmd->type), le32toh(cmd->subtype), le32toh(cmd->seq), le32toh(cmd->len), le32toh(cmd->status))); wakeup(sc); } static void ipw_newstate_intr(struct ipw_softc *sc, struct ipw_soft_buf *sbuf) { struct ieee80211com *ic = &sc->sc_ic; uint32_t state; bus_dmamap_sync(sc->rxbuf_dmat, sbuf->map, BUS_DMASYNC_POSTREAD); state = le32toh(*mtod(sbuf->m, uint32_t *)); DPRINTFN(2, ("entering state %u\n", state)); switch (state) { case IPW_STATE_ASSOCIATED: ieee80211_new_state(ic, IEEE80211_S_RUN, -1); break; case IPW_STATE_SCANNING: /* don't leave run state on background scan */ if (ic->ic_state != IEEE80211_S_RUN) ieee80211_new_state(ic, IEEE80211_S_SCAN, -1); ic->ic_flags |= IEEE80211_F_SCAN; break; case IPW_STATE_SCAN_COMPLETE: ieee80211_notify_scan_done(ic); ic->ic_flags &= ~IEEE80211_F_SCAN; break; case IPW_STATE_ASSOCIATION_LOST: ieee80211_new_state(ic, IEEE80211_S_INIT, -1); break; case IPW_STATE_RADIO_DISABLED: ic->ic_ifp->if_flags &= ~IFF_UP; ipw_stop(sc); break; } } /* * XXX: Hack to set the current channel to the value advertised in beacons or * probe responses. Only used during AP detection. */ static void ipw_fix_channel(struct ieee80211com *ic, struct mbuf *m) { struct ieee80211_frame *wh; uint8_t subtype; uint8_t *frm, *efrm; wh = mtod(m, struct ieee80211_frame *); if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) != IEEE80211_FC0_TYPE_MGT) return; subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK; if (subtype != IEEE80211_FC0_SUBTYPE_BEACON && subtype != IEEE80211_FC0_SUBTYPE_PROBE_RESP) return; frm = (uint8_t *)(wh + 1); efrm = mtod(m, uint8_t *) + m->m_len; frm += 12; /* skip tstamp, bintval and capinfo fields */ while (frm < efrm) { if (*frm == IEEE80211_ELEMID_DSPARMS) #if IEEE80211_CHAN_MAX < 255 if (frm[2] <= IEEE80211_CHAN_MAX) #endif ic->ic_bss->ni_chan = &ic->ic_channels[frm[2]]; frm += frm[1] + 2; } } static void ipw_data_intr(struct ipw_softc *sc, struct ipw_status *status, struct ipw_soft_bd *sbd, struct ipw_soft_buf *sbuf) { struct ieee80211com *ic = &sc->sc_ic; struct ifnet *ifp = ic->ic_ifp; struct mbuf *m; struct ieee80211_frame *wh; struct ieee80211_node *ni; bus_addr_t physaddr; int error; if (le32toh(status->len) < sizeof (struct ieee80211_frame_min) || le32toh(status->len) > MCLBYTES) return; bus_dmamap_sync(sc->rxbuf_dmat, sbuf->map, BUS_DMASYNC_POSTREAD); bus_dmamap_unload(sc->rxbuf_dmat, sbuf->map); /* finalize mbuf */ m = sbuf->m; m->m_pkthdr.rcvif = ifp; m->m_pkthdr.len = m->m_len = le32toh(status->len); if (sc->sc_drvbpf != NULL) { struct ipw_rx_radiotap_header *tap = &sc->sc_rxtap; tap->wr_flags = 0; tap->wr_antsignal = status->rssi; tap->wr_chan_freq = htole16(ic->ic_ibss_chan->ic_freq); tap->wr_chan_flags = htole16(ic->ic_ibss_chan->ic_flags); bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m); } if (ic->ic_state == IEEE80211_S_SCAN) ipw_fix_channel(ic, m); wh = mtod(m, struct ieee80211_frame *); ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh); /* send the frame to the 802.11 layer */ ieee80211_input(ic, m, ni, status->rssi, 0); /* node is no longer needed */ ieee80211_free_node(ni); m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR); if (m == NULL) { device_printf(sc->sc_dev, "could not allocate rx mbuf\n"); sbuf->m = NULL; return; } error = bus_dmamap_load(sc->rxbuf_dmat, sbuf->map, mtod(m, void *), MCLBYTES, ipw_dma_map_addr, &physaddr, 0); if (error != 0) { device_printf(sc->sc_dev, "could not map rx DMA memory\n"); m_freem(m); sbuf->m = NULL; return; } sbuf->m = m; sbd->bd->physaddr = htole32(physaddr); DPRINTFN(5, ("received frame len=%u, rssi=%u\n", le32toh(status->len), status->rssi)); bus_dmamap_sync(sc->rbd_dmat, sc->rbd_map, BUS_DMASYNC_PREWRITE); } static void ipw_rx_intr(struct ipw_softc *sc) { struct ipw_status *status; struct ipw_soft_bd *sbd; struct ipw_soft_buf *sbuf; uint32_t r, i; if (!(sc->flags & IPW_FLAG_FW_INITED)) return; r = CSR_READ_4(sc, IPW_CSR_RX_READ); bus_dmamap_sync(sc->status_dmat, sc->status_map, BUS_DMASYNC_POSTREAD); for (i = (sc->rxcur + 1) % IPW_NRBD; i != r; i = (i + 1) % IPW_NRBD) { status = &sc->status_list[i]; sbd = &sc->srbd_list[i]; sbuf = sbd->priv; switch (le16toh(status->code) & 0xf) { case IPW_STATUS_CODE_COMMAND: ipw_command_intr(sc, sbuf); break; case IPW_STATUS_CODE_NEWSTATE: ipw_newstate_intr(sc, sbuf); break; case IPW_STATUS_CODE_DATA_802_3: case IPW_STATUS_CODE_DATA_802_11: ipw_data_intr(sc, status, sbd, sbuf); break; case IPW_STATUS_CODE_NOTIFICATION: DPRINTFN(2, ("received notification\n")); break; default: device_printf(sc->sc_dev, "unknown status code %u\n", le16toh(status->code)); } /* firmware was killed, stop processing received frames */ if (!(sc->flags & IPW_FLAG_FW_INITED)) return; sbd->bd->flags = 0; } bus_dmamap_sync(sc->rbd_dmat, sc->rbd_map, BUS_DMASYNC_PREWRITE); /* kick the firmware */ sc->rxcur = (r == 0) ? IPW_NRBD - 1 : r - 1; CSR_WRITE_4(sc, IPW_CSR_RX_WRITE, sc->rxcur); } static void ipw_release_sbd(struct ipw_softc *sc, struct ipw_soft_bd *sbd) { struct ipw_soft_hdr *shdr; struct ipw_soft_buf *sbuf; switch (sbd->type) { case IPW_SBD_TYPE_COMMAND: bus_dmamap_sync(sc->cmd_dmat, sc->cmd_map, BUS_DMASYNC_POSTWRITE); bus_dmamap_unload(sc->cmd_dmat, sc->cmd_map); break; case IPW_SBD_TYPE_HEADER: shdr = sbd->priv; bus_dmamap_sync(sc->hdr_dmat, shdr->map, BUS_DMASYNC_POSTWRITE); bus_dmamap_unload(sc->hdr_dmat, shdr->map); SLIST_INSERT_HEAD(&sc->free_shdr, shdr, next); break; case IPW_SBD_TYPE_DATA: sbuf = sbd->priv; bus_dmamap_sync(sc->txbuf_dmat, sbuf->map, BUS_DMASYNC_POSTWRITE); bus_dmamap_unload(sc->txbuf_dmat, sbuf->map); SLIST_INSERT_HEAD(&sc->free_sbuf, sbuf, next); m_freem(sbuf->m); ieee80211_free_node(sbuf->ni); sc->sc_tx_timer = 0; break; } sbd->type = IPW_SBD_TYPE_NOASSOC; } static void ipw_tx_intr(struct ipw_softc *sc) { struct ifnet *ifp = sc->sc_ic.ic_ifp; struct ipw_soft_bd *sbd; uint32_t r, i; if (!(sc->flags & IPW_FLAG_FW_INITED)) return; r = CSR_READ_4(sc, IPW_CSR_TX_READ); for (i = (sc->txold + 1) % IPW_NTBD; i != r; i = (i + 1) % IPW_NTBD) { sbd = &sc->stbd_list[i]; if (sbd->type == IPW_SBD_TYPE_DATA) ifp->if_opackets++; ipw_release_sbd(sc, sbd); sc->txfree++; } /* remember what the firmware has processed */ sc->txold = (r == 0) ? IPW_NTBD - 1 : r - 1; ifp->if_flags &= ~IFF_OACTIVE; ipw_start(ifp); } static void ipw_intr(void *arg) { struct ipw_softc *sc = arg; uint32_t r; IPW_LOCK(sc); if ((r = CSR_READ_4(sc, IPW_CSR_INTR)) == 0 || r == 0xffffffff) { IPW_UNLOCK(sc); return; } /* disable interrupts */ CSR_WRITE_4(sc, IPW_CSR_INTR_MASK, 0); if (r & (IPW_INTR_FATAL_ERROR | IPW_INTR_PARITY_ERROR)) { device_printf(sc->sc_dev, "fatal error\n"); sc->sc_ic.ic_ifp->if_flags &= ~IFF_UP; ipw_stop(sc); } if (r & IPW_INTR_FW_INIT_DONE) { if (!(r & (IPW_INTR_FATAL_ERROR | IPW_INTR_PARITY_ERROR))) wakeup(sc); } if (r & IPW_INTR_RX_TRANSFER) ipw_rx_intr(sc); if (r & IPW_INTR_TX_TRANSFER) ipw_tx_intr(sc); /* acknowledge all interrupts */ CSR_WRITE_4(sc, IPW_CSR_INTR, r); /* re-enable interrupts */ CSR_WRITE_4(sc, IPW_CSR_INTR_MASK, IPW_INTR_MASK); IPW_UNLOCK(sc); } static void ipw_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error) { if (error != 0) return; KASSERT(nseg == 1, ("too many DMA segments, %d should be 1", nseg)); *(bus_addr_t *)arg = segs[0].ds_addr; } /* * Send a command to the firmware and wait for the acknowledgement. */ static int ipw_cmd(struct ipw_softc *sc, uint32_t type, void *data, uint32_t len) { struct ipw_soft_bd *sbd; bus_addr_t physaddr; int error; sbd = &sc->stbd_list[sc->txcur]; error = bus_dmamap_load(sc->cmd_dmat, sc->cmd_map, &sc->cmd, sizeof (struct ipw_cmd), ipw_dma_map_addr, &physaddr, 0); if (error != 0) { device_printf(sc->sc_dev, "could not map command DMA memory\n"); return error; } sc->cmd.type = htole32(type); sc->cmd.subtype = 0; sc->cmd.len = htole32(len); sc->cmd.seq = 0; bcopy(data, sc->cmd.data, len); sbd->type = IPW_SBD_TYPE_COMMAND; sbd->bd->physaddr = htole32(physaddr); sbd->bd->len = htole32(sizeof (struct ipw_cmd)); sbd->bd->nfrag = 1; sbd->bd->flags = IPW_BD_FLAG_TX_FRAME_COMMAND | IPW_BD_FLAG_TX_LAST_FRAGMENT; bus_dmamap_sync(sc->cmd_dmat, sc->cmd_map, BUS_DMASYNC_PREWRITE); bus_dmamap_sync(sc->tbd_dmat, sc->tbd_map, BUS_DMASYNC_PREWRITE); DPRINTFN(2, ("sending command (%u, %u, %u, %u)\n", type, 0, 0, len)); /* kick firmware */ sc->txfree--; sc->txcur = (sc->txcur + 1) % IPW_NTBD; CSR_WRITE_4(sc, IPW_CSR_TX_WRITE, sc->txcur); /* wait at most one second for command to complete */ return msleep(sc, &sc->sc_mtx, 0, "ipwcmd", hz); } static int ipw_tx_start(struct ifnet *ifp, struct mbuf *m0, struct ieee80211_node *ni) { struct ipw_softc *sc = ifp->if_softc; struct ieee80211com *ic = &sc->sc_ic; struct ieee80211_frame *wh; struct ipw_soft_bd *sbd; struct ipw_soft_hdr *shdr; struct ipw_soft_buf *sbuf; struct ieee80211_key *k; struct mbuf *mnew; bus_dma_segment_t segs[IPW_MAX_NSEG]; bus_addr_t physaddr; int nsegs, error, i; wh = mtod(m0, struct ieee80211_frame *); if (wh->i_fc[1] & IEEE80211_FC1_WEP) { k = ieee80211_crypto_encap(ic, ni, m0); if (k == NULL) { m_freem(m0); return ENOBUFS; } /* packet header may have moved, reset our local pointer */ wh = mtod(m0, struct ieee80211_frame *); } if (sc->sc_drvbpf != NULL) { struct ipw_tx_radiotap_header *tap = &sc->sc_txtap; tap->wt_flags = 0; tap->wt_chan_freq = htole16(ic->ic_ibss_chan->ic_freq); tap->wt_chan_flags = htole16(ic->ic_ibss_chan->ic_flags); bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0); } shdr = SLIST_FIRST(&sc->free_shdr); sbuf = SLIST_FIRST(&sc->free_sbuf); KASSERT(shdr != NULL && sbuf != NULL, ("empty sw hdr/buf pool")); shdr->hdr.type = htole32(IPW_HDR_TYPE_SEND); shdr->hdr.subtype = 0; shdr->hdr.encrypted = (wh->i_fc[1] & IEEE80211_FC1_WEP) ? 1 : 0; shdr->hdr.encrypt = 0; shdr->hdr.keyidx = 0; shdr->hdr.keysz = 0; shdr->hdr.fragmentsz = 0; IEEE80211_ADDR_COPY(shdr->hdr.src_addr, wh->i_addr2); if (ic->ic_opmode == IEEE80211_M_STA) IEEE80211_ADDR_COPY(shdr->hdr.dst_addr, wh->i_addr3); else IEEE80211_ADDR_COPY(shdr->hdr.dst_addr, wh->i_addr1); /* trim IEEE802.11 header */ m_adj(m0, sizeof (struct ieee80211_frame)); error = bus_dmamap_load_mbuf_sg(sc->txbuf_dmat, sbuf->map, m0, segs, &nsegs, 0); if (error != 0 && error != EFBIG) { device_printf(sc->sc_dev, "could not map mbuf (error %d)\n", error); m_freem(m0); return error; } if (error != 0) { mnew = m_defrag(m0, M_DONTWAIT); if (mnew == NULL) { device_printf(sc->sc_dev, "could not defragment mbuf\n"); m_freem(m0); return ENOBUFS; } m0 = mnew; error = bus_dmamap_load_mbuf_sg(sc->txbuf_dmat, sbuf->map, m0, segs, &nsegs, 0); if (error != 0) { device_printf(sc->sc_dev, "could not map mbuf (error %d)\n", error); m_freem(m0); return error; } } error = bus_dmamap_load(sc->hdr_dmat, shdr->map, &shdr->hdr, sizeof (struct ipw_hdr), ipw_dma_map_addr, &physaddr, 0); if (error != 0) { device_printf(sc->sc_dev, "could not map header DMA memory\n"); bus_dmamap_unload(sc->txbuf_dmat, sbuf->map); m_freem(m0); return error; } SLIST_REMOVE_HEAD(&sc->free_sbuf, next); SLIST_REMOVE_HEAD(&sc->free_shdr, next); sbd = &sc->stbd_list[sc->txcur]; sbd->type = IPW_SBD_TYPE_HEADER; sbd->priv = shdr; sbd->bd->physaddr = htole32(physaddr); sbd->bd->len = htole32(sizeof (struct ipw_hdr)); sbd->bd->nfrag = 1 + nsegs; sbd->bd->flags = IPW_BD_FLAG_TX_FRAME_802_3 | IPW_BD_FLAG_TX_NOT_LAST_FRAGMENT; DPRINTFN(5, ("sending tx hdr (%u, %u, %u, %u, %6D, %6D)\n", shdr->hdr.type, shdr->hdr.subtype, shdr->hdr.encrypted, shdr->hdr.encrypt, shdr->hdr.src_addr, ":", shdr->hdr.dst_addr, ":")); sc->txfree--; sc->txcur = (sc->txcur + 1) % IPW_NTBD; sbuf->m = m0; sbuf->ni = ni; for (i = 0; i < nsegs; i++) { sbd = &sc->stbd_list[sc->txcur]; sbd->bd->physaddr = htole32(segs[i].ds_addr); sbd->bd->len = htole32(segs[i].ds_len); sbd->bd->nfrag = 0; sbd->bd->flags = IPW_BD_FLAG_TX_FRAME_802_3; if (i == nsegs - 1) { sbd->type = IPW_SBD_TYPE_DATA; sbd->priv = sbuf; sbd->bd->flags |= IPW_BD_FLAG_TX_LAST_FRAGMENT; } else { sbd->type = IPW_SBD_TYPE_NOASSOC; sbd->bd->flags |= IPW_BD_FLAG_TX_NOT_LAST_FRAGMENT; } DPRINTFN(5, ("sending fragment (%d, %d)\n", i, segs[i].ds_len)); sc->txfree--; sc->txcur = (sc->txcur + 1) % IPW_NTBD; } bus_dmamap_sync(sc->hdr_dmat, shdr->map, BUS_DMASYNC_PREWRITE); bus_dmamap_sync(sc->txbuf_dmat, sbuf->map, BUS_DMASYNC_PREWRITE); bus_dmamap_sync(sc->tbd_dmat, sc->tbd_map, BUS_DMASYNC_PREWRITE); /* kick firmware */ CSR_WRITE_4(sc, IPW_CSR_TX_WRITE, sc->txcur); return 0; } static void ipw_start(struct ifnet *ifp) { struct ipw_softc *sc = ifp->if_softc; struct ieee80211com *ic = &sc->sc_ic; struct mbuf *m0; struct ether_header *eh; struct ieee80211_node *ni; IPW_LOCK(sc); if (ic->ic_state != IEEE80211_S_RUN) { IPW_UNLOCK(sc); return; } for (;;) { IFQ_DRV_DEQUEUE(&ifp->if_snd, m0); if (m0 == NULL) break; if (sc->txfree < 1 + IPW_MAX_NSEG) { IFQ_DRV_PREPEND(&ifp->if_snd, m0); ifp->if_flags |= IFF_OACTIVE; break; } if (m0->m_len < sizeof (struct ether_header) && (m0 = m_pullup(m0, sizeof (struct ether_header))) == NULL) continue; eh = mtod(m0, struct ether_header *); ni = ieee80211_find_txnode(ic, eh->ether_dhost); if (ni == NULL) { m_freem(m0); continue; } BPF_MTAP(ifp, m0); m0 = ieee80211_encap(ic, m0, ni); if (m0 == NULL) { ieee80211_free_node(ni); continue; } if (ic->ic_rawbpf != NULL) bpf_mtap(ic->ic_rawbpf, m0); if (ipw_tx_start(ifp, m0, ni) != 0) { ieee80211_free_node(ni); ifp->if_oerrors++; break; } /* start watchdog timer */ sc->sc_tx_timer = 5; ifp->if_timer = 1; } IPW_UNLOCK(sc); } static void ipw_watchdog(struct ifnet *ifp) { struct ipw_softc *sc = ifp->if_softc; struct ieee80211com *ic = &sc->sc_ic; ifp->if_timer = 0; if (sc->sc_tx_timer > 0) { if (--sc->sc_tx_timer == 0) { if_printf(ifp, "device timeout\n"); ifp->if_oerrors++; ifp->if_flags &= ~IFF_UP; ipw_stop(sc); return; } ifp->if_timer = 1; } ieee80211_watchdog(ic); } static int ipw_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data) { struct ipw_softc *sc = ifp->if_softc; struct ieee80211com *ic = &sc->sc_ic; struct ifreq *ifr; int error = 0; IPW_LOCK(sc); switch (cmd) { case SIOCSIFFLAGS: if (ifp->if_flags & IFF_UP) { if (!(ifp->if_flags & IFF_RUNNING)) ipw_init(sc); } else { if (ifp->if_flags & IFF_RUNNING) ipw_stop(sc); } break; case SIOCSLOADFW: /* only super-user can do that! */ if ((error = suser(curthread)) != 0) break; ifr = (struct ifreq *)data; error = ipw_cache_firmware(sc, ifr->ifr_data); break; case SIOCSKILLFW: /* only super-user can do that! */ if ((error = suser(curthread)) != 0) break; ifp->if_flags &= ~IFF_UP; ipw_stop(sc); ipw_free_firmware(sc); break; default: error = ieee80211_ioctl(ic, cmd, data); } if (error == ENETRESET) { if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING)) ipw_init(sc); error = 0; } IPW_UNLOCK(sc); return error; } static void ipw_stop_master(struct ipw_softc *sc) { int ntries; /* disable interrupts */ CSR_WRITE_4(sc, IPW_CSR_INTR_MASK, 0); CSR_WRITE_4(sc, IPW_CSR_RST, IPW_RST_STOP_MASTER); for (ntries = 0; ntries < 50; ntries++) { if (CSR_READ_4(sc, IPW_CSR_RST) & IPW_RST_MASTER_DISABLED) break; DELAY(10); } if (ntries == 50) device_printf(sc->sc_dev, "timeout waiting for master\n"); CSR_WRITE_4(sc, IPW_CSR_RST, CSR_READ_4(sc, IPW_CSR_RST) | IPW_RST_PRINCETON_RESET); sc->flags &= ~IPW_FLAG_FW_INITED; } static int ipw_reset(struct ipw_softc *sc) { int ntries; ipw_stop_master(sc); /* move adapter to D0 state */ CSR_WRITE_4(sc, IPW_CSR_CTL, CSR_READ_4(sc, IPW_CSR_CTL) | IPW_CTL_INIT); /* wait for clock stabilization */ for (ntries = 0; ntries < 1000; ntries++) { if (CSR_READ_4(sc, IPW_CSR_CTL) & IPW_CTL_CLOCK_READY) break; DELAY(200); } if (ntries == 1000) return EIO; CSR_WRITE_4(sc, IPW_CSR_RST, CSR_READ_4(sc, IPW_CSR_RST) | IPW_RST_SW_RESET); DELAY(10); CSR_WRITE_4(sc, IPW_CSR_CTL, CSR_READ_4(sc, IPW_CSR_CTL) | IPW_CTL_INIT); return 0; } /* * Upload the microcode to the device. */ static int ipw_load_ucode(struct ipw_softc *sc, u_char *uc, int size) { int ntries; MEM_WRITE_4(sc, 0x3000e0, 0x80000000); CSR_WRITE_4(sc, IPW_CSR_RST, 0); MEM_WRITE_2(sc, 0x220000, 0x0703); MEM_WRITE_2(sc, 0x220000, 0x0707); MEM_WRITE_1(sc, 0x210014, 0x72); MEM_WRITE_1(sc, 0x210014, 0x72); MEM_WRITE_1(sc, 0x210000, 0x40); MEM_WRITE_1(sc, 0x210000, 0x00); MEM_WRITE_1(sc, 0x210000, 0x40); MEM_WRITE_MULTI_1(sc, 0x210010, uc, size); MEM_WRITE_1(sc, 0x210000, 0x00); MEM_WRITE_1(sc, 0x210000, 0x00); MEM_WRITE_1(sc, 0x210000, 0x80); MEM_WRITE_2(sc, 0x220000, 0x0703); MEM_WRITE_2(sc, 0x220000, 0x0707); MEM_WRITE_1(sc, 0x210014, 0x72); MEM_WRITE_1(sc, 0x210014, 0x72); MEM_WRITE_1(sc, 0x210000, 0x00); MEM_WRITE_1(sc, 0x210000, 0x80); for (ntries = 0; ntries < 10; ntries++) { if (MEM_READ_1(sc, 0x210000) & 1) break; DELAY(10); } if (ntries == 10) { device_printf(sc->sc_dev, "timeout waiting for ucode to initialize\n"); return EIO; } MEM_WRITE_4(sc, 0x3000e0, 0); return 0; } /* set of macros to handle unaligned little endian data in firmware image */ #define GETLE32(p) ((p)[0] | (p)[1] << 8 | (p)[2] << 16 | (p)[3] << 24) #define GETLE16(p) ((p)[0] | (p)[1] << 8) static int ipw_load_firmware(struct ipw_softc *sc, u_char *fw, int size) { u_char *p, *end; uint32_t dst; uint16_t len; int error; p = fw; end = fw + size; while (p < end) { dst = GETLE32(p); p += 4; len = GETLE16(p); p += 2; ipw_write_mem_1(sc, dst, p, len); p += len; } CSR_WRITE_4(sc, IPW_CSR_IO, IPW_IO_GPIO1_ENABLE | IPW_IO_GPIO3_MASK | IPW_IO_LED_OFF); /* enable interrupts */ CSR_WRITE_4(sc, IPW_CSR_INTR_MASK, IPW_INTR_MASK); /* kick the firmware */ CSR_WRITE_4(sc, IPW_CSR_RST, 0); CSR_WRITE_4(sc, IPW_CSR_CTL, CSR_READ_4(sc, IPW_CSR_CTL) | IPW_CTL_ALLOW_STANDBY); /* wait at most one second for firmware initialization to complete */ if ((error = msleep(sc, &sc->sc_mtx, 0, "ipwinit", hz)) != 0) { device_printf(sc->sc_dev, "timeout waiting for firmware " "initialization to complete\n"); return error; } CSR_WRITE_4(sc, IPW_CSR_IO, CSR_READ_4(sc, IPW_CSR_IO) | IPW_IO_GPIO1_MASK | IPW_IO_GPIO3_MASK); return 0; } /* * Store firmware into kernel memory so we can download it when we need to, * e.g when the adapter wakes up from suspend mode. */ static int ipw_cache_firmware(struct ipw_softc *sc, void *data) { struct ipw_firmware *fw = &sc->fw; struct ipw_firmware_hdr hdr; u_char *p = data; int error; ipw_free_firmware(sc); IPW_UNLOCK(sc); if ((error = copyin(data, &hdr, sizeof hdr)) != 0) goto fail1; fw->main_size = le32toh(hdr.main_size); fw->ucode_size = le32toh(hdr.ucode_size); p += sizeof hdr; fw->main = malloc(fw->main_size, M_DEVBUF, M_NOWAIT); if (fw->main == NULL) { error = ENOMEM; goto fail1; } fw->ucode = malloc(fw->ucode_size, M_DEVBUF, M_NOWAIT); if (fw->ucode == NULL) { error = ENOMEM; goto fail2; } if ((error = copyin(p, fw->main, fw->main_size)) != 0) goto fail3; p += fw->main_size; if ((error = copyin(p, fw->ucode, fw->ucode_size)) != 0) goto fail3; DPRINTF(("Firmware cached: main %u, ucode %u\n", fw->main_size, fw->ucode_size)); IPW_LOCK(sc); sc->flags |= IPW_FLAG_FW_CACHED; return 0; fail3: free(fw->ucode, M_DEVBUF); fail2: free(fw->main, M_DEVBUF); fail1: IPW_LOCK(sc); return error; } static void ipw_free_firmware(struct ipw_softc *sc) { if (!(sc->flags & IPW_FLAG_FW_CACHED)) return; free(sc->fw.main, M_DEVBUF); free(sc->fw.ucode, M_DEVBUF); sc->flags &= ~IPW_FLAG_FW_CACHED; } static int ipw_config(struct ipw_softc *sc) { struct ieee80211com *ic = &sc->sc_ic; struct ifnet *ifp = ic->ic_ifp; struct ipw_security security; struct ieee80211_key *k; struct ipw_wep_key wepkey; struct ipw_scan_options options; struct ipw_configuration config; uint32_t data; int error, i; switch (ic->ic_opmode) { case IEEE80211_M_STA: case IEEE80211_M_HOSTAP: data = htole32(IPW_MODE_BSS); break; case IEEE80211_M_IBSS: case IEEE80211_M_AHDEMO: data = htole32(IPW_MODE_IBSS); break; case IEEE80211_M_MONITOR: data = htole32(IPW_MODE_MONITOR); break; } DPRINTF(("Setting mode to %u\n", le32toh(data))); error = ipw_cmd(sc, IPW_CMD_SET_MODE, &data, sizeof data); if (error != 0) return error; if (ic->ic_opmode == IEEE80211_M_IBSS || ic->ic_opmode == IEEE80211_M_MONITOR) { data = htole32(ieee80211_chan2ieee(ic, ic->ic_ibss_chan)); DPRINTF(("Setting channel to %u\n", le32toh(data))); error = ipw_cmd(sc, IPW_CMD_SET_CHANNEL, &data, sizeof data); if (error != 0) return error; } if (ic->ic_opmode == IEEE80211_M_MONITOR) { DPRINTF(("Enabling adapter\n")); return ipw_cmd(sc, IPW_CMD_ENABLE, NULL, 0); } IEEE80211_ADDR_COPY(ic->ic_myaddr, IF_LLADDR(ifp)); DPRINTF(("Setting MAC address to %6D\n", ic->ic_myaddr, ":")); error = ipw_cmd(sc, IPW_CMD_SET_MAC_ADDRESS, ic->ic_myaddr, IEEE80211_ADDR_LEN); if (error != 0) return error; config.flags = htole32(IPW_CFG_BSS_MASK | IPW_CFG_IBSS_MASK | IPW_CFG_PREAMBLE_AUTO | IPW_CFG_802_1x_ENABLE); if (ic->ic_opmode == IEEE80211_M_IBSS) config.flags |= htole32(IPW_CFG_IBSS_AUTO_START); if (ifp->if_flags & IFF_PROMISC) config.flags |= htole32(IPW_CFG_PROMISCUOUS); config.bss_chan = htole32(0x3fff); /* channels 1-14 */ config.ibss_chan = htole32(0x7ff); /* channels 1-11 */ DPRINTF(("Setting configuration to 0x%x\n", le32toh(config.flags))); error = ipw_cmd(sc, IPW_CMD_SET_CONFIGURATION, &config, sizeof config); if (error != 0) return error; data = htole32(0x3); /* 1, 2 */ DPRINTF(("Setting basic tx rates to 0x%x\n", le32toh(data))); error = ipw_cmd(sc, IPW_CMD_SET_BASIC_TX_RATES, &data, sizeof data); if (error != 0) return error; data = htole32(0xf); /* 1, 2, 5.5, 11 */ DPRINTF(("Setting tx rates to 0x%x\n", le32toh(data))); error = ipw_cmd(sc, IPW_CMD_SET_TX_RATES, &data, sizeof data); if (error != 0) return error; data = htole32(IPW_POWER_MODE_CAM); DPRINTF(("Setting power mode to %u\n", le32toh(data))); error = ipw_cmd(sc, IPW_CMD_SET_POWER_MODE, &data, sizeof data); if (error != 0) return error; if (ic->ic_opmode == IEEE80211_M_IBSS) { data = htole32(32); /* default value */ DPRINTF(("Setting tx power index to %u\n", le32toh(data))); error = ipw_cmd(sc, IPW_CMD_SET_TX_POWER_INDEX, &data, sizeof data); if (error != 0) return error; } data = htole32(ic->ic_rtsthreshold); DPRINTF(("Setting RTS threshold to %u\n", le32toh(data))); error = ipw_cmd(sc, IPW_CMD_SET_RTS_THRESHOLD, &data, sizeof data); if (error != 0) return error; data = htole32(ic->ic_fragthreshold); DPRINTF(("Setting frag threshold to %u\n", le32toh(data))); error = ipw_cmd(sc, IPW_CMD_SET_FRAG_THRESHOLD, &data, sizeof data); if (error != 0) return error; #ifdef IPW_DEBUG if (ipw_debug > 0) { printf("Setting ESSID to "); ieee80211_print_essid(ic->ic_des_essid, ic->ic_des_esslen); printf("\n"); } #endif error = ipw_cmd(sc, IPW_CMD_SET_ESSID, ic->ic_des_essid, ic->ic_des_esslen); if (error != 0) return error; /* no mandatory BSSID */ DPRINTF(("Setting mandatory BSSID to null\n")); error = ipw_cmd(sc, IPW_CMD_SET_MANDATORY_BSSID, NULL, 0); if (error != 0) return error; if (ic->ic_flags & IEEE80211_F_DESBSSID) { DPRINTF(("Setting desired BSSID to %6D\n", ic->ic_des_bssid, ":")); error = ipw_cmd(sc, IPW_CMD_SET_DESIRED_BSSID, ic->ic_des_bssid, IEEE80211_ADDR_LEN); if (error != 0) return error; } bzero(&security, sizeof security); security.authmode = (ic->ic_bss->ni_authmode == IEEE80211_AUTH_SHARED) ? IPW_AUTH_SHARED : IPW_AUTH_OPEN; security.ciphers = htole32(IPW_CIPHER_NONE); DPRINTF(("Setting authmode to %u\n", security.authmode)); error = ipw_cmd(sc, IPW_CMD_SET_SECURITY_INFORMATION, &security, sizeof security); if (error != 0) return error; if (ic->ic_flags & IEEE80211_F_PRIVACY) { k = ic->ic_crypto.cs_nw_keys; for (i = 0; i < IEEE80211_WEP_NKID; i++, k++) { if (k->wk_keylen == 0) continue; wepkey.idx = i; wepkey.len = k->wk_keylen; bzero(wepkey.key, sizeof wepkey.key); bcopy(k->wk_key, wepkey.key, k->wk_keylen); DPRINTF(("Setting wep key index %u len %u\n", wepkey.idx, wepkey.len)); error = ipw_cmd(sc, IPW_CMD_SET_WEP_KEY, &wepkey, sizeof wepkey); if (error != 0) return error; } data = htole32(ic->ic_crypto.cs_def_txkey); DPRINTF(("Setting wep tx key index to %u\n", le32toh(data))); error = ipw_cmd(sc, IPW_CMD_SET_WEP_KEY_INDEX, &data, sizeof data); if (error != 0) return error; } data = htole32((ic->ic_flags & IEEE80211_F_PRIVACY) ? IPW_WEPON : 0); DPRINTF(("Setting wep flags to 0x%x\n", le32toh(data))); error = ipw_cmd(sc, IPW_CMD_SET_WEP_FLAGS, &data, sizeof data); if (error != 0) return error; #if 0 struct ipw_wpa_ie ie; bzero(&ie, sizeof ie); ie.len = htole32(sizeof (struct ieee80211_ie_wpa)); DPRINTF(("Setting wpa ie\n")); error = ipw_cmd(sc, IPW_CMD_SET_WPA_IE, &ie, sizeof ie); if (error != 0) return error; #endif if (ic->ic_opmode == IEEE80211_M_IBSS) { data = htole32(ic->ic_lintval); DPRINTF(("Setting beacon interval to %u\n", le32toh(data))); error = ipw_cmd(sc, IPW_CMD_SET_BEACON_INTERVAL, &data, sizeof data); if (error != 0) return error; } options.flags = 0; options.channels = htole32(0x3fff); /* scan channels 1-14 */ DPRINTF(("Setting scan options to 0x%x\n", le32toh(options.flags))); error = ipw_cmd(sc, IPW_CMD_SET_SCAN_OPTIONS, &options, sizeof options); if (error != 0) return error; /* finally, enable adapter (start scanning for an access point) */ DPRINTF(("Enabling adapter\n")); return ipw_cmd(sc, IPW_CMD_ENABLE, NULL, 0); } static void ipw_init(void *priv) { struct ipw_softc *sc = priv; struct ieee80211com *ic = &sc->sc_ic; struct ifnet *ifp = ic->ic_ifp; struct ipw_firmware *fw = &sc->fw; /* exit immediately if firmware has not been ioctl'd */ if (!(sc->flags & IPW_FLAG_FW_CACHED)) { if (!(sc->flags & IPW_FLAG_FW_WARNED)) device_printf(sc->sc_dev, "Please load firmware\n"); sc->flags |= IPW_FLAG_FW_WARNED; ifp->if_flags &= ~IFF_UP; return; } ipw_stop(sc); if (ipw_reset(sc) != 0) { device_printf(sc->sc_dev, "could not reset adapter\n"); goto fail; } if (ipw_load_ucode(sc, fw->ucode, fw->ucode_size) != 0) { device_printf(sc->sc_dev, "could not load microcode\n"); goto fail; } ipw_stop_master(sc); /* * Setup tx, rx and status rings. */ sc->txold = IPW_NTBD - 1; sc->txcur = 0; sc->txfree = IPW_NTBD - 2; sc->rxcur = IPW_NRBD - 1; CSR_WRITE_4(sc, IPW_CSR_TX_BASE, sc->tbd_phys); CSR_WRITE_4(sc, IPW_CSR_TX_SIZE, IPW_NTBD); CSR_WRITE_4(sc, IPW_CSR_TX_READ, 0); CSR_WRITE_4(sc, IPW_CSR_TX_WRITE, sc->txcur); CSR_WRITE_4(sc, IPW_CSR_RX_BASE, sc->rbd_phys); CSR_WRITE_4(sc, IPW_CSR_RX_SIZE, IPW_NRBD); CSR_WRITE_4(sc, IPW_CSR_RX_READ, 0); CSR_WRITE_4(sc, IPW_CSR_RX_WRITE, sc->rxcur); CSR_WRITE_4(sc, IPW_CSR_STATUS_BASE, sc->status_phys); if (ipw_load_firmware(sc, fw->main, fw->main_size) != 0) { device_printf(sc->sc_dev, "could not load firmware\n"); goto fail; } sc->flags |= IPW_FLAG_FW_INITED; /* retrieve information tables base addresses */ sc->table1_base = CSR_READ_4(sc, IPW_CSR_TABLE1_BASE); sc->table2_base = CSR_READ_4(sc, IPW_CSR_TABLE2_BASE); ipw_write_table1(sc, IPW_INFO_LOCK, 0); if (ipw_config(sc) != 0) { device_printf(sc->sc_dev, "device configuration failed\n"); goto fail; } ifp->if_flags &= ~IFF_OACTIVE; ifp->if_flags |= IFF_RUNNING; return; fail: ifp->if_flags &= ~IFF_UP; ipw_stop(sc); } static void ipw_stop(void *priv) { struct ipw_softc *sc = priv; struct ieee80211com *ic = &sc->sc_ic; struct ifnet *ifp = ic->ic_ifp; int i; ipw_stop_master(sc); CSR_WRITE_4(sc, IPW_CSR_RST, IPW_RST_SW_RESET); /* * Release tx buffers. */ for (i = 0; i < IPW_NTBD; i++) ipw_release_sbd(sc, &sc->stbd_list[i]); sc->sc_tx_timer = 0; ifp->if_timer = 0; ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE); ieee80211_new_state(ic, IEEE80211_S_INIT, -1); } #ifdef IPW_DEBUG static int ipw_sysctl_stats(SYSCTL_HANDLER_ARGS) { struct ipw_softc *sc = arg1; uint32_t i, size, buf[256]; if (!(sc->flags & IPW_FLAG_FW_INITED)) { bzero(buf, sizeof buf); return SYSCTL_OUT(req, buf, sizeof buf); } CSR_WRITE_4(sc, IPW_CSR_AUTOINC_ADDR, sc->table1_base); size = min(CSR_READ_4(sc, IPW_CSR_AUTOINC_DATA), 256); for (i = 1; i < size; i++) buf[i] = MEM_READ_4(sc, CSR_READ_4(sc, IPW_CSR_AUTOINC_DATA)); return SYSCTL_OUT(req, buf, sizeof buf); } #endif static int ipw_sysctl_radio(SYSCTL_HANDLER_ARGS) { struct ipw_softc *sc = arg1; int val; val = !((sc->flags & IPW_FLAG_HAS_RADIO_SWITCH) && (CSR_READ_4(sc, IPW_CSR_IO) & IPW_IO_RADIO_DISABLED)); return SYSCTL_OUT(req, &val, sizeof val); } static uint32_t ipw_read_table1(struct ipw_softc *sc, uint32_t off) { return MEM_READ_4(sc, MEM_READ_4(sc, sc->table1_base + off)); } static void ipw_write_table1(struct ipw_softc *sc, uint32_t off, uint32_t info) { MEM_WRITE_4(sc, MEM_READ_4(sc, sc->table1_base + off), info); } static int ipw_read_table2(struct ipw_softc *sc, uint32_t off, void *buf, uint32_t *len) { uint32_t addr, info; uint16_t count, size; uint32_t total; /* addr[4] + count[2] + size[2] */ addr = MEM_READ_4(sc, sc->table2_base + off); info = MEM_READ_4(sc, sc->table2_base + off + 4); count = info >> 16; size = info & 0xffff; total = count * size; if (total > *len) { *len = total; return EINVAL; } *len = total; ipw_read_mem_1(sc, addr, buf, total); return 0; } static void ipw_read_mem_1(struct ipw_softc *sc, bus_size_t offset, uint8_t *datap, bus_size_t count) { for (; count > 0; offset++, datap++, count--) { CSR_WRITE_4(sc, IPW_CSR_INDIRECT_ADDR, offset & ~3); *datap = CSR_READ_1(sc, IPW_CSR_INDIRECT_DATA + (offset & 3)); } } static void ipw_write_mem_1(struct ipw_softc *sc, bus_size_t offset, uint8_t *datap, bus_size_t count) { for (; count > 0; offset++, datap++, count--) { CSR_WRITE_4(sc, IPW_CSR_INDIRECT_ADDR, offset & ~3); CSR_WRITE_1(sc, IPW_CSR_INDIRECT_DATA + (offset & 3), *datap); } }