/*- * Copyright (c) 2000 Michael Smith * Copyright (c) 2000 BSDi * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * $FreeBSD$ */ /* * FreeBSD-specific code. */ #include #include #include #include #include #include #include #include #include #include #include #include #include static devclass_t twe_devclass; #ifdef TWE_DEBUG static u_int32_t twed_bio_in; #define TWED_BIO_IN twed_bio_in++ static u_int32_t twed_bio_out; #define TWED_BIO_OUT twed_bio_out++ #else #define TWED_BIO_IN #define TWED_BIO_OUT #endif /******************************************************************************** ******************************************************************************** Control device interface ******************************************************************************** ********************************************************************************/ static d_open_t twe_open; static d_close_t twe_close; static d_ioctl_t twe_ioctl_wrapper; #define TWE_CDEV_MAJOR 146 static struct cdevsw twe_cdevsw = { twe_open, twe_close, noread, nowrite, twe_ioctl_wrapper, nopoll, nommap, nostrategy, "twe", TWE_CDEV_MAJOR, nodump, nopsize, 0, -1 }; /******************************************************************************** * Accept an open operation on the control device. */ static int twe_open(dev_t dev, int flags, int fmt, struct proc *p) { int unit = minor(dev); struct twe_softc *sc = devclass_get_softc(twe_devclass, unit); sc->twe_state |= TWE_STATE_OPEN; return(0); } /******************************************************************************** * Accept the last close on the control device. */ static int twe_close(dev_t dev, int flags, int fmt, struct proc *p) { int unit = minor(dev); struct twe_softc *sc = devclass_get_softc(twe_devclass, unit); sc->twe_state &= ~TWE_STATE_OPEN; return (0); } /******************************************************************************** * Handle controller-specific control operations. */ static int twe_ioctl_wrapper(dev_t dev, u_long cmd, caddr_t addr, int32_t flag, struct proc *p) { struct twe_softc *sc = (struct twe_softc *)dev->si_drv1; return(twe_ioctl(sc, cmd, addr)); } /******************************************************************************** ******************************************************************************** PCI device interface ******************************************************************************** ********************************************************************************/ static int twe_probe(device_t dev); static int twe_attach(device_t dev); static void twe_free(struct twe_softc *sc); static int twe_detach(device_t dev); static int twe_shutdown(device_t dev); static int twe_suspend(device_t dev); static int twe_resume(device_t dev); static void twe_pci_intr(void *arg); static void twe_intrhook(void *arg); static device_method_t twe_methods[] = { /* Device interface */ DEVMETHOD(device_probe, twe_probe), DEVMETHOD(device_attach, twe_attach), DEVMETHOD(device_detach, twe_detach), DEVMETHOD(device_shutdown, twe_shutdown), DEVMETHOD(device_suspend, twe_suspend), DEVMETHOD(device_resume, twe_resume), DEVMETHOD(bus_print_child, bus_generic_print_child), DEVMETHOD(bus_driver_added, bus_generic_driver_added), { 0, 0 } }; static driver_t twe_pci_driver = { "twe", twe_methods, sizeof(struct twe_softc) }; #ifdef TWE_OVERRIDE DRIVER_MODULE(Xtwe, pci, twe_pci_driver, twe_devclass, 0, 0); #else DRIVER_MODULE(twe, pci, twe_pci_driver, twe_devclass, 0, 0); #endif /******************************************************************************** * Match a 3ware Escalade ATA RAID controller. */ static int twe_probe(device_t dev) { debug_called(4); if ((pci_get_vendor(dev) == TWE_VENDOR_ID) && ((pci_get_device(dev) == TWE_DEVICE_ID) || (pci_get_device(dev) == TWE_DEVICE_ID_ASIC))) { device_set_desc(dev, TWE_DEVICE_NAME); #ifdef TWE_OVERRIDE return(0); #else return(-10); #endif } return(ENXIO); } /******************************************************************************** * Allocate resources, initialise the controller. */ static int twe_attach(device_t dev) { struct twe_softc *sc; int rid, error; u_int32_t command; debug_called(4); /* * Initialise the softc structure. */ sc = device_get_softc(dev); sc->twe_dev = dev; /* * Make sure we are going to be able to talk to this board. */ command = pci_read_config(dev, PCIR_COMMAND, 2); if ((command & PCIM_CMD_PORTEN) == 0) { twe_printf(sc, "register window not available\n"); return(ENXIO); } /* * Force the busmaster enable bit on, in case the BIOS forgot. */ command |= PCIM_CMD_BUSMASTEREN; pci_write_config(dev, PCIR_COMMAND, command, 2); /* * Allocate the PCI register window. */ rid = TWE_IO_CONFIG_REG; if ((sc->twe_io = bus_alloc_resource(dev, SYS_RES_IOPORT, &rid, 0, ~0, 1, RF_ACTIVE)) == NULL) { twe_printf(sc, "can't allocate register window\n"); twe_free(sc); return(ENXIO); } sc->twe_btag = rman_get_bustag(sc->twe_io); sc->twe_bhandle = rman_get_bushandle(sc->twe_io); /* * Allocate the parent bus DMA tag appropriate for PCI. */ if (bus_dma_tag_create(NULL, /* parent */ 1, 0, /* alignment, boundary */ BUS_SPACE_MAXADDR_32BIT, /* lowaddr */ BUS_SPACE_MAXADDR, /* highaddr */ NULL, NULL, /* filter, filterarg */ MAXBSIZE, TWE_MAX_SGL_LENGTH, /* maxsize, nsegments */ BUS_SPACE_MAXSIZE_32BIT, /* maxsegsize */ BUS_DMA_ALLOCNOW, /* flags */ &sc->twe_parent_dmat)) { twe_printf(sc, "can't allocate parent DMA tag\n"); twe_free(sc); return(ENOMEM); } /* * Allocate and connect our interrupt. */ rid = 0; if ((sc->twe_irq = bus_alloc_resource(sc->twe_dev, SYS_RES_IRQ, &rid, 0, ~0, 1, RF_SHAREABLE | RF_ACTIVE)) == NULL) { twe_printf(sc, "can't allocate interrupt\n"); twe_free(sc); return(ENXIO); } if (bus_setup_intr(sc->twe_dev, sc->twe_irq, INTR_TYPE_BIO | INTR_ENTROPY, twe_pci_intr, sc, &sc->twe_intr)) { twe_printf(sc, "can't set up interrupt\n"); twe_free(sc); return(ENXIO); } /* * Create DMA tag for mapping objects into controller-addressable space. */ if (bus_dma_tag_create(sc->twe_parent_dmat, /* parent */ 1, 0, /* alignment, boundary */ BUS_SPACE_MAXADDR, /* lowaddr */ BUS_SPACE_MAXADDR, /* highaddr */ NULL, NULL, /* filter, filterarg */ MAXBSIZE, TWE_MAX_SGL_LENGTH,/* maxsize, nsegments */ BUS_SPACE_MAXSIZE_32BIT, /* maxsegsize */ 0, /* flags */ &sc->twe_buffer_dmat)) { twe_printf(sc, "can't allocate data buffer DMA tag\n"); twe_free(sc); return(ENOMEM); } /* * Initialise the controller and driver core. */ if ((error = twe_setup(sc))) return(error); /* * Print some information about the controller and configuration. */ twe_describe_controller(sc); /* * Create the control device. */ sc->twe_dev_t = make_dev(&twe_cdevsw, device_get_unit(sc->twe_dev), UID_ROOT, GID_OPERATOR, S_IRUSR | S_IWUSR, "twe%d", device_get_unit(sc->twe_dev)); sc->twe_dev_t->si_drv1 = sc; /* * Schedule ourselves to bring the controller up once interrupts are available. * This isn't strictly necessary, since we disable interrupts while probing the * controller, but it is more in keeping with common practice for other disk * devices. */ sc->twe_ich.ich_func = twe_intrhook; sc->twe_ich.ich_arg = sc; if (config_intrhook_establish(&sc->twe_ich) != 0) { twe_printf(sc, "can't establish configuration hook\n"); twe_free(sc); return(ENXIO); } return(0); } /******************************************************************************** * Free all of the resources associated with (sc). * * Should not be called if the controller is active. */ static void twe_free(struct twe_softc *sc) { struct twe_request *tr; debug_called(4); /* throw away any command buffers */ while ((tr = twe_dequeue_free(sc)) != NULL) twe_free_request(tr); /* destroy the data-transfer DMA tag */ if (sc->twe_buffer_dmat) bus_dma_tag_destroy(sc->twe_buffer_dmat); /* disconnect the interrupt handler */ if (sc->twe_intr) bus_teardown_intr(sc->twe_dev, sc->twe_irq, sc->twe_intr); if (sc->twe_irq != NULL) bus_release_resource(sc->twe_dev, SYS_RES_IRQ, 0, sc->twe_irq); /* destroy the parent DMA tag */ if (sc->twe_parent_dmat) bus_dma_tag_destroy(sc->twe_parent_dmat); /* release the register window mapping */ if (sc->twe_io != NULL) bus_release_resource(sc->twe_dev, SYS_RES_IOPORT, TWE_IO_CONFIG_REG, sc->twe_io); /* destroy control device */ if (sc->twe_dev_t != (dev_t)NULL) destroy_dev(sc->twe_dev_t); } /******************************************************************************** * Disconnect from the controller completely, in preparation for unload. */ static int twe_detach(device_t dev) { struct twe_softc *sc = device_get_softc(dev); int s, error; debug_called(4); error = EBUSY; s = splbio(); if (sc->twe_state & TWE_STATE_OPEN) goto out; /* * Shut the controller down. */ if ((error = twe_shutdown(dev))) goto out; twe_free(sc); error = 0; out: splx(s); return(error); } /******************************************************************************** * Bring the controller down to a dormant state and detach all child devices. * * Note that we can assume that the bioq on the controller is empty, as we won't * allow shutdown if any device is open. */ static int twe_shutdown(device_t dev) { struct twe_softc *sc = device_get_softc(dev); int i, s, error; debug_called(4); s = splbio(); error = 0; /* * Delete all our child devices. */ for (i = 0; i < TWE_MAX_UNITS; i++) { if (sc->twe_drive[i].td_disk != 0) { if ((error = device_delete_child(sc->twe_dev, sc->twe_drive[i].td_disk)) != 0) goto out; sc->twe_drive[i].td_disk = 0; } } /* * Bring the controller down. */ twe_deinit(sc); out: splx(s); return(error); } /******************************************************************************** * Bring the controller to a quiescent state, ready for system suspend. */ static int twe_suspend(device_t dev) { struct twe_softc *sc = device_get_softc(dev); int s; debug_called(4); s = splbio(); sc->twe_state |= TWE_STATE_SUSPEND; twe_disable_interrupts(sc); splx(s); return(0); } /******************************************************************************** * Bring the controller back to a state ready for operation. */ static int twe_resume(device_t dev) { struct twe_softc *sc = device_get_softc(dev); debug_called(4); sc->twe_state &= ~TWE_STATE_SUSPEND; twe_enable_interrupts(sc); return(0); } /******************************************************************************* * Take an interrupt, or be poked by other code to look for interrupt-worthy * status. */ static void twe_pci_intr(void *arg) { twe_intr((struct twe_softc *)arg); } /******************************************************************************** * Delayed-startup hook */ static void twe_intrhook(void *arg) { struct twe_softc *sc = (struct twe_softc *)arg; /* pull ourselves off the intrhook chain */ config_intrhook_disestablish(&sc->twe_ich); /* call core startup routine */ twe_init(sc); } /******************************************************************************** * Given a detected drive, attach it to the bio interface. * * This is called from twe_init. */ void twe_attach_drive(struct twe_softc *sc, struct twe_drive *dr) { char buf[80]; int error; dr->td_disk = device_add_child(sc->twe_dev, NULL, -1); if (dr->td_disk == NULL) { twe_printf(sc, "device_add_child failed\n"); return; } device_set_ivars(dr->td_disk, dr); /* * XXX It would make sense to test the online/initialising bits, but they seem to be * always set... */ sprintf(buf, "%s, %s", twe_describe_code(twe_table_unittype, dr->td_type), twe_describe_code(twe_table_unitstate, dr->td_state & TWE_PARAM_UNITSTATUS_MASK)); device_set_desc_copy(dr->td_disk, buf); if ((error = bus_generic_attach(sc->twe_dev)) != 0) twe_printf(sc, "bus_generic_attach returned %d\n", error); } /******************************************************************************** ******************************************************************************** Disk device ******************************************************************************** ********************************************************************************/ /* * Disk device softc */ struct twed_softc { device_t twed_dev; dev_t twed_dev_t; struct twe_softc *twed_controller; /* parent device softc */ struct twe_drive *twed_drive; /* drive data in parent softc */ struct disk twed_disk; /* generic disk handle */ struct devstat twed_stats; /* accounting */ struct disklabel twed_label; /* synthetic label */ int twed_flags; #define TWED_OPEN (1<<0) /* drive is open (can't shut down) */ }; /* * Disk device bus interface */ static int twed_probe(device_t dev); static int twed_attach(device_t dev); static int twed_detach(device_t dev); static device_method_t twed_methods[] = { DEVMETHOD(device_probe, twed_probe), DEVMETHOD(device_attach, twed_attach), DEVMETHOD(device_detach, twed_detach), { 0, 0 } }; static driver_t twed_driver = { "twed", twed_methods, sizeof(struct twed_softc) }; static devclass_t twed_devclass; #ifdef TWE_OVERRIDE DRIVER_MODULE(Xtwed, Xtwe, twed_driver, twed_devclass, 0, 0); #else DRIVER_MODULE(twed, twe, twed_driver, twed_devclass, 0, 0); #endif /* * Disk device control interface. */ static d_open_t twed_open; static d_close_t twed_close; static d_strategy_t twed_strategy; static d_dump_t twed_dump; #define TWED_CDEV_MAJOR 147 static struct cdevsw twed_cdevsw = { twed_open, twed_close, physread, physwrite, noioctl, nopoll, nommap, twed_strategy, "twed", TWED_CDEV_MAJOR, twed_dump, nopsize, D_DISK, -1 }; static struct cdevsw tweddisk_cdevsw; #ifdef FREEBSD_4 static int disks_registered = 0; #endif /******************************************************************************** * Handle open from generic layer. * * Note that this is typically only called by the diskslice code, and not * for opens on subdevices (eg. slices, partitions). */ static int twed_open(dev_t dev, int flags, int fmt, struct proc *p) { struct twed_softc *sc = (struct twed_softc *)dev->si_drv1; struct disklabel *label; debug_called(4); if (sc == NULL) return (ENXIO); /* check that the controller is up and running */ if (sc->twed_controller->twe_state & TWE_STATE_SHUTDOWN) return(ENXIO); /* build synthetic label */ label = &sc->twed_disk.d_label; bzero(label, sizeof(*label)); label->d_type = DTYPE_ESDI; label->d_secsize = TWE_BLOCK_SIZE; label->d_nsectors = sc->twed_drive->td_sectors; label->d_ntracks = sc->twed_drive->td_heads; label->d_ncylinders = sc->twed_drive->td_cylinders; label->d_secpercyl = sc->twed_drive->td_sectors * sc->twed_drive->td_heads; label->d_secperunit = sc->twed_drive->td_size; sc->twed_flags |= TWED_OPEN; return (0); } /******************************************************************************** * Handle last close of the disk device. */ static int twed_close(dev_t dev, int flags, int fmt, struct proc *p) { struct twed_softc *sc = (struct twed_softc *)dev->si_drv1; debug_called(4); if (sc == NULL) return (ENXIO); sc->twed_flags &= ~TWED_OPEN; return (0); } /******************************************************************************** * Handle an I/O request. */ static void twed_strategy(twe_bio *bp) { struct twed_softc *sc = (struct twed_softc *)TWE_BIO_SOFTC(bp); debug_called(4); TWED_BIO_IN; /* bogus disk? */ if (sc == NULL) { TWE_BIO_SET_ERROR(bp, EINVAL); printf("twe: bio for invalid disk!\n"); TWE_BIO_DONE(bp); TWED_BIO_OUT; return; } /* do-nothing operation? */ if (TWE_BIO_LENGTH(bp) == 0) { TWE_BIO_RESID(bp) = 0; TWE_BIO_DONE(bp); TWED_BIO_OUT; return; } /* perform accounting */ TWE_BIO_STATS_START(bp); /* queue the bio on the controller */ twe_enqueue_bio(sc->twed_controller, bp); /* poke the controller to start I/O */ twe_startio(sc->twed_controller); return; } /******************************************************************************** * System crashdump support */ int twed_dump(dev_t dev) { struct twed_softc *twed_sc = (struct twed_softc *)dev->si_drv1; struct twe_softc *twe_sc = (struct twe_softc *)twed_sc->twed_controller; u_int count, blkno, secsize; vm_offset_t addr = 0; long blkcnt; int dumppages = MAXDUMPPGS; int error; int i; if ((error = disk_dumpcheck(dev, &count, &blkno, &secsize))) return(error); if (!twed_sc || !twe_sc) return(ENXIO); blkcnt = howmany(PAGE_SIZE, secsize); while (count > 0) { caddr_t va = NULL; if ((count / blkcnt) < dumppages) dumppages = count / blkcnt; for (i = 0; i < dumppages; ++i) { vm_offset_t a = addr + (i * PAGE_SIZE); if (is_physical_memory(a)) va = pmap_kenter_temporary(trunc_page(a), i); else va = pmap_kenter_temporary(trunc_page(0), i); } if ((error = twe_dump_blocks(twe_sc, twed_sc->twed_drive->td_unit, blkno, va, (PAGE_SIZE * dumppages) / TWE_BLOCK_SIZE)) != 0) return(error); if (addr % (1024 * 1024) == 0) { #ifdef HW_WDOG if (wdog_tickler) (*wdog_tickler)(); #endif printf("%ld ", (long)(count * DEV_BSIZE) / (1024 * 1024)); } blkno += blkcnt * dumppages; count -= blkcnt * dumppages; addr += PAGE_SIZE * dumppages; if (cncheckc() != -1) return(EINTR); } return(0); } /******************************************************************************** * Handle completion of an I/O request. */ void twed_intr(twe_bio *bp) { debug_called(4); /* if no error, transfer completed */ if (!TWE_BIO_HAS_ERROR(bp)) TWE_BIO_RESID(bp) = 0; TWE_BIO_STATS_END(bp); TWE_BIO_DONE(bp); TWED_BIO_OUT; } /******************************************************************************** * Default probe stub. */ static int twed_probe(device_t dev) { return (0); } /******************************************************************************** * Attach a unit to the controller. */ static int twed_attach(device_t dev) { struct twed_softc *sc; device_t parent; dev_t dsk; debug_called(4); /* initialise our softc */ sc = device_get_softc(dev); parent = device_get_parent(dev); sc->twed_controller = (struct twe_softc *)device_get_softc(parent); sc->twed_drive = device_get_ivars(dev); sc->twed_dev = dev; /* report the drive */ twed_printf(sc, "%uMB (%u sectors)\n", sc->twed_drive->td_size / ((1024 * 1024) / TWE_BLOCK_SIZE), sc->twed_drive->td_size); devstat_add_entry(&sc->twed_stats, "twed", device_get_unit(dev), TWE_BLOCK_SIZE, DEVSTAT_NO_ORDERED_TAGS, DEVSTAT_TYPE_STORARRAY | DEVSTAT_TYPE_IF_OTHER, DEVSTAT_PRIORITY_ARRAY); /* attach a generic disk device to ourselves */ dsk = disk_create(device_get_unit(dev), &sc->twed_disk, 0, &twed_cdevsw, &tweddisk_cdevsw); dsk->si_drv1 = sc; dsk->si_drv2 = &sc->twed_drive->td_unit; sc->twed_dev_t = dsk; #ifdef FREEBSD_4 disks_registered++; #endif /* set the maximum I/O size to the theoretical maximum allowed by the S/G list size */ dsk->si_iosize_max = (TWE_MAX_SGL_LENGTH - 1) * PAGE_SIZE; return (0); } /******************************************************************************** * Disconnect ourselves from the system. */ static int twed_detach(device_t dev) { struct twed_softc *sc = (struct twed_softc *)device_get_softc(dev); debug_called(4); if (sc->twed_flags & TWED_OPEN) return(EBUSY); devstat_remove_entry(&sc->twed_stats); #ifdef FREEBSD_4 if (--disks_registered == 0) cdevsw_remove(&tweddisk_cdevsw); #else disk_destroy(sc->twed_dev_t); #endif return(0); } /******************************************************************************** ******************************************************************************** Misc ******************************************************************************** ********************************************************************************/ static void twe_setup_data_dmamap(void *arg, bus_dma_segment_t *segs, int nsegments, int error); static void twe_setup_request_dmamap(void *arg, bus_dma_segment_t *segs, int nsegments, int error); /******************************************************************************** * Allocate a command buffer */ MALLOC_DEFINE(TWE_MALLOC_CLASS, "twe commands", "twe commands"); struct twe_request * twe_allocate_request(struct twe_softc *sc) { struct twe_request *tr; if ((tr = malloc(sizeof(struct twe_request), TWE_MALLOC_CLASS, M_NOWAIT)) == NULL) return(NULL); bzero(tr, sizeof(*tr)); tr->tr_sc = sc; if (bus_dmamap_create(sc->twe_buffer_dmat, 0, &tr->tr_cmdmap)) { twe_free_request(tr); return(NULL); } if (bus_dmamap_create(sc->twe_buffer_dmat, 0, &tr->tr_dmamap)) { bus_dmamap_destroy(sc->twe_buffer_dmat, tr->tr_cmdmap); twe_free_request(tr); return(NULL); } return(tr); } /******************************************************************************** * Permanently discard a command buffer. */ void twe_free_request(struct twe_request *tr) { struct twe_softc *sc = tr->tr_sc; debug_called(4); bus_dmamap_destroy(sc->twe_buffer_dmat, tr->tr_cmdmap); bus_dmamap_destroy(sc->twe_buffer_dmat, tr->tr_dmamap); free(tr, TWE_MALLOC_CLASS); } /******************************************************************************** * Map/unmap (tr)'s command and data in the controller's addressable space. * * These routines ensure that the data which the controller is going to try to * access is actually visible to the controller, in a machine-independant * fasion. Due to a hardware limitation, I/O buffers must be 512-byte aligned * and we take care of that here as well. */ static void twe_setup_data_dmamap(void *arg, bus_dma_segment_t *segs, int nsegments, int error) { struct twe_request *tr = (struct twe_request *)arg; TWE_Command *cmd = &tr->tr_command; int i; debug_called(4); /* save base of first segment in command (applicable if there only one segment) */ tr->tr_dataphys = segs[0].ds_addr; /* correct command size for s/g list size */ tr->tr_command.generic.size += 2 * nsegments; /* * Due to the fact that parameter and I/O commands have the scatter/gather list in * different places, we need to determine which sort of command this actually is * before we can populate it correctly. */ switch(cmd->generic.opcode) { case TWE_OP_GET_PARAM: case TWE_OP_SET_PARAM: cmd->generic.sgl_offset = 2; for (i = 0; i < nsegments; i++) { cmd->param.sgl[i].address = segs[i].ds_addr; cmd->param.sgl[i].length = segs[i].ds_len; } for (; i < TWE_MAX_SGL_LENGTH; i++) { /* XXX necessary? */ cmd->param.sgl[i].address = 0; cmd->param.sgl[i].length = 0; } break; case TWE_OP_READ: case TWE_OP_WRITE: cmd->generic.sgl_offset = 3; for (i = 0; i < nsegments; i++) { cmd->io.sgl[i].address = segs[i].ds_addr; cmd->io.sgl[i].length = segs[i].ds_len; } for (; i < TWE_MAX_SGL_LENGTH; i++) { /* XXX necessary? */ cmd->io.sgl[i].address = 0; cmd->io.sgl[i].length = 0; } break; default: /* no s/g list, nothing to do */ } } static void twe_setup_request_dmamap(void *arg, bus_dma_segment_t *segs, int nsegments, int error) { struct twe_request *tr = (struct twe_request *)arg; debug_called(4); /* command can't cross a page boundary */ tr->tr_cmdphys = segs[0].ds_addr; } void twe_map_request(struct twe_request *tr) { struct twe_softc *sc = tr->tr_sc; debug_called(4); /* * Map the command into bus space. */ bus_dmamap_load(sc->twe_buffer_dmat, tr->tr_cmdmap, &tr->tr_command, sizeof(tr->tr_command), twe_setup_request_dmamap, tr, 0); bus_dmamap_sync(sc->twe_buffer_dmat, tr->tr_cmdmap, BUS_DMASYNC_PREWRITE); /* * If the command involves data, map that too. */ if (tr->tr_data != NULL) { /* * Data must be 64-byte aligned; allocate a fixup buffer if it's not. */ if (((vm_offset_t)tr->tr_data % TWE_ALIGNMENT) != 0) { tr->tr_realdata = tr->tr_data; /* save pointer to 'real' data */ tr->tr_flags |= TWE_CMD_ALIGNBUF; tr->tr_data = malloc(tr->tr_length, TWE_MALLOC_CLASS, M_NOWAIT); /* XXX check result here */ } /* * Map the data buffer into bus space and build the s/g list. */ bus_dmamap_load(sc->twe_buffer_dmat, tr->tr_dmamap, tr->tr_data, tr->tr_length, twe_setup_data_dmamap, tr, 0); if (tr->tr_flags & TWE_CMD_DATAIN) bus_dmamap_sync(sc->twe_buffer_dmat, tr->tr_dmamap, BUS_DMASYNC_PREREAD); if (tr->tr_flags & TWE_CMD_DATAOUT) { /* if we're using an alignment buffer, and we're writing data, copy the real data out */ if (tr->tr_flags & TWE_CMD_ALIGNBUF) bcopy(tr->tr_realdata, tr->tr_data, tr->tr_length); bus_dmamap_sync(sc->twe_buffer_dmat, tr->tr_dmamap, BUS_DMASYNC_PREWRITE); } } } void twe_unmap_request(struct twe_request *tr) { struct twe_softc *sc = tr->tr_sc; debug_called(4); /* * Unmap the command from bus space. */ bus_dmamap_sync(sc->twe_buffer_dmat, tr->tr_cmdmap, BUS_DMASYNC_POSTWRITE); bus_dmamap_unload(sc->twe_buffer_dmat, tr->tr_cmdmap); /* * If the command involved data, unmap that too. */ if (tr->tr_data != NULL) { if (tr->tr_flags & TWE_CMD_DATAIN) { bus_dmamap_sync(sc->twe_buffer_dmat, tr->tr_dmamap, BUS_DMASYNC_POSTREAD); /* if we're using an alignment buffer, and we're reading data, copy the real data in */ if (tr->tr_flags & TWE_CMD_ALIGNBUF) bcopy(tr->tr_data, tr->tr_realdata, tr->tr_length); } if (tr->tr_flags & TWE_CMD_DATAOUT) bus_dmamap_sync(sc->twe_buffer_dmat, tr->tr_dmamap, BUS_DMASYNC_POSTWRITE); bus_dmamap_unload(sc->twe_buffer_dmat, tr->tr_dmamap); } /* free alignment buffer if it was used */ if (tr->tr_flags & TWE_CMD_ALIGNBUF) { free(tr->tr_data, TWE_MALLOC_CLASS); tr->tr_data = tr->tr_realdata; /* restore 'real' data pointer */ } } #ifdef TWE_DEBUG /******************************************************************************** * Print current controller status, call from DDB. */ void twe_report(void) { struct twe_softc *sc; int i, s; s = splbio(); for (i = 0; (sc = devclass_get_softc(twe_devclass, i)) != NULL; i++) twe_print_controller(sc); printf("twed: total bio count in %u out %u\n", twed_bio_in, twed_bio_out); splx(s); } #endif