/* $NetBSD: rf_parityloggingdags.c,v 1.4 2000/01/07 03:41:04 oster Exp $ */ #include __FBSDID("$FreeBSD$"); /* * Copyright (c) 1995 Carnegie-Mellon University. * All rights reserved. * * Author: William V. Courtright II * * Permission to use, copy, modify and distribute this software and * its documentation is hereby granted, provided that both the copyright * notice and this permission notice appear in all copies of the * software, derivative works or modified versions, and any portions * thereof, and that both notices appear in supporting documentation. * * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. * * Carnegie Mellon requests users of this software to return to * * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU * School of Computer Science * Carnegie Mellon University * Pittsburgh PA 15213-3890 * * any improvements or extensions that they make and grant Carnegie the * rights to redistribute these changes. */ #include #if RF_INCLUDE_PARITYLOGGING > 0 /* DAGs specific to parity logging are created here */ #include #include #include #include #include #include #include #include #include #include /****************************************************************************** * * creates a DAG to perform a large-write operation: * * / Rod \ / Wnd \ * H -- NIL- Rod - NIL - Wnd ------ NIL - T * \ Rod / \ Xor - Lpo / * * The writes are not done until the reads complete because if they were done in * parallel, a failure on one of the reads could leave the parity in an inconsistent * state, so that the retry with a new DAG would produce erroneous parity. * * Note: this DAG has the nasty property that none of the buffers allocated for reading * old data can be freed until the XOR node fires. Need to fix this. * * The last two arguments are the number of faults tolerated, and function for the * redundancy calculation. The undo for the redundancy calc is assumed to be null * *****************************************************************************/ void rf_CommonCreateParityLoggingLargeWriteDAG( RF_Raid_t * raidPtr, RF_AccessStripeMap_t * asmap, RF_DagHeader_t * dag_h, void *bp, RF_RaidAccessFlags_t flags, RF_AllocListElem_t * allocList, int nfaults, int (*redFunc) (RF_DagNode_t *)) { RF_DagNode_t *nodes, *wndNodes, *rodNodes = NULL, *syncNode, *xorNode, *lpoNode, *blockNode, *unblockNode, *termNode; int nWndNodes, nRodNodes, i; RF_RaidLayout_t *layoutPtr = &(raidPtr->Layout); RF_AccessStripeMapHeader_t *new_asm_h[2]; int nodeNum, asmNum; RF_ReconUnitNum_t which_ru; char *sosBuffer, *eosBuffer; RF_PhysDiskAddr_t *pda; RF_StripeNum_t parityStripeID = rf_RaidAddressToParityStripeID(&(raidPtr->Layout), asmap->raidAddress, &which_ru); if (rf_dagDebug) printf("[Creating parity-logging large-write DAG]\n"); RF_ASSERT(nfaults == 1);/* this arch only single fault tolerant */ dag_h->creator = "ParityLoggingLargeWriteDAG"; /* alloc the Wnd nodes, the xor node, and the Lpo node */ nWndNodes = asmap->numStripeUnitsAccessed; RF_CallocAndAdd(nodes, nWndNodes + 6, sizeof(RF_DagNode_t), (RF_DagNode_t *), allocList); i = 0; wndNodes = &nodes[i]; i += nWndNodes; xorNode = &nodes[i]; i += 1; lpoNode = &nodes[i]; i += 1; blockNode = &nodes[i]; i += 1; syncNode = &nodes[i]; i += 1; unblockNode = &nodes[i]; i += 1; termNode = &nodes[i]; i += 1; dag_h->numCommitNodes = nWndNodes + 1; dag_h->numCommits = 0; dag_h->numSuccedents = 1; rf_MapUnaccessedPortionOfStripe(raidPtr, layoutPtr, asmap, dag_h, new_asm_h, &nRodNodes, &sosBuffer, &eosBuffer, allocList); if (nRodNodes > 0) RF_CallocAndAdd(rodNodes, nRodNodes, sizeof(RF_DagNode_t), (RF_DagNode_t *), allocList); /* begin node initialization */ rf_InitNode(blockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc, NULL, nRodNodes + 1, 0, 0, 0, dag_h, "Nil", allocList); rf_InitNode(unblockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc, NULL, 1, nWndNodes + 1, 0, 0, dag_h, "Nil", allocList); rf_InitNode(syncNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc, NULL, nWndNodes + 1, nRodNodes + 1, 0, 0, dag_h, "Nil", allocList); rf_InitNode(termNode, rf_wait, RF_FALSE, rf_TerminateFunc, rf_TerminateUndoFunc, NULL, 0, 1, 0, 0, dag_h, "Trm", allocList); /* initialize the Rod nodes */ for (nodeNum = asmNum = 0; asmNum < 2; asmNum++) { if (new_asm_h[asmNum]) { pda = new_asm_h[asmNum]->stripeMap->physInfo; while (pda) { rf_InitNode(&rodNodes[nodeNum], rf_wait, RF_FALSE, rf_DiskReadFunc, rf_DiskReadUndoFunc, rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Rod", allocList); rodNodes[nodeNum].params[0].p = pda; rodNodes[nodeNum].params[1].p = pda->bufPtr; rodNodes[nodeNum].params[2].v = parityStripeID; rodNodes[nodeNum].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru); nodeNum++; pda = pda->next; } } } RF_ASSERT(nodeNum == nRodNodes); /* initialize the wnd nodes */ pda = asmap->physInfo; for (i = 0; i < nWndNodes; i++) { rf_InitNode(&wndNodes[i], rf_wait, RF_TRUE, rf_DiskWriteFunc, rf_DiskWriteUndoFunc, rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Wnd", allocList); RF_ASSERT(pda != NULL); wndNodes[i].params[0].p = pda; wndNodes[i].params[1].p = pda->bufPtr; wndNodes[i].params[2].v = parityStripeID; wndNodes[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru); pda = pda->next; } /* initialize the redundancy node */ rf_InitNode(xorNode, rf_wait, RF_TRUE, redFunc, rf_NullNodeUndoFunc, NULL, 1, 1, 2 * (nWndNodes + nRodNodes) + 1, 1, dag_h, "Xr ", allocList); xorNode->flags |= RF_DAGNODE_FLAG_YIELD; for (i = 0; i < nWndNodes; i++) { xorNode->params[2 * i + 0] = wndNodes[i].params[0]; /* pda */ xorNode->params[2 * i + 1] = wndNodes[i].params[1]; /* buf ptr */ } for (i = 0; i < nRodNodes; i++) { xorNode->params[2 * (nWndNodes + i) + 0] = rodNodes[i].params[0]; /* pda */ xorNode->params[2 * (nWndNodes + i) + 1] = rodNodes[i].params[1]; /* buf ptr */ } xorNode->params[2 * (nWndNodes + nRodNodes)].p = raidPtr; /* xor node needs to get * at RAID information */ /* look for an Rod node that reads a complete SU. If none, alloc a * buffer to receive the parity info. Note that we can't use a new * data buffer because it will not have gotten written when the xor * occurs. */ for (i = 0; i < nRodNodes; i++) if (((RF_PhysDiskAddr_t *) rodNodes[i].params[0].p)->numSector == raidPtr->Layout.sectorsPerStripeUnit) break; if (i == nRodNodes) { RF_CallocAndAdd(xorNode->results[0], 1, rf_RaidAddressToByte(raidPtr, raidPtr->Layout.sectorsPerStripeUnit), (void *), allocList); } else { xorNode->results[0] = rodNodes[i].params[1].p; } /* initialize the Lpo node */ rf_InitNode(lpoNode, rf_wait, RF_FALSE, rf_ParityLogOverwriteFunc, rf_ParityLogOverwriteUndoFunc, rf_GenericWakeupFunc, 1, 1, 2, 0, dag_h, "Lpo", allocList); lpoNode->params[0].p = asmap->parityInfo; lpoNode->params[1].p = xorNode->results[0]; RF_ASSERT(asmap->parityInfo->next == NULL); /* parityInfo must * describe entire * parity unit */ /* connect nodes to form graph */ /* connect dag header to block node */ RF_ASSERT(dag_h->numSuccedents == 1); RF_ASSERT(blockNode->numAntecedents == 0); dag_h->succedents[0] = blockNode; /* connect the block node to the Rod nodes */ RF_ASSERT(blockNode->numSuccedents == nRodNodes + 1); for (i = 0; i < nRodNodes; i++) { RF_ASSERT(rodNodes[i].numAntecedents == 1); blockNode->succedents[i] = &rodNodes[i]; rodNodes[i].antecedents[0] = blockNode; rodNodes[i].antType[0] = rf_control; } /* connect the block node to the sync node */ /* necessary if nRodNodes == 0 */ RF_ASSERT(syncNode->numAntecedents == nRodNodes + 1); blockNode->succedents[nRodNodes] = syncNode; syncNode->antecedents[0] = blockNode; syncNode->antType[0] = rf_control; /* connect the Rod nodes to the syncNode */ for (i = 0; i < nRodNodes; i++) { rodNodes[i].succedents[0] = syncNode; syncNode->antecedents[1 + i] = &rodNodes[i]; syncNode->antType[1 + i] = rf_control; } /* connect the sync node to the xor node */ RF_ASSERT(syncNode->numSuccedents == nWndNodes + 1); RF_ASSERT(xorNode->numAntecedents == 1); syncNode->succedents[0] = xorNode; xorNode->antecedents[0] = syncNode; xorNode->antType[0] = rf_trueData; /* carry forward from sync */ /* connect the sync node to the Wnd nodes */ for (i = 0; i < nWndNodes; i++) { RF_ASSERT(wndNodes->numAntecedents == 1); syncNode->succedents[1 + i] = &wndNodes[i]; wndNodes[i].antecedents[0] = syncNode; wndNodes[i].antType[0] = rf_control; } /* connect the xor node to the Lpo node */ RF_ASSERT(xorNode->numSuccedents == 1); RF_ASSERT(lpoNode->numAntecedents == 1); xorNode->succedents[0] = lpoNode; lpoNode->antecedents[0] = xorNode; lpoNode->antType[0] = rf_trueData; /* connect the Wnd nodes to the unblock node */ RF_ASSERT(unblockNode->numAntecedents == nWndNodes + 1); for (i = 0; i < nWndNodes; i++) { RF_ASSERT(wndNodes->numSuccedents == 1); wndNodes[i].succedents[0] = unblockNode; unblockNode->antecedents[i] = &wndNodes[i]; unblockNode->antType[i] = rf_control; } /* connect the Lpo node to the unblock node */ RF_ASSERT(lpoNode->numSuccedents == 1); lpoNode->succedents[0] = unblockNode; unblockNode->antecedents[nWndNodes] = lpoNode; unblockNode->antType[nWndNodes] = rf_control; /* connect unblock node to terminator */ RF_ASSERT(unblockNode->numSuccedents == 1); RF_ASSERT(termNode->numAntecedents == 1); RF_ASSERT(termNode->numSuccedents == 0); unblockNode->succedents[0] = termNode; termNode->antecedents[0] = unblockNode; termNode->antType[0] = rf_control; } /****************************************************************************** * * creates a DAG to perform a small-write operation (either raid 5 or pq), which is as follows: * * Header * | * Block * / | ... \ \ * / | \ \ * Rod Rod Rod Rop * | \ /| \ / | \/ | * | | | /\ | * Wnd Wnd Wnd X * | \ / | * | \ / | * \ \ / Lpo * \ \ / / * +-> Unblock <-+ * | * T * * * R = Read, W = Write, X = Xor, o = old, n = new, d = data, p = parity. * When the access spans a stripe unit boundary and is less than one SU in size, there will * be two Rop -- X -- Wnp branches. I call this the "double-XOR" case. * The second output from each Rod node goes to the X node. In the double-XOR * case, there are exactly 2 Rod nodes, and each sends one output to one X node. * There is one Rod -- Wnd -- T branch for each stripe unit being updated. * * The block and unblock nodes are unused. See comment above CreateFaultFreeReadDAG. * * Note: this DAG ignores all the optimizations related to making the RMWs atomic. * it also has the nasty property that none of the buffers allocated for reading * old data & parity can be freed until the XOR node fires. Need to fix this. * * A null qfuncs indicates single fault tolerant *****************************************************************************/ void rf_CommonCreateParityLoggingSmallWriteDAG( RF_Raid_t * raidPtr, RF_AccessStripeMap_t * asmap, RF_DagHeader_t * dag_h, void *bp, RF_RaidAccessFlags_t flags, RF_AllocListElem_t * allocList, RF_RedFuncs_t * pfuncs, RF_RedFuncs_t * qfuncs) { RF_DagNode_t *xorNodes, *blockNode, *unblockNode, *nodes; RF_DagNode_t *readDataNodes, *readParityNodes; RF_DagNode_t *writeDataNodes, *lpuNodes; RF_DagNode_t *unlockDataNodes = NULL, *termNode; RF_PhysDiskAddr_t *pda = asmap->physInfo; int numDataNodes = asmap->numStripeUnitsAccessed; int numParityNodes = (asmap->parityInfo->next) ? 2 : 1; int i, j, nNodes, totalNumNodes; RF_ReconUnitNum_t which_ru; int (*func) (RF_DagNode_t * node), (*undoFunc) (RF_DagNode_t * node); int (*qfunc) (RF_DagNode_t * node); char *name, *qname; RF_StripeNum_t parityStripeID = rf_RaidAddressToParityStripeID(&(raidPtr->Layout), asmap->raidAddress, &which_ru); long nfaults = qfuncs ? 2 : 1; int lu_flag = (rf_enableAtomicRMW) ? 1 : 0; /* lock/unlock flag */ if (rf_dagDebug) printf("[Creating parity-logging small-write DAG]\n"); RF_ASSERT(numDataNodes > 0); RF_ASSERT(nfaults == 1); dag_h->creator = "ParityLoggingSmallWriteDAG"; /* DAG creation occurs in three steps: 1. count the number of nodes in * the DAG 2. create the nodes 3. initialize the nodes 4. connect the * nodes */ /* Step 1. compute number of nodes in the graph */ /* number of nodes: a read and write for each data unit a redundancy * computation node for each parity node a read and Lpu for each * parity unit a block and unblock node (2) a terminator node if * atomic RMW an unlock node for each data unit, redundancy unit */ totalNumNodes = (2 * numDataNodes) + numParityNodes + (2 * numParityNodes) + 3; if (lu_flag) totalNumNodes += numDataNodes; nNodes = numDataNodes + numParityNodes; dag_h->numCommitNodes = numDataNodes + numParityNodes; dag_h->numCommits = 0; dag_h->numSuccedents = 1; /* Step 2. create the nodes */ RF_CallocAndAdd(nodes, totalNumNodes, sizeof(RF_DagNode_t), (RF_DagNode_t *), allocList); i = 0; blockNode = &nodes[i]; i += 1; unblockNode = &nodes[i]; i += 1; readDataNodes = &nodes[i]; i += numDataNodes; readParityNodes = &nodes[i]; i += numParityNodes; writeDataNodes = &nodes[i]; i += numDataNodes; lpuNodes = &nodes[i]; i += numParityNodes; xorNodes = &nodes[i]; i += numParityNodes; termNode = &nodes[i]; i += 1; if (lu_flag) { unlockDataNodes = &nodes[i]; i += numDataNodes; } RF_ASSERT(i == totalNumNodes); /* Step 3. initialize the nodes */ /* initialize block node (Nil) */ rf_InitNode(blockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc, NULL, nNodes, 0, 0, 0, dag_h, "Nil", allocList); /* initialize unblock node (Nil) */ rf_InitNode(unblockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc, NULL, 1, nNodes, 0, 0, dag_h, "Nil", allocList); /* initialize terminatory node (Trm) */ rf_InitNode(termNode, rf_wait, RF_FALSE, rf_TerminateFunc, rf_TerminateUndoFunc, NULL, 0, 1, 0, 0, dag_h, "Trm", allocList); /* initialize nodes which read old data (Rod) */ for (i = 0; i < numDataNodes; i++) { rf_InitNode(&readDataNodes[i], rf_wait, RF_FALSE, rf_DiskReadFunc, rf_DiskReadUndoFunc, rf_GenericWakeupFunc, nNodes, 1, 4, 0, dag_h, "Rod", allocList); RF_ASSERT(pda != NULL); readDataNodes[i].params[0].p = pda; /* physical disk addr * desc */ readDataNodes[i].params[1].p = rf_AllocBuffer(raidPtr, dag_h, pda, allocList); /* buffer to hold old * data */ readDataNodes[i].params[2].v = parityStripeID; readDataNodes[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, lu_flag, 0, which_ru); pda = pda->next; readDataNodes[i].propList[0] = NULL; readDataNodes[i].propList[1] = NULL; } /* initialize nodes which read old parity (Rop) */ pda = asmap->parityInfo; i = 0; for (i = 0; i < numParityNodes; i++) { RF_ASSERT(pda != NULL); rf_InitNode(&readParityNodes[i], rf_wait, RF_FALSE, rf_DiskReadFunc, rf_DiskReadUndoFunc, rf_GenericWakeupFunc, nNodes, 1, 4, 0, dag_h, "Rop", allocList); readParityNodes[i].params[0].p = pda; readParityNodes[i].params[1].p = rf_AllocBuffer(raidPtr, dag_h, pda, allocList); /* buffer to hold old * parity */ readParityNodes[i].params[2].v = parityStripeID; readParityNodes[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru); readParityNodes[i].propList[0] = NULL; pda = pda->next; } /* initialize nodes which write new data (Wnd) */ pda = asmap->physInfo; for (i = 0; i < numDataNodes; i++) { RF_ASSERT(pda != NULL); rf_InitNode(&writeDataNodes[i], rf_wait, RF_TRUE, rf_DiskWriteFunc, rf_DiskWriteUndoFunc, rf_GenericWakeupFunc, 1, nNodes, 4, 0, dag_h, "Wnd", allocList); writeDataNodes[i].params[0].p = pda; /* physical disk addr * desc */ writeDataNodes[i].params[1].p = pda->bufPtr; /* buffer holding new * data to be written */ writeDataNodes[i].params[2].v = parityStripeID; writeDataNodes[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru); if (lu_flag) { /* initialize node to unlock the disk queue */ rf_InitNode(&unlockDataNodes[i], rf_wait, RF_FALSE, rf_DiskUnlockFunc, rf_DiskUnlockUndoFunc, rf_GenericWakeupFunc, 1, 1, 2, 0, dag_h, "Und", allocList); unlockDataNodes[i].params[0].p = pda; /* physical disk addr * desc */ unlockDataNodes[i].params[1].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, lu_flag, which_ru); } pda = pda->next; } /* initialize nodes which compute new parity */ /* we use the simple XOR func in the double-XOR case, and when we're * accessing only a portion of one stripe unit. the distinction * between the two is that the regular XOR func assumes that the * targbuf is a full SU in size, and examines the pda associated with * the buffer to decide where within the buffer to XOR the data, * whereas the simple XOR func just XORs the data into the start of * the buffer. */ if ((numParityNodes == 2) || ((numDataNodes == 1) && (asmap->totalSectorsAccessed < raidPtr->Layout.sectorsPerStripeUnit))) { func = pfuncs->simple; undoFunc = rf_NullNodeUndoFunc; name = pfuncs->SimpleName; if (qfuncs) { qfunc = qfuncs->simple; qname = qfuncs->SimpleName; } } else { func = pfuncs->regular; undoFunc = rf_NullNodeUndoFunc; name = pfuncs->RegularName; if (qfuncs) { qfunc = qfuncs->regular; qname = qfuncs->RegularName; } } /* initialize the xor nodes: params are {pda,buf} from {Rod,Wnd,Rop} * nodes, and raidPtr */ if (numParityNodes == 2) { /* double-xor case */ for (i = 0; i < numParityNodes; i++) { rf_InitNode(&xorNodes[i], rf_wait, RF_TRUE, func, undoFunc, NULL, 1, nNodes, 7, 1, dag_h, name, allocList); /* no wakeup func for * xor */ xorNodes[i].flags |= RF_DAGNODE_FLAG_YIELD; xorNodes[i].params[0] = readDataNodes[i].params[0]; xorNodes[i].params[1] = readDataNodes[i].params[1]; xorNodes[i].params[2] = readParityNodes[i].params[0]; xorNodes[i].params[3] = readParityNodes[i].params[1]; xorNodes[i].params[4] = writeDataNodes[i].params[0]; xorNodes[i].params[5] = writeDataNodes[i].params[1]; xorNodes[i].params[6].p = raidPtr; xorNodes[i].results[0] = readParityNodes[i].params[1].p; /* use old parity buf as * target buf */ } } else { /* there is only one xor node in this case */ rf_InitNode(&xorNodes[0], rf_wait, RF_TRUE, func, undoFunc, NULL, 1, nNodes, (2 * (numDataNodes + numDataNodes + 1) + 1), 1, dag_h, name, allocList); xorNodes[0].flags |= RF_DAGNODE_FLAG_YIELD; for (i = 0; i < numDataNodes + 1; i++) { /* set up params related to Rod and Rop nodes */ xorNodes[0].params[2 * i + 0] = readDataNodes[i].params[0]; /* pda */ xorNodes[0].params[2 * i + 1] = readDataNodes[i].params[1]; /* buffer pointer */ } for (i = 0; i < numDataNodes; i++) { /* set up params related to Wnd and Wnp nodes */ xorNodes[0].params[2 * (numDataNodes + 1 + i) + 0] = writeDataNodes[i].params[0]; /* pda */ xorNodes[0].params[2 * (numDataNodes + 1 + i) + 1] = writeDataNodes[i].params[1]; /* buffer pointer */ } xorNodes[0].params[2 * (numDataNodes + numDataNodes + 1)].p = raidPtr; /* xor node needs to get * at RAID information */ xorNodes[0].results[0] = readParityNodes[0].params[1].p; } /* initialize the log node(s) */ pda = asmap->parityInfo; for (i = 0; i < numParityNodes; i++) { RF_ASSERT(pda); rf_InitNode(&lpuNodes[i], rf_wait, RF_FALSE, rf_ParityLogUpdateFunc, rf_ParityLogUpdateUndoFunc, rf_GenericWakeupFunc, 1, 1, 2, 0, dag_h, "Lpu", allocList); lpuNodes[i].params[0].p = pda; /* PhysDiskAddr of parity */ lpuNodes[i].params[1].p = xorNodes[i].results[0]; /* buffer pointer to * parity */ pda = pda->next; } /* Step 4. connect the nodes */ /* connect header to block node */ RF_ASSERT(dag_h->numSuccedents == 1); RF_ASSERT(blockNode->numAntecedents == 0); dag_h->succedents[0] = blockNode; /* connect block node to read old data nodes */ RF_ASSERT(blockNode->numSuccedents == (numDataNodes + numParityNodes)); for (i = 0; i < numDataNodes; i++) { blockNode->succedents[i] = &readDataNodes[i]; RF_ASSERT(readDataNodes[i].numAntecedents == 1); readDataNodes[i].antecedents[0] = blockNode; readDataNodes[i].antType[0] = rf_control; } /* connect block node to read old parity nodes */ for (i = 0; i < numParityNodes; i++) { blockNode->succedents[numDataNodes + i] = &readParityNodes[i]; RF_ASSERT(readParityNodes[i].numAntecedents == 1); readParityNodes[i].antecedents[0] = blockNode; readParityNodes[i].antType[0] = rf_control; } /* connect read old data nodes to write new data nodes */ for (i = 0; i < numDataNodes; i++) { RF_ASSERT(readDataNodes[i].numSuccedents == numDataNodes + numParityNodes); for (j = 0; j < numDataNodes; j++) { RF_ASSERT(writeDataNodes[j].numAntecedents == numDataNodes + numParityNodes); readDataNodes[i].succedents[j] = &writeDataNodes[j]; writeDataNodes[j].antecedents[i] = &readDataNodes[i]; if (i == j) writeDataNodes[j].antType[i] = rf_antiData; else writeDataNodes[j].antType[i] = rf_control; } } /* connect read old data nodes to xor nodes */ for (i = 0; i < numDataNodes; i++) for (j = 0; j < numParityNodes; j++) { RF_ASSERT(xorNodes[j].numAntecedents == numDataNodes + numParityNodes); readDataNodes[i].succedents[numDataNodes + j] = &xorNodes[j]; xorNodes[j].antecedents[i] = &readDataNodes[i]; xorNodes[j].antType[i] = rf_trueData; } /* connect read old parity nodes to write new data nodes */ for (i = 0; i < numParityNodes; i++) { RF_ASSERT(readParityNodes[i].numSuccedents == numDataNodes + numParityNodes); for (j = 0; j < numDataNodes; j++) { readParityNodes[i].succedents[j] = &writeDataNodes[j]; writeDataNodes[j].antecedents[numDataNodes + i] = &readParityNodes[i]; writeDataNodes[j].antType[numDataNodes + i] = rf_control; } } /* connect read old parity nodes to xor nodes */ for (i = 0; i < numParityNodes; i++) for (j = 0; j < numParityNodes; j++) { readParityNodes[i].succedents[numDataNodes + j] = &xorNodes[j]; xorNodes[j].antecedents[numDataNodes + i] = &readParityNodes[i]; xorNodes[j].antType[numDataNodes + i] = rf_trueData; } /* connect xor nodes to write new parity nodes */ for (i = 0; i < numParityNodes; i++) { RF_ASSERT(xorNodes[i].numSuccedents == 1); RF_ASSERT(lpuNodes[i].numAntecedents == 1); xorNodes[i].succedents[0] = &lpuNodes[i]; lpuNodes[i].antecedents[0] = &xorNodes[i]; lpuNodes[i].antType[0] = rf_trueData; } for (i = 0; i < numDataNodes; i++) { if (lu_flag) { /* connect write new data nodes to unlock nodes */ RF_ASSERT(writeDataNodes[i].numSuccedents == 1); RF_ASSERT(unlockDataNodes[i].numAntecedents == 1); writeDataNodes[i].succedents[0] = &unlockDataNodes[i]; unlockDataNodes[i].antecedents[0] = &writeDataNodes[i]; unlockDataNodes[i].antType[0] = rf_control; /* connect unlock nodes to unblock node */ RF_ASSERT(unlockDataNodes[i].numSuccedents == 1); RF_ASSERT(unblockNode->numAntecedents == (numDataNodes + (nfaults * numParityNodes))); unlockDataNodes[i].succedents[0] = unblockNode; unblockNode->antecedents[i] = &unlockDataNodes[i]; unblockNode->antType[i] = rf_control; } else { /* connect write new data nodes to unblock node */ RF_ASSERT(writeDataNodes[i].numSuccedents == 1); RF_ASSERT(unblockNode->numAntecedents == (numDataNodes + (nfaults * numParityNodes))); writeDataNodes[i].succedents[0] = unblockNode; unblockNode->antecedents[i] = &writeDataNodes[i]; unblockNode->antType[i] = rf_control; } } /* connect write new parity nodes to unblock node */ for (i = 0; i < numParityNodes; i++) { RF_ASSERT(lpuNodes[i].numSuccedents == 1); lpuNodes[i].succedents[0] = unblockNode; unblockNode->antecedents[numDataNodes + i] = &lpuNodes[i]; unblockNode->antType[numDataNodes + i] = rf_control; } /* connect unblock node to terminator */ RF_ASSERT(unblockNode->numSuccedents == 1); RF_ASSERT(termNode->numAntecedents == 1); RF_ASSERT(termNode->numSuccedents == 0); unblockNode->succedents[0] = termNode; termNode->antecedents[0] = unblockNode; termNode->antType[0] = rf_control; } void rf_CreateParityLoggingSmallWriteDAG( RF_Raid_t * raidPtr, RF_AccessStripeMap_t * asmap, RF_DagHeader_t * dag_h, void *bp, RF_RaidAccessFlags_t flags, RF_AllocListElem_t * allocList, RF_RedFuncs_t * pfuncs, RF_RedFuncs_t * qfuncs) { dag_h->creator = "ParityLoggingSmallWriteDAG"; rf_CommonCreateParityLoggingSmallWriteDAG(raidPtr, asmap, dag_h, bp, flags, allocList, &rf_xorFuncs, NULL); } void rf_CreateParityLoggingLargeWriteDAG( RF_Raid_t * raidPtr, RF_AccessStripeMap_t * asmap, RF_DagHeader_t * dag_h, void *bp, RF_RaidAccessFlags_t flags, RF_AllocListElem_t * allocList, int nfaults, int (*redFunc) (RF_DagNode_t *)) { dag_h->creator = "ParityLoggingSmallWriteDAG"; rf_CommonCreateParityLoggingLargeWriteDAG(raidPtr, asmap, dag_h, bp, flags, allocList, 1, rf_RegularXorFunc); } #endif /* RF_INCLUDE_PARITYLOGGING > 0 */