/* * Copyright (c) 1998 Mark Newton * Copyright (c) 1994 Christos Zoulas * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. The name of the author may not be used to endorse or promote products * derived from this software without specific prior written permission * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ /* * SVR4 compatibility module. * * SVR4 system calls that are implemented differently in BSD are * handled here. */ #include __FBSDID("$FreeBSD$"); #include "opt_mac.h" #include #include #include #include #include #include #include #include #include #include /* Must come after sys/malloc.h */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #if defined(__FreeBSD__) #include #include #endif #if defined(NetBSD) # if defined(UVM) # include # endif #endif #define BSD_DIRENT(cp) ((struct dirent *)(cp)) static int svr4_mknod(struct thread *, register_t *, char *, svr4_mode_t, svr4_dev_t); static __inline clock_t timeval_to_clock_t(struct timeval *); static int svr4_setinfo (struct proc *, int, svr4_siginfo_t *); struct svr4_hrtcntl_args; static int svr4_hrtcntl (struct thread *, struct svr4_hrtcntl_args *, register_t *); static void bsd_statfs_to_svr4_statvfs(const struct statfs *, struct svr4_statvfs *); static void bsd_statfs_to_svr4_statvfs64(const struct statfs *, struct svr4_statvfs64 *); static struct proc *svr4_pfind(pid_t pid); /* BOGUS noop */ #if defined(BOGUS) int svr4_sys_setitimer(td, uap) register struct thread *td; struct svr4_sys_setitimer_args *uap; { td->td_retval[0] = 0; return 0; } #endif int svr4_sys_wait(td, uap) struct thread *td; struct svr4_sys_wait_args *uap; { int error, st, sig; error = kern_wait(td, WAIT_ANY, &st, 0, NULL); if (error) return (error); if (WIFSIGNALED(st)) { sig = WTERMSIG(st); if (sig >= 0 && sig < NSIG) st = (st & ~0177) | SVR4_BSD2SVR4_SIG(sig); } else if (WIFSTOPPED(st)) { sig = WSTOPSIG(st); if (sig >= 0 && sig < NSIG) st = (st & ~0xff00) | (SVR4_BSD2SVR4_SIG(sig) << 8); } /* * It looks like wait(2) on svr4/solaris/2.4 returns * the status in retval[1], and the pid on retval[0]. */ td->td_retval[1] = st; if (uap->status) error = copyout(&st, uap->status, sizeof(st)); return (error); } int svr4_sys_execv(td, uap) struct thread *td; struct svr4_sys_execv_args *uap; { struct execve_args ap; caddr_t sg; sg = stackgap_init(); CHECKALTEXIST(td, &sg, uap->path); ap.fname = uap->path; ap.argv = uap->argp; ap.envv = NULL; return execve(td, &ap); } int svr4_sys_execve(td, uap) struct thread *td; struct svr4_sys_execve_args *uap; { struct execve_args ap; caddr_t sg; sg = stackgap_init(); CHECKALTEXIST(td, &sg, uap->path); ap.fname = uap->path; ap.argv = uap->argp; ap.envv = uap->envp; return execve(td, &ap); } int svr4_sys_time(td, v) struct thread *td; struct svr4_sys_time_args *v; { struct svr4_sys_time_args *uap = v; int error = 0; struct timeval tv; microtime(&tv); if (uap->t) error = copyout(&tv.tv_sec, uap->t, sizeof(*(uap->t))); td->td_retval[0] = (int) tv.tv_sec; return error; } /* * Read SVR4-style directory entries. We suck them into kernel space so * that they can be massaged before being copied out to user code. * * This code is ported from the Linux emulator: Changes to the VFS interface * between FreeBSD and NetBSD have made it simpler to port it from there than * to adapt the NetBSD version. */ int svr4_sys_getdents64(td, uap) struct thread *td; struct svr4_sys_getdents64_args *uap; { register struct dirent *bdp; struct vnode *vp; caddr_t inp, buf; /* BSD-format */ int len, reclen; /* BSD-format */ caddr_t outp; /* SVR4-format */ int resid, svr4reclen=0; /* SVR4-format */ struct file *fp; struct uio auio; struct iovec aiov; off_t off; struct svr4_dirent64 svr4_dirent; int buflen, error, eofflag, nbytes, justone; u_long *cookies = NULL, *cookiep; int ncookies; DPRINTF(("svr4_sys_getdents64(%d, *, %d)\n", uap->fd, uap->nbytes)); if ((error = getvnode(td->td_proc->p_fd, uap->fd, &fp)) != 0) { return (error); } if ((fp->f_flag & FREAD) == 0) { fdrop(fp, td); return (EBADF); } vp = fp->f_vnode; if (vp->v_type != VDIR) { fdrop(fp, td); return (EINVAL); } nbytes = uap->nbytes; if (nbytes == 1) { nbytes = sizeof (struct svr4_dirent64); justone = 1; } else justone = 0; off = fp->f_offset; #define DIRBLKSIZ 512 /* XXX we used to use ufs's DIRBLKSIZ */ buflen = max(DIRBLKSIZ, nbytes); buflen = min(buflen, MAXBSIZE); buf = malloc(buflen, M_TEMP, M_WAITOK); vn_lock(vp, LK_EXCLUSIVE | LK_RETRY, td); again: aiov.iov_base = buf; aiov.iov_len = buflen; auio.uio_iov = &aiov; auio.uio_iovcnt = 1; auio.uio_rw = UIO_READ; auio.uio_segflg = UIO_SYSSPACE; auio.uio_td = td; auio.uio_resid = buflen; auio.uio_offset = off; if (cookies) { free(cookies, M_TEMP); cookies = NULL; } #ifdef MAC error = mac_check_vnode_readdir(td->td_ucred, vp); if (error) goto out; #endif error = VOP_READDIR(vp, &auio, fp->f_cred, &eofflag, &ncookies, &cookies); if (error) { goto out; } inp = buf; outp = (caddr_t) uap->dp; resid = nbytes; if ((len = buflen - auio.uio_resid) <= 0) { goto eof; } cookiep = cookies; if (cookies) { /* * When using cookies, the vfs has the option of reading from * a different offset than that supplied (UFS truncates the * offset to a block boundary to make sure that it never reads * partway through a directory entry, even if the directory * has been compacted). */ while (len > 0 && ncookies > 0 && *cookiep <= off) { bdp = (struct dirent *) inp; len -= bdp->d_reclen; inp += bdp->d_reclen; cookiep++; ncookies--; } } while (len > 0) { if (cookiep && ncookies == 0) break; bdp = (struct dirent *) inp; reclen = bdp->d_reclen; if (reclen & 3) { DPRINTF(("svr4_readdir: reclen=%d\n", reclen)); error = EFAULT; goto out; } if (bdp->d_fileno == 0) { inp += reclen; if (cookiep) { off = *cookiep++; ncookies--; } else off += reclen; len -= reclen; continue; } svr4reclen = SVR4_RECLEN(&svr4_dirent, bdp->d_namlen); if (reclen > len || resid < svr4reclen) { outp++; break; } svr4_dirent.d_ino = (long) bdp->d_fileno; if (justone) { /* * old svr4-style readdir usage. */ svr4_dirent.d_off = (svr4_off_t) svr4reclen; svr4_dirent.d_reclen = (u_short) bdp->d_namlen; } else { svr4_dirent.d_off = (svr4_off_t)(off + reclen); svr4_dirent.d_reclen = (u_short) svr4reclen; } strcpy(svr4_dirent.d_name, bdp->d_name); if ((error = copyout((caddr_t)&svr4_dirent, outp, svr4reclen))) goto out; inp += reclen; if (cookiep) { off = *cookiep++; ncookies--; } else off += reclen; outp += svr4reclen; resid -= svr4reclen; len -= reclen; if (justone) break; } if (outp == (caddr_t) uap->dp) goto again; fp->f_offset = off; if (justone) nbytes = resid + svr4reclen; eof: td->td_retval[0] = nbytes - resid; out: VOP_UNLOCK(vp, 0, td); fdrop(fp, td); if (cookies) free(cookies, M_TEMP); free(buf, M_TEMP); return error; } int svr4_sys_getdents(td, uap) struct thread *td; struct svr4_sys_getdents_args *uap; { struct dirent *bdp; struct vnode *vp; caddr_t inp, buf; /* BSD-format */ int len, reclen; /* BSD-format */ caddr_t outp; /* SVR4-format */ int resid, svr4_reclen; /* SVR4-format */ struct file *fp; struct uio auio; struct iovec aiov; struct svr4_dirent idb; off_t off; /* true file offset */ int buflen, error, eofflag; u_long *cookiebuf = NULL, *cookie; int ncookies = 0, *retval = td->td_retval; if (uap->nbytes < 0) return (EINVAL); if ((error = getvnode(td->td_proc->p_fd, uap->fd, &fp)) != 0) return (error); if ((fp->f_flag & FREAD) == 0) { fdrop(fp, td); return (EBADF); } vp = fp->f_vnode; if (vp->v_type != VDIR) { fdrop(fp, td); return (EINVAL); } buflen = min(MAXBSIZE, uap->nbytes); buf = malloc(buflen, M_TEMP, M_WAITOK); vn_lock(vp, LK_EXCLUSIVE | LK_RETRY, td); off = fp->f_offset; again: aiov.iov_base = buf; aiov.iov_len = buflen; auio.uio_iov = &aiov; auio.uio_iovcnt = 1; auio.uio_rw = UIO_READ; auio.uio_segflg = UIO_SYSSPACE; auio.uio_td = td; auio.uio_resid = buflen; auio.uio_offset = off; #ifdef MAC error = mac_check_vnode_readdir(td->td_ucred, vp); if (error) goto out; #endif /* * First we read into the malloc'ed buffer, then * we massage it into user space, one record at a time. */ error = VOP_READDIR(vp, &auio, fp->f_cred, &eofflag, &ncookies, &cookiebuf); if (error) { goto out; } inp = buf; outp = uap->buf; resid = uap->nbytes; if ((len = buflen - auio.uio_resid) == 0) goto eof; for (cookie = cookiebuf; len > 0; len -= reclen) { bdp = (struct dirent *)inp; reclen = bdp->d_reclen; if (reclen & 3) panic("svr4_sys_getdents64: bad reclen"); off = *cookie++; /* each entry points to the next */ if ((off >> 32) != 0) { uprintf("svr4_sys_getdents64: dir offset too large for emulated program"); error = EINVAL; goto out; } if (bdp->d_fileno == 0) { inp += reclen; /* it is a hole; squish it out */ continue; } svr4_reclen = SVR4_RECLEN(&idb, bdp->d_namlen); if (reclen > len || resid < svr4_reclen) { /* entry too big for buffer, so just stop */ outp++; break; } /* * Massage in place to make a SVR4-shaped dirent (otherwise * we have to worry about touching user memory outside of * the copyout() call). */ idb.d_ino = (svr4_ino_t)bdp->d_fileno; idb.d_off = (svr4_off_t)off; idb.d_reclen = (u_short)svr4_reclen; strcpy(idb.d_name, bdp->d_name); if ((error = copyout((caddr_t)&idb, outp, svr4_reclen))) goto out; /* advance past this real entry */ inp += reclen; /* advance output past SVR4-shaped entry */ outp += svr4_reclen; resid -= svr4_reclen; } /* if we squished out the whole block, try again */ if (outp == uap->buf) goto again; fp->f_offset = off; /* update the vnode offset */ eof: *retval = uap->nbytes - resid; out: VOP_UNLOCK(vp, 0, td); fdrop(fp, td); if (cookiebuf) free(cookiebuf, M_TEMP); free(buf, M_TEMP); return error; } int svr4_sys_mmap(td, uap) struct thread *td; struct svr4_sys_mmap_args *uap; { struct mmap_args mm; int *retval; retval = td->td_retval; #define _MAP_NEW 0x80000000 /* * Verify the arguments. */ if (uap->prot & ~(PROT_READ | PROT_WRITE | PROT_EXEC)) return EINVAL; /* XXX still needed? */ if (uap->len == 0) return EINVAL; mm.prot = uap->prot; mm.len = uap->len; mm.flags = uap->flags & ~_MAP_NEW; mm.fd = uap->fd; mm.addr = uap->addr; mm.pos = uap->pos; return mmap(td, &mm); } int svr4_sys_mmap64(td, uap) struct thread *td; struct svr4_sys_mmap64_args *uap; { struct mmap_args mm; void *rp; #define _MAP_NEW 0x80000000 /* * Verify the arguments. */ if (uap->prot & ~(PROT_READ | PROT_WRITE | PROT_EXEC)) return EINVAL; /* XXX still needed? */ if (uap->len == 0) return EINVAL; mm.prot = uap->prot; mm.len = uap->len; mm.flags = uap->flags & ~_MAP_NEW; mm.fd = uap->fd; mm.addr = uap->addr; mm.pos = uap->pos; rp = (void *) round_page((vm_offset_t)(td->td_proc->p_vmspace->vm_daddr + maxdsiz)); if ((mm.flags & MAP_FIXED) == 0 && mm.addr != 0 && (void *)mm.addr < rp) mm.addr = rp; return mmap(td, &mm); } int svr4_sys_fchroot(td, uap) struct thread *td; struct svr4_sys_fchroot_args *uap; { struct filedesc *fdp = td->td_proc->p_fd; struct vnode *vp, *vpold; struct file *fp; int error; if ((error = suser(td)) != 0) return error; if ((error = getvnode(fdp, uap->fd, &fp)) != 0) return error; vp = fp->f_vnode; vn_lock(vp, LK_EXCLUSIVE | LK_RETRY, td); if (vp->v_type != VDIR) error = ENOTDIR; else error = VOP_ACCESS(vp, VEXEC, td->td_ucred, td); VOP_UNLOCK(vp, 0, td); if (error) { fdrop(fp, td); return error; } VREF(vp); FILEDESC_LOCK_FAST(fdp); vpold = fdp->fd_rdir; fdp->fd_rdir = vp; FILEDESC_UNLOCK_FAST(fdp); if (vpold != NULL) vrele(vpold); fdrop(fp, td); return 0; } static int svr4_mknod(td, retval, path, mode, dev) struct thread *td; register_t *retval; char *path; svr4_mode_t mode; svr4_dev_t dev; { caddr_t sg = stackgap_init(); CHECKALTEXIST(td, &sg, path); if (S_ISFIFO(mode)) { struct mkfifo_args ap; ap.path = path; ap.mode = mode; return mkfifo(td, &ap); } else { struct mknod_args ap; ap.path = path; ap.mode = mode; ap.dev = dev; return mknod(td, &ap); } } int svr4_sys_mknod(td, uap) register struct thread *td; struct svr4_sys_mknod_args *uap; { int *retval = td->td_retval; return svr4_mknod(td, retval, uap->path, uap->mode, (svr4_dev_t)svr4_to_bsd_odev_t(uap->dev)); } int svr4_sys_xmknod(td, uap) struct thread *td; struct svr4_sys_xmknod_args *uap; { int *retval = td->td_retval; return svr4_mknod(td, retval, uap->path, uap->mode, (svr4_dev_t)svr4_to_bsd_dev_t(uap->dev)); } int svr4_sys_vhangup(td, uap) struct thread *td; struct svr4_sys_vhangup_args *uap; { return 0; } int svr4_sys_sysconfig(td, uap) struct thread *td; struct svr4_sys_sysconfig_args *uap; { int *retval; retval = &(td->td_retval[0]); switch (uap->name) { case SVR4_CONFIG_UNUSED: *retval = 0; break; case SVR4_CONFIG_NGROUPS: *retval = NGROUPS_MAX; break; case SVR4_CONFIG_CHILD_MAX: *retval = maxproc; break; case SVR4_CONFIG_OPEN_FILES: *retval = maxfiles; break; case SVR4_CONFIG_POSIX_VER: *retval = 198808; break; case SVR4_CONFIG_PAGESIZE: *retval = PAGE_SIZE; break; case SVR4_CONFIG_CLK_TCK: *retval = 60; /* should this be `hz', ie. 100? */ break; case SVR4_CONFIG_XOPEN_VER: *retval = 2; /* XXX: What should that be? */ break; case SVR4_CONFIG_PROF_TCK: *retval = 60; /* XXX: What should that be? */ break; case SVR4_CONFIG_NPROC_CONF: *retval = 1; /* Only one processor for now */ break; case SVR4_CONFIG_NPROC_ONLN: *retval = 1; /* And it better be online */ break; case SVR4_CONFIG_AIO_LISTIO_MAX: case SVR4_CONFIG_AIO_MAX: case SVR4_CONFIG_AIO_PRIO_DELTA_MAX: *retval = 0; /* No aio support */ break; case SVR4_CONFIG_DELAYTIMER_MAX: *retval = 0; /* No delaytimer support */ break; case SVR4_CONFIG_MQ_OPEN_MAX: *retval = msginfo.msgmni; break; case SVR4_CONFIG_MQ_PRIO_MAX: *retval = 0; /* XXX: Don't know */ break; case SVR4_CONFIG_RTSIG_MAX: *retval = 0; break; case SVR4_CONFIG_SEM_NSEMS_MAX: *retval = seminfo.semmni; break; case SVR4_CONFIG_SEM_VALUE_MAX: *retval = seminfo.semvmx; break; case SVR4_CONFIG_SIGQUEUE_MAX: *retval = 0; /* XXX: Don't know */ break; case SVR4_CONFIG_SIGRT_MIN: case SVR4_CONFIG_SIGRT_MAX: *retval = 0; /* No real time signals */ break; case SVR4_CONFIG_TIMER_MAX: *retval = 3; /* XXX: real, virtual, profiling */ break; #if defined(NOTYET) case SVR4_CONFIG_PHYS_PAGES: #if defined(UVM) *retval = uvmexp.free; /* XXX: free instead of total */ #else *retval = cnt.v_free_count; /* XXX: free instead of total */ #endif break; case SVR4_CONFIG_AVPHYS_PAGES: #if defined(UVM) *retval = uvmexp.active; /* XXX: active instead of avg */ #else *retval = cnt.v_active_count; /* XXX: active instead of avg */ #endif break; #endif /* NOTYET */ default: return EINVAL; } return 0; } /* ARGSUSED */ int svr4_sys_break(td, uap) struct thread *td; struct svr4_sys_break_args *uap; { struct proc *p = td->td_proc; struct vmspace *vm = p->p_vmspace; vm_offset_t new, old, base, ns; int rv; base = round_page((vm_offset_t) vm->vm_daddr); ns = (vm_offset_t)uap->nsize; new = round_page(ns); if (new > base) { PROC_LOCK(p); if ((new - base) > (unsigned)lim_cur(p, RLIMIT_DATA)) { PROC_UNLOCK(p); return ENOMEM; } PROC_UNLOCK(p); if (new >= VM_MAXUSER_ADDRESS) return (ENOMEM); } else if (new < base) { /* * This is simply an invalid value. If someone wants to * do fancy address space manipulations, mmap and munmap * can do most of what the user would want. */ return EINVAL; } old = base + ctob(vm->vm_dsize); if (new > old) { vm_size_t diff; diff = new - old; PROC_LOCK(p); if (vm->vm_map.size + diff > lim_cur(p, RLIMIT_VMEM)) { PROC_UNLOCK(p); return(ENOMEM); } PROC_UNLOCK(p); rv = vm_map_find(&vm->vm_map, NULL, 0, &old, diff, FALSE, VM_PROT_ALL, VM_PROT_ALL, 0); if (rv != KERN_SUCCESS) { return (ENOMEM); } vm->vm_dsize += btoc(diff); } else if (new < old) { rv = vm_map_remove(&vm->vm_map, new, old); if (rv != KERN_SUCCESS) { return (ENOMEM); } vm->vm_dsize -= btoc(old - new); } return (0); } static __inline clock_t timeval_to_clock_t(tv) struct timeval *tv; { return tv->tv_sec * hz + tv->tv_usec / (1000000 / hz); } int svr4_sys_times(td, uap) struct thread *td; struct svr4_sys_times_args *uap; { struct timeval tv, utime, stime, cutime, cstime; struct tms tms; struct proc *p; int error; p = td->td_proc; PROC_LOCK(p); calcru(p, &utime, &stime); calccru(p, &cutime, &cstime); PROC_UNLOCK(p); tms.tms_utime = timeval_to_clock_t(&utime); tms.tms_stime = timeval_to_clock_t(&stime); tms.tms_cutime = timeval_to_clock_t(&cutime); tms.tms_cstime = timeval_to_clock_t(&cstime); error = copyout(&tms, uap->tp, sizeof(tms)); if (error) return (error); microtime(&tv); td->td_retval[0] = (int)timeval_to_clock_t(&tv); return (0); } int svr4_sys_ulimit(td, uap) struct thread *td; struct svr4_sys_ulimit_args *uap; { int *retval = td->td_retval; int error; switch (uap->cmd) { case SVR4_GFILLIM: PROC_LOCK(td->td_proc); *retval = lim_cur(td->td_proc, RLIMIT_FSIZE) / 512; PROC_UNLOCK(td->td_proc); if (*retval == -1) *retval = 0x7fffffff; return 0; case SVR4_SFILLIM: { struct rlimit krl; krl.rlim_cur = uap->newlimit * 512; PROC_LOCK(td->td_proc); krl.rlim_max = lim_max(td->td_proc, RLIMIT_FSIZE); PROC_UNLOCK(td->td_proc); error = kern_setrlimit(td, RLIMIT_FSIZE, &krl); if (error) return error; PROC_LOCK(td->td_proc); *retval = lim_cur(td->td_proc, RLIMIT_FSIZE); PROC_UNLOCK(td->td_proc); if (*retval == -1) *retval = 0x7fffffff; return 0; } case SVR4_GMEMLIM: { struct vmspace *vm = td->td_proc->p_vmspace; register_t r; PROC_LOCK(td->td_proc); r = lim_cur(td->td_proc, RLIMIT_DATA); PROC_UNLOCK(td->td_proc); if (r == -1) r = 0x7fffffff; mtx_lock(&Giant); /* XXX */ r += (long) vm->vm_daddr; mtx_unlock(&Giant); if (r < 0) r = 0x7fffffff; *retval = r; return 0; } case SVR4_GDESLIM: PROC_LOCK(td->td_proc); *retval = lim_cur(td->td_proc, RLIMIT_NOFILE); PROC_UNLOCK(td->td_proc); if (*retval == -1) *retval = 0x7fffffff; return 0; default: return EINVAL; } } static struct proc * svr4_pfind(pid) pid_t pid; { struct proc *p; /* look in the live processes */ if ((p = pfind(pid)) == NULL) /* look in the zombies */ p = zpfind(pid); return p; } int svr4_sys_pgrpsys(td, uap) struct thread *td; struct svr4_sys_pgrpsys_args *uap; { int *retval = td->td_retval; struct proc *p = td->td_proc; switch (uap->cmd) { case 1: /* setpgrp() */ /* * SVR4 setpgrp() (which takes no arguments) has the * semantics that the session ID is also created anew, so * in almost every sense, setpgrp() is identical to * setsid() for SVR4. (Under BSD, the difference is that * a setpgid(0,0) will not create a new session.) */ setsid(td, NULL); /*FALLTHROUGH*/ case 0: /* getpgrp() */ PROC_LOCK(p); *retval = p->p_pgrp->pg_id; PROC_UNLOCK(p); return 0; case 2: /* getsid(pid) */ if (uap->pid == 0) PROC_LOCK(p); else if ((p = svr4_pfind(uap->pid)) == NULL) return ESRCH; /* * This has already been initialized to the pid of * the session leader. */ *retval = (register_t) p->p_session->s_sid; PROC_UNLOCK(p); return 0; case 3: /* setsid() */ return setsid(td, NULL); case 4: /* getpgid(pid) */ if (uap->pid == 0) PROC_LOCK(p); else if ((p = svr4_pfind(uap->pid)) == NULL) return ESRCH; *retval = (int) p->p_pgrp->pg_id; PROC_UNLOCK(p); return 0; case 5: /* setpgid(pid, pgid); */ { struct setpgid_args sa; sa.pid = uap->pid; sa.pgid = uap->pgid; return setpgid(td, &sa); } default: return EINVAL; } } #define syscallarg(x) union { x datum; register_t pad; } struct svr4_hrtcntl_args { int cmd; int fun; int clk; svr4_hrt_interval_t * iv; svr4_hrt_time_t * ti; }; static int svr4_hrtcntl(td, uap, retval) struct thread *td; struct svr4_hrtcntl_args *uap; register_t *retval; { switch (uap->fun) { case SVR4_HRT_CNTL_RES: DPRINTF(("htrcntl(RES)\n")); *retval = SVR4_HRT_USEC; return 0; case SVR4_HRT_CNTL_TOFD: DPRINTF(("htrcntl(TOFD)\n")); { struct timeval tv; svr4_hrt_time_t t; if (uap->clk != SVR4_HRT_CLK_STD) { DPRINTF(("clk == %d\n", uap->clk)); return EINVAL; } if (uap->ti == NULL) { DPRINTF(("ti NULL\n")); return EINVAL; } microtime(&tv); t.h_sec = tv.tv_sec; t.h_rem = tv.tv_usec; t.h_res = SVR4_HRT_USEC; return copyout(&t, uap->ti, sizeof(t)); } case SVR4_HRT_CNTL_START: DPRINTF(("htrcntl(START)\n")); return ENOSYS; case SVR4_HRT_CNTL_GET: DPRINTF(("htrcntl(GET)\n")); return ENOSYS; default: DPRINTF(("Bad htrcntl command %d\n", uap->fun)); return ENOSYS; } } int svr4_sys_hrtsys(td, uap) struct thread *td; struct svr4_sys_hrtsys_args *uap; { int *retval = td->td_retval; switch (uap->cmd) { case SVR4_HRT_CNTL: return svr4_hrtcntl(td, (struct svr4_hrtcntl_args *) uap, retval); case SVR4_HRT_ALRM: DPRINTF(("hrtalarm\n")); return ENOSYS; case SVR4_HRT_SLP: DPRINTF(("hrtsleep\n")); return ENOSYS; case SVR4_HRT_CAN: DPRINTF(("hrtcancel\n")); return ENOSYS; default: DPRINTF(("Bad hrtsys command %d\n", uap->cmd)); return EINVAL; } } static int svr4_setinfo(p, st, s) struct proc *p; int st; svr4_siginfo_t *s; { struct timeval utime, stime; svr4_siginfo_t i; int sig; memset(&i, 0, sizeof(i)); i.si_signo = SVR4_SIGCHLD; i.si_errno = 0; /* XXX? */ if (p) { i.si_pid = p->p_pid; PROC_LOCK(p); calcru(p, &utime, &stime); PROC_UNLOCK(p); i.si_stime = stime.tv_sec; i.si_utime = utime.tv_sec; } if (WIFEXITED(st)) { i.si_status = WEXITSTATUS(st); i.si_code = SVR4_CLD_EXITED; } else if (WIFSTOPPED(st)) { sig = WSTOPSIG(st); if (sig >= 0 && sig < NSIG) i.si_status = SVR4_BSD2SVR4_SIG(sig); if (i.si_status == SVR4_SIGCONT) i.si_code = SVR4_CLD_CONTINUED; else i.si_code = SVR4_CLD_STOPPED; } else { sig = WTERMSIG(st); if (sig >= 0 && sig < NSIG) i.si_status = SVR4_BSD2SVR4_SIG(sig); if (WCOREDUMP(st)) i.si_code = SVR4_CLD_DUMPED; else i.si_code = SVR4_CLD_KILLED; } DPRINTF(("siginfo [pid %ld signo %d code %d errno %d status %d]\n", i.si_pid, i.si_signo, i.si_code, i.si_errno, i.si_status)); return copyout(&i, s, sizeof(i)); } int svr4_sys_waitsys(td, uap) struct thread *td; struct svr4_sys_waitsys_args *uap; { int nfound; int error, *retval = td->td_retval; struct proc *p, *q, *t; p = td->td_proc; switch (uap->grp) { case SVR4_P_PID: break; case SVR4_P_PGID: PROC_LOCK(p); uap->id = -p->p_pgid; PROC_UNLOCK(p); break; case SVR4_P_ALL: uap->id = WAIT_ANY; break; default: return EINVAL; } DPRINTF(("waitsys(%d, %d, %p, %x)\n", uap->grp, uap->id, uap->info, uap->options)); loop: nfound = 0; sx_slock(&proctree_lock); LIST_FOREACH(q, &p->p_children, p_sibling) { PROC_LOCK(q); if (uap->id != WAIT_ANY && q->p_pid != uap->id && q->p_pgid != -uap->id) { PROC_UNLOCK(q); DPRINTF(("pid %d pgid %d != %d\n", q->p_pid, q->p_pgid, uap->id)); continue; } nfound++; if ((q->p_state == PRS_ZOMBIE) && ((uap->options & (SVR4_WEXITED|SVR4_WTRAPPED)))) { PROC_UNLOCK(q); sx_sunlock(&proctree_lock); *retval = 0; DPRINTF(("found %d\n", q->p_pid)); error = svr4_setinfo(q, q->p_xstat, uap->info); if (error != 0) return error; if ((uap->options & SVR4_WNOWAIT)) { DPRINTF(("Don't wait\n")); return 0; } /* * If we got the child via ptrace(2) or procfs, and * the parent is different (meaning the process was * attached, rather than run as a child), then we need * to give it back to the old parent, and send the * parent a SIGCHLD. The rest of the cleanup will be * done when the old parent waits on the child. */ sx_xlock(&proctree_lock); PROC_LOCK(q); if (q->p_flag & P_TRACED) { if (q->p_oppid != q->p_pptr->p_pid) { PROC_UNLOCK(q); t = pfind(q->p_oppid); if (t == NULL) { t = initproc; PROC_LOCK(initproc); } PROC_LOCK(q); proc_reparent(q, t); q->p_oppid = 0; q->p_flag &= ~(P_TRACED | P_WAITED); PROC_UNLOCK(q); psignal(t, SIGCHLD); wakeup(t); PROC_UNLOCK(t); sx_xunlock(&proctree_lock); return 0; } } PROC_UNLOCK(q); sx_xunlock(&proctree_lock); q->p_xstat = 0; ruadd(&p->p_stats->p_cru, &p->p_crux, q->p_ru, &q->p_rux); FREE(q->p_ru, M_ZOMBIE); q->p_ru = NULL; /* * Decrement the count of procs running with this uid. */ (void)chgproccnt(q->p_ucred->cr_ruidinfo, -1, 0); /* * Release reference to text vnode. */ if (q->p_textvp) vrele(q->p_textvp); /* * Free up credentials. */ crfree(q->p_ucred); q->p_ucred = NULL; /* * Remove unused arguments */ pargs_drop(q->p_args); PROC_UNLOCK(q); /* * Finally finished with old proc entry. * Unlink it from its process group and free it. */ sx_xlock(&proctree_lock); leavepgrp(q); sx_xlock(&allproc_lock); LIST_REMOVE(q, p_list); /* off zombproc */ sx_xunlock(&allproc_lock); LIST_REMOVE(q, p_sibling); sx_xunlock(&proctree_lock); PROC_LOCK(q); sigacts_free(q->p_sigacts); q->p_sigacts = NULL; PROC_UNLOCK(q); /* * Give machine-dependent layer a chance * to free anything that cpu_exit couldn't * release while still running in process context. */ vm_waitproc(q); #if defined(__NetBSD__) pool_put(&proc_pool, q); #endif #ifdef __FreeBSD__ mtx_destroy(&q->p_mtx); #ifdef MAC mac_destroy_proc(q); #endif uma_zfree(proc_zone, q); #endif nprocs--; return 0; } /* XXXKSE this needs clarification */ if (P_SHOULDSTOP(q) && ((q->p_flag & P_WAITED) == 0) && (q->p_flag & P_TRACED || (uap->options & (SVR4_WSTOPPED|SVR4_WCONTINUED)))) { DPRINTF(("jobcontrol %d\n", q->p_pid)); if (((uap->options & SVR4_WNOWAIT)) == 0) q->p_flag |= P_WAITED; PROC_UNLOCK(q); *retval = 0; return svr4_setinfo(q, W_STOPCODE(q->p_xstat), uap->info); } PROC_UNLOCK(q); } if (nfound == 0) return ECHILD; if (uap->options & SVR4_WNOHANG) { *retval = 0; if ((error = svr4_setinfo(NULL, 0, uap->info)) != 0) return error; return 0; } if ((error = tsleep(p, PWAIT | PCATCH, "svr4_wait", 0)) != 0) return error; goto loop; } static void bsd_statfs_to_svr4_statvfs(bfs, sfs) const struct statfs *bfs; struct svr4_statvfs *sfs; { sfs->f_bsize = bfs->f_iosize; /* XXX */ sfs->f_frsize = bfs->f_bsize; sfs->f_blocks = bfs->f_blocks; sfs->f_bfree = bfs->f_bfree; sfs->f_bavail = bfs->f_bavail; sfs->f_files = bfs->f_files; sfs->f_ffree = bfs->f_ffree; sfs->f_favail = bfs->f_ffree; sfs->f_fsid = bfs->f_fsid.val[0]; memcpy(sfs->f_basetype, bfs->f_fstypename, sizeof(sfs->f_basetype)); sfs->f_flag = 0; if (bfs->f_flags & MNT_RDONLY) sfs->f_flag |= SVR4_ST_RDONLY; if (bfs->f_flags & MNT_NOSUID) sfs->f_flag |= SVR4_ST_NOSUID; sfs->f_namemax = MAXNAMLEN; memcpy(sfs->f_fstr, bfs->f_fstypename, sizeof(sfs->f_fstr)); /* XXX */ memset(sfs->f_filler, 0, sizeof(sfs->f_filler)); } static void bsd_statfs_to_svr4_statvfs64(bfs, sfs) const struct statfs *bfs; struct svr4_statvfs64 *sfs; { sfs->f_bsize = bfs->f_iosize; /* XXX */ sfs->f_frsize = bfs->f_bsize; sfs->f_blocks = bfs->f_blocks; sfs->f_bfree = bfs->f_bfree; sfs->f_bavail = bfs->f_bavail; sfs->f_files = bfs->f_files; sfs->f_ffree = bfs->f_ffree; sfs->f_favail = bfs->f_ffree; sfs->f_fsid = bfs->f_fsid.val[0]; memcpy(sfs->f_basetype, bfs->f_fstypename, sizeof(sfs->f_basetype)); sfs->f_flag = 0; if (bfs->f_flags & MNT_RDONLY) sfs->f_flag |= SVR4_ST_RDONLY; if (bfs->f_flags & MNT_NOSUID) sfs->f_flag |= SVR4_ST_NOSUID; sfs->f_namemax = MAXNAMLEN; memcpy(sfs->f_fstr, bfs->f_fstypename, sizeof(sfs->f_fstr)); /* XXX */ memset(sfs->f_filler, 0, sizeof(sfs->f_filler)); } int svr4_sys_statvfs(td, uap) struct thread *td; struct svr4_sys_statvfs_args *uap; { struct statfs_args fs_args; caddr_t sg = stackgap_init(); struct statfs *fs = stackgap_alloc(&sg, sizeof(struct statfs)); struct statfs bfs; struct svr4_statvfs sfs; int error; CHECKALTEXIST(td, &sg, uap->path); fs_args.path = uap->path; fs_args.buf = fs; if ((error = statfs(td, &fs_args)) != 0) return error; if ((error = copyin(fs, &bfs, sizeof(bfs))) != 0) return error; bsd_statfs_to_svr4_statvfs(&bfs, &sfs); return copyout(&sfs, uap->fs, sizeof(sfs)); } int svr4_sys_fstatvfs(td, uap) struct thread *td; struct svr4_sys_fstatvfs_args *uap; { struct fstatfs_args fs_args; caddr_t sg = stackgap_init(); struct statfs *fs = stackgap_alloc(&sg, sizeof(struct statfs)); struct statfs bfs; struct svr4_statvfs sfs; int error; fs_args.fd = uap->fd; fs_args.buf = fs; if ((error = fstatfs(td, &fs_args)) != 0) return error; if ((error = copyin(fs, &bfs, sizeof(bfs))) != 0) return error; bsd_statfs_to_svr4_statvfs(&bfs, &sfs); return copyout(&sfs, uap->fs, sizeof(sfs)); } int svr4_sys_statvfs64(td, uap) struct thread *td; struct svr4_sys_statvfs64_args *uap; { struct statfs_args fs_args; caddr_t sg = stackgap_init(); struct statfs *fs = stackgap_alloc(&sg, sizeof(struct statfs)); struct statfs bfs; struct svr4_statvfs64 sfs; int error; CHECKALTEXIST(td, &sg, uap->path); fs_args.path = uap->path; fs_args.buf = fs; if ((error = statfs(td, &fs_args)) != 0) return error; if ((error = copyin(fs, &bfs, sizeof(bfs))) != 0) return error; bsd_statfs_to_svr4_statvfs64(&bfs, &sfs); return copyout(&sfs, uap->fs, sizeof(sfs)); } int svr4_sys_fstatvfs64(td, uap) struct thread *td; struct svr4_sys_fstatvfs64_args *uap; { struct fstatfs_args fs_args; caddr_t sg = stackgap_init(); struct statfs *fs = stackgap_alloc(&sg, sizeof(struct statfs)); struct statfs bfs; struct svr4_statvfs64 sfs; int error; fs_args.fd = uap->fd; fs_args.buf = fs; if ((error = fstatfs(td, &fs_args)) != 0) return error; if ((error = copyin(fs, &bfs, sizeof(bfs))) != 0) return error; bsd_statfs_to_svr4_statvfs64(&bfs, &sfs); return copyout(&sfs, uap->fs, sizeof(sfs)); } int svr4_sys_alarm(td, uap) struct thread *td; struct svr4_sys_alarm_args *uap; { int error; struct itimerval *itp, *oitp; struct setitimer_args sa; caddr_t sg = stackgap_init(); itp = stackgap_alloc(&sg, sizeof(*itp)); oitp = stackgap_alloc(&sg, sizeof(*oitp)); timevalclear(&itp->it_interval); itp->it_value.tv_sec = uap->sec; itp->it_value.tv_usec = 0; sa.which = ITIMER_REAL; sa.itv = itp; sa.oitv = oitp; error = setitimer(td, &sa); if (error) return error; if (oitp->it_value.tv_usec) oitp->it_value.tv_sec++; td->td_retval[0] = oitp->it_value.tv_sec; return 0; } int svr4_sys_gettimeofday(td, uap) struct thread *td; struct svr4_sys_gettimeofday_args *uap; { if (uap->tp) { struct timeval atv; microtime(&atv); return copyout(&atv, uap->tp, sizeof (atv)); } return 0; } int svr4_sys_facl(td, uap) struct thread *td; struct svr4_sys_facl_args *uap; { int *retval; retval = td->td_retval; *retval = 0; switch (uap->cmd) { case SVR4_SYS_SETACL: /* We don't support acls on any filesystem */ return ENOSYS; case SVR4_SYS_GETACL: return copyout(retval, &uap->num, sizeof(uap->num)); case SVR4_SYS_GETACLCNT: return 0; default: return EINVAL; } } int svr4_sys_acl(td, uap) struct thread *td; struct svr4_sys_acl_args *uap; { /* XXX: for now the same */ return svr4_sys_facl(td, (struct svr4_sys_facl_args *)uap); } int svr4_sys_auditsys(td, uap) struct thread *td; struct svr4_sys_auditsys_args *uap; { /* * XXX: Big brother is *not* watching. */ return 0; } int svr4_sys_memcntl(td, uap) struct thread *td; struct svr4_sys_memcntl_args *uap; { switch (uap->cmd) { case SVR4_MC_SYNC: { struct msync_args msa; msa.addr = uap->addr; msa.len = uap->len; msa.flags = (int)uap->arg; return msync(td, &msa); } case SVR4_MC_ADVISE: { struct madvise_args maa; maa.addr = uap->addr; maa.len = uap->len; maa.behav = (int)uap->arg; return madvise(td, &maa); } case SVR4_MC_LOCK: case SVR4_MC_UNLOCK: case SVR4_MC_LOCKAS: case SVR4_MC_UNLOCKAS: return EOPNOTSUPP; default: return ENOSYS; } } int svr4_sys_nice(td, uap) struct thread *td; struct svr4_sys_nice_args *uap; { struct setpriority_args ap; int error; ap.which = PRIO_PROCESS; ap.who = 0; ap.prio = uap->prio; if ((error = setpriority(td, &ap)) != 0) return error; /* the cast is stupid, but the structures are the same */ if ((error = getpriority(td, (struct getpriority_args *)&ap)) != 0) return error; return 0; } int svr4_sys_resolvepath(td, uap) struct thread *td; struct svr4_sys_resolvepath_args *uap; { struct nameidata nd; int error, *retval = td->td_retval; unsigned int ncopy; NDINIT(&nd, LOOKUP, NOFOLLOW | SAVENAME, UIO_USERSPACE, uap->path, td); if ((error = namei(&nd)) != 0) return error; ncopy = min(uap->bufsiz, strlen(nd.ni_cnd.cn_pnbuf) + 1); if ((error = copyout(nd.ni_cnd.cn_pnbuf, uap->buf, ncopy)) != 0) goto bad; *retval = ncopy; bad: NDFREE(&nd, NDF_ONLY_PNBUF); vput(nd.ni_vp); return error; }