/* * Copyright (c) 1980, 1986, 1993 * The Regents of the University of California. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 4. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)if.c 8.5 (Berkeley) 1/9/95 * $FreeBSD$ */ #include "opt_compat.h" #include "opt_inet6.h" #include "opt_inet.h" #include "opt_mac.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #if defined(INET) || defined(INET6) /*XXX*/ #include #include #ifdef INET6 #include #include #endif #endif #ifdef INET #include #endif struct mbuf *(*tbr_dequeue_ptr)(struct ifaltq *, int) = NULL; static void if_attachdomain(void *); static void if_attachdomain1(struct ifnet *); static int ifconf(u_long, caddr_t); static void if_grow(void); static void if_init(void *); static void if_check(void *); static int if_findindex(struct ifnet *); static void if_qflush(struct ifaltq *); static void if_route(struct ifnet *, int flag, int fam); static void if_slowtimo(void *); static void if_unroute(struct ifnet *, int flag, int fam); static void link_rtrequest(int, struct rtentry *, struct rt_addrinfo *); static int if_rtdel(struct radix_node *, void *); static int ifhwioctl(u_long, struct ifnet *, caddr_t, struct thread *); static void if_start_deferred(void *context, int pending); #ifdef INET6 /* * XXX: declare here to avoid to include many inet6 related files.. * should be more generalized? */ extern void nd6_setmtu(struct ifnet *); #endif int if_index = 0; struct ifindex_entry *ifindex_table = NULL; int ifqmaxlen = IFQ_MAXLEN; struct ifnethead ifnet; /* depend on static init XXX */ struct mtx ifnet_lock; static int if_indexlim = 8; static struct knlist ifklist; static void filt_netdetach(struct knote *kn); static int filt_netdev(struct knote *kn, long hint); static struct filterops netdev_filtops = { 1, NULL, filt_netdetach, filt_netdev }; /* * System initialization */ SYSINIT(interfaces, SI_SUB_INIT_IF, SI_ORDER_FIRST, if_init, NULL) SYSINIT(interface_check, SI_SUB_PROTO_IF, SI_ORDER_FIRST, if_check, NULL) MALLOC_DEFINE(M_IFADDR, "ifaddr", "interface address"); MALLOC_DEFINE(M_IFMADDR, "ether_multi", "link-level multicast address"); static d_open_t netopen; static d_close_t netclose; static d_ioctl_t netioctl; static d_kqfilter_t netkqfilter; static struct cdevsw net_cdevsw = { .d_version = D_VERSION, .d_flags = D_NEEDGIANT, .d_open = netopen, .d_close = netclose, .d_ioctl = netioctl, .d_name = "net", .d_kqfilter = netkqfilter, }; static int netopen(struct cdev *dev, int flag, int mode, struct thread *td) { return (0); } static int netclose(struct cdev *dev, int flags, int fmt, struct thread *td) { return (0); } static int netioctl(struct cdev *dev, u_long cmd, caddr_t data, int flag, struct thread *td) { struct ifnet *ifp; int error, idx; /* only support interface specific ioctls */ if (IOCGROUP(cmd) != 'i') return (EOPNOTSUPP); idx = minor(dev); if (idx == 0) { /* * special network device, not interface. */ if (cmd == SIOCGIFCONF) return (ifconf(cmd, data)); /* XXX remove cmd */ return (EOPNOTSUPP); } ifp = ifnet_byindex(idx); if (ifp == NULL) return (ENXIO); error = ifhwioctl(cmd, ifp, data, td); if (error == ENOIOCTL) error = EOPNOTSUPP; return (error); } static int netkqfilter(struct cdev *dev, struct knote *kn) { struct knlist *klist; struct ifnet *ifp; int idx; switch (kn->kn_filter) { case EVFILT_NETDEV: kn->kn_fop = &netdev_filtops; break; default: return (1); } idx = minor(dev); if (idx == 0) { klist = &ifklist; } else { ifp = ifnet_byindex(idx); if (ifp == NULL) return (1); klist = &ifp->if_klist; } kn->kn_hook = (caddr_t)klist; knlist_add(klist, kn, 0); return (0); } static void filt_netdetach(struct knote *kn) { struct knlist *klist = (struct knlist *)kn->kn_hook; knlist_remove(klist, kn, 0); } static int filt_netdev(struct knote *kn, long hint) { struct knlist *klist = (struct knlist *)kn->kn_hook; /* * Currently NOTE_EXIT is abused to indicate device detach. */ if (hint == NOTE_EXIT) { kn->kn_data = NOTE_LINKINV; kn->kn_flags |= (EV_EOF | EV_ONESHOT); knlist_remove_inevent(klist, kn); return (1); } if (hint != 0) kn->kn_data = hint; /* current status */ if (kn->kn_sfflags & hint) kn->kn_fflags |= hint; return (kn->kn_fflags != 0); } /* * Network interface utility routines. * * Routines with ifa_ifwith* names take sockaddr *'s as * parameters. */ /* ARGSUSED*/ static void if_init(void *dummy __unused) { IFNET_LOCK_INIT(); TAILQ_INIT(&ifnet); knlist_init(&ifklist, NULL); if_grow(); /* create initial table */ ifdev_byindex(0) = make_dev(&net_cdevsw, 0, UID_ROOT, GID_WHEEL, 0600, "network"); if_clone_init(); } static void if_grow(void) { u_int n; struct ifindex_entry *e; if_indexlim <<= 1; n = if_indexlim * sizeof(*e); e = malloc(n, M_IFADDR, M_WAITOK | M_ZERO); if (ifindex_table != NULL) { memcpy((caddr_t)e, (caddr_t)ifindex_table, n/2); free((caddr_t)ifindex_table, M_IFADDR); } ifindex_table = e; } /* ARGSUSED*/ static void if_check(void *dummy __unused) { struct ifnet *ifp; int s; s = splimp(); IFNET_RLOCK(); /* could sleep on rare error; mostly okay XXX */ TAILQ_FOREACH(ifp, &ifnet, if_link) { if (ifp->if_snd.ifq_maxlen == 0) { if_printf(ifp, "XXX: driver didn't set ifq_maxlen\n"); ifp->if_snd.ifq_maxlen = ifqmaxlen; } if (!mtx_initialized(&ifp->if_snd.ifq_mtx)) { if_printf(ifp, "XXX: driver didn't initialize queue mtx\n"); mtx_init(&ifp->if_snd.ifq_mtx, "unknown", MTX_NETWORK_LOCK, MTX_DEF); } } IFNET_RUNLOCK(); splx(s); if_slowtimo(0); } static int if_findindex(struct ifnet *ifp) { int i, unit; char eaddr[18], devname[32]; const char *name, *p; switch (ifp->if_type) { case IFT_ETHER: /* these types use struct arpcom */ case IFT_FDDI: case IFT_XETHER: case IFT_ISO88025: case IFT_L2VLAN: snprintf(eaddr, 18, "%6D", IFP2AC(ifp)->ac_enaddr, ":"); break; default: eaddr[0] = '\0'; break; } strlcpy(devname, ifp->if_xname, sizeof(devname)); name = net_cdevsw.d_name; i = 0; while ((resource_find_dev(&i, name, &unit, NULL, NULL)) == 0) { if (resource_string_value(name, unit, "ether", &p) == 0) if (strcmp(p, eaddr) == 0) goto found; if (resource_string_value(name, unit, "dev", &p) == 0) if (strcmp(p, devname) == 0) goto found; } unit = 0; found: if (unit != 0) { if (ifaddr_byindex(unit) == NULL) return (unit); printf("%s%d in use, cannot hardwire it to %s.\n", name, unit, devname); } for (unit = 1; ; unit++) { if (unit <= if_index && ifaddr_byindex(unit) != NULL) continue; if (resource_string_value(name, unit, "ether", &p) == 0 || resource_string_value(name, unit, "dev", &p) == 0) continue; break; } return (unit); } /* * Attach an interface to the * list of "active" interfaces. */ void if_attach(struct ifnet *ifp) { unsigned socksize, ifasize; int namelen, masklen; struct sockaddr_dl *sdl; struct ifaddr *ifa; TASK_INIT(&ifp->if_starttask, 0, if_start_deferred, ifp); IF_AFDATA_LOCK_INIT(ifp); ifp->if_afdata_initialized = 0; IFNET_WLOCK(); TAILQ_INSERT_TAIL(&ifnet, ifp, if_link); IFNET_WUNLOCK(); /* * XXX - * The old code would work if the interface passed a pre-existing * chain of ifaddrs to this code. We don't trust our callers to * properly initialize the tailq, however, so we no longer allow * this unlikely case. */ TAILQ_INIT(&ifp->if_addrhead); TAILQ_INIT(&ifp->if_prefixhead); TAILQ_INIT(&ifp->if_multiaddrs); knlist_init(&ifp->if_klist, NULL); getmicrotime(&ifp->if_lastchange); ifp->if_data.ifi_epoch = time_second; #ifdef MAC mac_init_ifnet(ifp); mac_create_ifnet(ifp); #endif ifp->if_index = if_findindex(ifp); if (ifp->if_index > if_index) if_index = ifp->if_index; if (if_index >= if_indexlim) if_grow(); ifp->if_data.ifi_datalen = sizeof(struct if_data); ifnet_byindex(ifp->if_index) = ifp; ifdev_byindex(ifp->if_index) = make_dev(&net_cdevsw, unit2minor(ifp->if_index), UID_ROOT, GID_WHEEL, 0600, "%s/%s", net_cdevsw.d_name, ifp->if_xname); make_dev_alias(ifdev_byindex(ifp->if_index), "%s%d", net_cdevsw.d_name, ifp->if_index); mtx_init(&ifp->if_snd.ifq_mtx, ifp->if_xname, "if send queue", MTX_DEF); /* * create a Link Level name for this device */ namelen = strlen(ifp->if_xname); /* * Always save enough space for any possiable name so we can do * a rename in place later. */ masklen = offsetof(struct sockaddr_dl, sdl_data[0]) + IFNAMSIZ; socksize = masklen + ifp->if_addrlen; if (socksize < sizeof(*sdl)) socksize = sizeof(*sdl); socksize = roundup2(socksize, sizeof(long)); ifasize = sizeof(*ifa) + 2 * socksize; ifa = malloc(ifasize, M_IFADDR, M_WAITOK | M_ZERO); IFA_LOCK_INIT(ifa); sdl = (struct sockaddr_dl *)(ifa + 1); sdl->sdl_len = socksize; sdl->sdl_family = AF_LINK; bcopy(ifp->if_xname, sdl->sdl_data, namelen); sdl->sdl_nlen = namelen; sdl->sdl_index = ifp->if_index; sdl->sdl_type = ifp->if_type; ifaddr_byindex(ifp->if_index) = ifa; ifa->ifa_ifp = ifp; ifa->ifa_rtrequest = link_rtrequest; ifa->ifa_addr = (struct sockaddr *)sdl; sdl = (struct sockaddr_dl *)(socksize + (caddr_t)sdl); ifa->ifa_netmask = (struct sockaddr *)sdl; sdl->sdl_len = masklen; while (namelen != 0) sdl->sdl_data[--namelen] = 0xff; ifa->ifa_refcnt = 1; TAILQ_INSERT_HEAD(&ifp->if_addrhead, ifa, ifa_link); ifp->if_broadcastaddr = 0; /* reliably crash if used uninitialized */ ifp->if_snd.altq_type = 0; ifp->if_snd.altq_disc = NULL; ifp->if_snd.altq_flags &= ALTQF_CANTCHANGE; ifp->if_snd.altq_tbr = NULL; ifp->if_snd.altq_ifp = ifp; if (domains) if_attachdomain1(ifp); EVENTHANDLER_INVOKE(ifnet_arrival_event, ifp); /* Announce the interface. */ rt_ifannouncemsg(ifp, IFAN_ARRIVAL); } static void if_attachdomain(void *dummy) { struct ifnet *ifp; int s; s = splnet(); TAILQ_FOREACH(ifp, &ifnet, if_link) if_attachdomain1(ifp); splx(s); } SYSINIT(domainifattach, SI_SUB_PROTO_IFATTACHDOMAIN, SI_ORDER_FIRST, if_attachdomain, NULL); static void if_attachdomain1(struct ifnet *ifp) { struct domain *dp; int s; s = splnet(); /* * Since dp->dom_ifattach calls malloc() with M_WAITOK, we * cannot lock ifp->if_afdata initialization, entirely. */ if (IF_AFDATA_TRYLOCK(ifp) == 0) { splx(s); return; } if (ifp->if_afdata_initialized) { IF_AFDATA_UNLOCK(ifp); splx(s); return; } ifp->if_afdata_initialized = 1; IF_AFDATA_UNLOCK(ifp); /* address family dependent data region */ bzero(ifp->if_afdata, sizeof(ifp->if_afdata)); for (dp = domains; dp; dp = dp->dom_next) { if (dp->dom_ifattach) ifp->if_afdata[dp->dom_family] = (*dp->dom_ifattach)(ifp); } splx(s); } /* * Detach an interface, removing it from the * list of "active" interfaces. */ void if_detach(struct ifnet *ifp) { struct ifaddr *ifa, *next; struct radix_node_head *rnh; int s; int i; struct domain *dp; struct ifnet *iter; int found; EVENTHANDLER_INVOKE(ifnet_departure_event, ifp); /* * Remove routes and flush queues. */ s = splnet(); if_down(ifp); #ifdef ALTQ if (ALTQ_IS_ENABLED(&ifp->if_snd)) altq_disable(&ifp->if_snd); if (ALTQ_IS_ATTACHED(&ifp->if_snd)) altq_detach(&ifp->if_snd); #endif for (ifa = TAILQ_FIRST(&ifp->if_addrhead); ifa; ifa = next) { next = TAILQ_NEXT(ifa, ifa_link); if (ifa->ifa_addr->sa_family == AF_LINK) continue; #ifdef INET /* XXX: Ugly!! ad hoc just for INET */ if (ifa->ifa_addr && ifa->ifa_addr->sa_family == AF_INET) { struct ifaliasreq ifr; bzero(&ifr, sizeof(ifr)); ifr.ifra_addr = *ifa->ifa_addr; if (ifa->ifa_dstaddr) ifr.ifra_broadaddr = *ifa->ifa_dstaddr; if (in_control(NULL, SIOCDIFADDR, (caddr_t)&ifr, ifp, NULL) == 0) continue; } #endif /* INET */ #ifdef INET6 if (ifa->ifa_addr && ifa->ifa_addr->sa_family == AF_INET6) { in6_purgeaddr(ifa); /* ifp_addrhead is already updated */ continue; } #endif /* INET6 */ TAILQ_REMOVE(&ifp->if_addrhead, ifa, ifa_link); IFAFREE(ifa); } #ifdef INET6 /* * Remove all IPv6 kernel structs related to ifp. This should be done * before removing routing entries below, since IPv6 interface direct * routes are expected to be removed by the IPv6-specific kernel API. * Otherwise, the kernel will detect some inconsistency and bark it. */ in6_ifdetach(ifp); #endif /* * Remove address from ifindex_table[] and maybe decrement if_index. * Clean up all addresses. */ ifnet_byindex(ifp->if_index) = NULL; ifaddr_byindex(ifp->if_index) = NULL; destroy_dev(ifdev_byindex(ifp->if_index)); ifdev_byindex(ifp->if_index) = NULL; while (if_index > 0 && ifaddr_byindex(if_index) == NULL) if_index--; /* We can now free link ifaddr. */ if (!TAILQ_EMPTY(&ifp->if_addrhead)) { ifa = TAILQ_FIRST(&ifp->if_addrhead); TAILQ_REMOVE(&ifp->if_addrhead, ifa, ifa_link); IFAFREE(ifa); } /* * Delete all remaining routes using this interface * Unfortuneatly the only way to do this is to slog through * the entire routing table looking for routes which point * to this interface...oh well... */ for (i = 1; i <= AF_MAX; i++) { if ((rnh = rt_tables[i]) == NULL) continue; RADIX_NODE_HEAD_LOCK(rnh); (void) rnh->rnh_walktree(rnh, if_rtdel, ifp); RADIX_NODE_HEAD_UNLOCK(rnh); } /* Announce that the interface is gone. */ rt_ifannouncemsg(ifp, IFAN_DEPARTURE); IF_AFDATA_LOCK(ifp); for (dp = domains; dp; dp = dp->dom_next) { if (dp->dom_ifdetach && ifp->if_afdata[dp->dom_family]) (*dp->dom_ifdetach)(ifp, ifp->if_afdata[dp->dom_family]); } IF_AFDATA_UNLOCK(ifp); #ifdef MAC mac_destroy_ifnet(ifp); #endif /* MAC */ KNOTE_UNLOCKED(&ifp->if_klist, NOTE_EXIT); knlist_clear(&ifp->if_klist, 0); knlist_destroy(&ifp->if_klist); IFNET_WLOCK(); found = 0; TAILQ_FOREACH(iter, &ifnet, if_link) if (iter == ifp) { found = 1; break; } if (found) TAILQ_REMOVE(&ifnet, ifp, if_link); IFNET_WUNLOCK(); mtx_destroy(&ifp->if_snd.ifq_mtx); IF_AFDATA_DESTROY(ifp); splx(s); } /* * Delete Routes for a Network Interface * * Called for each routing entry via the rnh->rnh_walktree() call above * to delete all route entries referencing a detaching network interface. * * Arguments: * rn pointer to node in the routing table * arg argument passed to rnh->rnh_walktree() - detaching interface * * Returns: * 0 successful * errno failed - reason indicated * */ static int if_rtdel(struct radix_node *rn, void *arg) { struct rtentry *rt = (struct rtentry *)rn; struct ifnet *ifp = arg; int err; if (rt->rt_ifp == ifp) { /* * Protect (sorta) against walktree recursion problems * with cloned routes */ if ((rt->rt_flags & RTF_UP) == 0) return (0); err = rtrequest(RTM_DELETE, rt_key(rt), rt->rt_gateway, rt_mask(rt), rt->rt_flags, (struct rtentry **) NULL); if (err) { log(LOG_WARNING, "if_rtdel: error %d\n", err); } } return (0); } #define equal(a1, a2) (bcmp((a1), (a2), ((a1))->sa_len) == 0) /* * Locate an interface based on a complete address. */ /*ARGSUSED*/ struct ifaddr * ifa_ifwithaddr(struct sockaddr *addr) { struct ifnet *ifp; struct ifaddr *ifa; IFNET_RLOCK(); TAILQ_FOREACH(ifp, &ifnet, if_link) TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { if (ifa->ifa_addr->sa_family != addr->sa_family) continue; if (equal(addr, ifa->ifa_addr)) goto done; /* IP6 doesn't have broadcast */ if ((ifp->if_flags & IFF_BROADCAST) && ifa->ifa_broadaddr && ifa->ifa_broadaddr->sa_len != 0 && equal(ifa->ifa_broadaddr, addr)) goto done; } ifa = NULL; done: IFNET_RUNLOCK(); return (ifa); } /* * Locate the point to point interface with a given destination address. */ /*ARGSUSED*/ struct ifaddr * ifa_ifwithdstaddr(struct sockaddr *addr) { struct ifnet *ifp; struct ifaddr *ifa; IFNET_RLOCK(); TAILQ_FOREACH(ifp, &ifnet, if_link) { if ((ifp->if_flags & IFF_POINTOPOINT) == 0) continue; TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { if (ifa->ifa_addr->sa_family != addr->sa_family) continue; if (ifa->ifa_dstaddr && equal(addr, ifa->ifa_dstaddr)) goto done; } } ifa = NULL; done: IFNET_RUNLOCK(); return (ifa); } /* * Find an interface on a specific network. If many, choice * is most specific found. */ struct ifaddr * ifa_ifwithnet(struct sockaddr *addr) { struct ifnet *ifp; struct ifaddr *ifa; struct ifaddr *ifa_maybe = (struct ifaddr *) 0; u_int af = addr->sa_family; char *addr_data = addr->sa_data, *cplim; /* * AF_LINK addresses can be looked up directly by their index number, * so do that if we can. */ if (af == AF_LINK) { struct sockaddr_dl *sdl = (struct sockaddr_dl *)addr; if (sdl->sdl_index && sdl->sdl_index <= if_index) return (ifaddr_byindex(sdl->sdl_index)); } /* * Scan though each interface, looking for ones that have * addresses in this address family. */ IFNET_RLOCK(); TAILQ_FOREACH(ifp, &ifnet, if_link) { TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { char *cp, *cp2, *cp3; if (ifa->ifa_addr->sa_family != af) next: continue; if (af == AF_INET && ifp->if_flags & IFF_POINTOPOINT) { /* * This is a bit broken as it doesn't * take into account that the remote end may * be a single node in the network we are * looking for. * The trouble is that we don't know the * netmask for the remote end. */ if (ifa->ifa_dstaddr != 0 && equal(addr, ifa->ifa_dstaddr)) goto done; } else { /* * if we have a special address handler, * then use it instead of the generic one. */ if (ifa->ifa_claim_addr) { if ((*ifa->ifa_claim_addr)(ifa, addr)) goto done; continue; } /* * Scan all the bits in the ifa's address. * If a bit dissagrees with what we are * looking for, mask it with the netmask * to see if it really matters. * (A byte at a time) */ if (ifa->ifa_netmask == 0) continue; cp = addr_data; cp2 = ifa->ifa_addr->sa_data; cp3 = ifa->ifa_netmask->sa_data; cplim = ifa->ifa_netmask->sa_len + (char *)ifa->ifa_netmask; while (cp3 < cplim) if ((*cp++ ^ *cp2++) & *cp3++) goto next; /* next address! */ /* * If the netmask of what we just found * is more specific than what we had before * (if we had one) then remember the new one * before continuing to search * for an even better one. */ if (ifa_maybe == 0 || rn_refines((caddr_t)ifa->ifa_netmask, (caddr_t)ifa_maybe->ifa_netmask)) ifa_maybe = ifa; } } } ifa = ifa_maybe; done: IFNET_RUNLOCK(); return (ifa); } /* * Find an interface address specific to an interface best matching * a given address. */ struct ifaddr * ifaof_ifpforaddr(struct sockaddr *addr, struct ifnet *ifp) { struct ifaddr *ifa; char *cp, *cp2, *cp3; char *cplim; struct ifaddr *ifa_maybe = 0; u_int af = addr->sa_family; if (af >= AF_MAX) return (0); TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { if (ifa->ifa_addr->sa_family != af) continue; if (ifa_maybe == 0) ifa_maybe = ifa; if (ifa->ifa_netmask == 0) { if (equal(addr, ifa->ifa_addr) || (ifa->ifa_dstaddr && equal(addr, ifa->ifa_dstaddr))) goto done; continue; } if (ifp->if_flags & IFF_POINTOPOINT) { if (equal(addr, ifa->ifa_dstaddr)) goto done; } else { cp = addr->sa_data; cp2 = ifa->ifa_addr->sa_data; cp3 = ifa->ifa_netmask->sa_data; cplim = ifa->ifa_netmask->sa_len + (char *)ifa->ifa_netmask; for (; cp3 < cplim; cp3++) if ((*cp++ ^ *cp2++) & *cp3) break; if (cp3 == cplim) goto done; } } ifa = ifa_maybe; done: return (ifa); } #include /* * Default action when installing a route with a Link Level gateway. * Lookup an appropriate real ifa to point to. * This should be moved to /sys/net/link.c eventually. */ static void link_rtrequest(int cmd, struct rtentry *rt, struct rt_addrinfo *info) { struct ifaddr *ifa, *oifa; struct sockaddr *dst; struct ifnet *ifp; RT_LOCK_ASSERT(rt); if (cmd != RTM_ADD || ((ifa = rt->rt_ifa) == 0) || ((ifp = ifa->ifa_ifp) == 0) || ((dst = rt_key(rt)) == 0)) return; ifa = ifaof_ifpforaddr(dst, ifp); if (ifa) { IFAREF(ifa); /* XXX */ oifa = rt->rt_ifa; rt->rt_ifa = ifa; IFAFREE(oifa); if (ifa->ifa_rtrequest && ifa->ifa_rtrequest != link_rtrequest) ifa->ifa_rtrequest(cmd, rt, info); } } /* * Mark an interface down and notify protocols of * the transition. * NOTE: must be called at splnet or eqivalent. */ static void if_unroute(struct ifnet *ifp, int flag, int fam) { struct ifaddr *ifa; ifp->if_flags &= ~flag; getmicrotime(&ifp->if_lastchange); TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) if (fam == PF_UNSPEC || (fam == ifa->ifa_addr->sa_family)) pfctlinput(PRC_IFDOWN, ifa->ifa_addr); if_qflush(&ifp->if_snd); rt_ifmsg(ifp); } /* * Mark an interface up and notify protocols of * the transition. * NOTE: must be called at splnet or eqivalent. */ static void if_route(struct ifnet *ifp, int flag, int fam) { struct ifaddr *ifa; ifp->if_flags |= flag; getmicrotime(&ifp->if_lastchange); TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) if (fam == PF_UNSPEC || (fam == ifa->ifa_addr->sa_family)) pfctlinput(PRC_IFUP, ifa->ifa_addr); rt_ifmsg(ifp); #ifdef INET6 in6_if_up(ifp); #endif } /* * Mark an interface down and notify protocols of * the transition. * NOTE: must be called at splnet or eqivalent. */ void if_down(struct ifnet *ifp) { if_unroute(ifp, IFF_UP, AF_UNSPEC); } /* * Mark an interface up and notify protocols of * the transition. * NOTE: must be called at splnet or eqivalent. */ void if_up(struct ifnet *ifp) { if_route(ifp, IFF_UP, AF_UNSPEC); } /* * Flush an interface queue. */ static void if_qflush(struct ifaltq *ifq) { struct mbuf *m, *n; IFQ_LOCK(ifq); #ifdef ALTQ if (ALTQ_IS_ENABLED(ifq)) ALTQ_PURGE(ifq); #endif n = ifq->ifq_head; while ((m = n) != 0) { n = m->m_act; m_freem(m); } ifq->ifq_head = 0; ifq->ifq_tail = 0; ifq->ifq_len = 0; IFQ_UNLOCK(ifq); } /* * Handle interface watchdog timer routines. Called * from softclock, we decrement timers (if set) and * call the appropriate interface routine on expiration. * * XXXRW: Note that because timeouts run with Giant, if_watchdog() is called * holding Giant. If we switch to an MPSAFE callout, we likely need to grab * Giant before entering if_watchdog() on an IFF_NEEDSGIANT interface. */ static void if_slowtimo(void *arg) { struct ifnet *ifp; int s = splimp(); IFNET_RLOCK(); TAILQ_FOREACH(ifp, &ifnet, if_link) { if (ifp->if_timer == 0 || --ifp->if_timer) continue; if (ifp->if_watchdog) (*ifp->if_watchdog)(ifp); } IFNET_RUNLOCK(); splx(s); timeout(if_slowtimo, (void *)0, hz / IFNET_SLOWHZ); } /* * Map interface name to * interface structure pointer. */ struct ifnet * ifunit(const char *name) { struct ifnet *ifp; IFNET_RLOCK(); TAILQ_FOREACH(ifp, &ifnet, if_link) { if (strncmp(name, ifp->if_xname, IFNAMSIZ) == 0) break; } IFNET_RUNLOCK(); return (ifp); } /* * Hardware specific interface ioctls. */ static int ifhwioctl(u_long cmd, struct ifnet *ifp, caddr_t data, struct thread *td) { struct ifreq *ifr; struct ifstat *ifs; int error = 0; int new_flags; size_t namelen, onamelen; char new_name[IFNAMSIZ]; struct ifaddr *ifa; struct sockaddr_dl *sdl; ifr = (struct ifreq *)data; switch (cmd) { case SIOCGIFINDEX: ifr->ifr_index = ifp->if_index; break; case SIOCGIFFLAGS: ifr->ifr_flags = ifp->if_flags & 0xffff; ifr->ifr_flagshigh = ifp->if_flags >> 16; break; case SIOCGIFCAP: ifr->ifr_reqcap = ifp->if_capabilities; ifr->ifr_curcap = ifp->if_capenable; break; #ifdef MAC case SIOCGIFMAC: error = mac_ioctl_ifnet_get(td->td_ucred, ifr, ifp); break; #endif case SIOCGIFMETRIC: ifr->ifr_metric = ifp->if_metric; break; case SIOCGIFMTU: ifr->ifr_mtu = ifp->if_mtu; break; case SIOCGIFPHYS: ifr->ifr_phys = ifp->if_physical; break; case SIOCSIFFLAGS: error = suser(td); if (error) return (error); new_flags = (ifr->ifr_flags & 0xffff) | (ifr->ifr_flagshigh << 16); if (ifp->if_flags & IFF_SMART) { /* Smart drivers twiddle their own routes */ } else if (ifp->if_flags & IFF_UP && (new_flags & IFF_UP) == 0) { int s = splimp(); if_down(ifp); splx(s); } else if (new_flags & IFF_UP && (ifp->if_flags & IFF_UP) == 0) { int s = splimp(); if_up(ifp); splx(s); } ifp->if_flags = (ifp->if_flags & IFF_CANTCHANGE) | (new_flags &~ IFF_CANTCHANGE); if (new_flags & IFF_PPROMISC) { /* Permanently promiscuous mode requested */ ifp->if_flags |= IFF_PROMISC; } else if (ifp->if_pcount == 0) { ifp->if_flags &= ~IFF_PROMISC; } if (ifp->if_ioctl) { IFF_LOCKGIANT(ifp); (void) (*ifp->if_ioctl)(ifp, cmd, data); IFF_UNLOCKGIANT(ifp); } getmicrotime(&ifp->if_lastchange); break; case SIOCSIFCAP: error = suser(td); if (error) return (error); if (ifp->if_ioctl == NULL) return (EOPNOTSUPP); if (ifr->ifr_reqcap & ~ifp->if_capabilities) return (EINVAL); IFF_LOCKGIANT(ifp); error = (*ifp->if_ioctl)(ifp, cmd, data); IFF_UNLOCKGIANT(ifp); if (error == 0) getmicrotime(&ifp->if_lastchange); break; #ifdef MAC case SIOCSIFMAC: error = mac_ioctl_ifnet_set(td->td_ucred, ifr, ifp); break; #endif case SIOCSIFNAME: error = suser(td); if (error != 0) return (error); error = copyinstr(ifr->ifr_data, new_name, IFNAMSIZ, NULL); if (error != 0) return (error); if (new_name[0] == '\0') return (EINVAL); if (ifunit(new_name) != NULL) return (EEXIST); EVENTHANDLER_INVOKE(ifnet_departure_event, ifp); /* Announce the departure of the interface. */ rt_ifannouncemsg(ifp, IFAN_DEPARTURE); log(LOG_INFO, "%s: changing name to '%s'\n", ifp->if_xname, new_name); strlcpy(ifp->if_xname, new_name, sizeof(ifp->if_xname)); ifa = ifaddr_byindex(ifp->if_index); IFA_LOCK(ifa); sdl = (struct sockaddr_dl *)ifa->ifa_addr; namelen = strlen(new_name); onamelen = sdl->sdl_nlen; /* * Move the address if needed. This is safe because we * allocate space for a name of length IFNAMSIZ when we * create this in if_attach(). */ if (namelen != onamelen) { bcopy(sdl->sdl_data + onamelen, sdl->sdl_data + namelen, sdl->sdl_alen); } bcopy(new_name, sdl->sdl_data, namelen); sdl->sdl_nlen = namelen; sdl = (struct sockaddr_dl *)ifa->ifa_netmask; bzero(sdl->sdl_data, onamelen); while (namelen != 0) sdl->sdl_data[--namelen] = 0xff; IFA_UNLOCK(ifa); EVENTHANDLER_INVOKE(ifnet_arrival_event, ifp); /* Announce the return of the interface. */ rt_ifannouncemsg(ifp, IFAN_ARRIVAL); break; case SIOCSIFMETRIC: error = suser(td); if (error) return (error); ifp->if_metric = ifr->ifr_metric; getmicrotime(&ifp->if_lastchange); break; case SIOCSIFPHYS: error = suser(td); if (error) return (error); if (ifp->if_ioctl == NULL) return (EOPNOTSUPP); IFF_LOCKGIANT(ifp); error = (*ifp->if_ioctl)(ifp, cmd, data); IFF_UNLOCKGIANT(ifp); if (error == 0) getmicrotime(&ifp->if_lastchange); break; case SIOCSIFMTU: { u_long oldmtu = ifp->if_mtu; error = suser(td); if (error) return (error); if (ifr->ifr_mtu < IF_MINMTU || ifr->ifr_mtu > IF_MAXMTU) return (EINVAL); if (ifp->if_ioctl == NULL) return (EOPNOTSUPP); IFF_LOCKGIANT(ifp); error = (*ifp->if_ioctl)(ifp, cmd, data); IFF_UNLOCKGIANT(ifp); if (error == 0) { getmicrotime(&ifp->if_lastchange); rt_ifmsg(ifp); } /* * If the link MTU changed, do network layer specific procedure. */ if (ifp->if_mtu != oldmtu) { #ifdef INET6 nd6_setmtu(ifp); #endif } break; } case SIOCADDMULTI: case SIOCDELMULTI: error = suser(td); if (error) return (error); /* Don't allow group membership on non-multicast interfaces. */ if ((ifp->if_flags & IFF_MULTICAST) == 0) return (EOPNOTSUPP); /* Don't let users screw up protocols' entries. */ if (ifr->ifr_addr.sa_family != AF_LINK) return (EINVAL); if (cmd == SIOCADDMULTI) { struct ifmultiaddr *ifma; error = if_addmulti(ifp, &ifr->ifr_addr, &ifma); } else { error = if_delmulti(ifp, &ifr->ifr_addr); } if (error == 0) getmicrotime(&ifp->if_lastchange); break; case SIOCSIFPHYADDR: case SIOCDIFPHYADDR: #ifdef INET6 case SIOCSIFPHYADDR_IN6: #endif case SIOCSLIFPHYADDR: case SIOCSIFMEDIA: case SIOCSIFGENERIC: error = suser(td); if (error) return (error); if (ifp->if_ioctl == NULL) return (EOPNOTSUPP); IFF_LOCKGIANT(ifp); error = (*ifp->if_ioctl)(ifp, cmd, data); IFF_UNLOCKGIANT(ifp); if (error == 0) getmicrotime(&ifp->if_lastchange); break; case SIOCGIFSTATUS: ifs = (struct ifstat *)data; ifs->ascii[0] = '\0'; case SIOCGIFPSRCADDR: case SIOCGIFPDSTADDR: case SIOCGLIFPHYADDR: case SIOCGIFMEDIA: case SIOCGIFGENERIC: if (ifp->if_ioctl == NULL) return (EOPNOTSUPP); IFF_LOCKGIANT(ifp); error = (*ifp->if_ioctl)(ifp, cmd, data); IFF_UNLOCKGIANT(ifp); break; case SIOCSIFLLADDR: error = suser(td); if (error) return (error); error = if_setlladdr(ifp, ifr->ifr_addr.sa_data, ifr->ifr_addr.sa_len); break; default: error = ENOIOCTL; break; } return (error); } /* * Interface ioctls. */ int ifioctl(struct socket *so, u_long cmd, caddr_t data, struct thread *td) { struct ifnet *ifp; struct ifreq *ifr; int error; int oif_flags; switch (cmd) { case SIOCGIFCONF: case OSIOCGIFCONF: return (ifconf(cmd, data)); } ifr = (struct ifreq *)data; switch (cmd) { case SIOCIFCREATE: case SIOCIFDESTROY: if ((error = suser(td)) != 0) return (error); return ((cmd == SIOCIFCREATE) ? if_clone_create(ifr->ifr_name, sizeof(ifr->ifr_name)) : if_clone_destroy(ifr->ifr_name)); case SIOCIFGCLONERS: return (if_clone_list((struct if_clonereq *)data)); } ifp = ifunit(ifr->ifr_name); if (ifp == 0) return (ENXIO); error = ifhwioctl(cmd, ifp, data, td); if (error != ENOIOCTL) return (error); oif_flags = ifp->if_flags; if (so->so_proto == 0) return (EOPNOTSUPP); #ifndef COMPAT_43 error = ((*so->so_proto->pr_usrreqs->pru_control)(so, cmd, data, ifp, td)); #else { int ocmd = cmd; switch (cmd) { case SIOCSIFDSTADDR: case SIOCSIFADDR: case SIOCSIFBRDADDR: case SIOCSIFNETMASK: #if BYTE_ORDER != BIG_ENDIAN if (ifr->ifr_addr.sa_family == 0 && ifr->ifr_addr.sa_len < 16) { ifr->ifr_addr.sa_family = ifr->ifr_addr.sa_len; ifr->ifr_addr.sa_len = 16; } #else if (ifr->ifr_addr.sa_len == 0) ifr->ifr_addr.sa_len = 16; #endif break; case OSIOCGIFADDR: cmd = SIOCGIFADDR; break; case OSIOCGIFDSTADDR: cmd = SIOCGIFDSTADDR; break; case OSIOCGIFBRDADDR: cmd = SIOCGIFBRDADDR; break; case OSIOCGIFNETMASK: cmd = SIOCGIFNETMASK; } error = ((*so->so_proto->pr_usrreqs->pru_control)(so, cmd, data, ifp, td)); switch (ocmd) { case OSIOCGIFADDR: case OSIOCGIFDSTADDR: case OSIOCGIFBRDADDR: case OSIOCGIFNETMASK: *(u_short *)&ifr->ifr_addr = ifr->ifr_addr.sa_family; } } #endif /* COMPAT_43 */ if ((oif_flags ^ ifp->if_flags) & IFF_UP) { #ifdef INET6 DELAY(100);/* XXX: temporary workaround for fxp issue*/ if (ifp->if_flags & IFF_UP) { int s = splimp(); in6_if_up(ifp); splx(s); } #endif } return (error); } /* * Set/clear promiscuous mode on interface ifp based on the truth value * of pswitch. The calls are reference counted so that only the first * "on" request actually has an effect, as does the final "off" request. * Results are undefined if the "off" and "on" requests are not matched. */ int ifpromisc(struct ifnet *ifp, int pswitch) { struct ifreq ifr; int error; int oldflags, oldpcount; oldpcount = ifp->if_pcount; oldflags = ifp->if_flags; if (ifp->if_flags & IFF_PPROMISC) { /* Do nothing if device is in permanently promiscuous mode */ ifp->if_pcount += pswitch ? 1 : -1; return (0); } if (pswitch) { /* * If the device is not configured up, we cannot put it in * promiscuous mode. */ if ((ifp->if_flags & IFF_UP) == 0) return (ENETDOWN); if (ifp->if_pcount++ != 0) return (0); ifp->if_flags |= IFF_PROMISC; } else { if (--ifp->if_pcount > 0) return (0); ifp->if_flags &= ~IFF_PROMISC; } ifr.ifr_flags = ifp->if_flags & 0xffff; ifr.ifr_flagshigh = ifp->if_flags >> 16; IFF_LOCKGIANT(ifp); error = (*ifp->if_ioctl)(ifp, SIOCSIFFLAGS, (caddr_t)&ifr); IFF_UNLOCKGIANT(ifp); if (error == 0) { log(LOG_INFO, "%s: promiscuous mode %s\n", ifp->if_xname, (ifp->if_flags & IFF_PROMISC) ? "enabled" : "disabled"); rt_ifmsg(ifp); } else { ifp->if_pcount = oldpcount; ifp->if_flags = oldflags; } return error; } /* * Return interface configuration * of system. List may be used * in later ioctl's (above) to get * other information. */ /*ARGSUSED*/ static int ifconf(u_long cmd, caddr_t data) { struct ifconf *ifc = (struct ifconf *)data; struct ifnet *ifp; struct ifaddr *ifa; struct ifreq ifr; struct sbuf *sb; int error, full = 0, valid_len, max_len; /* Limit initial buffer size to MAXPHYS to avoid DoS from userspace. */ max_len = MAXPHYS - 1; again: if (ifc->ifc_len <= max_len) { max_len = ifc->ifc_len; full = 1; } sb = sbuf_new(NULL, NULL, max_len + 1, SBUF_FIXEDLEN); max_len = 0; valid_len = 0; IFNET_RLOCK(); /* could sleep XXX */ TAILQ_FOREACH(ifp, &ifnet, if_link) { int addrs; if (strlcpy(ifr.ifr_name, ifp->if_xname, sizeof(ifr.ifr_name)) >= sizeof(ifr.ifr_name)) return (ENAMETOOLONG); addrs = 0; TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { struct sockaddr *sa = ifa->ifa_addr; if (jailed(curthread->td_ucred) && prison_if(curthread->td_ucred, sa)) continue; addrs++; #ifdef COMPAT_43 if (cmd == OSIOCGIFCONF) { struct osockaddr *osa = (struct osockaddr *)&ifr.ifr_addr; ifr.ifr_addr = *sa; osa->sa_family = sa->sa_family; sbuf_bcat(sb, &ifr, sizeof(ifr)); max_len += sizeof(ifr); } else #endif if (sa->sa_len <= sizeof(*sa)) { ifr.ifr_addr = *sa; sbuf_bcat(sb, &ifr, sizeof(ifr)); max_len += sizeof(ifr); } else { sbuf_bcat(sb, &ifr, offsetof(struct ifreq, ifr_addr)); max_len += offsetof(struct ifreq, ifr_addr); sbuf_bcat(sb, sa, sa->sa_len); max_len += sa->sa_len; } if (!sbuf_overflowed(sb)) valid_len = sbuf_len(sb); } if (addrs == 0) { bzero((caddr_t)&ifr.ifr_addr, sizeof(ifr.ifr_addr)); sbuf_bcat(sb, &ifr, sizeof(ifr)); max_len += sizeof(ifr); if (!sbuf_overflowed(sb)) valid_len = sbuf_len(sb); } } IFNET_RUNLOCK(); /* * If we didn't allocate enough space (uncommon), try again. If * we have already allocated as much space as we are allowed, * return what we've got. */ if (valid_len != max_len && !full) { sbuf_delete(sb); goto again; } ifc->ifc_len = valid_len; sbuf_finish(sb); error = copyout(sbuf_data(sb), ifc->ifc_req, ifc->ifc_len); sbuf_delete(sb); return (error); } /* * Just like if_promisc(), but for all-multicast-reception mode. */ int if_allmulti(struct ifnet *ifp, int onswitch) { int error = 0; int s = splimp(); struct ifreq ifr; if (onswitch) { if (ifp->if_amcount++ == 0) { ifp->if_flags |= IFF_ALLMULTI; ifr.ifr_flags = ifp->if_flags & 0xffff; ifr.ifr_flagshigh = ifp->if_flags >> 16; IFF_LOCKGIANT(ifp); error = ifp->if_ioctl(ifp, SIOCSIFFLAGS, (caddr_t)&ifr); IFF_UNLOCKGIANT(ifp); } } else { if (ifp->if_amcount > 1) { ifp->if_amcount--; } else { ifp->if_amcount = 0; ifp->if_flags &= ~IFF_ALLMULTI; ifr.ifr_flags = ifp->if_flags & 0xffff;; ifr.ifr_flagshigh = ifp->if_flags >> 16; IFF_LOCKGIANT(ifp); error = ifp->if_ioctl(ifp, SIOCSIFFLAGS, (caddr_t)&ifr); IFF_UNLOCKGIANT(ifp); } } splx(s); if (error == 0) rt_ifmsg(ifp); return error; } /* * Add a multicast listenership to the interface in question. * The link layer provides a routine which converts */ int if_addmulti(struct ifnet *ifp, struct sockaddr *sa, struct ifmultiaddr **retifma) { struct sockaddr *llsa, *dupsa; int error, s; struct ifmultiaddr *ifma; /* * If the matching multicast address already exists * then don't add a new one, just add a reference */ TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { if (equal(sa, ifma->ifma_addr)) { ifma->ifma_refcount++; if (retifma) *retifma = ifma; return 0; } } /* * Give the link layer a chance to accept/reject it, and also * find out which AF_LINK address this maps to, if it isn't one * already. */ if (ifp->if_resolvemulti) { error = ifp->if_resolvemulti(ifp, &llsa, sa); if (error) return error; } else { llsa = 0; } MALLOC(ifma, struct ifmultiaddr *, sizeof *ifma, M_IFMADDR, M_WAITOK); MALLOC(dupsa, struct sockaddr *, sa->sa_len, M_IFMADDR, M_WAITOK); bcopy(sa, dupsa, sa->sa_len); ifma->ifma_addr = dupsa; ifma->ifma_lladdr = llsa; ifma->ifma_ifp = ifp; ifma->ifma_refcount = 1; ifma->ifma_protospec = 0; rt_newmaddrmsg(RTM_NEWMADDR, ifma); /* * Some network interfaces can scan the address list at * interrupt time; lock them out. */ s = splimp(); TAILQ_INSERT_HEAD(&ifp->if_multiaddrs, ifma, ifma_link); splx(s); if (retifma != NULL) *retifma = ifma; if (llsa != 0) { TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { if (equal(ifma->ifma_addr, llsa)) break; } if (ifma) { ifma->ifma_refcount++; } else { MALLOC(ifma, struct ifmultiaddr *, sizeof *ifma, M_IFMADDR, M_WAITOK); MALLOC(dupsa, struct sockaddr *, llsa->sa_len, M_IFMADDR, M_WAITOK); bcopy(llsa, dupsa, llsa->sa_len); ifma->ifma_addr = dupsa; ifma->ifma_lladdr = NULL; ifma->ifma_ifp = ifp; ifma->ifma_refcount = 1; ifma->ifma_protospec = 0; s = splimp(); TAILQ_INSERT_HEAD(&ifp->if_multiaddrs, ifma, ifma_link); splx(s); } } /* * We are certain we have added something, so call down to the * interface to let them know about it. */ s = splimp(); IFF_LOCKGIANT(ifp); ifp->if_ioctl(ifp, SIOCADDMULTI, 0); IFF_UNLOCKGIANT(ifp); splx(s); return 0; } /* * Remove a reference to a multicast address on this interface. Yell * if the request does not match an existing membership. */ int if_delmulti(struct ifnet *ifp, struct sockaddr *sa) { struct ifmultiaddr *ifma; int s; TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) if (equal(sa, ifma->ifma_addr)) break; if (ifma == 0) return ENOENT; if (ifma->ifma_refcount > 1) { ifma->ifma_refcount--; return 0; } rt_newmaddrmsg(RTM_DELMADDR, ifma); sa = ifma->ifma_lladdr; s = splimp(); TAILQ_REMOVE(&ifp->if_multiaddrs, ifma, ifma_link); /* * Make sure the interface driver is notified * in the case of a link layer mcast group being left. */ if (ifma->ifma_addr->sa_family == AF_LINK && sa == 0) { IFF_LOCKGIANT(ifp); ifp->if_ioctl(ifp, SIOCDELMULTI, 0); IFF_UNLOCKGIANT(ifp); } splx(s); free(ifma->ifma_addr, M_IFMADDR); free(ifma, M_IFMADDR); if (sa == 0) return 0; /* * Now look for the link-layer address which corresponds to * this network address. It had been squirreled away in * ifma->ifma_lladdr for this purpose (so we don't have * to call ifp->if_resolvemulti() again), and we saved that * value in sa above. If some nasty deleted the * link-layer address out from underneath us, we can deal because * the address we stored was is not the same as the one which was * in the record for the link-layer address. (So we don't complain * in that case.) */ TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) if (equal(sa, ifma->ifma_addr)) break; if (ifma == 0) return 0; if (ifma->ifma_refcount > 1) { ifma->ifma_refcount--; return 0; } s = splimp(); TAILQ_REMOVE(&ifp->if_multiaddrs, ifma, ifma_link); IFF_LOCKGIANT(ifp); ifp->if_ioctl(ifp, SIOCDELMULTI, 0); IFF_UNLOCKGIANT(ifp); splx(s); free(ifma->ifma_addr, M_IFMADDR); free(sa, M_IFMADDR); free(ifma, M_IFMADDR); return 0; } /* * Set the link layer address on an interface. * * At this time we only support certain types of interfaces, * and we don't allow the length of the address to change. */ int if_setlladdr(struct ifnet *ifp, const u_char *lladdr, int len) { struct sockaddr_dl *sdl; struct ifaddr *ifa; struct ifreq ifr; ifa = ifaddr_byindex(ifp->if_index); if (ifa == NULL) return (EINVAL); sdl = (struct sockaddr_dl *)ifa->ifa_addr; if (sdl == NULL) return (EINVAL); if (len != sdl->sdl_alen) /* don't allow length to change */ return (EINVAL); switch (ifp->if_type) { case IFT_ETHER: /* these types use struct arpcom */ case IFT_FDDI: case IFT_XETHER: case IFT_ISO88025: case IFT_L2VLAN: bcopy(lladdr, IFP2AC(ifp)->ac_enaddr, len); /* * XXX We also need to store the lladdr in LLADDR(sdl), * which is done below. This is a pain because we must * remember to keep the info in sync. */ /* FALLTHROUGH */ case IFT_ARCNET: bcopy(lladdr, LLADDR(sdl), len); break; default: return (ENODEV); } /* * If the interface is already up, we need * to re-init it in order to reprogram its * address filter. */ if ((ifp->if_flags & IFF_UP) != 0) { IFF_LOCKGIANT(ifp); ifp->if_flags &= ~IFF_UP; ifr.ifr_flags = ifp->if_flags & 0xffff; ifr.ifr_flagshigh = ifp->if_flags >> 16; (*ifp->if_ioctl)(ifp, SIOCSIFFLAGS, (caddr_t)&ifr); ifp->if_flags |= IFF_UP; ifr.ifr_flags = ifp->if_flags & 0xffff; ifr.ifr_flagshigh = ifp->if_flags >> 16; (*ifp->if_ioctl)(ifp, SIOCSIFFLAGS, (caddr_t)&ifr); IFF_UNLOCKGIANT(ifp); #ifdef INET /* * Also send gratuitous ARPs to notify other nodes about * the address change. */ TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { if (ifa->ifa_addr != NULL && ifa->ifa_addr->sa_family == AF_INET) arp_ifinit(ifp, ifa); } #endif } return (0); } struct ifmultiaddr * ifmaof_ifpforaddr(struct sockaddr *sa, struct ifnet *ifp) { struct ifmultiaddr *ifma; TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) if (equal(ifma->ifma_addr, sa)) break; return ifma; } /* * The name argument must be a pointer to storage which will last as * long as the interface does. For physical devices, the result of * device_get_name(dev) is a good choice and for pseudo-devices a * static string works well. */ void if_initname(struct ifnet *ifp, const char *name, int unit) { ifp->if_dname = name; ifp->if_dunit = unit; if (unit != IF_DUNIT_NONE) snprintf(ifp->if_xname, IFNAMSIZ, "%s%d", name, unit); else strlcpy(ifp->if_xname, name, IFNAMSIZ); } int if_printf(struct ifnet *ifp, const char * fmt, ...) { va_list ap; int retval; retval = printf("%s: ", ifp->if_xname); va_start(ap, fmt); retval += vprintf(fmt, ap); va_end(ap); return (retval); } /* * When an interface is marked IFF_NEEDSGIANT, its if_start() routine cannot * be called without Giant. However, we often can't acquire the Giant lock * at those points; instead, we run it via a task queue that holds Giant via * if_start_deferred. * * XXXRW: We need to make sure that the ifnet isn't fully detached until any * outstanding if_start_deferred() tasks that will run after the free. This * probably means waiting in if_detach(). */ void if_start(struct ifnet *ifp) { NET_ASSERT_GIANT(); if ((ifp->if_flags & IFF_NEEDSGIANT) != 0 && debug_mpsafenet != 0) { if (mtx_owned(&Giant)) (*(ifp)->if_start)(ifp); else taskqueue_enqueue(taskqueue_swi_giant, &ifp->if_starttask); } else (*(ifp)->if_start)(ifp); } static void if_start_deferred(void *context, int pending) { struct ifnet *ifp; /* * This code must be entered with Giant, and should never run if * we're not running with debug.mpsafenet. */ KASSERT(debug_mpsafenet != 0, ("if_start_deferred: debug.mpsafenet")); GIANT_REQUIRED; ifp = (struct ifnet *)context; (ifp->if_start)(ifp); } SYSCTL_NODE(_net, PF_LINK, link, CTLFLAG_RW, 0, "Link layers"); SYSCTL_NODE(_net_link, 0, generic, CTLFLAG_RW, 0, "Generic link-management");