/* * Copyright (c) 1997, 1998, 1999, 2000 * Bill Paul . All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by Bill Paul. * 4. Neither the name of the author nor the names of any co-contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF * THE POSSIBILITY OF SUCH DAMAGE. * * $FreeBSD$ */ /* * Kawasaki LSI KL5KUSB101B USB to ethernet adapter driver. * * Written by Bill Paul * Electrical Engineering Department * Columbia University, New York City */ /* * The KLSI USB to ethernet adapter chip contains an USB serial interface, * ethernet MAC and embedded microcontroller (called the QT Engine). * The chip must have firmware loaded into it before it will operate. * Packets are passed between the chip and host via bulk transfers. * There is an interrupt endpoint mentioned in the software spec, however * it's currently unused. This device is 10Mbps half-duplex only, hence * there is no media selection logic. The MAC supports a 128 entry * multicast filter, though the exact size of the filter can depend * on the firmware. Curiously, while the software spec describes various * ethernet statistics counters, my sample adapter and firmware combination * claims not to support any statistics counters at all. * * Note that once we load the firmware in the device, we have to be * careful not to load it again: if you restart your computer but * leave the adapter attached to the USB controller, it may remain * powered on and retain its firmware. In this case, we don't need * to load the firmware a second time. * * Special thanks to Rob Furr for providing an ADS Technologies * adapter for development and testing. No monkeys were harmed during * the development of this driver. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* for DELAY */ #include #include #include #include #include #include #include #include #include #ifndef lint static const char rcsid[] = "$FreeBSD$"; #endif /* * Various supported device vendors/products. */ Static struct kue_type kue_devs[] = { { USB_VENDOR_AOX, USB_PRODUCT_AOX_USB101 }, { USB_VENDOR_KLSI, USB_PRODUCT_AOX_USB101 }, { USB_VENDOR_ADS, USB_PRODUCT_ADS_UBS10BT }, { USB_VENDOR_ATEN, USB_PRODUCT_ATEN_UC10T }, { USB_VENDOR_NETGEAR, USB_PRODUCT_NETGEAR_EA101 }, { USB_VENDOR_PERACOM, USB_PRODUCT_PERACOM_ENET }, { USB_VENDOR_PERACOM, USB_PRODUCT_PERACOM_ENET2 }, { USB_VENDOR_ENTREGA, USB_PRODUCT_ENTREGA_E45 }, { USB_VENDOR_3COM, USB_PRODUCT_3COM_3C19250 }, { USB_VENDOR_COREGA, USB_PRODUCT_COREGA_ETHER_USB_T }, { USB_VENDOR_DLINK, USB_PRODUCT_DLINK_DSB650C }, { USB_VENDOR_SMC, USB_PRODUCT_SMC_2102USB }, { USB_VENDOR_LINKSYS, USB_PRODUCT_LINKSYS_USB10T }, { USB_VENDOR_KLSI, USB_PRODUCT_KLSI_DUH3E10BT }, { USB_VENDOR_PERACOM, USB_PRODUCT_PERACOM_ENET3 }, { 0, 0 } }; Static struct usb_qdat kue_qdat; Static int kue_match __P((device_t)); Static int kue_attach __P((device_t)); Static int kue_detach __P((device_t)); Static void kue_shutdown __P((device_t)); Static int kue_tx_list_init __P((struct kue_softc *)); Static int kue_rx_list_init __P((struct kue_softc *)); Static int kue_newbuf __P((struct kue_softc *, struct kue_chain *, struct mbuf *)); Static int kue_encap __P((struct kue_softc *, struct mbuf *, int)); Static void kue_rxeof __P((usbd_xfer_handle, usbd_private_handle, usbd_status)); Static void kue_txeof __P((usbd_xfer_handle, usbd_private_handle, usbd_status)); Static void kue_start __P((struct ifnet *)); Static void kue_rxstart __P((struct ifnet *)); Static int kue_ioctl __P((struct ifnet *, u_long, caddr_t)); Static void kue_init __P((void *)); Static void kue_stop __P((struct kue_softc *)); Static void kue_watchdog __P((struct ifnet *)); Static void kue_setmulti __P((struct kue_softc *)); Static void kue_reset __P((struct kue_softc *)); Static usbd_status kue_do_request __P((usbd_device_handle, usb_device_request_t *, void *)); Static usbd_status kue_ctl __P((struct kue_softc *, int, u_int8_t, u_int16_t, char *, int)); Static usbd_status kue_setword __P((struct kue_softc *, u_int8_t, u_int16_t)); Static int kue_load_fw __P((struct kue_softc *)); Static device_method_t kue_methods[] = { /* Device interface */ DEVMETHOD(device_probe, kue_match), DEVMETHOD(device_attach, kue_attach), DEVMETHOD(device_detach, kue_detach), DEVMETHOD(device_shutdown, kue_shutdown), { 0, 0 } }; Static driver_t kue_driver = { "kue", kue_methods, sizeof(struct kue_softc) }; Static devclass_t kue_devclass; DRIVER_MODULE(if_kue, uhub, kue_driver, kue_devclass, usbd_driver_load, 0); /* * We have a custom do_request function which is almost like the * regular do_request function, except it has a much longer timeout. * Why? Because we need to make requests over the control endpoint * to download the firmware to the device, which can take longer * than the default timeout. */ Static usbd_status kue_do_request(dev, req, data) usbd_device_handle dev; usb_device_request_t *req; void *data; { usbd_xfer_handle xfer; usbd_status err; xfer = usbd_alloc_xfer(dev); usbd_setup_default_xfer(xfer, dev, 0, 500000, req, data, UGETW(req->wLength), USBD_SHORT_XFER_OK|USBD_NO_TSLEEP, 0); err = usbd_sync_transfer(xfer); usbd_free_xfer(xfer); return(err); } Static usbd_status kue_setword(sc, breq, word) struct kue_softc *sc; u_int8_t breq; u_int16_t word; { usbd_device_handle dev; usb_device_request_t req; usbd_status err; int s; if (sc->kue_gone) return(USBD_NORMAL_COMPLETION); dev = sc->kue_udev; s = splusb(); req.bmRequestType = UT_WRITE_VENDOR_DEVICE; req.bRequest = breq; USETW(req.wValue, word); USETW(req.wIndex, 0); USETW(req.wLength, 0); err = kue_do_request(dev, &req, NULL); splx(s); return(err); } Static usbd_status kue_ctl(sc, rw, breq, val, data, len) struct kue_softc *sc; int rw; u_int8_t breq; u_int16_t val; char *data; int len; { usbd_device_handle dev; usb_device_request_t req; usbd_status err; int s; dev = sc->kue_udev; if (sc->kue_gone) return(USBD_NORMAL_COMPLETION); s = splusb(); if (rw == KUE_CTL_WRITE) req.bmRequestType = UT_WRITE_VENDOR_DEVICE; else req.bmRequestType = UT_READ_VENDOR_DEVICE; req.bRequest = breq; USETW(req.wValue, val); USETW(req.wIndex, 0); USETW(req.wLength, len); err = kue_do_request(dev, &req, data); splx(s); return(err); } Static int kue_load_fw(sc) struct kue_softc *sc; { usbd_status err; usb_device_descriptor_t *dd; int hwrev; dd = &sc->kue_udev->ddesc; hwrev = UGETW(dd->bcdDevice); /* * First, check if we even need to load the firmware. * If the device was still attached when the system was * rebooted, it may already have firmware loaded in it. * If this is the case, we don't need to do it again. * And in fact, if we try to load it again, we'll hang, * so we have to avoid this condition if we don't want * to look stupid. * * We can test this quickly by checking the bcdRevision * code. The NIC will return a different revision code if * it's probed while the firmware is still loaded and * running. */ if (hwrev == 0x0202) return(0); /* Load code segment */ err = kue_ctl(sc, KUE_CTL_WRITE, KUE_CMD_SEND_SCAN, 0, kue_code_seg, sizeof(kue_code_seg)); if (err) { printf("kue%d: failed to load code segment: %s\n", sc->kue_unit, usbd_errstr(err)); return(ENXIO); } /* Load fixup segment */ err = kue_ctl(sc, KUE_CTL_WRITE, KUE_CMD_SEND_SCAN, 0, kue_fix_seg, sizeof(kue_fix_seg)); if (err) { printf("kue%d: failed to load fixup segment: %s\n", sc->kue_unit, usbd_errstr(err)); return(ENXIO); } /* Send trigger command. */ err = kue_ctl(sc, KUE_CTL_WRITE, KUE_CMD_SEND_SCAN, 0, kue_trig_seg, sizeof(kue_trig_seg)); if (err) { printf("kue%d: failed to load trigger segment: %s\n", sc->kue_unit, usbd_errstr(err)); return(ENXIO); } return(0); } Static void kue_setmulti(sc) struct kue_softc *sc; { struct ifnet *ifp; struct ifmultiaddr *ifma; int i = 0; ifp = &sc->arpcom.ac_if; if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) { sc->kue_rxfilt |= KUE_RXFILT_ALLMULTI; sc->kue_rxfilt &= ~KUE_RXFILT_MULTICAST; kue_setword(sc, KUE_CMD_SET_PKT_FILTER, sc->kue_rxfilt); return; } sc->kue_rxfilt &= ~KUE_RXFILT_ALLMULTI; for (ifma = ifp->if_multiaddrs.lh_first; ifma != NULL; ifma = ifma->ifma_link.le_next) { if (ifma->ifma_addr->sa_family != AF_LINK) continue; /* * If there are too many addresses for the * internal filter, switch over to allmulti mode. */ if (i == KUE_MCFILTCNT(sc)) break; bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr), KUE_MCFILT(sc, i), ETHER_ADDR_LEN); i++; } if (i == KUE_MCFILTCNT(sc)) sc->kue_rxfilt |= KUE_RXFILT_ALLMULTI; else { sc->kue_rxfilt |= KUE_RXFILT_MULTICAST; kue_ctl(sc, KUE_CTL_WRITE, KUE_CMD_SET_MCAST_FILTERS, i, sc->kue_mcfilters, i * ETHER_ADDR_LEN); } kue_setword(sc, KUE_CMD_SET_PKT_FILTER, sc->kue_rxfilt); return; } /* * Issue a SET_CONFIGURATION command to reset the MAC. This should be * done after the firmware is loaded into the adapter in order to * bring it into proper operation. */ Static void kue_reset(sc) struct kue_softc *sc; { if (usbd_set_config_no(sc->kue_udev, KUE_CONFIG_NO, 0)) { printf("kue%d: getting interface handle failed\n", sc->kue_unit); } /* Wait a little while for the chip to get its brains in order. */ DELAY(1000); return; } /* * Probe for a KLSI chip. */ USB_MATCH(kue) { USB_MATCH_START(kue, uaa); struct kue_type *t; if (!uaa->iface) return(UMATCH_NONE); t = kue_devs; while(t->kue_vid) { if (uaa->vendor == t->kue_vid && uaa->product == t->kue_did) { return(UMATCH_VENDOR_PRODUCT); } t++; } return(UMATCH_NONE); } /* * Attach the interface. Allocate softc structures, do * setup and ethernet/BPF attach. */ USB_ATTACH(kue) { USB_ATTACH_START(kue, sc, uaa); char devinfo[1024]; int s; struct ifnet *ifp; usbd_status err; usb_interface_descriptor_t *id; usb_endpoint_descriptor_t *ed; int i; s = splimp(); bzero(sc, sizeof(struct kue_softc)); sc->kue_iface = uaa->iface; sc->kue_udev = uaa->device; sc->kue_unit = device_get_unit(self); id = usbd_get_interface_descriptor(uaa->iface); usbd_devinfo(uaa->device, 0, devinfo); device_set_desc_copy(self, devinfo); printf("%s: %s\n", USBDEVNAME(self), devinfo); /* Find endpoints. */ for (i = 0; i < id->bNumEndpoints; i++) { ed = usbd_interface2endpoint_descriptor(uaa->iface, i); if (!ed) { printf("kue%d: couldn't get ep %d\n", sc->kue_unit, i); splx(s); USB_ATTACH_ERROR_RETURN; } if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_IN && (ed->bmAttributes & UE_XFERTYPE) == UE_BULK) { sc->kue_ed[KUE_ENDPT_RX] = ed->bEndpointAddress; } else if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_OUT && (ed->bmAttributes & UE_XFERTYPE) == UE_BULK) { sc->kue_ed[KUE_ENDPT_TX] = ed->bEndpointAddress; } else if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_IN && (ed->bmAttributes & UE_XFERTYPE) == UE_INTERRUPT) { sc->kue_ed[KUE_ENDPT_INTR] = ed->bEndpointAddress; } } /* Load the firmware into the NIC. */ if (kue_load_fw(sc)) { splx(s); USB_ATTACH_ERROR_RETURN; } /* Reset the adapter. */ kue_reset(sc); /* Read ethernet descriptor */ err = kue_ctl(sc, KUE_CTL_READ, KUE_CMD_GET_ETHER_DESCRIPTOR, 0, (char *)&sc->kue_desc, sizeof(sc->kue_desc)); sc->kue_mcfilters = malloc(KUE_MCFILTCNT(sc) * ETHER_ADDR_LEN, M_USBDEV, M_NOWAIT); /* * A KLSI chip was detected. Inform the world. */ printf("kue%d: Ethernet address: %6D\n", sc->kue_unit, sc->kue_desc.kue_macaddr, ":"); bcopy(sc->kue_desc.kue_macaddr, (char *)&sc->arpcom.ac_enaddr, ETHER_ADDR_LEN); ifp = &sc->arpcom.ac_if; ifp->if_softc = sc; ifp->if_unit = sc->kue_unit; ifp->if_name = "kue"; ifp->if_mtu = ETHERMTU; ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; ifp->if_ioctl = kue_ioctl; ifp->if_output = ether_output; ifp->if_start = kue_start; ifp->if_watchdog = kue_watchdog; ifp->if_init = kue_init; ifp->if_baudrate = 10000000; ifp->if_snd.ifq_maxlen = IFQ_MAXLEN; kue_qdat.ifp = ifp; kue_qdat.if_rxstart = kue_rxstart; /* * Call MI attach routines. */ if_attach(ifp); ether_ifattach(ifp); bpfattach(ifp, DLT_EN10MB, sizeof(struct ether_header)); usb_register_netisr(); sc->kue_gone = 0; splx(s); USB_ATTACH_SUCCESS_RETURN; } Static int kue_detach(dev) device_t dev; { struct kue_softc *sc; struct ifnet *ifp; int s; s = splusb(); sc = device_get_softc(dev); ifp = &sc->arpcom.ac_if; sc->kue_gone = 1; if (ifp != NULL) { bpfdetach(ifp); if_detach(ifp); } if (sc->kue_ep[KUE_ENDPT_TX] != NULL) usbd_abort_pipe(sc->kue_ep[KUE_ENDPT_TX]); if (sc->kue_ep[KUE_ENDPT_RX] != NULL) usbd_abort_pipe(sc->kue_ep[KUE_ENDPT_RX]); if (sc->kue_ep[KUE_ENDPT_INTR] != NULL) usbd_abort_pipe(sc->kue_ep[KUE_ENDPT_INTR]); if (sc->kue_mcfilters != NULL) free(sc->kue_mcfilters, M_USBDEV); splx(s); return(0); } /* * Initialize an RX descriptor and attach an MBUF cluster. */ Static int kue_newbuf(sc, c, m) struct kue_softc *sc; struct kue_chain *c; struct mbuf *m; { struct mbuf *m_new = NULL; if (m == NULL) { MGETHDR(m_new, M_DONTWAIT, MT_DATA); if (m_new == NULL) { printf("kue%d: no memory for rx list " "-- packet dropped!\n", sc->kue_unit); return(ENOBUFS); } MCLGET(m_new, M_DONTWAIT); if (!(m_new->m_flags & M_EXT)) { printf("kue%d: no memory for rx list " "-- packet dropped!\n", sc->kue_unit); m_freem(m_new); return(ENOBUFS); } m_new->m_len = m_new->m_pkthdr.len = MCLBYTES; } else { m_new = m; m_new->m_len = m_new->m_pkthdr.len = MCLBYTES; m_new->m_data = m_new->m_ext.ext_buf; } c->kue_mbuf = m_new; return(0); } Static int kue_rx_list_init(sc) struct kue_softc *sc; { struct kue_cdata *cd; struct kue_chain *c; int i; cd = &sc->kue_cdata; for (i = 0; i < KUE_RX_LIST_CNT; i++) { c = &cd->kue_rx_chain[i]; c->kue_sc = sc; c->kue_idx = i; if (kue_newbuf(sc, c, NULL) == ENOBUFS) return(ENOBUFS); if (c->kue_xfer == NULL) { c->kue_xfer = usbd_alloc_xfer(sc->kue_udev); if (c->kue_xfer == NULL) return(ENOBUFS); } } return(0); } Static int kue_tx_list_init(sc) struct kue_softc *sc; { struct kue_cdata *cd; struct kue_chain *c; int i; cd = &sc->kue_cdata; for (i = 0; i < KUE_TX_LIST_CNT; i++) { c = &cd->kue_tx_chain[i]; c->kue_sc = sc; c->kue_idx = i; c->kue_mbuf = NULL; if (c->kue_xfer == NULL) { c->kue_xfer = usbd_alloc_xfer(sc->kue_udev); if (c->kue_xfer == NULL) return(ENOBUFS); } c->kue_buf = malloc(KUE_BUFSZ, M_USBDEV, M_NOWAIT); if (c->kue_buf == NULL) return(ENOBUFS); } return(0); } Static void kue_rxstart(ifp) struct ifnet *ifp; { struct kue_softc *sc; struct kue_chain *c; sc = ifp->if_softc; c = &sc->kue_cdata.kue_rx_chain[sc->kue_cdata.kue_rx_prod]; if (kue_newbuf(sc, c, NULL) == ENOBUFS) { ifp->if_ierrors++; return; } /* Setup new transfer. */ usbd_setup_xfer(c->kue_xfer, sc->kue_ep[KUE_ENDPT_RX], c, mtod(c->kue_mbuf, char *), KUE_BUFSZ, USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, kue_rxeof); usbd_transfer(c->kue_xfer); return; } /* * A frame has been uploaded: pass the resulting mbuf chain up to * the higher level protocols. */ Static void kue_rxeof(xfer, priv, status) usbd_xfer_handle xfer; usbd_private_handle priv; usbd_status status; { struct kue_softc *sc; struct kue_chain *c; struct mbuf *m; struct ifnet *ifp; int total_len = 0; u_int16_t len; c = priv; sc = c->kue_sc; ifp = &sc->arpcom.ac_if; if (!(ifp->if_flags & IFF_RUNNING)) return; if (status != USBD_NORMAL_COMPLETION) { if (status == USBD_NOT_STARTED || status == USBD_CANCELLED) return; printf("kue%d: usb error on rx: %s\n", sc->kue_unit, usbd_errstr(status)); if (status == USBD_STALLED) usbd_clear_endpoint_stall(sc->kue_ep[KUE_ENDPT_RX]); goto done; } usbd_get_xfer_status(xfer, NULL, NULL, &total_len, NULL); m = c->kue_mbuf; if (total_len <= 1) goto done; len = *mtod(m, u_int16_t *); m_adj(m, sizeof(u_int16_t)); /* No errors; receive the packet. */ total_len = len; if (len < sizeof(struct ether_header)) { ifp->if_ierrors++; goto done; } ifp->if_ipackets++; m->m_pkthdr.rcvif = (struct ifnet *)&kue_qdat; m->m_pkthdr.len = m->m_len = total_len; /* Put the packet on the special USB input queue. */ usb_ether_input(m); return; done: /* Setup new transfer. */ usbd_setup_xfer(c->kue_xfer, sc->kue_ep[KUE_ENDPT_RX], c, mtod(c->kue_mbuf, char *), KUE_BUFSZ, USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, kue_rxeof); usbd_transfer(c->kue_xfer); return; } /* * A frame was downloaded to the chip. It's safe for us to clean up * the list buffers. */ Static void kue_txeof(xfer, priv, status) usbd_xfer_handle xfer; usbd_private_handle priv; usbd_status status; { struct kue_softc *sc; struct kue_chain *c; struct ifnet *ifp; usbd_status err; int s; s = splimp(); c = priv; sc = c->kue_sc; ifp = &sc->arpcom.ac_if; ifp->if_timer = 0; ifp->if_flags &= ~IFF_OACTIVE; if (status != USBD_NORMAL_COMPLETION) { if (status == USBD_NOT_STARTED || status == USBD_CANCELLED) { splx(s); return; } printf("kue%d: usb error on tx: %s\n", sc->kue_unit, usbd_errstr(status)); if (status == USBD_STALLED) usbd_clear_endpoint_stall(sc->kue_ep[KUE_ENDPT_TX]); splx(s); return; } usbd_get_xfer_status(c->kue_xfer, NULL, NULL, NULL, &err); if (c->kue_mbuf != NULL) { c->kue_mbuf->m_pkthdr.rcvif = ifp; usb_tx_done(c->kue_mbuf); c->kue_mbuf = NULL; } if (err) ifp->if_oerrors++; else ifp->if_opackets++; splx(s); return; } Static int kue_encap(sc, m, idx) struct kue_softc *sc; struct mbuf *m; int idx; { int total_len; struct kue_chain *c; usbd_status err; c = &sc->kue_cdata.kue_tx_chain[idx]; /* * Copy the mbuf data into a contiguous buffer, leaving two * bytes at the beginning to hold the frame length. */ m_copydata(m, 0, m->m_pkthdr.len, c->kue_buf + 2); c->kue_mbuf = m; total_len = m->m_pkthdr.len + 2; total_len += 64 - (total_len % 64); /* Frame length is specified in the first 2 bytes of the buffer. */ c->kue_buf[0] = (u_int8_t)m->m_pkthdr.len; c->kue_buf[1] = (u_int8_t)(m->m_pkthdr.len >> 8); usbd_setup_xfer(c->kue_xfer, sc->kue_ep[KUE_ENDPT_TX], c, c->kue_buf, total_len, 0, 10000, kue_txeof); /* Transmit */ err = usbd_transfer(c->kue_xfer); if (err != USBD_IN_PROGRESS) { kue_stop(sc); return(EIO); } sc->kue_cdata.kue_tx_cnt++; return(0); } Static void kue_start(ifp) struct ifnet *ifp; { struct kue_softc *sc; struct mbuf *m_head = NULL; sc = ifp->if_softc; if (ifp->if_flags & IFF_OACTIVE) return; IF_DEQUEUE(&ifp->if_snd, m_head); if (m_head == NULL) return; if (kue_encap(sc, m_head, 0)) { IF_PREPEND(&ifp->if_snd, m_head); ifp->if_flags |= IFF_OACTIVE; return; } /* * If there's a BPF listener, bounce a copy of this frame * to him. */ if (ifp->if_bpf) bpf_mtap(ifp, m_head); ifp->if_flags |= IFF_OACTIVE; /* * Set a timeout in case the chip goes out to lunch. */ ifp->if_timer = 5; return; } Static void kue_init(xsc) void *xsc; { struct kue_softc *sc = xsc; struct ifnet *ifp = &sc->arpcom.ac_if; struct kue_chain *c; usbd_status err; int i, s; if (ifp->if_flags & IFF_RUNNING) return; s = splimp(); /* Set MAC address */ kue_ctl(sc, KUE_CTL_WRITE, KUE_CMD_SET_MAC, 0, sc->arpcom.ac_enaddr, ETHER_ADDR_LEN); sc->kue_rxfilt = KUE_RXFILT_UNICAST|KUE_RXFILT_BROADCAST; /* If we want promiscuous mode, set the allframes bit. */ if (ifp->if_flags & IFF_PROMISC) sc->kue_rxfilt |= KUE_RXFILT_PROMISC; kue_setword(sc, KUE_CMD_SET_PKT_FILTER, sc->kue_rxfilt); /* I'm not sure how to tune these. */ #ifdef notdef /* * Leave this one alone for now; setting it * wrong causes lockups on some machines/controllers. */ kue_setword(sc, KUE_CMD_SET_SOFS, 1); #endif kue_setword(sc, KUE_CMD_SET_URB_SIZE, 64); /* Init TX ring. */ if (kue_tx_list_init(sc) == ENOBUFS) { printf("kue%d: tx list init failed\n", sc->kue_unit); splx(s); return; } /* Init RX ring. */ if (kue_rx_list_init(sc) == ENOBUFS) { printf("kue%d: rx list init failed\n", sc->kue_unit); splx(s); return; } /* Load the multicast filter. */ kue_setmulti(sc); /* Open RX and TX pipes. */ err = usbd_open_pipe(sc->kue_iface, sc->kue_ed[KUE_ENDPT_RX], USBD_EXCLUSIVE_USE, &sc->kue_ep[KUE_ENDPT_RX]); if (err) { printf("kue%d: open rx pipe failed: %s\n", sc->kue_unit, usbd_errstr(err)); splx(s); return; } err = usbd_open_pipe(sc->kue_iface, sc->kue_ed[KUE_ENDPT_TX], USBD_EXCLUSIVE_USE, &sc->kue_ep[KUE_ENDPT_TX]); if (err) { printf("kue%d: open tx pipe failed: %s\n", sc->kue_unit, usbd_errstr(err)); splx(s); return; } /* Start up the receive pipe. */ for (i = 0; i < KUE_RX_LIST_CNT; i++) { c = &sc->kue_cdata.kue_rx_chain[i]; usbd_setup_xfer(c->kue_xfer, sc->kue_ep[KUE_ENDPT_RX], c, mtod(c->kue_mbuf, char *), KUE_BUFSZ, USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, kue_rxeof); usbd_transfer(c->kue_xfer); } ifp->if_flags |= IFF_RUNNING; ifp->if_flags &= ~IFF_OACTIVE; (void)splx(s); return; } Static int kue_ioctl(ifp, command, data) struct ifnet *ifp; u_long command; caddr_t data; { struct kue_softc *sc = ifp->if_softc; int s, error = 0; s = splimp(); switch(command) { case SIOCSIFADDR: case SIOCGIFADDR: case SIOCSIFMTU: error = ether_ioctl(ifp, command, data); break; case SIOCSIFFLAGS: if (ifp->if_flags & IFF_UP) { if (ifp->if_flags & IFF_RUNNING && ifp->if_flags & IFF_PROMISC && !(sc->kue_if_flags & IFF_PROMISC)) { sc->kue_rxfilt |= KUE_RXFILT_PROMISC; kue_setword(sc, KUE_CMD_SET_PKT_FILTER, sc->kue_rxfilt); } else if (ifp->if_flags & IFF_RUNNING && !(ifp->if_flags & IFF_PROMISC) && sc->kue_if_flags & IFF_PROMISC) { sc->kue_rxfilt &= ~KUE_RXFILT_PROMISC; kue_setword(sc, KUE_CMD_SET_PKT_FILTER, sc->kue_rxfilt); } else if (!(ifp->if_flags & IFF_RUNNING)) kue_init(sc); } else { if (ifp->if_flags & IFF_RUNNING) kue_stop(sc); } sc->kue_if_flags = ifp->if_flags; error = 0; break; case SIOCADDMULTI: case SIOCDELMULTI: kue_setmulti(sc); error = 0; break; default: error = EINVAL; break; } (void)splx(s); return(error); } Static void kue_watchdog(ifp) struct ifnet *ifp; { struct kue_softc *sc; struct kue_chain *c; usbd_status stat; sc = ifp->if_softc; ifp->if_oerrors++; printf("kue%d: watchdog timeout\n", sc->kue_unit); c = &sc->kue_cdata.kue_tx_chain[0]; usbd_get_xfer_status(c->kue_xfer, NULL, NULL, NULL, &stat); kue_txeof(c->kue_xfer, c, stat); if (ifp->if_snd.ifq_head != NULL) kue_start(ifp); return; } /* * Stop the adapter and free any mbufs allocated to the * RX and TX lists. */ Static void kue_stop(sc) struct kue_softc *sc; { usbd_status err; struct ifnet *ifp; int i; ifp = &sc->arpcom.ac_if; ifp->if_timer = 0; /* Stop transfers. */ if (sc->kue_ep[KUE_ENDPT_RX] != NULL) { err = usbd_abort_pipe(sc->kue_ep[KUE_ENDPT_RX]); if (err) { printf("kue%d: abort rx pipe failed: %s\n", sc->kue_unit, usbd_errstr(err)); } err = usbd_close_pipe(sc->kue_ep[KUE_ENDPT_RX]); if (err) { printf("kue%d: close rx pipe failed: %s\n", sc->kue_unit, usbd_errstr(err)); } sc->kue_ep[KUE_ENDPT_RX] = NULL; } if (sc->kue_ep[KUE_ENDPT_TX] != NULL) { err = usbd_abort_pipe(sc->kue_ep[KUE_ENDPT_TX]); if (err) { printf("kue%d: abort tx pipe failed: %s\n", sc->kue_unit, usbd_errstr(err)); } err = usbd_close_pipe(sc->kue_ep[KUE_ENDPT_TX]); if (err) { printf("kue%d: close tx pipe failed: %s\n", sc->kue_unit, usbd_errstr(err)); } sc->kue_ep[KUE_ENDPT_TX] = NULL; } if (sc->kue_ep[KUE_ENDPT_INTR] != NULL) { err = usbd_abort_pipe(sc->kue_ep[KUE_ENDPT_INTR]); if (err) { printf("kue%d: abort intr pipe failed: %s\n", sc->kue_unit, usbd_errstr(err)); } err = usbd_close_pipe(sc->kue_ep[KUE_ENDPT_INTR]); if (err) { printf("kue%d: close intr pipe failed: %s\n", sc->kue_unit, usbd_errstr(err)); } sc->kue_ep[KUE_ENDPT_INTR] = NULL; } /* Free RX resources. */ for (i = 0; i < KUE_RX_LIST_CNT; i++) { if (sc->kue_cdata.kue_rx_chain[i].kue_buf != NULL) { free(sc->kue_cdata.kue_rx_chain[i].kue_buf, M_USBDEV); sc->kue_cdata.kue_rx_chain[i].kue_buf = NULL; } if (sc->kue_cdata.kue_rx_chain[i].kue_mbuf != NULL) { m_freem(sc->kue_cdata.kue_rx_chain[i].kue_mbuf); sc->kue_cdata.kue_rx_chain[i].kue_mbuf = NULL; } if (sc->kue_cdata.kue_rx_chain[i].kue_xfer != NULL) { usbd_free_xfer(sc->kue_cdata.kue_rx_chain[i].kue_xfer); sc->kue_cdata.kue_rx_chain[i].kue_xfer = NULL; } } /* Free TX resources. */ for (i = 0; i < KUE_TX_LIST_CNT; i++) { if (sc->kue_cdata.kue_tx_chain[i].kue_buf != NULL) { free(sc->kue_cdata.kue_tx_chain[i].kue_buf, M_USBDEV); sc->kue_cdata.kue_tx_chain[i].kue_buf = NULL; } if (sc->kue_cdata.kue_tx_chain[i].kue_mbuf != NULL) { m_freem(sc->kue_cdata.kue_tx_chain[i].kue_mbuf); sc->kue_cdata.kue_tx_chain[i].kue_mbuf = NULL; } if (sc->kue_cdata.kue_tx_chain[i].kue_xfer != NULL) { usbd_free_xfer(sc->kue_cdata.kue_tx_chain[i].kue_xfer); sc->kue_cdata.kue_tx_chain[i].kue_xfer = NULL; } } ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE); return; } /* * Stop all chip I/O so that the kernel's probe routines don't * get confused by errant DMAs when rebooting. */ Static void kue_shutdown(dev) device_t dev; { struct kue_softc *sc; sc = device_get_softc(dev); kue_stop(sc); return; }