/*- * Copyright (c) 2009 Yohanes Nugroho * Copyright (c) 1994-1998 Mark Brinicombe. * Copyright (c) 1994 Brini. * All rights reserved. * * This code is derived from software written for Brini by Mark Brinicombe * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by Brini. * 4. The name of the company nor the name of the author may be used to * endorse or promote products derived from this software without specific * prior written permission. * * THIS SOFTWARE IS PROVIDED BY BRINI ``AS IS'' AND ANY EXPRESS OR IMPLIED * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL BRINI OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * */ #include __FBSDID("$FreeBSD$"); #define _ARM32_BUS_DMA_PRIVATE #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "econa_reg.h" /* Page table for mapping proc0 zero page */ #define KERNEL_PT_SYS 0 #define KERNEL_PT_KERN 1 #define KERNEL_PT_KERN_NUM 22 /* L2 table for mapping after kernel */ #define KERNEL_PT_AFKERNEL KERNEL_PT_KERN + KERNEL_PT_KERN_NUM #define KERNEL_PT_AFKERNEL_NUM 5 /* this should be evenly divisable by PAGE_SIZE / L2_TABLE_SIZE_REAL (or 4) */ #define NUM_KERNEL_PTS (KERNEL_PT_AFKERNEL + KERNEL_PT_AFKERNEL_NUM) struct pv_addr kernel_pt_table[NUM_KERNEL_PTS]; /* Physical and virtual addresses for some global pages */ struct pv_addr systempage; struct pv_addr msgbufpv; struct pv_addr irqstack; struct pv_addr undstack; struct pv_addr abtstack; struct pv_addr kernelstack; /* Static device mappings. */ static const struct arm_devmap_entry econa_devmap[] = { { /* * This maps DDR SDRAM */ ECONA_SDRAM_BASE, /*virtual*/ ECONA_SDRAM_BASE, /*physical*/ ECONA_SDRAM_SIZE, /*size*/ VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE, }, /* * Map the on-board devices VA == PA so that we can access them * with the MMU on or off. */ { /* * This maps the interrupt controller, the UART * and the timer. */ ECONA_IO_BASE, /*virtual*/ ECONA_IO_BASE, /*physical*/ ECONA_IO_SIZE, /*size*/ VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE, }, { /* * OHCI + EHCI */ ECONA_OHCI_VBASE, /*virtual*/ ECONA_OHCI_PBASE, /*physical*/ ECONA_USB_SIZE, /*size*/ VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE, }, { /* * CFI */ ECONA_CFI_VBASE, /*virtual*/ ECONA_CFI_PBASE, /*physical*/ ECONA_CFI_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE, }, { 0, 0, 0, 0, 0, } }; void * initarm(struct arm_boot_params *abp) { struct pv_addr kernel_l1pt; volatile uint32_t * ddr = (uint32_t *)0x4000000C; int loop, i; u_int l1pagetable; vm_offset_t afterkern; vm_offset_t freemempos; vm_offset_t lastaddr; uint32_t memsize; int mem_info; boothowto = RB_VERBOSE; lastaddr = parse_boot_param(abp); arm_physmem_kernaddr = abp->abp_physaddr; set_cpufuncs(); pcpu0_init(); /* Do basic tuning, hz etc */ init_param1(); freemempos = (lastaddr + PAGE_MASK) & ~PAGE_MASK; /* Define a macro to simplify memory allocation */ #define valloc_pages(var, np) \ alloc_pages((var).pv_va, (np)); \ (var).pv_pa = (var).pv_va + (abp->abp_physaddr - KERNVIRTADDR); #define alloc_pages(var, np) \ (var) = freemempos; \ freemempos += (np * PAGE_SIZE); \ memset((char *)(var), 0, ((np) * PAGE_SIZE)); while (((freemempos - L1_TABLE_SIZE) & (L1_TABLE_SIZE - 1)) != 0) freemempos += PAGE_SIZE; valloc_pages(kernel_l1pt, L1_TABLE_SIZE / PAGE_SIZE); for (loop = 0; loop < NUM_KERNEL_PTS; ++loop) { if (!(loop % (PAGE_SIZE / L2_TABLE_SIZE_REAL))) { valloc_pages(kernel_pt_table[loop], L2_TABLE_SIZE / PAGE_SIZE); } else { kernel_pt_table[loop].pv_va = freemempos - (loop % (PAGE_SIZE / L2_TABLE_SIZE_REAL)) * L2_TABLE_SIZE_REAL; kernel_pt_table[loop].pv_pa = kernel_pt_table[loop].pv_va - KERNVIRTADDR + abp->abp_physaddr; } } /* * Allocate a page for the system page mapped to V0x00000000 * This page will just contain the system vectors and can be * shared by all processes. */ valloc_pages(systempage, 1); /* Allocate stacks for all modes */ valloc_pages(irqstack, IRQ_STACK_SIZE); valloc_pages(abtstack, ABT_STACK_SIZE); valloc_pages(undstack, UND_STACK_SIZE); valloc_pages(kernelstack, KSTACK_PAGES); valloc_pages(msgbufpv, round_page(msgbufsize) / PAGE_SIZE); /* * Now we start construction of the L1 page table * We start by mapping the L2 page tables into the L1. * This means that we can replace L1 mappings later on if necessary */ l1pagetable = kernel_l1pt.pv_va; /* Map the L2 pages tables in the L1 page table */ pmap_link_l2pt(l1pagetable, ARM_VECTORS_HIGH, &kernel_pt_table[KERNEL_PT_SYS]); for (i = 0; i < KERNEL_PT_KERN_NUM; i++) pmap_link_l2pt(l1pagetable, KERNBASE + i * L1_S_SIZE, &kernel_pt_table[KERNEL_PT_KERN + i]); pmap_map_chunk(l1pagetable, KERNBASE, PHYSADDR, (((uint32_t)lastaddr - KERNBASE) + PAGE_SIZE) & ~(PAGE_SIZE - 1), VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE); afterkern = round_page((lastaddr + L1_S_SIZE) & ~(L1_S_SIZE - 1)); for (i = 0; i < KERNEL_PT_AFKERNEL_NUM; i++) { pmap_link_l2pt(l1pagetable, afterkern + i * L1_S_SIZE, &kernel_pt_table[KERNEL_PT_AFKERNEL + i]); } /* Map the vector page. */ pmap_map_entry(l1pagetable, ARM_VECTORS_HIGH, systempage.pv_pa, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE); /* Map the stack pages */ pmap_map_chunk(l1pagetable, irqstack.pv_va, irqstack.pv_pa, IRQ_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE); pmap_map_chunk(l1pagetable, abtstack.pv_va, abtstack.pv_pa, ABT_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE); pmap_map_chunk(l1pagetable, undstack.pv_va, undstack.pv_pa, UND_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE); pmap_map_chunk(l1pagetable, kernelstack.pv_va, kernelstack.pv_pa, KSTACK_PAGES * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE); pmap_map_chunk(l1pagetable, kernel_l1pt.pv_va, kernel_l1pt.pv_pa, L1_TABLE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE); pmap_map_chunk(l1pagetable, msgbufpv.pv_va, msgbufpv.pv_pa, msgbufsize, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE); for (loop = 0; loop < NUM_KERNEL_PTS; ++loop) { pmap_map_chunk(l1pagetable, kernel_pt_table[loop].pv_va, kernel_pt_table[loop].pv_pa, L2_TABLE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE); } arm_devmap_bootstrap(l1pagetable, econa_devmap); cpu_domains((DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2)) | DOMAIN_CLIENT); setttb(kernel_l1pt.pv_pa); cpu_tlb_flushID(); cpu_domains(DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2)); cninit(); mem_info = ((*ddr) >> 4) & 0x3; memsize = (8<abp_physaddr, virtual_avail - KERNVIRTADDR, EXFLAG_NOALLOC); arm_physmem_init_kernel_globals(); init_param2(physmem); kdb_init(); return ((void *)(kernelstack.pv_va + USPACE_SVC_STACK_TOP - sizeof(struct pcb))); }