/* * Copyright (c) 1997, 1998, 1999 * Bill Paul . All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by Bill Paul. * 4. Neither the name of the author nor the names of any co-contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF * THE POSSIBILITY OF SUCH DAMAGE. */ /* * Alteon Networks Tigon PCI gigabit ethernet driver for FreeBSD. * Manuals, sample driver and firmware source kits are available * from http://www.alteon.com/support/openkits. * * Written by Bill Paul * Electrical Engineering Department * Columbia University, New York City */ /* * The Alteon Networks Tigon chip contains an embedded R4000 CPU, * gigabit MAC, dual DMA channels and a PCI interface unit. NICs * using the Tigon may have anywhere from 512K to 2MB of SRAM. The * Tigon supports hardware IP, TCP and UCP checksumming, multicast * filtering and jumbo (9014 byte) frames. The hardware is largely * controlled by firmware, which must be loaded into the NIC during * initialization. * * The Tigon 2 contains 2 R4000 CPUs and requires a newer firmware * revision, which supports new features such as extended commands, * extended jumbo receive ring desciptors and a mini receive ring. * * Alteon Networks is to be commended for releasing such a vast amount * of development material for the Tigon NIC without requiring an NDA * (although they really should have done it a long time ago). With * any luck, the other vendors will finally wise up and follow Alteon's * stellar example. * * The firmware for the Tigon 1 and 2 NICs is compiled directly into * this driver by #including it as a C header file. This bloats the * driver somewhat, but it's the easiest method considering that the * driver code and firmware code need to be kept in sync. The source * for the firmware is not provided with the FreeBSD distribution since * compiling it requires a GNU toolchain targeted for mips-sgi-irix5.3. * * The following people deserve special thanks: * - Terry Murphy of 3Com, for providing a 3c985 Tigon 1 board * for testing * - Raymond Lee of Netgear, for providing a pair of Netgear * GA620 Tigon 2 boards for testing * - Ulf Zimmermann, for bringing the GA260 to my attention and * convincing me to write this driver. * - Andrew Gallatin for providing FreeBSD/Alpha support. */ #include __FBSDID("$FreeBSD$"); #include "opt_ti.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* for vtophys */ #include /* for vtophys */ #include #include #include #include #include /* #define TI_PRIVATE_JUMBOS */ #if !defined(TI_PRIVATE_JUMBOS) #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #endif /* !TI_PRIVATE_JUMBOS */ #include #include #include #include #include #include #define TI_CSUM_FEATURES (CSUM_IP | CSUM_TCP | CSUM_UDP | CSUM_IP_FRAGS) /* * We can only turn on header splitting if we're using extended receive * BDs. */ #if defined(TI_JUMBO_HDRSPLIT) && defined(TI_PRIVATE_JUMBOS) #error "options TI_JUMBO_HDRSPLIT and TI_PRIVATE_JUMBOS are mutually exclusive" #endif /* TI_JUMBO_HDRSPLIT && TI_JUMBO_HDRSPLIT */ struct ti_softc *tis[8]; typedef enum { TI_SWAP_HTON, TI_SWAP_NTOH } ti_swap_type; /* * Various supported device vendors/types and their names. */ static struct ti_type ti_devs[] = { { ALT_VENDORID, ALT_DEVICEID_ACENIC, "Alteon AceNIC 1000baseSX Gigabit Ethernet" }, { ALT_VENDORID, ALT_DEVICEID_ACENIC_COPPER, "Alteon AceNIC 1000baseT Gigabit Ethernet" }, { TC_VENDORID, TC_DEVICEID_3C985, "3Com 3c985-SX Gigabit Ethernet" }, { NG_VENDORID, NG_DEVICEID_GA620, "Netgear GA620 1000baseSX Gigabit Ethernet" }, { NG_VENDORID, NG_DEVICEID_GA620T, "Netgear GA620 1000baseT Gigabit Ethernet" }, { SGI_VENDORID, SGI_DEVICEID_TIGON, "Silicon Graphics Gigabit Ethernet" }, { DEC_VENDORID, DEC_DEVICEID_FARALLON_PN9000SX, "Farallon PN9000SX Gigabit Ethernet" }, { 0, 0, NULL } }; static d_open_t ti_open; static d_close_t ti_close; static d_ioctl_t ti_ioctl2; static struct cdevsw ti_cdevsw = { .d_version = D_VERSION, .d_flags = D_NEEDGIANT, .d_open = ti_open, .d_close = ti_close, .d_ioctl = ti_ioctl2, .d_name = "ti", }; static int ti_probe (device_t); static int ti_attach (device_t); static int ti_detach (device_t); static void ti_txeof (struct ti_softc *); static void ti_rxeof (struct ti_softc *); static void ti_stats_update (struct ti_softc *); static int ti_encap (struct ti_softc *, struct mbuf *, u_int32_t *); static void ti_intr (void *); static void ti_start (struct ifnet *); static int ti_ioctl (struct ifnet *, u_long, caddr_t); static void ti_init (void *); static void ti_init2 (struct ti_softc *); static void ti_stop (struct ti_softc *); static void ti_watchdog (struct ifnet *); static void ti_shutdown (device_t); static int ti_ifmedia_upd (struct ifnet *); static void ti_ifmedia_sts (struct ifnet *, struct ifmediareq *); static u_int32_t ti_eeprom_putbyte (struct ti_softc *, int); static u_int8_t ti_eeprom_getbyte (struct ti_softc *, int, u_int8_t *); static int ti_read_eeprom (struct ti_softc *, caddr_t, int, int); static void ti_add_mcast (struct ti_softc *, struct ether_addr *); static void ti_del_mcast (struct ti_softc *, struct ether_addr *); static void ti_setmulti (struct ti_softc *); static void ti_mem (struct ti_softc *, u_int32_t, u_int32_t, caddr_t); static int ti_copy_mem (struct ti_softc *, u_int32_t, u_int32_t, caddr_t, int, int); static int ti_copy_scratch (struct ti_softc *, u_int32_t, u_int32_t, caddr_t, int, int, int); static int ti_bcopy_swap (const void *, void *, size_t, ti_swap_type); static void ti_loadfw (struct ti_softc *); static void ti_cmd (struct ti_softc *, struct ti_cmd_desc *); static void ti_cmd_ext (struct ti_softc *, struct ti_cmd_desc *, caddr_t, int); static void ti_handle_events (struct ti_softc *); #ifdef TI_PRIVATE_JUMBOS static int ti_alloc_jumbo_mem (struct ti_softc *); static void *ti_jalloc (struct ti_softc *); static void ti_jfree (void *, void *); #endif /* TI_PRIVATE_JUMBOS */ static int ti_newbuf_std (struct ti_softc *, int, struct mbuf *); static int ti_newbuf_mini (struct ti_softc *, int, struct mbuf *); static int ti_newbuf_jumbo (struct ti_softc *, int, struct mbuf *); static int ti_init_rx_ring_std (struct ti_softc *); static void ti_free_rx_ring_std (struct ti_softc *); static int ti_init_rx_ring_jumbo (struct ti_softc *); static void ti_free_rx_ring_jumbo (struct ti_softc *); static int ti_init_rx_ring_mini (struct ti_softc *); static void ti_free_rx_ring_mini (struct ti_softc *); static void ti_free_tx_ring (struct ti_softc *); static int ti_init_tx_ring (struct ti_softc *); static int ti_64bitslot_war (struct ti_softc *); static int ti_chipinit (struct ti_softc *); static int ti_gibinit (struct ti_softc *); #ifdef TI_JUMBO_HDRSPLIT static __inline void ti_hdr_split (struct mbuf *top, int hdr_len, int pkt_len, int idx); #endif /* TI_JUMBO_HDRSPLIT */ static device_method_t ti_methods[] = { /* Device interface */ DEVMETHOD(device_probe, ti_probe), DEVMETHOD(device_attach, ti_attach), DEVMETHOD(device_detach, ti_detach), DEVMETHOD(device_shutdown, ti_shutdown), { 0, 0 } }; static driver_t ti_driver = { "ti", ti_methods, sizeof(struct ti_softc) }; static devclass_t ti_devclass; DRIVER_MODULE(ti, pci, ti_driver, ti_devclass, 0, 0); MODULE_DEPEND(ti, pci, 1, 1, 1); MODULE_DEPEND(ti, ether, 1, 1, 1); /* * Send an instruction or address to the EEPROM, check for ACK. */ static u_int32_t ti_eeprom_putbyte(sc, byte) struct ti_softc *sc; int byte; { register int i, ack = 0; /* * Make sure we're in TX mode. */ TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_TXEN); /* * Feed in each bit and stobe the clock. */ for (i = 0x80; i; i >>= 1) { if (byte & i) { TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_DOUT); } else { TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_DOUT); } DELAY(1); TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK); DELAY(1); TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK); } /* * Turn off TX mode. */ TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_TXEN); /* * Check for ack. */ TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK); ack = CSR_READ_4(sc, TI_MISC_LOCAL_CTL) & TI_MLC_EE_DIN; TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK); return (ack); } /* * Read a byte of data stored in the EEPROM at address 'addr.' * We have to send two address bytes since the EEPROM can hold * more than 256 bytes of data. */ static u_int8_t ti_eeprom_getbyte(sc, addr, dest) struct ti_softc *sc; int addr; u_int8_t *dest; { register int i; u_int8_t byte = 0; EEPROM_START; /* * Send write control code to EEPROM. */ if (ti_eeprom_putbyte(sc, EEPROM_CTL_WRITE)) { printf("ti%d: failed to send write command, status: %x\n", sc->ti_unit, CSR_READ_4(sc, TI_MISC_LOCAL_CTL)); return (1); } /* * Send first byte of address of byte we want to read. */ if (ti_eeprom_putbyte(sc, (addr >> 8) & 0xFF)) { printf("ti%d: failed to send address, status: %x\n", sc->ti_unit, CSR_READ_4(sc, TI_MISC_LOCAL_CTL)); return (1); } /* * Send second byte address of byte we want to read. */ if (ti_eeprom_putbyte(sc, addr & 0xFF)) { printf("ti%d: failed to send address, status: %x\n", sc->ti_unit, CSR_READ_4(sc, TI_MISC_LOCAL_CTL)); return (1); } EEPROM_STOP; EEPROM_START; /* * Send read control code to EEPROM. */ if (ti_eeprom_putbyte(sc, EEPROM_CTL_READ)) { printf("ti%d: failed to send read command, status: %x\n", sc->ti_unit, CSR_READ_4(sc, TI_MISC_LOCAL_CTL)); return (1); } /* * Start reading bits from EEPROM. */ TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_TXEN); for (i = 0x80; i; i >>= 1) { TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK); DELAY(1); if (CSR_READ_4(sc, TI_MISC_LOCAL_CTL) & TI_MLC_EE_DIN) byte |= i; TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK); DELAY(1); } EEPROM_STOP; /* * No ACK generated for read, so just return byte. */ *dest = byte; return (0); } /* * Read a sequence of bytes from the EEPROM. */ static int ti_read_eeprom(sc, dest, off, cnt) struct ti_softc *sc; caddr_t dest; int off; int cnt; { int err = 0, i; u_int8_t byte = 0; for (i = 0; i < cnt; i++) { err = ti_eeprom_getbyte(sc, off + i, &byte); if (err) break; *(dest + i) = byte; } return (err ? 1 : 0); } /* * NIC memory access function. Can be used to either clear a section * of NIC local memory or (if buf is non-NULL) copy data into it. */ static void ti_mem(sc, addr, len, buf) struct ti_softc *sc; u_int32_t addr, len; caddr_t buf; { int segptr, segsize, cnt; caddr_t ti_winbase, ptr; segptr = addr; cnt = len; ti_winbase = (caddr_t)(sc->ti_vhandle + TI_WINDOW); ptr = buf; while (cnt) { if (cnt < TI_WINLEN) segsize = cnt; else segsize = TI_WINLEN - (segptr % TI_WINLEN); CSR_WRITE_4(sc, TI_WINBASE, (segptr & ~(TI_WINLEN - 1))); if (buf == NULL) bzero((char *)ti_winbase + (segptr & (TI_WINLEN - 1)), segsize); else { bcopy((char *)ptr, (char *)ti_winbase + (segptr & (TI_WINLEN - 1)), segsize); ptr += segsize; } segptr += segsize; cnt -= segsize; } } static int ti_copy_mem(sc, tigon_addr, len, buf, useraddr, readdata) struct ti_softc *sc; u_int32_t tigon_addr, len; caddr_t buf; int useraddr, readdata; { int segptr, segsize, cnt; caddr_t ptr; u_int32_t origwin; u_int8_t tmparray[TI_WINLEN], tmparray2[TI_WINLEN]; int resid, segresid; int first_pass; /* * At the moment, we don't handle non-aligned cases, we just bail. * If this proves to be a problem, it will be fixed. */ if ((readdata == 0) && (tigon_addr & 0x3)) { printf("ti%d: ti_copy_mem: tigon address %#x isn't " "word-aligned\n", sc->ti_unit, tigon_addr); printf("ti%d: ti_copy_mem: unaligned writes aren't yet " "supported\n", sc->ti_unit); return (EINVAL); } segptr = tigon_addr & ~0x3; segresid = tigon_addr - segptr; /* * This is the non-aligned amount left over that we'll need to * copy. */ resid = len & 0x3; /* Add in the left over amount at the front of the buffer */ resid += segresid; cnt = len & ~0x3; /* * If resid + segresid is >= 4, add multiples of 4 to the count and * decrease the residual by that much. */ cnt += resid & ~0x3; resid -= resid & ~0x3; ptr = buf; first_pass = 1; /* * Make sure we aren't interrupted while we're changing the window * pointer. */ TI_LOCK(sc); /* * Save the old window base value. */ origwin = CSR_READ_4(sc, TI_WINBASE); while (cnt) { bus_size_t ti_offset; if (cnt < TI_WINLEN) segsize = cnt; else segsize = TI_WINLEN - (segptr % TI_WINLEN); CSR_WRITE_4(sc, TI_WINBASE, (segptr & ~(TI_WINLEN - 1))); ti_offset = TI_WINDOW + (segptr & (TI_WINLEN -1)); if (readdata) { bus_space_read_region_4(sc->ti_btag, sc->ti_bhandle, ti_offset, (u_int32_t *)tmparray, segsize >> 2); if (useraddr) { /* * Yeah, this is a little on the kludgy * side, but at least this code is only * used for debugging. */ ti_bcopy_swap(tmparray, tmparray2, segsize, TI_SWAP_NTOH); if (first_pass) { copyout(&tmparray2[segresid], ptr, segsize - segresid); first_pass = 0; } else copyout(tmparray2, ptr, segsize); } else { if (first_pass) { ti_bcopy_swap(tmparray, tmparray2, segsize, TI_SWAP_NTOH); bcopy(&tmparray2[segresid], ptr, segsize - segresid); first_pass = 0; } else ti_bcopy_swap(tmparray, ptr, segsize, TI_SWAP_NTOH); } } else { if (useraddr) { copyin(ptr, tmparray2, segsize); ti_bcopy_swap(tmparray2, tmparray, segsize, TI_SWAP_HTON); } else ti_bcopy_swap(ptr, tmparray, segsize, TI_SWAP_HTON); bus_space_write_region_4(sc->ti_btag, sc->ti_bhandle, ti_offset, (u_int32_t *)tmparray, segsize >> 2); } segptr += segsize; ptr += segsize; cnt -= segsize; } /* * Handle leftover, non-word-aligned bytes. */ if (resid != 0) { u_int32_t tmpval, tmpval2; bus_size_t ti_offset; /* * Set the segment pointer. */ CSR_WRITE_4(sc, TI_WINBASE, (segptr & ~(TI_WINLEN - 1))); ti_offset = TI_WINDOW + (segptr & (TI_WINLEN - 1)); /* * First, grab whatever is in our source/destination. * We'll obviously need this for reads, but also for * writes, since we'll be doing read/modify/write. */ bus_space_read_region_4(sc->ti_btag, sc->ti_bhandle, ti_offset, &tmpval, 1); /* * Next, translate this from little-endian to big-endian * (at least on i386 boxes). */ tmpval2 = ntohl(tmpval); if (readdata) { /* * If we're reading, just copy the leftover number * of bytes from the host byte order buffer to * the user's buffer. */ if (useraddr) copyout(&tmpval2, ptr, resid); else bcopy(&tmpval2, ptr, resid); } else { /* * If we're writing, first copy the bytes to be * written into the network byte order buffer, * leaving the rest of the buffer with whatever was * originally in there. Then, swap the bytes * around into host order and write them out. * * XXX KDM the read side of this has been verified * to work, but the write side of it has not been * verified. So user beware. */ if (useraddr) copyin(ptr, &tmpval2, resid); else bcopy(ptr, &tmpval2, resid); tmpval = htonl(tmpval2); bus_space_write_region_4(sc->ti_btag, sc->ti_bhandle, ti_offset, &tmpval, 1); } } CSR_WRITE_4(sc, TI_WINBASE, origwin); TI_UNLOCK(sc); return (0); } static int ti_copy_scratch(sc, tigon_addr, len, buf, useraddr, readdata, cpu) struct ti_softc *sc; u_int32_t tigon_addr, len; caddr_t buf; int useraddr, readdata; int cpu; { u_int32_t segptr; int cnt; u_int32_t tmpval, tmpval2; caddr_t ptr; /* * At the moment, we don't handle non-aligned cases, we just bail. * If this proves to be a problem, it will be fixed. */ if (tigon_addr & 0x3) { printf("ti%d: ti_copy_scratch: tigon address %#x isn't " "word-aligned\n", sc->ti_unit, tigon_addr); return (EINVAL); } if (len & 0x3) { printf("ti%d: ti_copy_scratch: transfer length %d isn't " "word-aligned\n", sc->ti_unit, len); return (EINVAL); } segptr = tigon_addr; cnt = len; ptr = buf; TI_LOCK(sc); while (cnt) { CSR_WRITE_4(sc, CPU_REG(TI_SRAM_ADDR, cpu), segptr); if (readdata) { tmpval2 = CSR_READ_4(sc, CPU_REG(TI_SRAM_DATA, cpu)); tmpval = ntohl(tmpval2); /* * Note: I've used this debugging interface * extensively with Alteon's 12.3.15 firmware, * compiled with GCC 2.7.2.1 and binutils 2.9.1. * * When you compile the firmware without * optimization, which is necessary sometimes in * order to properly step through it, you sometimes * read out a bogus value of 0xc0017c instead of * whatever was supposed to be in that scratchpad * location. That value is on the stack somewhere, * but I've never been able to figure out what was * causing the problem. * * The address seems to pop up in random places, * often not in the same place on two subsequent * reads. * * In any case, the underlying data doesn't seem * to be affected, just the value read out. * * KDM, 3/7/2000 */ if (tmpval2 == 0xc0017c) printf("ti%d: found 0xc0017c at %#x " "(tmpval2)\n", sc->ti_unit, segptr); if (tmpval == 0xc0017c) printf("ti%d: found 0xc0017c at %#x " "(tmpval)\n", sc->ti_unit, segptr); if (useraddr) copyout(&tmpval, ptr, 4); else bcopy(&tmpval, ptr, 4); } else { if (useraddr) copyin(ptr, &tmpval2, 4); else bcopy(ptr, &tmpval2, 4); tmpval = htonl(tmpval2); CSR_WRITE_4(sc, CPU_REG(TI_SRAM_DATA, cpu), tmpval); } cnt -= 4; segptr += 4; ptr += 4; } TI_UNLOCK(sc); return (0); } static int ti_bcopy_swap(src, dst, len, swap_type) const void *src; void *dst; size_t len; ti_swap_type swap_type; { const u_int8_t *tmpsrc; u_int8_t *tmpdst; size_t tmplen; if (len & 0x3) { printf("ti_bcopy_swap: length %zd isn't 32-bit aligned\n", len); return (-1); } tmpsrc = src; tmpdst = dst; tmplen = len; while (tmplen) { if (swap_type == TI_SWAP_NTOH) *(u_int32_t *)tmpdst = ntohl(*(const u_int32_t *)tmpsrc); else *(u_int32_t *)tmpdst = htonl(*(const u_int32_t *)tmpsrc); tmpsrc += 4; tmpdst += 4; tmplen -= 4; } return (0); } /* * Load firmware image into the NIC. Check that the firmware revision * is acceptable and see if we want the firmware for the Tigon 1 or * Tigon 2. */ static void ti_loadfw(sc) struct ti_softc *sc; { switch (sc->ti_hwrev) { case TI_HWREV_TIGON: if (tigonFwReleaseMajor != TI_FIRMWARE_MAJOR || tigonFwReleaseMinor != TI_FIRMWARE_MINOR || tigonFwReleaseFix != TI_FIRMWARE_FIX) { printf("ti%d: firmware revision mismatch; want " "%d.%d.%d, got %d.%d.%d\n", sc->ti_unit, TI_FIRMWARE_MAJOR, TI_FIRMWARE_MINOR, TI_FIRMWARE_FIX, tigonFwReleaseMajor, tigonFwReleaseMinor, tigonFwReleaseFix); return; } ti_mem(sc, tigonFwTextAddr, tigonFwTextLen, (caddr_t)tigonFwText); ti_mem(sc, tigonFwDataAddr, tigonFwDataLen, (caddr_t)tigonFwData); ti_mem(sc, tigonFwRodataAddr, tigonFwRodataLen, (caddr_t)tigonFwRodata); ti_mem(sc, tigonFwBssAddr, tigonFwBssLen, NULL); ti_mem(sc, tigonFwSbssAddr, tigonFwSbssLen, NULL); CSR_WRITE_4(sc, TI_CPU_PROGRAM_COUNTER, tigonFwStartAddr); break; case TI_HWREV_TIGON_II: if (tigon2FwReleaseMajor != TI_FIRMWARE_MAJOR || tigon2FwReleaseMinor != TI_FIRMWARE_MINOR || tigon2FwReleaseFix != TI_FIRMWARE_FIX) { printf("ti%d: firmware revision mismatch; want " "%d.%d.%d, got %d.%d.%d\n", sc->ti_unit, TI_FIRMWARE_MAJOR, TI_FIRMWARE_MINOR, TI_FIRMWARE_FIX, tigon2FwReleaseMajor, tigon2FwReleaseMinor, tigon2FwReleaseFix); return; } ti_mem(sc, tigon2FwTextAddr, tigon2FwTextLen, (caddr_t)tigon2FwText); ti_mem(sc, tigon2FwDataAddr, tigon2FwDataLen, (caddr_t)tigon2FwData); ti_mem(sc, tigon2FwRodataAddr, tigon2FwRodataLen, (caddr_t)tigon2FwRodata); ti_mem(sc, tigon2FwBssAddr, tigon2FwBssLen, NULL); ti_mem(sc, tigon2FwSbssAddr, tigon2FwSbssLen, NULL); CSR_WRITE_4(sc, TI_CPU_PROGRAM_COUNTER, tigon2FwStartAddr); break; default: printf("ti%d: can't load firmware: unknown hardware rev\n", sc->ti_unit); break; } } /* * Send the NIC a command via the command ring. */ static void ti_cmd(sc, cmd) struct ti_softc *sc; struct ti_cmd_desc *cmd; { u_int32_t index; if (sc->ti_rdata->ti_cmd_ring == NULL) return; index = sc->ti_cmd_saved_prodidx; CSR_WRITE_4(sc, TI_GCR_CMDRING + (index * 4), *(u_int32_t *)(cmd)); TI_INC(index, TI_CMD_RING_CNT); CSR_WRITE_4(sc, TI_MB_CMDPROD_IDX, index); sc->ti_cmd_saved_prodidx = index; } /* * Send the NIC an extended command. The 'len' parameter specifies the * number of command slots to include after the initial command. */ static void ti_cmd_ext(sc, cmd, arg, len) struct ti_softc *sc; struct ti_cmd_desc *cmd; caddr_t arg; int len; { u_int32_t index; register int i; if (sc->ti_rdata->ti_cmd_ring == NULL) return; index = sc->ti_cmd_saved_prodidx; CSR_WRITE_4(sc, TI_GCR_CMDRING + (index * 4), *(u_int32_t *)(cmd)); TI_INC(index, TI_CMD_RING_CNT); for (i = 0; i < len; i++) { CSR_WRITE_4(sc, TI_GCR_CMDRING + (index * 4), *(u_int32_t *)(&arg[i * 4])); TI_INC(index, TI_CMD_RING_CNT); } CSR_WRITE_4(sc, TI_MB_CMDPROD_IDX, index); sc->ti_cmd_saved_prodidx = index; } /* * Handle events that have triggered interrupts. */ static void ti_handle_events(sc) struct ti_softc *sc; { struct ti_event_desc *e; if (sc->ti_rdata->ti_event_ring == NULL) return; while (sc->ti_ev_saved_considx != sc->ti_ev_prodidx.ti_idx) { e = &sc->ti_rdata->ti_event_ring[sc->ti_ev_saved_considx]; switch (e->ti_event) { case TI_EV_LINKSTAT_CHANGED: sc->ti_linkstat = e->ti_code; if (e->ti_code == TI_EV_CODE_LINK_UP) printf("ti%d: 10/100 link up\n", sc->ti_unit); else if (e->ti_code == TI_EV_CODE_GIG_LINK_UP) printf("ti%d: gigabit link up\n", sc->ti_unit); else if (e->ti_code == TI_EV_CODE_LINK_DOWN) printf("ti%d: link down\n", sc->ti_unit); break; case TI_EV_ERROR: if (e->ti_code == TI_EV_CODE_ERR_INVAL_CMD) printf("ti%d: invalid command\n", sc->ti_unit); else if (e->ti_code == TI_EV_CODE_ERR_UNIMP_CMD) printf("ti%d: unknown command\n", sc->ti_unit); else if (e->ti_code == TI_EV_CODE_ERR_BADCFG) printf("ti%d: bad config data\n", sc->ti_unit); break; case TI_EV_FIRMWARE_UP: ti_init2(sc); break; case TI_EV_STATS_UPDATED: ti_stats_update(sc); break; case TI_EV_RESET_JUMBO_RING: case TI_EV_MCAST_UPDATED: /* Who cares. */ break; default: printf("ti%d: unknown event: %d\n", sc->ti_unit, e->ti_event); break; } /* Advance the consumer index. */ TI_INC(sc->ti_ev_saved_considx, TI_EVENT_RING_CNT); CSR_WRITE_4(sc, TI_GCR_EVENTCONS_IDX, sc->ti_ev_saved_considx); } } #ifdef TI_PRIVATE_JUMBOS /* * Memory management for the jumbo receive ring is a pain in the * butt. We need to allocate at least 9018 bytes of space per frame, * _and_ it has to be contiguous (unless you use the extended * jumbo descriptor format). Using malloc() all the time won't * work: malloc() allocates memory in powers of two, which means we * would end up wasting a considerable amount of space by allocating * 9K chunks. We don't have a jumbo mbuf cluster pool. Thus, we have * to do our own memory management. * * The driver needs to allocate a contiguous chunk of memory at boot * time. We then chop this up ourselves into 9K pieces and use them * as external mbuf storage. * * One issue here is how much memory to allocate. The jumbo ring has * 256 slots in it, but at 9K per slot than can consume over 2MB of * RAM. This is a bit much, especially considering we also need * RAM for the standard ring and mini ring (on the Tigon 2). To * save space, we only actually allocate enough memory for 64 slots * by default, which works out to between 500 and 600K. This can * be tuned by changing a #define in if_tireg.h. */ static int ti_alloc_jumbo_mem(sc) struct ti_softc *sc; { caddr_t ptr; register int i; struct ti_jpool_entry *entry; /* Grab a big chunk o' storage. */ sc->ti_cdata.ti_jumbo_buf = contigmalloc(TI_JMEM, M_DEVBUF, M_NOWAIT, 0, 0xffffffff, PAGE_SIZE, 0); if (sc->ti_cdata.ti_jumbo_buf == NULL) { printf("ti%d: no memory for jumbo buffers!\n", sc->ti_unit); return (ENOBUFS); } SLIST_INIT(&sc->ti_jfree_listhead); SLIST_INIT(&sc->ti_jinuse_listhead); /* * Now divide it up into 9K pieces and save the addresses * in an array. */ ptr = sc->ti_cdata.ti_jumbo_buf; for (i = 0; i < TI_JSLOTS; i++) { sc->ti_cdata.ti_jslots[i] = ptr; ptr += TI_JLEN; entry = malloc(sizeof(struct ti_jpool_entry), M_DEVBUF, M_NOWAIT); if (entry == NULL) { contigfree(sc->ti_cdata.ti_jumbo_buf, TI_JMEM, M_DEVBUF); sc->ti_cdata.ti_jumbo_buf = NULL; printf("ti%d: no memory for jumbo " "buffer queue!\n", sc->ti_unit); return (ENOBUFS); } entry->slot = i; SLIST_INSERT_HEAD(&sc->ti_jfree_listhead, entry, jpool_entries); } return (0); } /* * Allocate a jumbo buffer. */ static void *ti_jalloc(sc) struct ti_softc *sc; { struct ti_jpool_entry *entry; entry = SLIST_FIRST(&sc->ti_jfree_listhead); if (entry == NULL) { printf("ti%d: no free jumbo buffers\n", sc->ti_unit); return (NULL); } SLIST_REMOVE_HEAD(&sc->ti_jfree_listhead, jpool_entries); SLIST_INSERT_HEAD(&sc->ti_jinuse_listhead, entry, jpool_entries); return (sc->ti_cdata.ti_jslots[entry->slot]); } /* * Release a jumbo buffer. */ static void ti_jfree(buf, args) void *buf; void *args; { struct ti_softc *sc; int i; struct ti_jpool_entry *entry; /* Extract the softc struct pointer. */ sc = (struct ti_softc *)args; if (sc == NULL) panic("ti_jfree: didn't get softc pointer!"); /* calculate the slot this buffer belongs to */ i = ((vm_offset_t)buf - (vm_offset_t)sc->ti_cdata.ti_jumbo_buf) / TI_JLEN; if ((i < 0) || (i >= TI_JSLOTS)) panic("ti_jfree: asked to free buffer that we don't manage!"); entry = SLIST_FIRST(&sc->ti_jinuse_listhead); if (entry == NULL) panic("ti_jfree: buffer not in use!"); entry->slot = i; SLIST_REMOVE_HEAD(&sc->ti_jinuse_listhead, jpool_entries); SLIST_INSERT_HEAD(&sc->ti_jfree_listhead, entry, jpool_entries); } #endif /* TI_PRIVATE_JUMBOS */ /* * Intialize a standard receive ring descriptor. */ static int ti_newbuf_std(sc, i, m) struct ti_softc *sc; int i; struct mbuf *m; { struct mbuf *m_new = NULL; struct ti_rx_desc *r; if (m == NULL) { MGETHDR(m_new, M_DONTWAIT, MT_DATA); if (m_new == NULL) return (ENOBUFS); MCLGET(m_new, M_DONTWAIT); if (!(m_new->m_flags & M_EXT)) { m_freem(m_new); return (ENOBUFS); } m_new->m_len = m_new->m_pkthdr.len = MCLBYTES; } else { m_new = m; m_new->m_len = m_new->m_pkthdr.len = MCLBYTES; m_new->m_data = m_new->m_ext.ext_buf; } m_adj(m_new, ETHER_ALIGN); sc->ti_cdata.ti_rx_std_chain[i] = m_new; r = &sc->ti_rdata->ti_rx_std_ring[i]; TI_HOSTADDR(r->ti_addr) = vtophys(mtod(m_new, caddr_t)); r->ti_type = TI_BDTYPE_RECV_BD; r->ti_flags = 0; if (sc->arpcom.ac_if.if_hwassist) r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM | TI_BDFLAG_IP_CKSUM; r->ti_len = m_new->m_len; r->ti_idx = i; return (0); } /* * Intialize a mini receive ring descriptor. This only applies to * the Tigon 2. */ static int ti_newbuf_mini(sc, i, m) struct ti_softc *sc; int i; struct mbuf *m; { struct mbuf *m_new = NULL; struct ti_rx_desc *r; if (m == NULL) { MGETHDR(m_new, M_DONTWAIT, MT_DATA); if (m_new == NULL) { return (ENOBUFS); } m_new->m_len = m_new->m_pkthdr.len = MHLEN; } else { m_new = m; m_new->m_data = m_new->m_pktdat; m_new->m_len = m_new->m_pkthdr.len = MHLEN; } m_adj(m_new, ETHER_ALIGN); r = &sc->ti_rdata->ti_rx_mini_ring[i]; sc->ti_cdata.ti_rx_mini_chain[i] = m_new; TI_HOSTADDR(r->ti_addr) = vtophys(mtod(m_new, caddr_t)); r->ti_type = TI_BDTYPE_RECV_BD; r->ti_flags = TI_BDFLAG_MINI_RING; if (sc->arpcom.ac_if.if_hwassist) r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM | TI_BDFLAG_IP_CKSUM; r->ti_len = m_new->m_len; r->ti_idx = i; return (0); } #ifdef TI_PRIVATE_JUMBOS /* * Initialize a jumbo receive ring descriptor. This allocates * a jumbo buffer from the pool managed internally by the driver. */ static int ti_newbuf_jumbo(sc, i, m) struct ti_softc *sc; int i; struct mbuf *m; { struct mbuf *m_new = NULL; struct ti_rx_desc *r; if (m == NULL) { caddr_t *buf = NULL; /* Allocate the mbuf. */ MGETHDR(m_new, M_DONTWAIT, MT_DATA); if (m_new == NULL) { return (ENOBUFS); } /* Allocate the jumbo buffer */ buf = ti_jalloc(sc); if (buf == NULL) { m_freem(m_new); printf("ti%d: jumbo allocation failed " "-- packet dropped!\n", sc->ti_unit); return (ENOBUFS); } /* Attach the buffer to the mbuf. */ m_new->m_data = (void *) buf; m_new->m_len = m_new->m_pkthdr.len = TI_JUMBO_FRAMELEN; MEXTADD(m_new, buf, TI_JUMBO_FRAMELEN, ti_jfree, (struct ti_softc *)sc, 0, EXT_NET_DRV); } else { m_new = m; m_new->m_data = m_new->m_ext.ext_buf; m_new->m_ext.ext_size = TI_JUMBO_FRAMELEN; } m_adj(m_new, ETHER_ALIGN); /* Set up the descriptor. */ r = &sc->ti_rdata->ti_rx_jumbo_ring[i]; sc->ti_cdata.ti_rx_jumbo_chain[i] = m_new; TI_HOSTADDR(r->ti_addr) = vtophys(mtod(m_new, caddr_t)); r->ti_type = TI_BDTYPE_RECV_JUMBO_BD; r->ti_flags = TI_BDFLAG_JUMBO_RING; if (sc->arpcom.ac_if.if_hwassist) r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM | TI_BDFLAG_IP_CKSUM; r->ti_len = m_new->m_len; r->ti_idx = i; return (0); } #else #include #if (PAGE_SIZE == 4096) #define NPAYLOAD 2 #else #define NPAYLOAD 1 #endif #define TCP_HDR_LEN (52 + sizeof(struct ether_header)) #define UDP_HDR_LEN (28 + sizeof(struct ether_header)) #define NFS_HDR_LEN (UDP_HDR_LEN) static int HDR_LEN = TCP_HDR_LEN; /* * Initialize a jumbo receive ring descriptor. This allocates * a jumbo buffer from the pool managed internally by the driver. */ static int ti_newbuf_jumbo(sc, idx, m_old) struct ti_softc *sc; int idx; struct mbuf *m_old; { struct mbuf *cur, *m_new = NULL; struct mbuf *m[3] = {NULL, NULL, NULL}; struct ti_rx_desc_ext *r; vm_page_t frame; /* 1 extra buf to make nobufs easy*/ caddr_t buf[3] = {NULL, NULL, NULL}; int i; if (m_old != NULL) { m_new = m_old; cur = m_old->m_next; for (i = 0; i <= NPAYLOAD; i++){ m[i] = cur; cur = cur->m_next; } } else { /* Allocate the mbufs. */ MGETHDR(m_new, M_DONTWAIT, MT_DATA); if (m_new == NULL) { printf("ti%d: mbuf allocation failed " "-- packet dropped!\n", sc->ti_unit); goto nobufs; } MGET(m[NPAYLOAD], M_DONTWAIT, MT_DATA); if (m[NPAYLOAD] == NULL) { printf("ti%d: cluster mbuf allocation failed " "-- packet dropped!\n", sc->ti_unit); goto nobufs; } MCLGET(m[NPAYLOAD], M_DONTWAIT); if ((m[NPAYLOAD]->m_flags & M_EXT) == 0) { printf("ti%d: mbuf allocation failed " "-- packet dropped!\n", sc->ti_unit); goto nobufs; } m[NPAYLOAD]->m_len = MCLBYTES; for (i = 0; i < NPAYLOAD; i++){ MGET(m[i], M_DONTWAIT, MT_DATA); if (m[i] == NULL) { printf("ti%d: mbuf allocation failed " "-- packet dropped!\n", sc->ti_unit); goto nobufs; } if (!(frame = jumbo_pg_alloc())){ printf("ti%d: buffer allocation failed " "-- packet dropped!\n", sc->ti_unit); printf(" index %d page %d\n", idx, i); goto nobufs; } buf[i] = jumbo_phys_to_kva(VM_PAGE_TO_PHYS(frame)); } for (i = 0; i < NPAYLOAD; i++){ /* Attach the buffer to the mbuf. */ m[i]->m_data = (void *)buf[i]; m[i]->m_len = PAGE_SIZE; MEXTADD(m[i], (void *)buf[i], PAGE_SIZE, jumbo_freem, NULL, 0, EXT_DISPOSABLE); m[i]->m_next = m[i+1]; } /* link the buffers to the header */ m_new->m_next = m[0]; m_new->m_data += ETHER_ALIGN; if (sc->ti_hdrsplit) m_new->m_len = MHLEN - ETHER_ALIGN; else m_new->m_len = HDR_LEN; m_new->m_pkthdr.len = NPAYLOAD * PAGE_SIZE + m_new->m_len; } /* Set up the descriptor. */ r = &sc->ti_rdata->ti_rx_jumbo_ring[idx]; sc->ti_cdata.ti_rx_jumbo_chain[idx] = m_new; TI_HOSTADDR(r->ti_addr0) = vtophys(mtod(m_new, caddr_t)); r->ti_len0 = m_new->m_len; TI_HOSTADDR(r->ti_addr1) = vtophys(mtod(m[0], caddr_t)); r->ti_len1 = PAGE_SIZE; TI_HOSTADDR(r->ti_addr2) = vtophys(mtod(m[1], caddr_t)); r->ti_len2 = m[1]->m_ext.ext_size; /* could be PAGE_SIZE or MCLBYTES */ if (PAGE_SIZE == 4096) { TI_HOSTADDR(r->ti_addr3) = vtophys(mtod(m[2], caddr_t)); r->ti_len3 = MCLBYTES; } else { r->ti_len3 = 0; } r->ti_type = TI_BDTYPE_RECV_JUMBO_BD; r->ti_flags = TI_BDFLAG_JUMBO_RING|TI_RCB_FLAG_USE_EXT_RX_BD; if (sc->arpcom.ac_if.if_hwassist) r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM|TI_BDFLAG_IP_CKSUM; r->ti_idx = idx; return (0); nobufs: /* * Warning! : * This can only be called before the mbufs are strung together. * If the mbufs are strung together, m_freem() will free the chain, * so that the later mbufs will be freed multiple times. */ if (m_new) m_freem(m_new); for (i = 0; i < 3; i++) { if (m[i]) m_freem(m[i]); if (buf[i]) jumbo_pg_free((vm_offset_t)buf[i]); } return (ENOBUFS); } #endif /* * The standard receive ring has 512 entries in it. At 2K per mbuf cluster, * that's 1MB or memory, which is a lot. For now, we fill only the first * 256 ring entries and hope that our CPU is fast enough to keep up with * the NIC. */ static int ti_init_rx_ring_std(sc) struct ti_softc *sc; { register int i; struct ti_cmd_desc cmd; for (i = 0; i < TI_SSLOTS; i++) { if (ti_newbuf_std(sc, i, NULL) == ENOBUFS) return (ENOBUFS); }; TI_UPDATE_STDPROD(sc, i - 1); sc->ti_std = i - 1; return (0); } static void ti_free_rx_ring_std(sc) struct ti_softc *sc; { register int i; for (i = 0; i < TI_STD_RX_RING_CNT; i++) { if (sc->ti_cdata.ti_rx_std_chain[i] != NULL) { m_freem(sc->ti_cdata.ti_rx_std_chain[i]); sc->ti_cdata.ti_rx_std_chain[i] = NULL; } bzero((char *)&sc->ti_rdata->ti_rx_std_ring[i], sizeof(struct ti_rx_desc)); } } static int ti_init_rx_ring_jumbo(sc) struct ti_softc *sc; { register int i; struct ti_cmd_desc cmd; for (i = 0; i < TI_JUMBO_RX_RING_CNT; i++) { if (ti_newbuf_jumbo(sc, i, NULL) == ENOBUFS) return (ENOBUFS); }; TI_UPDATE_JUMBOPROD(sc, i - 1); sc->ti_jumbo = i - 1; return (0); } static void ti_free_rx_ring_jumbo(sc) struct ti_softc *sc; { register int i; for (i = 0; i < TI_JUMBO_RX_RING_CNT; i++) { if (sc->ti_cdata.ti_rx_jumbo_chain[i] != NULL) { m_freem(sc->ti_cdata.ti_rx_jumbo_chain[i]); sc->ti_cdata.ti_rx_jumbo_chain[i] = NULL; } bzero((char *)&sc->ti_rdata->ti_rx_jumbo_ring[i], sizeof(struct ti_rx_desc)); } } static int ti_init_rx_ring_mini(sc) struct ti_softc *sc; { register int i; for (i = 0; i < TI_MSLOTS; i++) { if (ti_newbuf_mini(sc, i, NULL) == ENOBUFS) return (ENOBUFS); }; TI_UPDATE_MINIPROD(sc, i - 1); sc->ti_mini = i - 1; return (0); } static void ti_free_rx_ring_mini(sc) struct ti_softc *sc; { register int i; for (i = 0; i < TI_MINI_RX_RING_CNT; i++) { if (sc->ti_cdata.ti_rx_mini_chain[i] != NULL) { m_freem(sc->ti_cdata.ti_rx_mini_chain[i]); sc->ti_cdata.ti_rx_mini_chain[i] = NULL; } bzero((char *)&sc->ti_rdata->ti_rx_mini_ring[i], sizeof(struct ti_rx_desc)); } } static void ti_free_tx_ring(sc) struct ti_softc *sc; { register int i; if (sc->ti_rdata->ti_tx_ring == NULL) return; for (i = 0; i < TI_TX_RING_CNT; i++) { if (sc->ti_cdata.ti_tx_chain[i] != NULL) { m_freem(sc->ti_cdata.ti_tx_chain[i]); sc->ti_cdata.ti_tx_chain[i] = NULL; } bzero((char *)&sc->ti_rdata->ti_tx_ring[i], sizeof(struct ti_tx_desc)); } } static int ti_init_tx_ring(sc) struct ti_softc *sc; { sc->ti_txcnt = 0; sc->ti_tx_saved_considx = 0; CSR_WRITE_4(sc, TI_MB_SENDPROD_IDX, 0); return (0); } /* * The Tigon 2 firmware has a new way to add/delete multicast addresses, * but we have to support the old way too so that Tigon 1 cards will * work. */ static void ti_add_mcast(sc, addr) struct ti_softc *sc; struct ether_addr *addr; { struct ti_cmd_desc cmd; u_int16_t *m; u_int32_t ext[2] = {0, 0}; m = (u_int16_t *)&addr->octet[0]; switch (sc->ti_hwrev) { case TI_HWREV_TIGON: CSR_WRITE_4(sc, TI_GCR_MAR0, htons(m[0])); CSR_WRITE_4(sc, TI_GCR_MAR1, (htons(m[1]) << 16) | htons(m[2])); TI_DO_CMD(TI_CMD_ADD_MCAST_ADDR, 0, 0); break; case TI_HWREV_TIGON_II: ext[0] = htons(m[0]); ext[1] = (htons(m[1]) << 16) | htons(m[2]); TI_DO_CMD_EXT(TI_CMD_EXT_ADD_MCAST, 0, 0, (caddr_t)&ext, 2); break; default: printf("ti%d: unknown hwrev\n", sc->ti_unit); break; } } static void ti_del_mcast(sc, addr) struct ti_softc *sc; struct ether_addr *addr; { struct ti_cmd_desc cmd; u_int16_t *m; u_int32_t ext[2] = {0, 0}; m = (u_int16_t *)&addr->octet[0]; switch (sc->ti_hwrev) { case TI_HWREV_TIGON: CSR_WRITE_4(sc, TI_GCR_MAR0, htons(m[0])); CSR_WRITE_4(sc, TI_GCR_MAR1, (htons(m[1]) << 16) | htons(m[2])); TI_DO_CMD(TI_CMD_DEL_MCAST_ADDR, 0, 0); break; case TI_HWREV_TIGON_II: ext[0] = htons(m[0]); ext[1] = (htons(m[1]) << 16) | htons(m[2]); TI_DO_CMD_EXT(TI_CMD_EXT_DEL_MCAST, 0, 0, (caddr_t)&ext, 2); break; default: printf("ti%d: unknown hwrev\n", sc->ti_unit); break; } } /* * Configure the Tigon's multicast address filter. * * The actual multicast table management is a bit of a pain, thanks to * slight brain damage on the part of both Alteon and us. With our * multicast code, we are only alerted when the multicast address table * changes and at that point we only have the current list of addresses: * we only know the current state, not the previous state, so we don't * actually know what addresses were removed or added. The firmware has * state, but we can't get our grubby mits on it, and there is no 'delete * all multicast addresses' command. Hence, we have to maintain our own * state so we know what addresses have been programmed into the NIC at * any given time. */ static void ti_setmulti(sc) struct ti_softc *sc; { struct ifnet *ifp; struct ifmultiaddr *ifma; struct ti_cmd_desc cmd; struct ti_mc_entry *mc; u_int32_t intrs; ifp = &sc->arpcom.ac_if; if (ifp->if_flags & IFF_ALLMULTI) { TI_DO_CMD(TI_CMD_SET_ALLMULTI, TI_CMD_CODE_ALLMULTI_ENB, 0); return; } else { TI_DO_CMD(TI_CMD_SET_ALLMULTI, TI_CMD_CODE_ALLMULTI_DIS, 0); } /* Disable interrupts. */ intrs = CSR_READ_4(sc, TI_MB_HOSTINTR); CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1); /* First, zot all the existing filters. */ while (SLIST_FIRST(&sc->ti_mc_listhead) != NULL) { mc = SLIST_FIRST(&sc->ti_mc_listhead); ti_del_mcast(sc, &mc->mc_addr); SLIST_REMOVE_HEAD(&sc->ti_mc_listhead, mc_entries); free(mc, M_DEVBUF); } /* Now program new ones. */ TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { if (ifma->ifma_addr->sa_family != AF_LINK) continue; mc = malloc(sizeof(struct ti_mc_entry), M_DEVBUF, M_NOWAIT); bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr), (char *)&mc->mc_addr, ETHER_ADDR_LEN); SLIST_INSERT_HEAD(&sc->ti_mc_listhead, mc, mc_entries); ti_add_mcast(sc, &mc->mc_addr); } /* Re-enable interrupts. */ CSR_WRITE_4(sc, TI_MB_HOSTINTR, intrs); } /* * Check to see if the BIOS has configured us for a 64 bit slot when * we aren't actually in one. If we detect this condition, we can work * around it on the Tigon 2 by setting a bit in the PCI state register, * but for the Tigon 1 we must give up and abort the interface attach. */ static int ti_64bitslot_war(sc) struct ti_softc *sc; { if (!(CSR_READ_4(sc, TI_PCI_STATE) & TI_PCISTATE_32BIT_BUS)) { CSR_WRITE_4(sc, 0x600, 0); CSR_WRITE_4(sc, 0x604, 0); CSR_WRITE_4(sc, 0x600, 0x5555AAAA); if (CSR_READ_4(sc, 0x604) == 0x5555AAAA) { if (sc->ti_hwrev == TI_HWREV_TIGON) return (EINVAL); else { TI_SETBIT(sc, TI_PCI_STATE, TI_PCISTATE_32BIT_BUS); return (0); } } } return (0); } /* * Do endian, PCI and DMA initialization. Also check the on-board ROM * self-test results. */ static int ti_chipinit(sc) struct ti_softc *sc; { u_int32_t cacheline; u_int32_t pci_writemax = 0; u_int32_t hdrsplit; /* Initialize link to down state. */ sc->ti_linkstat = TI_EV_CODE_LINK_DOWN; if (sc->arpcom.ac_if.if_capenable & IFCAP_HWCSUM) sc->arpcom.ac_if.if_hwassist = TI_CSUM_FEATURES; else sc->arpcom.ac_if.if_hwassist = 0; /* Set endianness before we access any non-PCI registers. */ #if BYTE_ORDER == BIG_ENDIAN CSR_WRITE_4(sc, TI_MISC_HOST_CTL, TI_MHC_BIGENDIAN_INIT | (TI_MHC_BIGENDIAN_INIT << 24)); #else CSR_WRITE_4(sc, TI_MISC_HOST_CTL, TI_MHC_LITTLEENDIAN_INIT | (TI_MHC_LITTLEENDIAN_INIT << 24)); #endif /* Check the ROM failed bit to see if self-tests passed. */ if (CSR_READ_4(sc, TI_CPU_STATE) & TI_CPUSTATE_ROMFAIL) { printf("ti%d: board self-diagnostics failed!\n", sc->ti_unit); return (ENODEV); } /* Halt the CPU. */ TI_SETBIT(sc, TI_CPU_STATE, TI_CPUSTATE_HALT); /* Figure out the hardware revision. */ switch (CSR_READ_4(sc, TI_MISC_HOST_CTL) & TI_MHC_CHIP_REV_MASK) { case TI_REV_TIGON_I: sc->ti_hwrev = TI_HWREV_TIGON; break; case TI_REV_TIGON_II: sc->ti_hwrev = TI_HWREV_TIGON_II; break; default: printf("ti%d: unsupported chip revision\n", sc->ti_unit); return (ENODEV); } /* Do special setup for Tigon 2. */ if (sc->ti_hwrev == TI_HWREV_TIGON_II) { TI_SETBIT(sc, TI_CPU_CTL_B, TI_CPUSTATE_HALT); TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_SRAM_BANK_512K); TI_SETBIT(sc, TI_MISC_CONF, TI_MCR_SRAM_SYNCHRONOUS); } /* * We don't have firmware source for the Tigon 1, so Tigon 1 boards * can't do header splitting. */ #ifdef TI_JUMBO_HDRSPLIT if (sc->ti_hwrev != TI_HWREV_TIGON) sc->ti_hdrsplit = 1; else printf("ti%d: can't do header splitting on a Tigon I board\n", sc->ti_unit); #endif /* TI_JUMBO_HDRSPLIT */ /* Set up the PCI state register. */ CSR_WRITE_4(sc, TI_PCI_STATE, TI_PCI_READ_CMD|TI_PCI_WRITE_CMD); if (sc->ti_hwrev == TI_HWREV_TIGON_II) { TI_SETBIT(sc, TI_PCI_STATE, TI_PCISTATE_USE_MEM_RD_MULT); } /* Clear the read/write max DMA parameters. */ TI_CLRBIT(sc, TI_PCI_STATE, (TI_PCISTATE_WRITE_MAXDMA| TI_PCISTATE_READ_MAXDMA)); /* Get cache line size. */ cacheline = CSR_READ_4(sc, TI_PCI_BIST) & 0xFF; /* * If the system has set enabled the PCI memory write * and invalidate command in the command register, set * the write max parameter accordingly. This is necessary * to use MWI with the Tigon 2. */ if (CSR_READ_4(sc, TI_PCI_CMDSTAT) & PCIM_CMD_MWIEN) { switch (cacheline) { case 1: case 4: case 8: case 16: case 32: case 64: break; default: /* Disable PCI memory write and invalidate. */ if (bootverbose) printf("ti%d: cache line size %d not " "supported; disabling PCI MWI\n", sc->ti_unit, cacheline); CSR_WRITE_4(sc, TI_PCI_CMDSTAT, CSR_READ_4(sc, TI_PCI_CMDSTAT) & ~PCIM_CMD_MWIEN); break; } } #ifdef __brokenalpha__ /* * From the Alteon sample driver: * Must insure that we do not cross an 8K (bytes) boundary * for DMA reads. Our highest limit is 1K bytes. This is a * restriction on some ALPHA platforms with early revision * 21174 PCI chipsets, such as the AlphaPC 164lx */ TI_SETBIT(sc, TI_PCI_STATE, pci_writemax|TI_PCI_READMAX_1024); #else TI_SETBIT(sc, TI_PCI_STATE, pci_writemax); #endif /* This sets the min dma param all the way up (0xff). */ TI_SETBIT(sc, TI_PCI_STATE, TI_PCISTATE_MINDMA); if (sc->ti_hdrsplit) hdrsplit = TI_OPMODE_JUMBO_HDRSPLIT; else hdrsplit = 0; /* Configure DMA variables. */ #if BYTE_ORDER == BIG_ENDIAN CSR_WRITE_4(sc, TI_GCR_OPMODE, TI_OPMODE_BYTESWAP_BD | TI_OPMODE_BYTESWAP_DATA | TI_OPMODE_WORDSWAP_BD | TI_OPMODE_WARN_ENB | TI_OPMODE_FATAL_ENB | TI_OPMODE_DONT_FRAG_JUMBO | hdrsplit); #else /* BYTE_ORDER */ CSR_WRITE_4(sc, TI_GCR_OPMODE, TI_OPMODE_BYTESWAP_DATA| TI_OPMODE_WORDSWAP_BD|TI_OPMODE_DONT_FRAG_JUMBO| TI_OPMODE_WARN_ENB|TI_OPMODE_FATAL_ENB | hdrsplit); #endif /* BYTE_ORDER */ /* * Only allow 1 DMA channel to be active at a time. * I don't think this is a good idea, but without it * the firmware racks up lots of nicDmaReadRingFull * errors. This is not compatible with hardware checksums. */ if (sc->arpcom.ac_if.if_hwassist == 0) TI_SETBIT(sc, TI_GCR_OPMODE, TI_OPMODE_1_DMA_ACTIVE); /* Recommended settings from Tigon manual. */ CSR_WRITE_4(sc, TI_GCR_DMA_WRITECFG, TI_DMA_STATE_THRESH_8W); CSR_WRITE_4(sc, TI_GCR_DMA_READCFG, TI_DMA_STATE_THRESH_8W); if (ti_64bitslot_war(sc)) { printf("ti%d: bios thinks we're in a 64 bit slot, " "but we aren't", sc->ti_unit); return (EINVAL); } return (0); } /* * Initialize the general information block and firmware, and * start the CPU(s) running. */ static int ti_gibinit(sc) struct ti_softc *sc; { struct ti_rcb *rcb; int i; struct ifnet *ifp; ifp = &sc->arpcom.ac_if; /* Disable interrupts for now. */ CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1); /* Tell the chip where to find the general information block. */ CSR_WRITE_4(sc, TI_GCR_GENINFO_HI, 0); CSR_WRITE_4(sc, TI_GCR_GENINFO_LO, vtophys(&sc->ti_rdata->ti_info)); /* Load the firmware into SRAM. */ ti_loadfw(sc); /* Set up the contents of the general info and ring control blocks. */ /* Set up the event ring and producer pointer. */ rcb = &sc->ti_rdata->ti_info.ti_ev_rcb; TI_HOSTADDR(rcb->ti_hostaddr) = vtophys(&sc->ti_rdata->ti_event_ring); rcb->ti_flags = 0; TI_HOSTADDR(sc->ti_rdata->ti_info.ti_ev_prodidx_ptr) = vtophys(&sc->ti_ev_prodidx); sc->ti_ev_prodidx.ti_idx = 0; CSR_WRITE_4(sc, TI_GCR_EVENTCONS_IDX, 0); sc->ti_ev_saved_considx = 0; /* Set up the command ring and producer mailbox. */ rcb = &sc->ti_rdata->ti_info.ti_cmd_rcb; sc->ti_rdata->ti_cmd_ring = (struct ti_cmd_desc *)(sc->ti_vhandle + TI_GCR_CMDRING); TI_HOSTADDR(rcb->ti_hostaddr) = TI_GCR_NIC_ADDR(TI_GCR_CMDRING); rcb->ti_flags = 0; rcb->ti_max_len = 0; for (i = 0; i < TI_CMD_RING_CNT; i++) { CSR_WRITE_4(sc, TI_GCR_CMDRING + (i * 4), 0); } CSR_WRITE_4(sc, TI_GCR_CMDCONS_IDX, 0); CSR_WRITE_4(sc, TI_MB_CMDPROD_IDX, 0); sc->ti_cmd_saved_prodidx = 0; /* * Assign the address of the stats refresh buffer. * We re-use the current stats buffer for this to * conserve memory. */ TI_HOSTADDR(sc->ti_rdata->ti_info.ti_refresh_stats_ptr) = vtophys(&sc->ti_rdata->ti_info.ti_stats); /* Set up the standard receive ring. */ rcb = &sc->ti_rdata->ti_info.ti_std_rx_rcb; TI_HOSTADDR(rcb->ti_hostaddr) = vtophys(&sc->ti_rdata->ti_rx_std_ring); rcb->ti_max_len = TI_FRAMELEN; rcb->ti_flags = 0; if (sc->arpcom.ac_if.if_hwassist) rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM | TI_RCB_FLAG_IP_CKSUM | TI_RCB_FLAG_NO_PHDR_CKSUM; rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST; /* Set up the jumbo receive ring. */ rcb = &sc->ti_rdata->ti_info.ti_jumbo_rx_rcb; TI_HOSTADDR(rcb->ti_hostaddr) = vtophys(&sc->ti_rdata->ti_rx_jumbo_ring); #ifdef TI_PRIVATE_JUMBOS rcb->ti_max_len = TI_JUMBO_FRAMELEN; rcb->ti_flags = 0; #else rcb->ti_max_len = PAGE_SIZE; rcb->ti_flags = TI_RCB_FLAG_USE_EXT_RX_BD; #endif if (sc->arpcom.ac_if.if_hwassist) rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM | TI_RCB_FLAG_IP_CKSUM | TI_RCB_FLAG_NO_PHDR_CKSUM; rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST; /* * Set up the mini ring. Only activated on the * Tigon 2 but the slot in the config block is * still there on the Tigon 1. */ rcb = &sc->ti_rdata->ti_info.ti_mini_rx_rcb; TI_HOSTADDR(rcb->ti_hostaddr) = vtophys(&sc->ti_rdata->ti_rx_mini_ring); rcb->ti_max_len = MHLEN - ETHER_ALIGN; if (sc->ti_hwrev == TI_HWREV_TIGON) rcb->ti_flags = TI_RCB_FLAG_RING_DISABLED; else rcb->ti_flags = 0; if (sc->arpcom.ac_if.if_hwassist) rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM | TI_RCB_FLAG_IP_CKSUM | TI_RCB_FLAG_NO_PHDR_CKSUM; rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST; /* * Set up the receive return ring. */ rcb = &sc->ti_rdata->ti_info.ti_return_rcb; TI_HOSTADDR(rcb->ti_hostaddr) = vtophys(&sc->ti_rdata->ti_rx_return_ring); rcb->ti_flags = 0; rcb->ti_max_len = TI_RETURN_RING_CNT; TI_HOSTADDR(sc->ti_rdata->ti_info.ti_return_prodidx_ptr) = vtophys(&sc->ti_return_prodidx); /* * Set up the tx ring. Note: for the Tigon 2, we have the option * of putting the transmit ring in the host's address space and * letting the chip DMA it instead of leaving the ring in the NIC's * memory and accessing it through the shared memory region. We * do this for the Tigon 2, but it doesn't work on the Tigon 1, * so we have to revert to the shared memory scheme if we detect * a Tigon 1 chip. */ CSR_WRITE_4(sc, TI_WINBASE, TI_TX_RING_BASE); if (sc->ti_hwrev == TI_HWREV_TIGON) { sc->ti_rdata->ti_tx_ring_nic = (struct ti_tx_desc *)(sc->ti_vhandle + TI_WINDOW); } bzero((char *)sc->ti_rdata->ti_tx_ring, TI_TX_RING_CNT * sizeof(struct ti_tx_desc)); rcb = &sc->ti_rdata->ti_info.ti_tx_rcb; if (sc->ti_hwrev == TI_HWREV_TIGON) rcb->ti_flags = 0; else rcb->ti_flags = TI_RCB_FLAG_HOST_RING; rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST; if (sc->arpcom.ac_if.if_hwassist) rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM | TI_RCB_FLAG_IP_CKSUM | TI_RCB_FLAG_NO_PHDR_CKSUM; rcb->ti_max_len = TI_TX_RING_CNT; if (sc->ti_hwrev == TI_HWREV_TIGON) TI_HOSTADDR(rcb->ti_hostaddr) = TI_TX_RING_BASE; else TI_HOSTADDR(rcb->ti_hostaddr) = vtophys(&sc->ti_rdata->ti_tx_ring); TI_HOSTADDR(sc->ti_rdata->ti_info.ti_tx_considx_ptr) = vtophys(&sc->ti_tx_considx); /* Set up tuneables */ #if 0 if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN)) CSR_WRITE_4(sc, TI_GCR_RX_COAL_TICKS, (sc->ti_rx_coal_ticks / 10)); else #endif CSR_WRITE_4(sc, TI_GCR_RX_COAL_TICKS, sc->ti_rx_coal_ticks); CSR_WRITE_4(sc, TI_GCR_TX_COAL_TICKS, sc->ti_tx_coal_ticks); CSR_WRITE_4(sc, TI_GCR_STAT_TICKS, sc->ti_stat_ticks); CSR_WRITE_4(sc, TI_GCR_RX_MAX_COAL_BD, sc->ti_rx_max_coal_bds); CSR_WRITE_4(sc, TI_GCR_TX_MAX_COAL_BD, sc->ti_tx_max_coal_bds); CSR_WRITE_4(sc, TI_GCR_TX_BUFFER_RATIO, sc->ti_tx_buf_ratio); /* Turn interrupts on. */ CSR_WRITE_4(sc, TI_GCR_MASK_INTRS, 0); CSR_WRITE_4(sc, TI_MB_HOSTINTR, 0); /* Start CPU. */ TI_CLRBIT(sc, TI_CPU_STATE, (TI_CPUSTATE_HALT|TI_CPUSTATE_STEP)); return (0); } /* * Probe for a Tigon chip. Check the PCI vendor and device IDs * against our list and return its name if we find a match. */ static int ti_probe(dev) device_t dev; { struct ti_type *t; t = ti_devs; while (t->ti_name != NULL) { if ((pci_get_vendor(dev) == t->ti_vid) && (pci_get_device(dev) == t->ti_did)) { device_set_desc(dev, t->ti_name); return (0); } t++; } return (ENXIO); } static int ti_attach(dev) device_t dev; { struct ifnet *ifp; struct ti_softc *sc; int unit, error = 0, rid; sc = device_get_softc(dev); unit = device_get_unit(dev); mtx_init(&sc->ti_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK, MTX_DEF | MTX_RECURSE); ifmedia_init(&sc->ifmedia, IFM_IMASK, ti_ifmedia_upd, ti_ifmedia_sts); sc->arpcom.ac_if.if_capabilities = IFCAP_HWCSUM | IFCAP_VLAN_HWTAGGING | IFCAP_VLAN_MTU; sc->arpcom.ac_if.if_capenable = sc->arpcom.ac_if.if_capabilities; /* * Map control/status registers. */ pci_enable_busmaster(dev); rid = TI_PCI_LOMEM; sc->ti_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid, RF_ACTIVE|PCI_RF_DENSE); if (sc->ti_res == NULL) { printf ("ti%d: couldn't map memory\n", unit); error = ENXIO; goto fail; } sc->ti_btag = rman_get_bustag(sc->ti_res); sc->ti_bhandle = rman_get_bushandle(sc->ti_res); sc->ti_vhandle = (vm_offset_t)rman_get_virtual(sc->ti_res); /* Allocate interrupt */ rid = 0; sc->ti_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid, RF_SHAREABLE | RF_ACTIVE); if (sc->ti_irq == NULL) { printf("ti%d: couldn't map interrupt\n", unit); error = ENXIO; goto fail; } sc->ti_unit = unit; if (ti_chipinit(sc)) { printf("ti%d: chip initialization failed\n", sc->ti_unit); error = ENXIO; goto fail; } /* Zero out the NIC's on-board SRAM. */ ti_mem(sc, 0x2000, 0x100000 - 0x2000, NULL); /* Init again -- zeroing memory may have clobbered some registers. */ if (ti_chipinit(sc)) { printf("ti%d: chip initialization failed\n", sc->ti_unit); error = ENXIO; goto fail; } /* * Get station address from the EEPROM. Note: the manual states * that the MAC address is at offset 0x8c, however the data is * stored as two longwords (since that's how it's loaded into * the NIC). This means the MAC address is actually preceded * by two zero bytes. We need to skip over those. */ if (ti_read_eeprom(sc, (caddr_t)&sc->arpcom.ac_enaddr, TI_EE_MAC_OFFSET + 2, ETHER_ADDR_LEN)) { printf("ti%d: failed to read station address\n", unit); error = ENXIO; goto fail; } /* Allocate the general information block and ring buffers. */ sc->ti_rdata = contigmalloc(sizeof(struct ti_ring_data), M_DEVBUF, M_NOWAIT, 0, 0xffffffff, PAGE_SIZE, 0); if (sc->ti_rdata == NULL) { printf("ti%d: no memory for list buffers!\n", sc->ti_unit); error = ENXIO; goto fail; } bzero(sc->ti_rdata, sizeof(struct ti_ring_data)); /* Try to allocate memory for jumbo buffers. */ #ifdef TI_PRIVATE_JUMBOS if (ti_alloc_jumbo_mem(sc)) { printf("ti%d: jumbo buffer allocation failed\n", sc->ti_unit); error = ENXIO; goto fail; } #else if (!jumbo_vm_init()) { printf("ti%d: VM initialization failed!\n", sc->ti_unit); error = ENOMEM; goto fail; } #endif /* * We really need a better way to tell a 1000baseTX card * from a 1000baseSX one, since in theory there could be * OEMed 1000baseTX cards from lame vendors who aren't * clever enough to change the PCI ID. For the moment * though, the AceNIC is the only copper card available. */ if (pci_get_vendor(dev) == ALT_VENDORID && pci_get_device(dev) == ALT_DEVICEID_ACENIC_COPPER) sc->ti_copper = 1; /* Ok, it's not the only copper card available. */ if (pci_get_vendor(dev) == NG_VENDORID && pci_get_device(dev) == NG_DEVICEID_GA620T) sc->ti_copper = 1; /* Set default tuneable values. */ sc->ti_stat_ticks = 2 * TI_TICKS_PER_SEC; #if 0 sc->ti_rx_coal_ticks = TI_TICKS_PER_SEC / 5000; #endif sc->ti_rx_coal_ticks = 170; sc->ti_tx_coal_ticks = TI_TICKS_PER_SEC / 500; sc->ti_rx_max_coal_bds = 64; #if 0 sc->ti_tx_max_coal_bds = 128; #endif sc->ti_tx_max_coal_bds = 32; sc->ti_tx_buf_ratio = 21; /* Set up ifnet structure */ ifp = &sc->arpcom.ac_if; ifp->if_softc = sc; if_initname(ifp, device_get_name(dev), device_get_unit(dev)); ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; tis[unit] = sc; ifp->if_ioctl = ti_ioctl; ifp->if_start = ti_start; ifp->if_watchdog = ti_watchdog; ifp->if_init = ti_init; ifp->if_mtu = ETHERMTU; ifp->if_snd.ifq_maxlen = TI_TX_RING_CNT - 1; /* Set up ifmedia support. */ if (sc->ti_copper) { /* * Copper cards allow manual 10/100 mode selection, * but not manual 1000baseTX mode selection. Why? * Becuase currently there's no way to specify the * master/slave setting through the firmware interface, * so Alteon decided to just bag it and handle it * via autonegotiation. */ ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_10_T, 0, NULL); ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_10_T|IFM_FDX, 0, NULL); ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_100_TX, 0, NULL); ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_100_TX|IFM_FDX, 0, NULL); ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_1000_T, 0, NULL); ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_1000_T|IFM_FDX, 0, NULL); } else { /* Fiber cards don't support 10/100 modes. */ ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_1000_SX, 0, NULL); ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_1000_SX|IFM_FDX, 0, NULL); } ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_AUTO, 0, NULL); ifmedia_set(&sc->ifmedia, IFM_ETHER|IFM_AUTO); /* * We're assuming here that card initialization is a sequential * thing. If it isn't, multiple cards probing at the same time * could stomp on the list of softcs here. */ /* Register the device */ sc->dev = make_dev(&ti_cdevsw, sc->ti_unit, UID_ROOT, GID_OPERATOR, 0600, "ti%d", sc->ti_unit); sc->dev->si_drv1 = sc; /* * Call MI attach routine. */ ether_ifattach(ifp, sc->arpcom.ac_enaddr); /* Hook interrupt last to avoid having to lock softc */ error = bus_setup_intr(dev, sc->ti_irq, INTR_TYPE_NET, ti_intr, sc, &sc->ti_intrhand); if (error) { printf("ti%d: couldn't set up irq\n", unit); ether_ifdetach(ifp); goto fail; } fail: if (sc && error) ti_detach(dev); return (error); } /* * Shutdown hardware and free up resources. This can be called any * time after the mutex has been initialized. It is called in both * the error case in attach and the normal detach case so it needs * to be careful about only freeing resources that have actually been * allocated. */ static int ti_detach(dev) device_t dev; { struct ti_softc *sc; struct ifnet *ifp; sc = device_get_softc(dev); destroy_dev(sc->dev); KASSERT(mtx_initialized(&sc->ti_mtx), ("ti mutex not initialized")); TI_LOCK(sc); ifp = &sc->arpcom.ac_if; /* These should only be active if attach succeeded */ if (device_is_attached(dev)) { ti_stop(sc); ether_ifdetach(ifp); bus_generic_detach(dev); } ifmedia_removeall(&sc->ifmedia); if (sc->ti_intrhand) bus_teardown_intr(dev, sc->ti_irq, sc->ti_intrhand); if (sc->ti_irq) bus_release_resource(dev, SYS_RES_IRQ, 0, sc->ti_irq); if (sc->ti_res) { bus_release_resource(dev, SYS_RES_MEMORY, TI_PCI_LOMEM, sc->ti_res); } #ifdef TI_PRIVATE_JUMBOS if (sc->ti_cdata.ti_jumbo_buf) contigfree(sc->ti_cdata.ti_jumbo_buf, TI_JMEM, M_DEVBUF); #endif if (sc->ti_rdata) contigfree(sc->ti_rdata, sizeof(struct ti_ring_data), M_DEVBUF); TI_UNLOCK(sc); mtx_destroy(&sc->ti_mtx); return (0); } #ifdef TI_JUMBO_HDRSPLIT /* * If hdr_len is 0, that means that header splitting wasn't done on * this packet for some reason. The two most likely reasons are that * the protocol isn't a supported protocol for splitting, or this * packet had a fragment offset that wasn't 0. * * The header length, if it is non-zero, will always be the length of * the headers on the packet, but that length could be longer than the * first mbuf. So we take the minimum of the two as the actual * length. */ static __inline void ti_hdr_split(struct mbuf *top, int hdr_len, int pkt_len, int idx) { int i = 0; int lengths[4] = {0, 0, 0, 0}; struct mbuf *m, *mp; if (hdr_len != 0) top->m_len = min(hdr_len, top->m_len); pkt_len -= top->m_len; lengths[i++] = top->m_len; mp = top; for (m = top->m_next; m && pkt_len; m = m->m_next) { m->m_len = m->m_ext.ext_size = min(m->m_len, pkt_len); pkt_len -= m->m_len; lengths[i++] = m->m_len; mp = m; } #if 0 if (hdr_len != 0) printf("got split packet: "); else printf("got non-split packet: "); printf("%d,%d,%d,%d = %d\n", lengths[0], lengths[1], lengths[2], lengths[3], lengths[0] + lengths[1] + lengths[2] + lengths[3]); #endif if (pkt_len) panic("header splitting didn't"); if (m) { m_freem(m); mp->m_next = NULL; } if (mp->m_next != NULL) panic("ti_hdr_split: last mbuf in chain should be null"); } #endif /* TI_JUMBO_HDRSPLIT */ /* * Frame reception handling. This is called if there's a frame * on the receive return list. * * Note: we have to be able to handle three possibilities here: * 1) the frame is from the mini receive ring (can only happen) * on Tigon 2 boards) * 2) the frame is from the jumbo recieve ring * 3) the frame is from the standard receive ring */ static void ti_rxeof(sc) struct ti_softc *sc; { struct ifnet *ifp; struct ti_cmd_desc cmd; TI_LOCK_ASSERT(sc); ifp = &sc->arpcom.ac_if; while (sc->ti_rx_saved_considx != sc->ti_return_prodidx.ti_idx) { struct ti_rx_desc *cur_rx; u_int32_t rxidx; struct mbuf *m = NULL; u_int16_t vlan_tag = 0; int have_tag = 0; cur_rx = &sc->ti_rdata->ti_rx_return_ring[sc->ti_rx_saved_considx]; rxidx = cur_rx->ti_idx; TI_INC(sc->ti_rx_saved_considx, TI_RETURN_RING_CNT); if (cur_rx->ti_flags & TI_BDFLAG_VLAN_TAG) { have_tag = 1; vlan_tag = cur_rx->ti_vlan_tag & 0xfff; } if (cur_rx->ti_flags & TI_BDFLAG_JUMBO_RING) { TI_INC(sc->ti_jumbo, TI_JUMBO_RX_RING_CNT); m = sc->ti_cdata.ti_rx_jumbo_chain[rxidx]; sc->ti_cdata.ti_rx_jumbo_chain[rxidx] = NULL; if (cur_rx->ti_flags & TI_BDFLAG_ERROR) { ifp->if_ierrors++; ti_newbuf_jumbo(sc, sc->ti_jumbo, m); continue; } if (ti_newbuf_jumbo(sc, sc->ti_jumbo, NULL) == ENOBUFS) { ifp->if_ierrors++; ti_newbuf_jumbo(sc, sc->ti_jumbo, m); continue; } #ifdef TI_PRIVATE_JUMBOS m->m_len = cur_rx->ti_len; #else /* TI_PRIVATE_JUMBOS */ #ifdef TI_JUMBO_HDRSPLIT if (sc->ti_hdrsplit) ti_hdr_split(m, TI_HOSTADDR(cur_rx->ti_addr), cur_rx->ti_len, rxidx); else #endif /* TI_JUMBO_HDRSPLIT */ m_adj(m, cur_rx->ti_len - m->m_pkthdr.len); #endif /* TI_PRIVATE_JUMBOS */ } else if (cur_rx->ti_flags & TI_BDFLAG_MINI_RING) { TI_INC(sc->ti_mini, TI_MINI_RX_RING_CNT); m = sc->ti_cdata.ti_rx_mini_chain[rxidx]; sc->ti_cdata.ti_rx_mini_chain[rxidx] = NULL; if (cur_rx->ti_flags & TI_BDFLAG_ERROR) { ifp->if_ierrors++; ti_newbuf_mini(sc, sc->ti_mini, m); continue; } if (ti_newbuf_mini(sc, sc->ti_mini, NULL) == ENOBUFS) { ifp->if_ierrors++; ti_newbuf_mini(sc, sc->ti_mini, m); continue; } m->m_len = cur_rx->ti_len; } else { TI_INC(sc->ti_std, TI_STD_RX_RING_CNT); m = sc->ti_cdata.ti_rx_std_chain[rxidx]; sc->ti_cdata.ti_rx_std_chain[rxidx] = NULL; if (cur_rx->ti_flags & TI_BDFLAG_ERROR) { ifp->if_ierrors++; ti_newbuf_std(sc, sc->ti_std, m); continue; } if (ti_newbuf_std(sc, sc->ti_std, NULL) == ENOBUFS) { ifp->if_ierrors++; ti_newbuf_std(sc, sc->ti_std, m); continue; } m->m_len = cur_rx->ti_len; } m->m_pkthdr.len = cur_rx->ti_len; ifp->if_ipackets++; m->m_pkthdr.rcvif = ifp; if (ifp->if_hwassist) { m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED | CSUM_DATA_VALID; if ((cur_rx->ti_ip_cksum ^ 0xffff) == 0) m->m_pkthdr.csum_flags |= CSUM_IP_VALID; m->m_pkthdr.csum_data = cur_rx->ti_tcp_udp_cksum; } /* * If we received a packet with a vlan tag, * tag it before passing the packet upward. */ if (have_tag) VLAN_INPUT_TAG(ifp, m, vlan_tag, continue); TI_UNLOCK(sc); (*ifp->if_input)(ifp, m); TI_LOCK(sc); } /* Only necessary on the Tigon 1. */ if (sc->ti_hwrev == TI_HWREV_TIGON) CSR_WRITE_4(sc, TI_GCR_RXRETURNCONS_IDX, sc->ti_rx_saved_considx); TI_UPDATE_STDPROD(sc, sc->ti_std); TI_UPDATE_MINIPROD(sc, sc->ti_mini); TI_UPDATE_JUMBOPROD(sc, sc->ti_jumbo); } static void ti_txeof(sc) struct ti_softc *sc; { struct ti_tx_desc *cur_tx = NULL; struct ifnet *ifp; ifp = &sc->arpcom.ac_if; /* * Go through our tx ring and free mbufs for those * frames that have been sent. */ while (sc->ti_tx_saved_considx != sc->ti_tx_considx.ti_idx) { u_int32_t idx = 0; idx = sc->ti_tx_saved_considx; if (sc->ti_hwrev == TI_HWREV_TIGON) { if (idx > 383) CSR_WRITE_4(sc, TI_WINBASE, TI_TX_RING_BASE + 6144); else if (idx > 255) CSR_WRITE_4(sc, TI_WINBASE, TI_TX_RING_BASE + 4096); else if (idx > 127) CSR_WRITE_4(sc, TI_WINBASE, TI_TX_RING_BASE + 2048); else CSR_WRITE_4(sc, TI_WINBASE, TI_TX_RING_BASE); cur_tx = &sc->ti_rdata->ti_tx_ring_nic[idx % 128]; } else cur_tx = &sc->ti_rdata->ti_tx_ring[idx]; if (cur_tx->ti_flags & TI_BDFLAG_END) ifp->if_opackets++; if (sc->ti_cdata.ti_tx_chain[idx] != NULL) { m_freem(sc->ti_cdata.ti_tx_chain[idx]); sc->ti_cdata.ti_tx_chain[idx] = NULL; } sc->ti_txcnt--; TI_INC(sc->ti_tx_saved_considx, TI_TX_RING_CNT); ifp->if_timer = 0; } if (cur_tx != NULL) ifp->if_flags &= ~IFF_OACTIVE; } static void ti_intr(xsc) void *xsc; { struct ti_softc *sc; struct ifnet *ifp; sc = xsc; TI_LOCK(sc); ifp = &sc->arpcom.ac_if; /*#ifdef notdef*/ /* Avoid this for now -- checking this register is expensive. */ /* Make sure this is really our interrupt. */ if (!(CSR_READ_4(sc, TI_MISC_HOST_CTL) & TI_MHC_INTSTATE)) { TI_UNLOCK(sc); return; } /*#endif*/ /* Ack interrupt and stop others from occuring. */ CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1); if (ifp->if_flags & IFF_RUNNING) { /* Check RX return ring producer/consumer */ ti_rxeof(sc); /* Check TX ring producer/consumer */ ti_txeof(sc); } ti_handle_events(sc); /* Re-enable interrupts. */ CSR_WRITE_4(sc, TI_MB_HOSTINTR, 0); if (ifp->if_flags & IFF_RUNNING && ifp->if_snd.ifq_head != NULL) ti_start(ifp); TI_UNLOCK(sc); } static void ti_stats_update(sc) struct ti_softc *sc; { struct ifnet *ifp; ifp = &sc->arpcom.ac_if; ifp->if_collisions += (sc->ti_rdata->ti_info.ti_stats.dot3StatsSingleCollisionFrames + sc->ti_rdata->ti_info.ti_stats.dot3StatsMultipleCollisionFrames + sc->ti_rdata->ti_info.ti_stats.dot3StatsExcessiveCollisions + sc->ti_rdata->ti_info.ti_stats.dot3StatsLateCollisions) - ifp->if_collisions; } /* * Encapsulate an mbuf chain in the tx ring by coupling the mbuf data * pointers to descriptors. */ static int ti_encap(sc, m_head, txidx) struct ti_softc *sc; struct mbuf *m_head; u_int32_t *txidx; { struct ti_tx_desc *f = NULL; struct mbuf *m; u_int32_t frag, cur, cnt = 0; u_int16_t csum_flags = 0; struct m_tag *mtag; m = m_head; cur = frag = *txidx; if (m_head->m_pkthdr.csum_flags) { if (m_head->m_pkthdr.csum_flags & CSUM_IP) csum_flags |= TI_BDFLAG_IP_CKSUM; if (m_head->m_pkthdr.csum_flags & (CSUM_TCP | CSUM_UDP)) csum_flags |= TI_BDFLAG_TCP_UDP_CKSUM; if (m_head->m_flags & M_LASTFRAG) csum_flags |= TI_BDFLAG_IP_FRAG_END; else if (m_head->m_flags & M_FRAG) csum_flags |= TI_BDFLAG_IP_FRAG; } mtag = VLAN_OUTPUT_TAG(&sc->arpcom.ac_if, m); /* * Start packing the mbufs in this chain into * the fragment pointers. Stop when we run out * of fragments or hit the end of the mbuf chain. */ for (m = m_head; m != NULL; m = m->m_next) { if (m->m_len != 0) { if (sc->ti_hwrev == TI_HWREV_TIGON) { if (frag > 383) CSR_WRITE_4(sc, TI_WINBASE, TI_TX_RING_BASE + 6144); else if (frag > 255) CSR_WRITE_4(sc, TI_WINBASE, TI_TX_RING_BASE + 4096); else if (frag > 127) CSR_WRITE_4(sc, TI_WINBASE, TI_TX_RING_BASE + 2048); else CSR_WRITE_4(sc, TI_WINBASE, TI_TX_RING_BASE); f = &sc->ti_rdata->ti_tx_ring_nic[frag % 128]; } else f = &sc->ti_rdata->ti_tx_ring[frag]; if (sc->ti_cdata.ti_tx_chain[frag] != NULL) break; TI_HOSTADDR(f->ti_addr) = vtophys(mtod(m, vm_offset_t)); f->ti_len = m->m_len; f->ti_flags = csum_flags; if (mtag != NULL) { f->ti_flags |= TI_BDFLAG_VLAN_TAG; f->ti_vlan_tag = VLAN_TAG_VALUE(mtag) & 0xfff; } else { f->ti_vlan_tag = 0; } /* * Sanity check: avoid coming within 16 descriptors * of the end of the ring. */ if ((TI_TX_RING_CNT - (sc->ti_txcnt + cnt)) < 16) return (ENOBUFS); cur = frag; TI_INC(frag, TI_TX_RING_CNT); cnt++; } } if (m != NULL) return (ENOBUFS); if (frag == sc->ti_tx_saved_considx) return (ENOBUFS); if (sc->ti_hwrev == TI_HWREV_TIGON) sc->ti_rdata->ti_tx_ring_nic[cur % 128].ti_flags |= TI_BDFLAG_END; else sc->ti_rdata->ti_tx_ring[cur].ti_flags |= TI_BDFLAG_END; sc->ti_cdata.ti_tx_chain[cur] = m_head; sc->ti_txcnt += cnt; *txidx = frag; return (0); } /* * Main transmit routine. To avoid having to do mbuf copies, we put pointers * to the mbuf data regions directly in the transmit descriptors. */ static void ti_start(ifp) struct ifnet *ifp; { struct ti_softc *sc; struct mbuf *m_head = NULL; u_int32_t prodidx = 0; sc = ifp->if_softc; TI_LOCK(sc); prodidx = CSR_READ_4(sc, TI_MB_SENDPROD_IDX); while (sc->ti_cdata.ti_tx_chain[prodidx] == NULL) { IF_DEQUEUE(&ifp->if_snd, m_head); if (m_head == NULL) break; /* * XXX * safety overkill. If this is a fragmented packet chain * with delayed TCP/UDP checksums, then only encapsulate * it if we have enough descriptors to handle the entire * chain at once. * (paranoia -- may not actually be needed) */ if (m_head->m_flags & M_FIRSTFRAG && m_head->m_pkthdr.csum_flags & (CSUM_DELAY_DATA)) { if ((TI_TX_RING_CNT - sc->ti_txcnt) < m_head->m_pkthdr.csum_data + 16) { IF_PREPEND(&ifp->if_snd, m_head); ifp->if_flags |= IFF_OACTIVE; break; } } /* * Pack the data into the transmit ring. If we * don't have room, set the OACTIVE flag and wait * for the NIC to drain the ring. */ if (ti_encap(sc, m_head, &prodidx)) { IF_PREPEND(&ifp->if_snd, m_head); ifp->if_flags |= IFF_OACTIVE; break; } /* * If there's a BPF listener, bounce a copy of this frame * to him. */ BPF_MTAP(ifp, m_head); } /* Transmit */ CSR_WRITE_4(sc, TI_MB_SENDPROD_IDX, prodidx); /* * Set a timeout in case the chip goes out to lunch. */ ifp->if_timer = 5; TI_UNLOCK(sc); } static void ti_init(xsc) void *xsc; { struct ti_softc *sc = xsc; /* Cancel pending I/O and flush buffers. */ ti_stop(sc); TI_LOCK(sc); /* Init the gen info block, ring control blocks and firmware. */ if (ti_gibinit(sc)) { printf("ti%d: initialization failure\n", sc->ti_unit); TI_UNLOCK(sc); return; } TI_UNLOCK(sc); } static void ti_init2(sc) struct ti_softc *sc; { struct ti_cmd_desc cmd; struct ifnet *ifp; u_int16_t *m; struct ifmedia *ifm; int tmp; ifp = &sc->arpcom.ac_if; /* Specify MTU and interface index. */ CSR_WRITE_4(sc, TI_GCR_IFINDEX, sc->ti_unit); CSR_WRITE_4(sc, TI_GCR_IFMTU, ifp->if_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN + ETHER_VLAN_ENCAP_LEN); TI_DO_CMD(TI_CMD_UPDATE_GENCOM, 0, 0); /* Load our MAC address. */ m = (u_int16_t *)&sc->arpcom.ac_enaddr[0]; CSR_WRITE_4(sc, TI_GCR_PAR0, htons(m[0])); CSR_WRITE_4(sc, TI_GCR_PAR1, (htons(m[1]) << 16) | htons(m[2])); TI_DO_CMD(TI_CMD_SET_MAC_ADDR, 0, 0); /* Enable or disable promiscuous mode as needed. */ if (ifp->if_flags & IFF_PROMISC) { TI_DO_CMD(TI_CMD_SET_PROMISC_MODE, TI_CMD_CODE_PROMISC_ENB, 0); } else { TI_DO_CMD(TI_CMD_SET_PROMISC_MODE, TI_CMD_CODE_PROMISC_DIS, 0); } /* Program multicast filter. */ ti_setmulti(sc); /* * If this is a Tigon 1, we should tell the * firmware to use software packet filtering. */ if (sc->ti_hwrev == TI_HWREV_TIGON) { TI_DO_CMD(TI_CMD_FDR_FILTERING, TI_CMD_CODE_FILT_ENB, 0); } /* Init RX ring. */ ti_init_rx_ring_std(sc); /* Init jumbo RX ring. */ if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN)) ti_init_rx_ring_jumbo(sc); /* * If this is a Tigon 2, we can also configure the * mini ring. */ if (sc->ti_hwrev == TI_HWREV_TIGON_II) ti_init_rx_ring_mini(sc); CSR_WRITE_4(sc, TI_GCR_RXRETURNCONS_IDX, 0); sc->ti_rx_saved_considx = 0; /* Init TX ring. */ ti_init_tx_ring(sc); /* Tell firmware we're alive. */ TI_DO_CMD(TI_CMD_HOST_STATE, TI_CMD_CODE_STACK_UP, 0); /* Enable host interrupts. */ CSR_WRITE_4(sc, TI_MB_HOSTINTR, 0); ifp->if_flags |= IFF_RUNNING; ifp->if_flags &= ~IFF_OACTIVE; /* * Make sure to set media properly. We have to do this * here since we have to issue commands in order to set * the link negotiation and we can't issue commands until * the firmware is running. */ ifm = &sc->ifmedia; tmp = ifm->ifm_media; ifm->ifm_media = ifm->ifm_cur->ifm_media; ti_ifmedia_upd(ifp); ifm->ifm_media = tmp; } /* * Set media options. */ static int ti_ifmedia_upd(ifp) struct ifnet *ifp; { struct ti_softc *sc; struct ifmedia *ifm; struct ti_cmd_desc cmd; u_int32_t flowctl; sc = ifp->if_softc; ifm = &sc->ifmedia; if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER) return (EINVAL); flowctl = 0; switch (IFM_SUBTYPE(ifm->ifm_media)) { case IFM_AUTO: /* * Transmit flow control doesn't work on the Tigon 1. */ flowctl = TI_GLNK_RX_FLOWCTL_Y; /* * Transmit flow control can also cause problems on the * Tigon 2, apparantly with both the copper and fiber * boards. The symptom is that the interface will just * hang. This was reproduced with Alteon 180 switches. */ #if 0 if (sc->ti_hwrev != TI_HWREV_TIGON) flowctl |= TI_GLNK_TX_FLOWCTL_Y; #endif CSR_WRITE_4(sc, TI_GCR_GLINK, TI_GLNK_PREF|TI_GLNK_1000MB| TI_GLNK_FULL_DUPLEX| flowctl | TI_GLNK_AUTONEGENB|TI_GLNK_ENB); flowctl = TI_LNK_RX_FLOWCTL_Y; #if 0 if (sc->ti_hwrev != TI_HWREV_TIGON) flowctl |= TI_LNK_TX_FLOWCTL_Y; #endif CSR_WRITE_4(sc, TI_GCR_LINK, TI_LNK_100MB|TI_LNK_10MB| TI_LNK_FULL_DUPLEX|TI_LNK_HALF_DUPLEX| flowctl | TI_LNK_AUTONEGENB|TI_LNK_ENB); TI_DO_CMD(TI_CMD_LINK_NEGOTIATION, TI_CMD_CODE_NEGOTIATE_BOTH, 0); break; case IFM_1000_SX: case IFM_1000_T: flowctl = TI_GLNK_RX_FLOWCTL_Y; #if 0 if (sc->ti_hwrev != TI_HWREV_TIGON) flowctl |= TI_GLNK_TX_FLOWCTL_Y; #endif CSR_WRITE_4(sc, TI_GCR_GLINK, TI_GLNK_PREF|TI_GLNK_1000MB| flowctl |TI_GLNK_ENB); CSR_WRITE_4(sc, TI_GCR_LINK, 0); if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) { TI_SETBIT(sc, TI_GCR_GLINK, TI_GLNK_FULL_DUPLEX); } TI_DO_CMD(TI_CMD_LINK_NEGOTIATION, TI_CMD_CODE_NEGOTIATE_GIGABIT, 0); break; case IFM_100_FX: case IFM_10_FL: case IFM_100_TX: case IFM_10_T: flowctl = TI_LNK_RX_FLOWCTL_Y; #if 0 if (sc->ti_hwrev != TI_HWREV_TIGON) flowctl |= TI_LNK_TX_FLOWCTL_Y; #endif CSR_WRITE_4(sc, TI_GCR_GLINK, 0); CSR_WRITE_4(sc, TI_GCR_LINK, TI_LNK_ENB|TI_LNK_PREF|flowctl); if (IFM_SUBTYPE(ifm->ifm_media) == IFM_100_FX || IFM_SUBTYPE(ifm->ifm_media) == IFM_100_TX) { TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_100MB); } else { TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_10MB); } if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) { TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_FULL_DUPLEX); } else { TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_HALF_DUPLEX); } TI_DO_CMD(TI_CMD_LINK_NEGOTIATION, TI_CMD_CODE_NEGOTIATE_10_100, 0); break; } return (0); } /* * Report current media status. */ static void ti_ifmedia_sts(ifp, ifmr) struct ifnet *ifp; struct ifmediareq *ifmr; { struct ti_softc *sc; u_int32_t media = 0; sc = ifp->if_softc; ifmr->ifm_status = IFM_AVALID; ifmr->ifm_active = IFM_ETHER; if (sc->ti_linkstat == TI_EV_CODE_LINK_DOWN) return; ifmr->ifm_status |= IFM_ACTIVE; if (sc->ti_linkstat == TI_EV_CODE_GIG_LINK_UP) { media = CSR_READ_4(sc, TI_GCR_GLINK_STAT); if (sc->ti_copper) ifmr->ifm_active |= IFM_1000_T; else ifmr->ifm_active |= IFM_1000_SX; if (media & TI_GLNK_FULL_DUPLEX) ifmr->ifm_active |= IFM_FDX; else ifmr->ifm_active |= IFM_HDX; } else if (sc->ti_linkstat == TI_EV_CODE_LINK_UP) { media = CSR_READ_4(sc, TI_GCR_LINK_STAT); if (sc->ti_copper) { if (media & TI_LNK_100MB) ifmr->ifm_active |= IFM_100_TX; if (media & TI_LNK_10MB) ifmr->ifm_active |= IFM_10_T; } else { if (media & TI_LNK_100MB) ifmr->ifm_active |= IFM_100_FX; if (media & TI_LNK_10MB) ifmr->ifm_active |= IFM_10_FL; } if (media & TI_LNK_FULL_DUPLEX) ifmr->ifm_active |= IFM_FDX; if (media & TI_LNK_HALF_DUPLEX) ifmr->ifm_active |= IFM_HDX; } } static int ti_ioctl(ifp, command, data) struct ifnet *ifp; u_long command; caddr_t data; { struct ti_softc *sc = ifp->if_softc; struct ifreq *ifr = (struct ifreq *) data; int mask, error = 0; struct ti_cmd_desc cmd; TI_LOCK(sc); switch (command) { case SIOCSIFMTU: if (ifr->ifr_mtu > TI_JUMBO_MTU) error = EINVAL; else { ifp->if_mtu = ifr->ifr_mtu; ti_init(sc); } break; case SIOCSIFFLAGS: if (ifp->if_flags & IFF_UP) { /* * If only the state of the PROMISC flag changed, * then just use the 'set promisc mode' command * instead of reinitializing the entire NIC. Doing * a full re-init means reloading the firmware and * waiting for it to start up, which may take a * second or two. */ if (ifp->if_flags & IFF_RUNNING && ifp->if_flags & IFF_PROMISC && !(sc->ti_if_flags & IFF_PROMISC)) { TI_DO_CMD(TI_CMD_SET_PROMISC_MODE, TI_CMD_CODE_PROMISC_ENB, 0); } else if (ifp->if_flags & IFF_RUNNING && !(ifp->if_flags & IFF_PROMISC) && sc->ti_if_flags & IFF_PROMISC) { TI_DO_CMD(TI_CMD_SET_PROMISC_MODE, TI_CMD_CODE_PROMISC_DIS, 0); } else ti_init(sc); } else { if (ifp->if_flags & IFF_RUNNING) { ti_stop(sc); } } sc->ti_if_flags = ifp->if_flags; error = 0; break; case SIOCADDMULTI: case SIOCDELMULTI: if (ifp->if_flags & IFF_RUNNING) { ti_setmulti(sc); error = 0; } break; case SIOCSIFMEDIA: case SIOCGIFMEDIA: error = ifmedia_ioctl(ifp, ifr, &sc->ifmedia, command); break; case SIOCSIFCAP: mask = ifr->ifr_reqcap ^ ifp->if_capenable; if (mask & IFCAP_HWCSUM) { if (IFCAP_HWCSUM & ifp->if_capenable) ifp->if_capenable &= ~IFCAP_HWCSUM; else ifp->if_capenable |= IFCAP_HWCSUM; if (ifp->if_flags & IFF_RUNNING) ti_init(sc); } error = 0; break; default: error = ether_ioctl(ifp, command, data); break; } TI_UNLOCK(sc); return (error); } static int ti_open(struct cdev *dev, int flags, int fmt, struct thread *td) { struct ti_softc *sc; sc = dev->si_drv1; if (sc == NULL) return (ENODEV); TI_LOCK(sc); sc->ti_flags |= TI_FLAG_DEBUGING; TI_UNLOCK(sc); return (0); } static int ti_close(struct cdev *dev, int flag, int fmt, struct thread *td) { struct ti_softc *sc; sc = dev->si_drv1; if (sc == NULL) return (ENODEV); TI_LOCK(sc); sc->ti_flags &= ~TI_FLAG_DEBUGING; TI_UNLOCK(sc); return (0); } /* * This ioctl routine goes along with the Tigon character device. */ static int ti_ioctl2(struct cdev *dev, u_long cmd, caddr_t addr, int flag, struct thread *td) { int error; struct ti_softc *sc; sc = dev->si_drv1; if (sc == NULL) return (ENODEV); error = 0; switch (cmd) { case TIIOCGETSTATS: { struct ti_stats *outstats; outstats = (struct ti_stats *)addr; bcopy(&sc->ti_rdata->ti_info.ti_stats, outstats, sizeof(struct ti_stats)); break; } case TIIOCGETPARAMS: { struct ti_params *params; params = (struct ti_params *)addr; params->ti_stat_ticks = sc->ti_stat_ticks; params->ti_rx_coal_ticks = sc->ti_rx_coal_ticks; params->ti_tx_coal_ticks = sc->ti_tx_coal_ticks; params->ti_rx_max_coal_bds = sc->ti_rx_max_coal_bds; params->ti_tx_max_coal_bds = sc->ti_tx_max_coal_bds; params->ti_tx_buf_ratio = sc->ti_tx_buf_ratio; params->param_mask = TI_PARAM_ALL; error = 0; break; } case TIIOCSETPARAMS: { struct ti_params *params; params = (struct ti_params *)addr; if (params->param_mask & TI_PARAM_STAT_TICKS) { sc->ti_stat_ticks = params->ti_stat_ticks; CSR_WRITE_4(sc, TI_GCR_STAT_TICKS, sc->ti_stat_ticks); } if (params->param_mask & TI_PARAM_RX_COAL_TICKS) { sc->ti_rx_coal_ticks = params->ti_rx_coal_ticks; CSR_WRITE_4(sc, TI_GCR_RX_COAL_TICKS, sc->ti_rx_coal_ticks); } if (params->param_mask & TI_PARAM_TX_COAL_TICKS) { sc->ti_tx_coal_ticks = params->ti_tx_coal_ticks; CSR_WRITE_4(sc, TI_GCR_TX_COAL_TICKS, sc->ti_tx_coal_ticks); } if (params->param_mask & TI_PARAM_RX_COAL_BDS) { sc->ti_rx_max_coal_bds = params->ti_rx_max_coal_bds; CSR_WRITE_4(sc, TI_GCR_RX_MAX_COAL_BD, sc->ti_rx_max_coal_bds); } if (params->param_mask & TI_PARAM_TX_COAL_BDS) { sc->ti_tx_max_coal_bds = params->ti_tx_max_coal_bds; CSR_WRITE_4(sc, TI_GCR_TX_MAX_COAL_BD, sc->ti_tx_max_coal_bds); } if (params->param_mask & TI_PARAM_TX_BUF_RATIO) { sc->ti_tx_buf_ratio = params->ti_tx_buf_ratio; CSR_WRITE_4(sc, TI_GCR_TX_BUFFER_RATIO, sc->ti_tx_buf_ratio); } error = 0; break; } case TIIOCSETTRACE: { ti_trace_type trace_type; trace_type = *(ti_trace_type *)addr; /* * Set tracing to whatever the user asked for. Setting * this register to 0 should have the effect of disabling * tracing. */ CSR_WRITE_4(sc, TI_GCR_NIC_TRACING, trace_type); error = 0; break; } case TIIOCGETTRACE: { struct ti_trace_buf *trace_buf; u_int32_t trace_start, cur_trace_ptr, trace_len; trace_buf = (struct ti_trace_buf *)addr; trace_start = CSR_READ_4(sc, TI_GCR_NICTRACE_START); cur_trace_ptr = CSR_READ_4(sc, TI_GCR_NICTRACE_PTR); trace_len = CSR_READ_4(sc, TI_GCR_NICTRACE_LEN); #if 0 printf("ti%d: trace_start = %#x, cur_trace_ptr = %#x, " "trace_len = %d\n", sc->ti_unit, trace_start, cur_trace_ptr, trace_len); printf("ti%d: trace_buf->buf_len = %d\n", sc->ti_unit, trace_buf->buf_len); #endif error = ti_copy_mem(sc, trace_start, min(trace_len, trace_buf->buf_len), (caddr_t)trace_buf->buf, 1, 1); if (error == 0) { trace_buf->fill_len = min(trace_len, trace_buf->buf_len); if (cur_trace_ptr < trace_start) trace_buf->cur_trace_ptr = trace_start - cur_trace_ptr; else trace_buf->cur_trace_ptr = cur_trace_ptr - trace_start; } else trace_buf->fill_len = 0; break; } /* * For debugging, five ioctls are needed: * ALT_ATTACH * ALT_READ_TG_REG * ALT_WRITE_TG_REG * ALT_READ_TG_MEM * ALT_WRITE_TG_MEM */ case ALT_ATTACH: /* * From what I can tell, Alteon's Solaris Tigon driver * only has one character device, so you have to attach * to the Tigon board you're interested in. This seems * like a not-so-good way to do things, since unless you * subsequently specify the unit number of the device * you're interested in in every ioctl, you'll only be * able to debug one board at a time. */ error = 0; break; case ALT_READ_TG_MEM: case ALT_WRITE_TG_MEM: { struct tg_mem *mem_param; u_int32_t sram_end, scratch_end; mem_param = (struct tg_mem *)addr; if (sc->ti_hwrev == TI_HWREV_TIGON) { sram_end = TI_END_SRAM_I; scratch_end = TI_END_SCRATCH_I; } else { sram_end = TI_END_SRAM_II; scratch_end = TI_END_SCRATCH_II; } /* * For now, we'll only handle accessing regular SRAM, * nothing else. */ if ((mem_param->tgAddr >= TI_BEG_SRAM) && ((mem_param->tgAddr + mem_param->len) <= sram_end)) { /* * In this instance, we always copy to/from user * space, so the user space argument is set to 1. */ error = ti_copy_mem(sc, mem_param->tgAddr, mem_param->len, mem_param->userAddr, 1, (cmd == ALT_READ_TG_MEM) ? 1 : 0); } else if ((mem_param->tgAddr >= TI_BEG_SCRATCH) && (mem_param->tgAddr <= scratch_end)) { error = ti_copy_scratch(sc, mem_param->tgAddr, mem_param->len, mem_param->userAddr, 1, (cmd == ALT_READ_TG_MEM) ? 1 : 0, TI_PROCESSOR_A); } else if ((mem_param->tgAddr >= TI_BEG_SCRATCH_B_DEBUG) && (mem_param->tgAddr <= TI_BEG_SCRATCH_B_DEBUG)) { if (sc->ti_hwrev == TI_HWREV_TIGON) { printf("ti%d: invalid memory range for " "Tigon I\n", sc->ti_unit); error = EINVAL; break; } error = ti_copy_scratch(sc, mem_param->tgAddr - TI_SCRATCH_DEBUG_OFF, mem_param->len, mem_param->userAddr, 1, (cmd == ALT_READ_TG_MEM) ? 1 : 0, TI_PROCESSOR_B); } else { printf("ti%d: memory address %#x len %d is out of " "supported range\n", sc->ti_unit, mem_param->tgAddr, mem_param->len); error = EINVAL; } break; } case ALT_READ_TG_REG: case ALT_WRITE_TG_REG: { struct tg_reg *regs; u_int32_t tmpval; regs = (struct tg_reg *)addr; /* * Make sure the address in question isn't out of range. */ if (regs->addr > TI_REG_MAX) { error = EINVAL; break; } if (cmd == ALT_READ_TG_REG) { bus_space_read_region_4(sc->ti_btag, sc->ti_bhandle, regs->addr, &tmpval, 1); regs->data = ntohl(tmpval); #if 0 if ((regs->addr == TI_CPU_STATE) || (regs->addr == TI_CPU_CTL_B)) { printf("ti%d: register %#x = %#x\n", sc->ti_unit, regs->addr, tmpval); } #endif } else { tmpval = htonl(regs->data); bus_space_write_region_4(sc->ti_btag, sc->ti_bhandle, regs->addr, &tmpval, 1); } break; } default: error = ENOTTY; break; } return (error); } static void ti_watchdog(ifp) struct ifnet *ifp; { struct ti_softc *sc; sc = ifp->if_softc; TI_LOCK(sc); /* * When we're debugging, the chip is often stopped for long periods * of time, and that would normally cause the watchdog timer to fire. * Since that impedes debugging, we don't want to do that. */ if (sc->ti_flags & TI_FLAG_DEBUGING) { TI_UNLOCK(sc); return; } printf("ti%d: watchdog timeout -- resetting\n", sc->ti_unit); ti_stop(sc); ti_init(sc); ifp->if_oerrors++; TI_UNLOCK(sc); } /* * Stop the adapter and free any mbufs allocated to the * RX and TX lists. */ static void ti_stop(sc) struct ti_softc *sc; { struct ifnet *ifp; struct ti_cmd_desc cmd; TI_LOCK(sc); ifp = &sc->arpcom.ac_if; /* Disable host interrupts. */ CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1); /* * Tell firmware we're shutting down. */ TI_DO_CMD(TI_CMD_HOST_STATE, TI_CMD_CODE_STACK_DOWN, 0); /* Halt and reinitialize. */ ti_chipinit(sc); ti_mem(sc, 0x2000, 0x100000 - 0x2000, NULL); ti_chipinit(sc); /* Free the RX lists. */ ti_free_rx_ring_std(sc); /* Free jumbo RX list. */ ti_free_rx_ring_jumbo(sc); /* Free mini RX list. */ ti_free_rx_ring_mini(sc); /* Free TX buffers. */ ti_free_tx_ring(sc); sc->ti_ev_prodidx.ti_idx = 0; sc->ti_return_prodidx.ti_idx = 0; sc->ti_tx_considx.ti_idx = 0; sc->ti_tx_saved_considx = TI_TXCONS_UNSET; ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE); TI_UNLOCK(sc); } /* * Stop all chip I/O so that the kernel's probe routines don't * get confused by errant DMAs when rebooting. */ static void ti_shutdown(dev) device_t dev; { struct ti_softc *sc; sc = device_get_softc(dev); TI_LOCK(sc); ti_chipinit(sc); TI_UNLOCK(sc); }