/*- * SPDX-License-Identifier: BSD-2-Clause-FreeBSD * * Copyright (c) 2017 Shunsuke Mie * Copyright (c) 2018 Leon Dang * * Function crc16 Copyright (c) 2017, Fedor Uporov * Obtained from function ext2_crc16() in sys/fs/ext2fs/ext2_csum.c * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ /* * bhyve PCIe-NVMe device emulation. * * options: * -s ,nvme,devpath,maxq=#,qsz=#,ioslots=#,sectsz=#,ser=A-Z,eui64=# * * accepted devpath: * /dev/blockdev * /path/to/image * ram=size_in_MiB * * maxq = max number of queues * qsz = max elements in each queue * ioslots = max number of concurrent io requests * sectsz = sector size (defaults to blockif sector size) * ser = serial number (20-chars max) * eui64 = IEEE Extended Unique Identifier (8 byte value) * */ /* TODO: - create async event for smart and log - intr coalesce */ #include __FBSDID("$FreeBSD$"); #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "bhyverun.h" #include "block_if.h" #include "debug.h" #include "pci_emul.h" static int nvme_debug = 0; #define DPRINTF(params) if (nvme_debug) PRINTLN params #define WPRINTF(params) PRINTLN params /* defaults; can be overridden */ #define NVME_MSIX_BAR 4 #define NVME_IOSLOTS 8 /* The NVMe spec defines bits 13:4 in BAR0 as reserved */ #define NVME_MMIO_SPACE_MIN (1 << 14) #define NVME_QUEUES 16 #define NVME_MAX_QENTRIES 2048 #define NVME_PRP2_ITEMS (PAGE_SIZE/sizeof(uint64_t)) #define NVME_MAX_BLOCKIOVS 512 /* This is a synthetic status code to indicate there is no status */ #define NVME_NO_STATUS 0xffff #define NVME_COMPLETION_VALID(c) ((c).status != NVME_NO_STATUS) /* helpers */ /* Convert a zero-based value into a one-based value */ #define ONE_BASED(zero) ((zero) + 1) /* Convert a one-based value into a zero-based value */ #define ZERO_BASED(one) ((one) - 1) /* Encode number of SQ's and CQ's for Set/Get Features */ #define NVME_FEATURE_NUM_QUEUES(sc) \ (ZERO_BASED((sc)->num_squeues) & 0xffff) | \ (ZERO_BASED((sc)->num_cqueues) & 0xffff) << 16; #define NVME_DOORBELL_OFFSET offsetof(struct nvme_registers, doorbell) enum nvme_controller_register_offsets { NVME_CR_CAP_LOW = 0x00, NVME_CR_CAP_HI = 0x04, NVME_CR_VS = 0x08, NVME_CR_INTMS = 0x0c, NVME_CR_INTMC = 0x10, NVME_CR_CC = 0x14, NVME_CR_CSTS = 0x1c, NVME_CR_NSSR = 0x20, NVME_CR_AQA = 0x24, NVME_CR_ASQ_LOW = 0x28, NVME_CR_ASQ_HI = 0x2c, NVME_CR_ACQ_LOW = 0x30, NVME_CR_ACQ_HI = 0x34, }; enum nvme_cmd_cdw11 { NVME_CMD_CDW11_PC = 0x0001, NVME_CMD_CDW11_IEN = 0x0002, NVME_CMD_CDW11_IV = 0xFFFF0000, }; enum nvme_copy_dir { NVME_COPY_TO_PRP, NVME_COPY_FROM_PRP, }; #define NVME_CQ_INTEN 0x01 #define NVME_CQ_INTCOAL 0x02 struct nvme_completion_queue { struct nvme_completion *qbase; uint32_t size; uint16_t tail; /* nvme progress */ uint16_t head; /* guest progress */ uint16_t intr_vec; uint32_t intr_en; pthread_mutex_t mtx; }; struct nvme_submission_queue { struct nvme_command *qbase; uint32_t size; uint16_t head; /* nvme progress */ uint16_t tail; /* guest progress */ uint16_t cqid; /* completion queue id */ int busy; /* queue is being processed */ int qpriority; }; enum nvme_storage_type { NVME_STOR_BLOCKIF = 0, NVME_STOR_RAM = 1, }; struct pci_nvme_blockstore { enum nvme_storage_type type; void *ctx; uint64_t size; uint32_t sectsz; uint32_t sectsz_bits; uint64_t eui64; }; struct pci_nvme_ioreq { struct pci_nvme_softc *sc; struct pci_nvme_ioreq *next; struct nvme_submission_queue *nvme_sq; uint16_t sqid; /* command information */ uint16_t opc; uint16_t cid; uint32_t nsid; uint64_t prev_gpaddr; size_t prev_size; /* * lock if all iovs consumed (big IO); * complete transaction before continuing */ pthread_mutex_t mtx; pthread_cond_t cv; struct blockif_req io_req; /* pad to fit up to 512 page descriptors from guest IO request */ struct iovec iovpadding[NVME_MAX_BLOCKIOVS-BLOCKIF_IOV_MAX]; }; struct pci_nvme_softc { struct pci_devinst *nsc_pi; pthread_mutex_t mtx; struct nvme_registers regs; struct nvme_namespace_data nsdata; struct nvme_controller_data ctrldata; struct nvme_error_information_entry err_log; struct nvme_health_information_page health_log; struct nvme_firmware_page fw_log; struct pci_nvme_blockstore nvstore; uint16_t max_qentries; /* max entries per queue */ uint32_t max_queues; /* max number of IO SQ's or CQ's */ uint32_t num_cqueues; uint32_t num_squeues; struct pci_nvme_ioreq *ioreqs; struct pci_nvme_ioreq *ioreqs_free; /* free list of ioreqs */ uint32_t pending_ios; uint32_t ioslots; sem_t iosemlock; /* * Memory mapped Submission and Completion queues * Each array includes both Admin and IO queues */ struct nvme_completion_queue *compl_queues; struct nvme_submission_queue *submit_queues; /* controller features */ uint32_t intr_coales_aggr_time; /* 0x08: uS to delay intr */ uint32_t intr_coales_aggr_thresh; /* 0x08: compl-Q entries */ uint32_t async_ev_config; /* 0x0B: async event config */ }; static void pci_nvme_io_partial(struct blockif_req *br, int err); /* Controller Configuration utils */ #define NVME_CC_GET_EN(cc) \ ((cc) >> NVME_CC_REG_EN_SHIFT & NVME_CC_REG_EN_MASK) #define NVME_CC_GET_CSS(cc) \ ((cc) >> NVME_CC_REG_CSS_SHIFT & NVME_CC_REG_CSS_MASK) #define NVME_CC_GET_SHN(cc) \ ((cc) >> NVME_CC_REG_SHN_SHIFT & NVME_CC_REG_SHN_MASK) #define NVME_CC_GET_IOSQES(cc) \ ((cc) >> NVME_CC_REG_IOSQES_SHIFT & NVME_CC_REG_IOSQES_MASK) #define NVME_CC_GET_IOCQES(cc) \ ((cc) >> NVME_CC_REG_IOCQES_SHIFT & NVME_CC_REG_IOCQES_MASK) #define NVME_CC_WRITE_MASK \ ((NVME_CC_REG_EN_MASK << NVME_CC_REG_EN_SHIFT) | \ (NVME_CC_REG_IOSQES_MASK << NVME_CC_REG_IOSQES_SHIFT) | \ (NVME_CC_REG_IOCQES_MASK << NVME_CC_REG_IOCQES_SHIFT)) #define NVME_CC_NEN_WRITE_MASK \ ((NVME_CC_REG_CSS_MASK << NVME_CC_REG_CSS_SHIFT) | \ (NVME_CC_REG_MPS_MASK << NVME_CC_REG_MPS_SHIFT) | \ (NVME_CC_REG_AMS_MASK << NVME_CC_REG_AMS_SHIFT)) /* Controller Status utils */ #define NVME_CSTS_GET_RDY(sts) \ ((sts) >> NVME_CSTS_REG_RDY_SHIFT & NVME_CSTS_REG_RDY_MASK) #define NVME_CSTS_RDY (1 << NVME_CSTS_REG_RDY_SHIFT) /* Completion Queue status word utils */ #define NVME_STATUS_P (1 << NVME_STATUS_P_SHIFT) #define NVME_STATUS_MASK \ ((NVME_STATUS_SCT_MASK << NVME_STATUS_SCT_SHIFT) |\ (NVME_STATUS_SC_MASK << NVME_STATUS_SC_SHIFT)) static __inline void cpywithpad(char *dst, size_t dst_size, const char *src, char pad) { size_t len; len = strnlen(src, dst_size); memset(dst, pad, dst_size); memcpy(dst, src, len); } static __inline void pci_nvme_status_tc(uint16_t *status, uint16_t type, uint16_t code) { *status &= ~NVME_STATUS_MASK; *status |= (type & NVME_STATUS_SCT_MASK) << NVME_STATUS_SCT_SHIFT | (code & NVME_STATUS_SC_MASK) << NVME_STATUS_SC_SHIFT; } static __inline void pci_nvme_status_genc(uint16_t *status, uint16_t code) { pci_nvme_status_tc(status, NVME_SCT_GENERIC, code); } static __inline void pci_nvme_toggle_phase(uint16_t *status, int prev) { if (prev) *status &= ~NVME_STATUS_P; else *status |= NVME_STATUS_P; } static void pci_nvme_init_ctrldata(struct pci_nvme_softc *sc) { struct nvme_controller_data *cd = &sc->ctrldata; cd->vid = 0xFB5D; cd->ssvid = 0x0000; cpywithpad((char *)cd->mn, sizeof(cd->mn), "bhyve-NVMe", ' '); cpywithpad((char *)cd->fr, sizeof(cd->fr), "1.0", ' '); /* Num of submission commands that we can handle at a time (2^rab) */ cd->rab = 4; /* FreeBSD OUI */ cd->ieee[0] = 0x58; cd->ieee[1] = 0x9c; cd->ieee[2] = 0xfc; cd->mic = 0; cd->mdts = 9; /* max data transfer size (2^mdts * CAP.MPSMIN) */ cd->ver = 0x00010300; cd->oacs = 1 << NVME_CTRLR_DATA_OACS_FORMAT_SHIFT; cd->acl = 2; cd->aerl = 4; cd->lpa = 0; /* TODO: support some simple things like SMART */ cd->elpe = 0; /* max error log page entries */ cd->npss = 1; /* number of power states support */ /* Warning Composite Temperature Threshold */ cd->wctemp = 0x0157; cd->sqes = (6 << NVME_CTRLR_DATA_SQES_MAX_SHIFT) | (6 << NVME_CTRLR_DATA_SQES_MIN_SHIFT); cd->cqes = (4 << NVME_CTRLR_DATA_CQES_MAX_SHIFT) | (4 << NVME_CTRLR_DATA_CQES_MIN_SHIFT); cd->nn = 1; /* number of namespaces */ cd->fna = 0x03; cd->power_state[0].mp = 10; } /* * Calculate the CRC-16 of the given buffer * See copyright attribution at top of file */ static uint16_t crc16(uint16_t crc, const void *buffer, unsigned int len) { const unsigned char *cp = buffer; /* CRC table for the CRC-16. The poly is 0x8005 (x16 + x15 + x2 + 1). */ static uint16_t const crc16_table[256] = { 0x0000, 0xC0C1, 0xC181, 0x0140, 0xC301, 0x03C0, 0x0280, 0xC241, 0xC601, 0x06C0, 0x0780, 0xC741, 0x0500, 0xC5C1, 0xC481, 0x0440, 0xCC01, 0x0CC0, 0x0D80, 0xCD41, 0x0F00, 0xCFC1, 0xCE81, 0x0E40, 0x0A00, 0xCAC1, 0xCB81, 0x0B40, 0xC901, 0x09C0, 0x0880, 0xC841, 0xD801, 0x18C0, 0x1980, 0xD941, 0x1B00, 0xDBC1, 0xDA81, 0x1A40, 0x1E00, 0xDEC1, 0xDF81, 0x1F40, 0xDD01, 0x1DC0, 0x1C80, 0xDC41, 0x1400, 0xD4C1, 0xD581, 0x1540, 0xD701, 0x17C0, 0x1680, 0xD641, 0xD201, 0x12C0, 0x1380, 0xD341, 0x1100, 0xD1C1, 0xD081, 0x1040, 0xF001, 0x30C0, 0x3180, 0xF141, 0x3300, 0xF3C1, 0xF281, 0x3240, 0x3600, 0xF6C1, 0xF781, 0x3740, 0xF501, 0x35C0, 0x3480, 0xF441, 0x3C00, 0xFCC1, 0xFD81, 0x3D40, 0xFF01, 0x3FC0, 0x3E80, 0xFE41, 0xFA01, 0x3AC0, 0x3B80, 0xFB41, 0x3900, 0xF9C1, 0xF881, 0x3840, 0x2800, 0xE8C1, 0xE981, 0x2940, 0xEB01, 0x2BC0, 0x2A80, 0xEA41, 0xEE01, 0x2EC0, 0x2F80, 0xEF41, 0x2D00, 0xEDC1, 0xEC81, 0x2C40, 0xE401, 0x24C0, 0x2580, 0xE541, 0x2700, 0xE7C1, 0xE681, 0x2640, 0x2200, 0xE2C1, 0xE381, 0x2340, 0xE101, 0x21C0, 0x2080, 0xE041, 0xA001, 0x60C0, 0x6180, 0xA141, 0x6300, 0xA3C1, 0xA281, 0x6240, 0x6600, 0xA6C1, 0xA781, 0x6740, 0xA501, 0x65C0, 0x6480, 0xA441, 0x6C00, 0xACC1, 0xAD81, 0x6D40, 0xAF01, 0x6FC0, 0x6E80, 0xAE41, 0xAA01, 0x6AC0, 0x6B80, 0xAB41, 0x6900, 0xA9C1, 0xA881, 0x6840, 0x7800, 0xB8C1, 0xB981, 0x7940, 0xBB01, 0x7BC0, 0x7A80, 0xBA41, 0xBE01, 0x7EC0, 0x7F80, 0xBF41, 0x7D00, 0xBDC1, 0xBC81, 0x7C40, 0xB401, 0x74C0, 0x7580, 0xB541, 0x7700, 0xB7C1, 0xB681, 0x7640, 0x7200, 0xB2C1, 0xB381, 0x7340, 0xB101, 0x71C0, 0x7080, 0xB041, 0x5000, 0x90C1, 0x9181, 0x5140, 0x9301, 0x53C0, 0x5280, 0x9241, 0x9601, 0x56C0, 0x5780, 0x9741, 0x5500, 0x95C1, 0x9481, 0x5440, 0x9C01, 0x5CC0, 0x5D80, 0x9D41, 0x5F00, 0x9FC1, 0x9E81, 0x5E40, 0x5A00, 0x9AC1, 0x9B81, 0x5B40, 0x9901, 0x59C0, 0x5880, 0x9841, 0x8801, 0x48C0, 0x4980, 0x8941, 0x4B00, 0x8BC1, 0x8A81, 0x4A40, 0x4E00, 0x8EC1, 0x8F81, 0x4F40, 0x8D01, 0x4DC0, 0x4C80, 0x8C41, 0x4400, 0x84C1, 0x8581, 0x4540, 0x8701, 0x47C0, 0x4680, 0x8641, 0x8201, 0x42C0, 0x4380, 0x8341, 0x4100, 0x81C1, 0x8081, 0x4040 }; while (len--) crc = (((crc >> 8) & 0xffU) ^ crc16_table[(crc ^ *cp++) & 0xffU]) & 0x0000ffffU; return crc; } static void pci_nvme_init_nsdata(struct pci_nvme_softc *sc, struct nvme_namespace_data *nd, uint32_t nsid, uint64_t eui64) { nd->nsze = sc->nvstore.size / sc->nvstore.sectsz; nd->ncap = nd->nsze; nd->nuse = nd->nsze; /* Get LBA and backstore information from backing store */ nd->nlbaf = 0; /* NLBAF is a 0's based value (i.e. 1 LBA Format) */ nd->flbas = 0; /* Create an EUI-64 if user did not provide one */ if (eui64 == 0) { char *data = NULL; asprintf(&data, "%s%u%u%u", vmname, sc->nsc_pi->pi_bus, sc->nsc_pi->pi_slot, sc->nsc_pi->pi_func); if (data != NULL) { eui64 = OUI_FREEBSD_NVME_LOW | crc16(0, data, strlen(data)); free(data); } eui64 = (eui64 << 16) | (nsid & 0xffff); } be64enc(nd->eui64, eui64); /* LBA data-sz = 2^lbads */ nd->lbaf[0] = sc->nvstore.sectsz_bits << NVME_NS_DATA_LBAF_LBADS_SHIFT; } static void pci_nvme_init_logpages(struct pci_nvme_softc *sc) { memset(&sc->err_log, 0, sizeof(sc->err_log)); memset(&sc->health_log, 0, sizeof(sc->health_log)); memset(&sc->fw_log, 0, sizeof(sc->fw_log)); } static void pci_nvme_reset_locked(struct pci_nvme_softc *sc) { DPRINTF(("%s", __func__)); sc->regs.cap_lo = (ZERO_BASED(sc->max_qentries) & NVME_CAP_LO_REG_MQES_MASK) | (1 << NVME_CAP_LO_REG_CQR_SHIFT) | (60 << NVME_CAP_LO_REG_TO_SHIFT); sc->regs.cap_hi = 1 << NVME_CAP_HI_REG_CSS_NVM_SHIFT; sc->regs.vs = 0x00010300; /* NVMe v1.3 */ sc->regs.cc = 0; sc->regs.csts = 0; sc->num_cqueues = sc->num_squeues = sc->max_queues; if (sc->submit_queues != NULL) { for (int i = 0; i < sc->num_squeues + 1; i++) { /* * The Admin Submission Queue is at index 0. * It must not be changed at reset otherwise the * emulation will be out of sync with the guest. */ if (i != 0) { sc->submit_queues[i].qbase = NULL; sc->submit_queues[i].size = 0; sc->submit_queues[i].cqid = 0; } sc->submit_queues[i].tail = 0; sc->submit_queues[i].head = 0; sc->submit_queues[i].busy = 0; } } else sc->submit_queues = calloc(sc->num_squeues + 1, sizeof(struct nvme_submission_queue)); if (sc->compl_queues != NULL) { for (int i = 0; i < sc->num_cqueues + 1; i++) { /* See Admin Submission Queue note above */ if (i != 0) { sc->compl_queues[i].qbase = NULL; sc->compl_queues[i].size = 0; } sc->compl_queues[i].tail = 0; sc->compl_queues[i].head = 0; } } else { sc->compl_queues = calloc(sc->num_cqueues + 1, sizeof(struct nvme_completion_queue)); for (int i = 0; i < sc->num_cqueues + 1; i++) pthread_mutex_init(&sc->compl_queues[i].mtx, NULL); } } static void pci_nvme_reset(struct pci_nvme_softc *sc) { pthread_mutex_lock(&sc->mtx); pci_nvme_reset_locked(sc); pthread_mutex_unlock(&sc->mtx); } static void pci_nvme_init_controller(struct vmctx *ctx, struct pci_nvme_softc *sc) { uint16_t acqs, asqs; DPRINTF(("%s", __func__)); asqs = (sc->regs.aqa & NVME_AQA_REG_ASQS_MASK) + 1; sc->submit_queues[0].size = asqs; sc->submit_queues[0].qbase = vm_map_gpa(ctx, sc->regs.asq, sizeof(struct nvme_command) * asqs); DPRINTF(("%s mapping Admin-SQ guest 0x%lx, host: %p", __func__, sc->regs.asq, sc->submit_queues[0].qbase)); acqs = ((sc->regs.aqa >> NVME_AQA_REG_ACQS_SHIFT) & NVME_AQA_REG_ACQS_MASK) + 1; sc->compl_queues[0].size = acqs; sc->compl_queues[0].qbase = vm_map_gpa(ctx, sc->regs.acq, sizeof(struct nvme_completion) * acqs); DPRINTF(("%s mapping Admin-CQ guest 0x%lx, host: %p", __func__, sc->regs.acq, sc->compl_queues[0].qbase)); } static int nvme_prp_memcpy(struct vmctx *ctx, uint64_t prp1, uint64_t prp2, uint8_t *b, size_t len, enum nvme_copy_dir dir) { uint8_t *p; size_t bytes; if (len > (8 * 1024)) { return (-1); } /* Copy from the start of prp1 to the end of the physical page */ bytes = PAGE_SIZE - (prp1 & PAGE_MASK); bytes = MIN(bytes, len); p = vm_map_gpa(ctx, prp1, bytes); if (p == NULL) { return (-1); } if (dir == NVME_COPY_TO_PRP) memcpy(p, b, bytes); else memcpy(b, p, bytes); b += bytes; len -= bytes; if (len == 0) { return (0); } len = MIN(len, PAGE_SIZE); p = vm_map_gpa(ctx, prp2, len); if (p == NULL) { return (-1); } if (dir == NVME_COPY_TO_PRP) memcpy(p, b, len); else memcpy(b, p, len); return (0); } static int nvme_opc_delete_io_sq(struct pci_nvme_softc* sc, struct nvme_command* command, struct nvme_completion* compl) { uint16_t qid = command->cdw10 & 0xffff; DPRINTF(("%s DELETE_IO_SQ %u", __func__, qid)); if (qid == 0 || qid > sc->num_squeues) { WPRINTF(("%s NOT PERMITTED queue id %u / num_squeues %u", __func__, qid, sc->num_squeues)); pci_nvme_status_tc(&compl->status, NVME_SCT_COMMAND_SPECIFIC, NVME_SC_INVALID_QUEUE_IDENTIFIER); return (1); } sc->submit_queues[qid].qbase = NULL; pci_nvme_status_genc(&compl->status, NVME_SC_SUCCESS); return (1); } static int nvme_opc_create_io_sq(struct pci_nvme_softc* sc, struct nvme_command* command, struct nvme_completion* compl) { if (command->cdw11 & NVME_CMD_CDW11_PC) { uint16_t qid = command->cdw10 & 0xffff; struct nvme_submission_queue *nsq; if ((qid == 0) || (qid > sc->num_squeues)) { WPRINTF(("%s queue index %u > num_squeues %u", __func__, qid, sc->num_squeues)); pci_nvme_status_tc(&compl->status, NVME_SCT_COMMAND_SPECIFIC, NVME_SC_INVALID_QUEUE_IDENTIFIER); return (1); } nsq = &sc->submit_queues[qid]; nsq->size = ONE_BASED((command->cdw10 >> 16) & 0xffff); nsq->qbase = vm_map_gpa(sc->nsc_pi->pi_vmctx, command->prp1, sizeof(struct nvme_command) * (size_t)nsq->size); nsq->cqid = (command->cdw11 >> 16) & 0xffff; nsq->qpriority = (command->cdw11 >> 1) & 0x03; DPRINTF(("%s sq %u size %u gaddr %p cqid %u", __func__, qid, nsq->size, nsq->qbase, nsq->cqid)); pci_nvme_status_genc(&compl->status, NVME_SC_SUCCESS); DPRINTF(("%s completed creating IOSQ qid %u", __func__, qid)); } else { /* * Guest sent non-cont submission queue request. * This setting is unsupported by this emulation. */ WPRINTF(("%s unsupported non-contig (list-based) " "create i/o submission queue", __func__)); pci_nvme_status_genc(&compl->status, NVME_SC_INVALID_FIELD); } return (1); } static int nvme_opc_delete_io_cq(struct pci_nvme_softc* sc, struct nvme_command* command, struct nvme_completion* compl) { uint16_t qid = command->cdw10 & 0xffff; DPRINTF(("%s DELETE_IO_CQ %u", __func__, qid)); if (qid == 0 || qid > sc->num_cqueues) { WPRINTF(("%s queue index %u / num_cqueues %u", __func__, qid, sc->num_cqueues)); pci_nvme_status_tc(&compl->status, NVME_SCT_COMMAND_SPECIFIC, NVME_SC_INVALID_QUEUE_IDENTIFIER); return (1); } sc->compl_queues[qid].qbase = NULL; pci_nvme_status_genc(&compl->status, NVME_SC_SUCCESS); return (1); } static int nvme_opc_create_io_cq(struct pci_nvme_softc* sc, struct nvme_command* command, struct nvme_completion* compl) { if (command->cdw11 & NVME_CMD_CDW11_PC) { uint16_t qid = command->cdw10 & 0xffff; struct nvme_completion_queue *ncq; if ((qid == 0) || (qid > sc->num_cqueues)) { WPRINTF(("%s queue index %u > num_cqueues %u", __func__, qid, sc->num_cqueues)); pci_nvme_status_tc(&compl->status, NVME_SCT_COMMAND_SPECIFIC, NVME_SC_INVALID_QUEUE_IDENTIFIER); return (1); } ncq = &sc->compl_queues[qid]; ncq->intr_en = (command->cdw11 & NVME_CMD_CDW11_IEN) >> 1; ncq->intr_vec = (command->cdw11 >> 16) & 0xffff; ncq->size = ONE_BASED((command->cdw10 >> 16) & 0xffff); ncq->qbase = vm_map_gpa(sc->nsc_pi->pi_vmctx, command->prp1, sizeof(struct nvme_command) * (size_t)ncq->size); pci_nvme_status_genc(&compl->status, NVME_SC_SUCCESS); } else { /* * Non-contig completion queue unsupported. */ WPRINTF(("%s unsupported non-contig (list-based) " "create i/o completion queue", __func__)); /* 0x12 = Invalid Use of Controller Memory Buffer */ pci_nvme_status_genc(&compl->status, 0x12); } return (1); } static int nvme_opc_get_log_page(struct pci_nvme_softc* sc, struct nvme_command* command, struct nvme_completion* compl) { uint32_t logsize = (1 + ((command->cdw10 >> 16) & 0xFFF)) * 2; uint8_t logpage = command->cdw10 & 0xFF; DPRINTF(("%s log page %u len %u", __func__, logpage, logsize)); pci_nvme_status_genc(&compl->status, NVME_SC_SUCCESS); switch (logpage) { case NVME_LOG_ERROR: nvme_prp_memcpy(sc->nsc_pi->pi_vmctx, command->prp1, command->prp2, (uint8_t *)&sc->err_log, logsize, NVME_COPY_TO_PRP); break; case NVME_LOG_HEALTH_INFORMATION: /* TODO: present some smart info */ nvme_prp_memcpy(sc->nsc_pi->pi_vmctx, command->prp1, command->prp2, (uint8_t *)&sc->health_log, logsize, NVME_COPY_TO_PRP); break; case NVME_LOG_FIRMWARE_SLOT: nvme_prp_memcpy(sc->nsc_pi->pi_vmctx, command->prp1, command->prp2, (uint8_t *)&sc->fw_log, logsize, NVME_COPY_TO_PRP); break; default: WPRINTF(("%s get log page %x command not supported", __func__, logpage)); pci_nvme_status_tc(&compl->status, NVME_SCT_COMMAND_SPECIFIC, NVME_SC_INVALID_LOG_PAGE); } return (1); } static int nvme_opc_identify(struct pci_nvme_softc* sc, struct nvme_command* command, struct nvme_completion* compl) { void *dest; DPRINTF(("%s identify 0x%x nsid 0x%x", __func__, command->cdw10 & 0xFF, command->nsid)); switch (command->cdw10 & 0xFF) { case 0x00: /* return Identify Namespace data structure */ nvme_prp_memcpy(sc->nsc_pi->pi_vmctx, command->prp1, command->prp2, (uint8_t *)&sc->nsdata, sizeof(sc->nsdata), NVME_COPY_TO_PRP); break; case 0x01: /* return Identify Controller data structure */ nvme_prp_memcpy(sc->nsc_pi->pi_vmctx, command->prp1, command->prp2, (uint8_t *)&sc->ctrldata, sizeof(sc->ctrldata), NVME_COPY_TO_PRP); break; case 0x02: /* list of 1024 active NSIDs > CDW1.NSID */ dest = vm_map_gpa(sc->nsc_pi->pi_vmctx, command->prp1, sizeof(uint32_t) * 1024); ((uint32_t *)dest)[0] = 1; ((uint32_t *)dest)[1] = 0; break; case 0x11: pci_nvme_status_genc(&compl->status, NVME_SC_INVALID_NAMESPACE_OR_FORMAT); return (1); case 0x03: /* list of NSID structures in CDW1.NSID, 4096 bytes */ case 0x10: case 0x12: case 0x13: case 0x14: case 0x15: default: DPRINTF(("%s unsupported identify command requested 0x%x", __func__, command->cdw10 & 0xFF)); pci_nvme_status_genc(&compl->status, NVME_SC_INVALID_FIELD); return (1); } pci_nvme_status_genc(&compl->status, NVME_SC_SUCCESS); return (1); } static int nvme_set_feature_queues(struct pci_nvme_softc* sc, struct nvme_command* command, struct nvme_completion* compl) { uint16_t nqr; /* Number of Queues Requested */ nqr = command->cdw11 & 0xFFFF; if (nqr == 0xffff) { WPRINTF(("%s: Illegal NSQR value %#x", __func__, nqr)); pci_nvme_status_genc(&compl->status, NVME_SC_INVALID_FIELD); return (-1); } sc->num_squeues = ONE_BASED(nqr); if (sc->num_squeues > sc->max_queues) { DPRINTF(("NSQR=%u is greater than max %u", sc->num_squeues, sc->max_queues)); sc->num_squeues = sc->max_queues; } nqr = (command->cdw11 >> 16) & 0xFFFF; if (nqr == 0xffff) { WPRINTF(("%s: Illegal NCQR value %#x", __func__, nqr)); pci_nvme_status_genc(&compl->status, NVME_SC_INVALID_FIELD); return (-1); } sc->num_cqueues = ONE_BASED(nqr); if (sc->num_cqueues > sc->max_queues) { DPRINTF(("NCQR=%u is greater than max %u", sc->num_cqueues, sc->max_queues)); sc->num_cqueues = sc->max_queues; } compl->cdw0 = NVME_FEATURE_NUM_QUEUES(sc); return (0); } static int nvme_opc_set_features(struct pci_nvme_softc* sc, struct nvme_command* command, struct nvme_completion* compl) { int feature = command->cdw10 & 0xFF; uint32_t iv; DPRINTF(("%s feature 0x%x", __func__, feature)); compl->cdw0 = 0; switch (feature) { case NVME_FEAT_ARBITRATION: DPRINTF((" arbitration 0x%x", command->cdw11)); break; case NVME_FEAT_POWER_MANAGEMENT: DPRINTF((" power management 0x%x", command->cdw11)); break; case NVME_FEAT_LBA_RANGE_TYPE: DPRINTF((" lba range 0x%x", command->cdw11)); break; case NVME_FEAT_TEMPERATURE_THRESHOLD: DPRINTF((" temperature threshold 0x%x", command->cdw11)); break; case NVME_FEAT_ERROR_RECOVERY: DPRINTF((" error recovery 0x%x", command->cdw11)); break; case NVME_FEAT_VOLATILE_WRITE_CACHE: DPRINTF((" volatile write cache 0x%x", command->cdw11)); break; case NVME_FEAT_NUMBER_OF_QUEUES: nvme_set_feature_queues(sc, command, compl); break; case NVME_FEAT_INTERRUPT_COALESCING: DPRINTF((" interrupt coalescing 0x%x", command->cdw11)); /* in uS */ sc->intr_coales_aggr_time = ((command->cdw11 >> 8) & 0xFF)*100; sc->intr_coales_aggr_thresh = command->cdw11 & 0xFF; break; case NVME_FEAT_INTERRUPT_VECTOR_CONFIGURATION: iv = command->cdw11 & 0xFFFF; DPRINTF((" interrupt vector configuration 0x%x", command->cdw11)); for (uint32_t i = 0; i < sc->num_cqueues + 1; i++) { if (sc->compl_queues[i].intr_vec == iv) { if (command->cdw11 & (1 << 16)) sc->compl_queues[i].intr_en |= NVME_CQ_INTCOAL; else sc->compl_queues[i].intr_en &= ~NVME_CQ_INTCOAL; } } break; case NVME_FEAT_WRITE_ATOMICITY: DPRINTF((" write atomicity 0x%x", command->cdw11)); break; case NVME_FEAT_ASYNC_EVENT_CONFIGURATION: DPRINTF((" async event configuration 0x%x", command->cdw11)); sc->async_ev_config = command->cdw11; break; case NVME_FEAT_SOFTWARE_PROGRESS_MARKER: DPRINTF((" software progress marker 0x%x", command->cdw11)); break; case 0x0C: DPRINTF((" autonomous power state transition 0x%x", command->cdw11)); break; default: WPRINTF(("%s invalid feature", __func__)); pci_nvme_status_genc(&compl->status, NVME_SC_INVALID_FIELD); return (1); } pci_nvme_status_genc(&compl->status, NVME_SC_SUCCESS); return (1); } static int nvme_opc_get_features(struct pci_nvme_softc* sc, struct nvme_command* command, struct nvme_completion* compl) { int feature = command->cdw10 & 0xFF; DPRINTF(("%s feature 0x%x", __func__, feature)); compl->cdw0 = 0; switch (feature) { case NVME_FEAT_ARBITRATION: DPRINTF((" arbitration")); break; case NVME_FEAT_POWER_MANAGEMENT: DPRINTF((" power management")); break; case NVME_FEAT_LBA_RANGE_TYPE: DPRINTF((" lba range")); break; case NVME_FEAT_TEMPERATURE_THRESHOLD: DPRINTF((" temperature threshold")); switch ((command->cdw11 >> 20) & 0x3) { case 0: /* Over temp threshold */ compl->cdw0 = 0xFFFF; break; case 1: /* Under temp threshold */ compl->cdw0 = 0; break; default: WPRINTF((" invalid threshold type select")); pci_nvme_status_genc(&compl->status, NVME_SC_INVALID_FIELD); return (1); } break; case NVME_FEAT_ERROR_RECOVERY: DPRINTF((" error recovery")); break; case NVME_FEAT_VOLATILE_WRITE_CACHE: DPRINTF((" volatile write cache")); break; case NVME_FEAT_NUMBER_OF_QUEUES: compl->cdw0 = NVME_FEATURE_NUM_QUEUES(sc); DPRINTF((" number of queues (submit %u, completion %u)", compl->cdw0 & 0xFFFF, (compl->cdw0 >> 16) & 0xFFFF)); break; case NVME_FEAT_INTERRUPT_COALESCING: DPRINTF((" interrupt coalescing")); break; case NVME_FEAT_INTERRUPT_VECTOR_CONFIGURATION: DPRINTF((" interrupt vector configuration")); break; case NVME_FEAT_WRITE_ATOMICITY: DPRINTF((" write atomicity")); break; case NVME_FEAT_ASYNC_EVENT_CONFIGURATION: DPRINTF((" async event configuration")); sc->async_ev_config = command->cdw11; break; case NVME_FEAT_SOFTWARE_PROGRESS_MARKER: DPRINTF((" software progress marker")); break; case 0x0C: DPRINTF((" autonomous power state transition")); break; default: WPRINTF(("%s invalid feature 0x%x", __func__, feature)); pci_nvme_status_genc(&compl->status, NVME_SC_INVALID_FIELD); return (1); } pci_nvme_status_genc(&compl->status, NVME_SC_SUCCESS); return (1); } static int nvme_opc_abort(struct pci_nvme_softc* sc, struct nvme_command* command, struct nvme_completion* compl) { DPRINTF(("%s submission queue %u, command ID 0x%x", __func__, command->cdw10 & 0xFFFF, (command->cdw10 >> 16) & 0xFFFF)); /* TODO: search for the command ID and abort it */ compl->cdw0 = 1; pci_nvme_status_genc(&compl->status, NVME_SC_SUCCESS); return (1); } static int nvme_opc_async_event_req(struct pci_nvme_softc* sc, struct nvme_command* command, struct nvme_completion* compl) { DPRINTF(("%s async event request 0x%x", __func__, command->cdw11)); /* * TODO: raise events when they happen based on the Set Features cmd. * These events happen async, so only set completion successful if * there is an event reflective of the request to get event. */ pci_nvme_status_tc(&compl->status, NVME_SCT_COMMAND_SPECIFIC, NVME_SC_ASYNC_EVENT_REQUEST_LIMIT_EXCEEDED); return (0); } static void pci_nvme_handle_admin_cmd(struct pci_nvme_softc* sc, uint64_t value) { struct nvme_completion compl; struct nvme_command *cmd; struct nvme_submission_queue *sq; struct nvme_completion_queue *cq; int do_intr = 0; uint16_t sqhead; DPRINTF(("%s index %u", __func__, (uint32_t)value)); sq = &sc->submit_queues[0]; sqhead = atomic_load_acq_short(&sq->head); if (atomic_testandset_int(&sq->busy, 1)) { DPRINTF(("%s SQ busy, head %u, tail %u", __func__, sqhead, sq->tail)); return; } DPRINTF(("sqhead %u, tail %u", sqhead, sq->tail)); while (sqhead != atomic_load_acq_short(&sq->tail)) { cmd = &(sq->qbase)[sqhead]; compl.cdw0 = 0; compl.status = 0; switch (cmd->opc) { case NVME_OPC_DELETE_IO_SQ: DPRINTF(("%s command DELETE_IO_SQ", __func__)); do_intr |= nvme_opc_delete_io_sq(sc, cmd, &compl); break; case NVME_OPC_CREATE_IO_SQ: DPRINTF(("%s command CREATE_IO_SQ", __func__)); do_intr |= nvme_opc_create_io_sq(sc, cmd, &compl); break; case NVME_OPC_DELETE_IO_CQ: DPRINTF(("%s command DELETE_IO_CQ", __func__)); do_intr |= nvme_opc_delete_io_cq(sc, cmd, &compl); break; case NVME_OPC_CREATE_IO_CQ: DPRINTF(("%s command CREATE_IO_CQ", __func__)); do_intr |= nvme_opc_create_io_cq(sc, cmd, &compl); break; case NVME_OPC_GET_LOG_PAGE: DPRINTF(("%s command GET_LOG_PAGE", __func__)); do_intr |= nvme_opc_get_log_page(sc, cmd, &compl); break; case NVME_OPC_IDENTIFY: DPRINTF(("%s command IDENTIFY", __func__)); do_intr |= nvme_opc_identify(sc, cmd, &compl); break; case NVME_OPC_ABORT: DPRINTF(("%s command ABORT", __func__)); do_intr |= nvme_opc_abort(sc, cmd, &compl); break; case NVME_OPC_SET_FEATURES: DPRINTF(("%s command SET_FEATURES", __func__)); do_intr |= nvme_opc_set_features(sc, cmd, &compl); break; case NVME_OPC_GET_FEATURES: DPRINTF(("%s command GET_FEATURES", __func__)); do_intr |= nvme_opc_get_features(sc, cmd, &compl); break; case NVME_OPC_ASYNC_EVENT_REQUEST: DPRINTF(("%s command ASYNC_EVENT_REQ", __func__)); /* XXX dont care, unhandled for now do_intr |= nvme_opc_async_event_req(sc, cmd, &compl); */ compl.status = NVME_NO_STATUS; break; default: WPRINTF(("0x%x command is not implemented", cmd->opc)); pci_nvme_status_genc(&compl.status, NVME_SC_INVALID_OPCODE); do_intr |= 1; } if (NVME_COMPLETION_VALID(compl)) { struct nvme_completion *cp; int phase; cq = &sc->compl_queues[0]; cp = &(cq->qbase)[cq->tail]; cp->cdw0 = compl.cdw0; cp->sqid = 0; cp->sqhd = sqhead; cp->cid = cmd->cid; phase = NVME_STATUS_GET_P(cp->status); cp->status = compl.status; pci_nvme_toggle_phase(&cp->status, phase); cq->tail = (cq->tail + 1) % cq->size; } sqhead = (sqhead + 1) % sq->size; } DPRINTF(("setting sqhead %u", sqhead)); atomic_store_short(&sq->head, sqhead); atomic_store_int(&sq->busy, 0); if (do_intr) pci_generate_msix(sc->nsc_pi, 0); } static int pci_nvme_append_iov_req(struct pci_nvme_softc *sc, struct pci_nvme_ioreq *req, uint64_t gpaddr, size_t size, int do_write, uint64_t lba) { int iovidx; if (req != NULL) { /* concatenate contig block-iovs to minimize number of iovs */ if ((req->prev_gpaddr + req->prev_size) == gpaddr) { iovidx = req->io_req.br_iovcnt - 1; req->io_req.br_iov[iovidx].iov_base = paddr_guest2host(req->sc->nsc_pi->pi_vmctx, req->prev_gpaddr, size); req->prev_size += size; req->io_req.br_resid += size; req->io_req.br_iov[iovidx].iov_len = req->prev_size; } else { pthread_mutex_lock(&req->mtx); iovidx = req->io_req.br_iovcnt; if (iovidx == NVME_MAX_BLOCKIOVS) { int err = 0; DPRINTF(("large I/O, doing partial req")); iovidx = 0; req->io_req.br_iovcnt = 0; req->io_req.br_callback = pci_nvme_io_partial; if (!do_write) err = blockif_read(sc->nvstore.ctx, &req->io_req); else err = blockif_write(sc->nvstore.ctx, &req->io_req); /* wait until req completes before cont */ if (err == 0) pthread_cond_wait(&req->cv, &req->mtx); } if (iovidx == 0) { req->io_req.br_offset = lba; req->io_req.br_resid = 0; req->io_req.br_param = req; } req->io_req.br_iov[iovidx].iov_base = paddr_guest2host(req->sc->nsc_pi->pi_vmctx, gpaddr, size); req->io_req.br_iov[iovidx].iov_len = size; req->prev_gpaddr = gpaddr; req->prev_size = size; req->io_req.br_resid += size; req->io_req.br_iovcnt++; pthread_mutex_unlock(&req->mtx); } } else { /* RAM buffer: read/write directly */ void *p = sc->nvstore.ctx; void *gptr; if ((lba + size) > sc->nvstore.size) { WPRINTF(("%s write would overflow RAM", __func__)); return (-1); } p = (void *)((uintptr_t)p + (uintptr_t)lba); gptr = paddr_guest2host(sc->nsc_pi->pi_vmctx, gpaddr, size); if (do_write) memcpy(p, gptr, size); else memcpy(gptr, p, size); } return (0); } static void pci_nvme_set_completion(struct pci_nvme_softc *sc, struct nvme_submission_queue *sq, int sqid, uint16_t cid, uint32_t cdw0, uint16_t status, int ignore_busy) { struct nvme_completion_queue *cq = &sc->compl_queues[sq->cqid]; struct nvme_completion *compl; int do_intr = 0; int phase; DPRINTF(("%s sqid %d cqid %u cid %u status: 0x%x 0x%x", __func__, sqid, sq->cqid, cid, NVME_STATUS_GET_SCT(status), NVME_STATUS_GET_SC(status))); pthread_mutex_lock(&cq->mtx); assert(cq->qbase != NULL); compl = &cq->qbase[cq->tail]; compl->sqhd = atomic_load_acq_short(&sq->head); compl->sqid = sqid; compl->cid = cid; // toggle phase phase = NVME_STATUS_GET_P(compl->status); compl->status = status; pci_nvme_toggle_phase(&compl->status, phase); cq->tail = (cq->tail + 1) % cq->size; if (cq->intr_en & NVME_CQ_INTEN) do_intr = 1; pthread_mutex_unlock(&cq->mtx); if (ignore_busy || !atomic_load_acq_int(&sq->busy)) if (do_intr) pci_generate_msix(sc->nsc_pi, cq->intr_vec); } static void pci_nvme_release_ioreq(struct pci_nvme_softc *sc, struct pci_nvme_ioreq *req) { req->sc = NULL; req->nvme_sq = NULL; req->sqid = 0; pthread_mutex_lock(&sc->mtx); req->next = sc->ioreqs_free; sc->ioreqs_free = req; sc->pending_ios--; /* when no more IO pending, can set to ready if device reset/enabled */ if (sc->pending_ios == 0 && NVME_CC_GET_EN(sc->regs.cc) && !(NVME_CSTS_GET_RDY(sc->regs.csts))) sc->regs.csts |= NVME_CSTS_RDY; pthread_mutex_unlock(&sc->mtx); sem_post(&sc->iosemlock); } static struct pci_nvme_ioreq * pci_nvme_get_ioreq(struct pci_nvme_softc *sc) { struct pci_nvme_ioreq *req = NULL;; sem_wait(&sc->iosemlock); pthread_mutex_lock(&sc->mtx); req = sc->ioreqs_free; assert(req != NULL); sc->ioreqs_free = req->next; req->next = NULL; req->sc = sc; sc->pending_ios++; pthread_mutex_unlock(&sc->mtx); req->io_req.br_iovcnt = 0; req->io_req.br_offset = 0; req->io_req.br_resid = 0; req->io_req.br_param = req; req->prev_gpaddr = 0; req->prev_size = 0; return req; } static void pci_nvme_io_done(struct blockif_req *br, int err) { struct pci_nvme_ioreq *req = br->br_param; struct nvme_submission_queue *sq = req->nvme_sq; uint16_t code, status; DPRINTF(("%s error %d %s", __func__, err, strerror(err))); /* TODO return correct error */ code = err ? NVME_SC_DATA_TRANSFER_ERROR : NVME_SC_SUCCESS; pci_nvme_status_genc(&status, code); pci_nvme_set_completion(req->sc, sq, req->sqid, req->cid, 0, status, 0); pci_nvme_release_ioreq(req->sc, req); } static void pci_nvme_io_partial(struct blockif_req *br, int err) { struct pci_nvme_ioreq *req = br->br_param; DPRINTF(("%s error %d %s", __func__, err, strerror(err))); pthread_cond_signal(&req->cv); } static void pci_nvme_handle_io_cmd(struct pci_nvme_softc* sc, uint16_t idx) { struct nvme_submission_queue *sq; uint16_t status; uint16_t sqhead; int err; /* handle all submissions up to sq->tail index */ sq = &sc->submit_queues[idx]; if (atomic_testandset_int(&sq->busy, 1)) { DPRINTF(("%s sqid %u busy", __func__, idx)); return; } sqhead = atomic_load_acq_short(&sq->head); DPRINTF(("nvme_handle_io qid %u head %u tail %u cmdlist %p", idx, sqhead, sq->tail, sq->qbase)); while (sqhead != atomic_load_acq_short(&sq->tail)) { struct nvme_command *cmd; struct pci_nvme_ioreq *req = NULL; uint64_t lba; uint64_t nblocks, bytes, size, cpsz; /* TODO: support scatter gather list handling */ cmd = &sq->qbase[sqhead]; sqhead = (sqhead + 1) % sq->size; lba = ((uint64_t)cmd->cdw11 << 32) | cmd->cdw10; if (cmd->opc == NVME_OPC_FLUSH) { pci_nvme_status_genc(&status, NVME_SC_SUCCESS); pci_nvme_set_completion(sc, sq, idx, cmd->cid, 0, status, 1); continue; } else if (cmd->opc == 0x08) { /* TODO: write zeroes */ WPRINTF(("%s write zeroes lba 0x%lx blocks %u", __func__, lba, cmd->cdw12 & 0xFFFF)); pci_nvme_status_genc(&status, NVME_SC_SUCCESS); pci_nvme_set_completion(sc, sq, idx, cmd->cid, 0, status, 1); continue; } nblocks = (cmd->cdw12 & 0xFFFF) + 1; bytes = nblocks * sc->nvstore.sectsz; if (sc->nvstore.type == NVME_STOR_BLOCKIF) { req = pci_nvme_get_ioreq(sc); req->nvme_sq = sq; req->sqid = idx; } /* * If data starts mid-page and flows into the next page, then * increase page count */ DPRINTF(("[h%u:t%u:n%u] %s starting LBA 0x%lx blocks %lu " "(%lu-bytes)", sqhead==0 ? sq->size-1 : sqhead-1, sq->tail, sq->size, cmd->opc == NVME_OPC_WRITE ? "WRITE" : "READ", lba, nblocks, bytes)); cmd->prp1 &= ~(0x03UL); cmd->prp2 &= ~(0x03UL); DPRINTF((" prp1 0x%lx prp2 0x%lx", cmd->prp1, cmd->prp2)); size = bytes; lba *= sc->nvstore.sectsz; cpsz = PAGE_SIZE - (cmd->prp1 % PAGE_SIZE); if (cpsz > bytes) cpsz = bytes; if (req != NULL) { req->io_req.br_offset = ((uint64_t)cmd->cdw11 << 32) | cmd->cdw10; req->opc = cmd->opc; req->cid = cmd->cid; req->nsid = cmd->nsid; } err = pci_nvme_append_iov_req(sc, req, cmd->prp1, cpsz, cmd->opc == NVME_OPC_WRITE, lba); lba += cpsz; size -= cpsz; if (size == 0) goto iodone; if (size <= PAGE_SIZE) { /* prp2 is second (and final) page in transfer */ err = pci_nvme_append_iov_req(sc, req, cmd->prp2, size, cmd->opc == NVME_OPC_WRITE, lba); } else { uint64_t *prp_list; int i; /* prp2 is pointer to a physical region page list */ prp_list = paddr_guest2host(sc->nsc_pi->pi_vmctx, cmd->prp2, PAGE_SIZE); i = 0; while (size != 0) { cpsz = MIN(size, PAGE_SIZE); /* * Move to linked physical region page list * in last item. */ if (i == (NVME_PRP2_ITEMS-1) && size > PAGE_SIZE) { assert((prp_list[i] & (PAGE_SIZE-1)) == 0); prp_list = paddr_guest2host( sc->nsc_pi->pi_vmctx, prp_list[i], PAGE_SIZE); i = 0; } if (prp_list[i] == 0) { WPRINTF(("PRP2[%d] = 0 !!!", i)); err = 1; break; } err = pci_nvme_append_iov_req(sc, req, prp_list[i], cpsz, cmd->opc == NVME_OPC_WRITE, lba); if (err) break; lba += cpsz; size -= cpsz; i++; } } iodone: if (sc->nvstore.type == NVME_STOR_RAM) { uint16_t code, status; code = err ? NVME_SC_LBA_OUT_OF_RANGE : NVME_SC_SUCCESS; pci_nvme_status_genc(&status, code); pci_nvme_set_completion(sc, sq, idx, cmd->cid, 0, status, 1); continue; } if (err) goto do_error; req->io_req.br_callback = pci_nvme_io_done; err = 0; switch (cmd->opc) { case NVME_OPC_READ: err = blockif_read(sc->nvstore.ctx, &req->io_req); break; case NVME_OPC_WRITE: err = blockif_write(sc->nvstore.ctx, &req->io_req); break; default: WPRINTF(("%s unhandled io command 0x%x", __func__, cmd->opc)); err = 1; } do_error: if (err) { uint16_t status; pci_nvme_status_genc(&status, NVME_SC_DATA_TRANSFER_ERROR); pci_nvme_set_completion(sc, sq, idx, cmd->cid, 0, status, 1); pci_nvme_release_ioreq(sc, req); } } atomic_store_short(&sq->head, sqhead); atomic_store_int(&sq->busy, 0); } static void pci_nvme_handle_doorbell(struct vmctx *ctx, struct pci_nvme_softc* sc, uint64_t idx, int is_sq, uint64_t value) { DPRINTF(("nvme doorbell %lu, %s, val 0x%lx", idx, is_sq ? "SQ" : "CQ", value & 0xFFFF)); if (is_sq) { atomic_store_short(&sc->submit_queues[idx].tail, (uint16_t)value); if (idx == 0) { pci_nvme_handle_admin_cmd(sc, value); } else { /* submission queue; handle new entries in SQ */ if (idx > sc->num_squeues) { WPRINTF(("%s SQ index %lu overflow from " "guest (max %u)", __func__, idx, sc->num_squeues)); return; } pci_nvme_handle_io_cmd(sc, (uint16_t)idx); } } else { if (idx > sc->num_cqueues) { WPRINTF(("%s queue index %lu overflow from " "guest (max %u)", __func__, idx, sc->num_cqueues)); return; } sc->compl_queues[idx].head = (uint16_t)value; } } static void pci_nvme_bar0_reg_dumps(const char *func, uint64_t offset, int iswrite) { const char *s = iswrite ? "WRITE" : "READ"; switch (offset) { case NVME_CR_CAP_LOW: DPRINTF(("%s %s NVME_CR_CAP_LOW", func, s)); break; case NVME_CR_CAP_HI: DPRINTF(("%s %s NVME_CR_CAP_HI", func, s)); break; case NVME_CR_VS: DPRINTF(("%s %s NVME_CR_VS", func, s)); break; case NVME_CR_INTMS: DPRINTF(("%s %s NVME_CR_INTMS", func, s)); break; case NVME_CR_INTMC: DPRINTF(("%s %s NVME_CR_INTMC", func, s)); break; case NVME_CR_CC: DPRINTF(("%s %s NVME_CR_CC", func, s)); break; case NVME_CR_CSTS: DPRINTF(("%s %s NVME_CR_CSTS", func, s)); break; case NVME_CR_NSSR: DPRINTF(("%s %s NVME_CR_NSSR", func, s)); break; case NVME_CR_AQA: DPRINTF(("%s %s NVME_CR_AQA", func, s)); break; case NVME_CR_ASQ_LOW: DPRINTF(("%s %s NVME_CR_ASQ_LOW", func, s)); break; case NVME_CR_ASQ_HI: DPRINTF(("%s %s NVME_CR_ASQ_HI", func, s)); break; case NVME_CR_ACQ_LOW: DPRINTF(("%s %s NVME_CR_ACQ_LOW", func, s)); break; case NVME_CR_ACQ_HI: DPRINTF(("%s %s NVME_CR_ACQ_HI", func, s)); break; default: DPRINTF(("unknown nvme bar-0 offset 0x%lx", offset)); } } static void pci_nvme_write_bar_0(struct vmctx *ctx, struct pci_nvme_softc* sc, uint64_t offset, int size, uint64_t value) { uint32_t ccreg; if (offset >= NVME_DOORBELL_OFFSET) { uint64_t belloffset = offset - NVME_DOORBELL_OFFSET; uint64_t idx = belloffset / 8; /* door bell size = 2*int */ int is_sq = (belloffset % 8) < 4; if (belloffset > ((sc->max_queues+1) * 8 - 4)) { WPRINTF(("guest attempted an overflow write offset " "0x%lx, val 0x%lx in %s", offset, value, __func__)); return; } pci_nvme_handle_doorbell(ctx, sc, idx, is_sq, value); return; } DPRINTF(("nvme-write offset 0x%lx, size %d, value 0x%lx", offset, size, value)); if (size != 4) { WPRINTF(("guest wrote invalid size %d (offset 0x%lx, " "val 0x%lx) to bar0 in %s", size, offset, value, __func__)); /* TODO: shutdown device */ return; } pci_nvme_bar0_reg_dumps(__func__, offset, 1); pthread_mutex_lock(&sc->mtx); switch (offset) { case NVME_CR_CAP_LOW: case NVME_CR_CAP_HI: /* readonly */ break; case NVME_CR_VS: /* readonly */ break; case NVME_CR_INTMS: /* MSI-X, so ignore */ break; case NVME_CR_INTMC: /* MSI-X, so ignore */ break; case NVME_CR_CC: ccreg = (uint32_t)value; DPRINTF(("%s NVME_CR_CC en %x css %x shn %x iosqes %u " "iocqes %u", __func__, NVME_CC_GET_EN(ccreg), NVME_CC_GET_CSS(ccreg), NVME_CC_GET_SHN(ccreg), NVME_CC_GET_IOSQES(ccreg), NVME_CC_GET_IOCQES(ccreg))); if (NVME_CC_GET_SHN(ccreg)) { /* perform shutdown - flush out data to backend */ sc->regs.csts &= ~(NVME_CSTS_REG_SHST_MASK << NVME_CSTS_REG_SHST_SHIFT); sc->regs.csts |= NVME_SHST_COMPLETE << NVME_CSTS_REG_SHST_SHIFT; } if (NVME_CC_GET_EN(ccreg) != NVME_CC_GET_EN(sc->regs.cc)) { if (NVME_CC_GET_EN(ccreg) == 0) /* transition 1-> causes controller reset */ pci_nvme_reset_locked(sc); else pci_nvme_init_controller(ctx, sc); } /* Insert the iocqes, iosqes and en bits from the write */ sc->regs.cc &= ~NVME_CC_WRITE_MASK; sc->regs.cc |= ccreg & NVME_CC_WRITE_MASK; if (NVME_CC_GET_EN(ccreg) == 0) { /* Insert the ams, mps and css bit fields */ sc->regs.cc &= ~NVME_CC_NEN_WRITE_MASK; sc->regs.cc |= ccreg & NVME_CC_NEN_WRITE_MASK; sc->regs.csts &= ~NVME_CSTS_RDY; } else if (sc->pending_ios == 0) { sc->regs.csts |= NVME_CSTS_RDY; } break; case NVME_CR_CSTS: break; case NVME_CR_NSSR: /* ignore writes; don't support subsystem reset */ break; case NVME_CR_AQA: sc->regs.aqa = (uint32_t)value; break; case NVME_CR_ASQ_LOW: sc->regs.asq = (sc->regs.asq & (0xFFFFFFFF00000000)) | (0xFFFFF000 & value); break; case NVME_CR_ASQ_HI: sc->regs.asq = (sc->regs.asq & (0x00000000FFFFFFFF)) | (value << 32); break; case NVME_CR_ACQ_LOW: sc->regs.acq = (sc->regs.acq & (0xFFFFFFFF00000000)) | (0xFFFFF000 & value); break; case NVME_CR_ACQ_HI: sc->regs.acq = (sc->regs.acq & (0x00000000FFFFFFFF)) | (value << 32); break; default: DPRINTF(("%s unknown offset 0x%lx, value 0x%lx size %d", __func__, offset, value, size)); } pthread_mutex_unlock(&sc->mtx); } static void pci_nvme_write(struct vmctx *ctx, int vcpu, struct pci_devinst *pi, int baridx, uint64_t offset, int size, uint64_t value) { struct pci_nvme_softc* sc = pi->pi_arg; if (baridx == pci_msix_table_bar(pi) || baridx == pci_msix_pba_bar(pi)) { DPRINTF(("nvme-write baridx %d, msix: off 0x%lx, size %d, " " value 0x%lx", baridx, offset, size, value)); pci_emul_msix_twrite(pi, offset, size, value); return; } switch (baridx) { case 0: pci_nvme_write_bar_0(ctx, sc, offset, size, value); break; default: DPRINTF(("%s unknown baridx %d, val 0x%lx", __func__, baridx, value)); } } static uint64_t pci_nvme_read_bar_0(struct pci_nvme_softc* sc, uint64_t offset, int size) { uint64_t value; pci_nvme_bar0_reg_dumps(__func__, offset, 0); if (offset < NVME_DOORBELL_OFFSET) { void *p = &(sc->regs); pthread_mutex_lock(&sc->mtx); memcpy(&value, (void *)((uintptr_t)p + offset), size); pthread_mutex_unlock(&sc->mtx); } else { value = 0; WPRINTF(("pci_nvme: read invalid offset %ld", offset)); } switch (size) { case 1: value &= 0xFF; break; case 2: value &= 0xFFFF; break; case 4: value &= 0xFFFFFFFF; break; } DPRINTF((" nvme-read offset 0x%lx, size %d -> value 0x%x", offset, size, (uint32_t)value)); return (value); } static uint64_t pci_nvme_read(struct vmctx *ctx, int vcpu, struct pci_devinst *pi, int baridx, uint64_t offset, int size) { struct pci_nvme_softc* sc = pi->pi_arg; if (baridx == pci_msix_table_bar(pi) || baridx == pci_msix_pba_bar(pi)) { DPRINTF(("nvme-read bar: %d, msix: regoff 0x%lx, size %d", baridx, offset, size)); return pci_emul_msix_tread(pi, offset, size); } switch (baridx) { case 0: return pci_nvme_read_bar_0(sc, offset, size); default: DPRINTF(("unknown bar %d, 0x%lx", baridx, offset)); } return (0); } static int pci_nvme_parse_opts(struct pci_nvme_softc *sc, char *opts) { char bident[sizeof("XX:X:X")]; char *uopt, *xopts, *config; uint32_t sectsz; int optidx; sc->max_queues = NVME_QUEUES; sc->max_qentries = NVME_MAX_QENTRIES; sc->ioslots = NVME_IOSLOTS; sc->num_squeues = sc->max_queues; sc->num_cqueues = sc->max_queues; sectsz = 0; uopt = strdup(opts); optidx = 0; snprintf(sc->ctrldata.sn, sizeof(sc->ctrldata.sn), "NVME-%d-%d", sc->nsc_pi->pi_slot, sc->nsc_pi->pi_func); for (xopts = strtok(uopt, ","); xopts != NULL; xopts = strtok(NULL, ",")) { if ((config = strchr(xopts, '=')) != NULL) *config++ = '\0'; if (!strcmp("maxq", xopts)) { sc->max_queues = atoi(config); } else if (!strcmp("qsz", xopts)) { sc->max_qentries = atoi(config); } else if (!strcmp("ioslots", xopts)) { sc->ioslots = atoi(config); } else if (!strcmp("sectsz", xopts)) { sectsz = atoi(config); } else if (!strcmp("ser", xopts)) { /* * This field indicates the Product Serial Number in * 7-bit ASCII, unused bytes should be space characters. * Ref: NVMe v1.3c. */ cpywithpad((char *)sc->ctrldata.sn, sizeof(sc->ctrldata.sn), config, ' '); } else if (!strcmp("ram", xopts)) { uint64_t sz = strtoull(&xopts[4], NULL, 10); sc->nvstore.type = NVME_STOR_RAM; sc->nvstore.size = sz * 1024 * 1024; sc->nvstore.ctx = calloc(1, sc->nvstore.size); sc->nvstore.sectsz = 4096; sc->nvstore.sectsz_bits = 12; if (sc->nvstore.ctx == NULL) { perror("Unable to allocate RAM"); free(uopt); return (-1); } } else if (!strcmp("eui64", xopts)) { sc->nvstore.eui64 = htobe64(strtoull(config, NULL, 0)); } else if (optidx == 0) { snprintf(bident, sizeof(bident), "%d:%d", sc->nsc_pi->pi_slot, sc->nsc_pi->pi_func); sc->nvstore.ctx = blockif_open(xopts, bident); if (sc->nvstore.ctx == NULL) { perror("Could not open backing file"); free(uopt); return (-1); } sc->nvstore.type = NVME_STOR_BLOCKIF; sc->nvstore.size = blockif_size(sc->nvstore.ctx); } else { EPRINTLN("Invalid option %s", xopts); free(uopt); return (-1); } optidx++; } free(uopt); if (sc->nvstore.ctx == NULL || sc->nvstore.size == 0) { EPRINTLN("backing store not specified"); return (-1); } if (sectsz == 512 || sectsz == 4096 || sectsz == 8192) sc->nvstore.sectsz = sectsz; else if (sc->nvstore.type != NVME_STOR_RAM) sc->nvstore.sectsz = blockif_sectsz(sc->nvstore.ctx); for (sc->nvstore.sectsz_bits = 9; (1 << sc->nvstore.sectsz_bits) < sc->nvstore.sectsz; sc->nvstore.sectsz_bits++); if (sc->max_queues <= 0 || sc->max_queues > NVME_QUEUES) sc->max_queues = NVME_QUEUES; if (sc->max_qentries <= 0) { EPRINTLN("Invalid qsz option"); return (-1); } if (sc->ioslots <= 0) { EPRINTLN("Invalid ioslots option"); return (-1); } return (0); } static int pci_nvme_init(struct vmctx *ctx, struct pci_devinst *pi, char *opts) { struct pci_nvme_softc *sc; uint32_t pci_membar_sz; int error; error = 0; sc = calloc(1, sizeof(struct pci_nvme_softc)); pi->pi_arg = sc; sc->nsc_pi = pi; error = pci_nvme_parse_opts(sc, opts); if (error < 0) goto done; else error = 0; sc->ioreqs = calloc(sc->ioslots, sizeof(struct pci_nvme_ioreq)); for (int i = 0; i < sc->ioslots; i++) { if (i < (sc->ioslots-1)) sc->ioreqs[i].next = &sc->ioreqs[i+1]; pthread_mutex_init(&sc->ioreqs[i].mtx, NULL); pthread_cond_init(&sc->ioreqs[i].cv, NULL); } sc->ioreqs_free = sc->ioreqs; sc->intr_coales_aggr_thresh = 1; pci_set_cfgdata16(pi, PCIR_DEVICE, 0x0A0A); pci_set_cfgdata16(pi, PCIR_VENDOR, 0xFB5D); pci_set_cfgdata8(pi, PCIR_CLASS, PCIC_STORAGE); pci_set_cfgdata8(pi, PCIR_SUBCLASS, PCIS_STORAGE_NVM); pci_set_cfgdata8(pi, PCIR_PROGIF, PCIP_STORAGE_NVM_ENTERPRISE_NVMHCI_1_0); /* * Allocate size of NVMe registers + doorbell space for all queues. * * The specification requires a minimum memory I/O window size of 16K. * The Windows driver will refuse to start a device with a smaller * window. */ pci_membar_sz = sizeof(struct nvme_registers) + 2 * sizeof(uint32_t) * (sc->max_queues + 1); pci_membar_sz = MAX(pci_membar_sz, NVME_MMIO_SPACE_MIN); DPRINTF(("nvme membar size: %u", pci_membar_sz)); error = pci_emul_alloc_bar(pi, 0, PCIBAR_MEM64, pci_membar_sz); if (error) { WPRINTF(("%s pci alloc mem bar failed", __func__)); goto done; } error = pci_emul_add_msixcap(pi, sc->max_queues + 1, NVME_MSIX_BAR); if (error) { WPRINTF(("%s pci add msixcap failed", __func__)); goto done; } error = pci_emul_add_pciecap(pi, PCIEM_TYPE_ROOT_INT_EP); if (error) { WPRINTF(("%s pci add Express capability failed", __func__)); goto done; } pthread_mutex_init(&sc->mtx, NULL); sem_init(&sc->iosemlock, 0, sc->ioslots); pci_nvme_reset(sc); pci_nvme_init_ctrldata(sc); pci_nvme_init_nsdata(sc, &sc->nsdata, 1, sc->nvstore.eui64); pci_nvme_init_logpages(sc); pci_lintr_request(pi); done: return (error); } struct pci_devemu pci_de_nvme = { .pe_emu = "nvme", .pe_init = pci_nvme_init, .pe_barwrite = pci_nvme_write, .pe_barread = pci_nvme_read }; PCI_EMUL_SET(pci_de_nvme);