/*- * Copyright (c) 2000 Mark R V Murray * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer * in this position and unchanged. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * $FreeBSD$ */ /* NOTE NOTE NOTE - This is not finished! It will supply numbers, but * it is not yet cryptographically secure!! */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* #define DEBUG */ static void generator_gate(void); static void reseed(int); static void random_harvest_internal(u_int64_t, void *, u_int, u_int, u_int, enum esource); static void random_kthread(void *); /* Structure holding the entropy state */ struct random_state random_state; /* These are used to queue harvested packets of entropy. The entropy * buffer size is pretty arbitrary. */ struct harvest { u_int64_t somecounter; /* fast counter for clock jitter */ u_char entropy[HARVESTSIZE]; /* the harvested entropy */ u_int size, bits, frac; /* stats about the entropy */ enum esource source; /* stats about the entropy */ }; /* Ring buffer holding harvested entropy */ static struct harvestring { volatile int head; volatile int tail; struct harvest data[HARVEST_RING_SIZE]; } harvestring; /* The reseed thread mutex */ static struct mtx random_reseed_mtx; /* <0 to end the kthread, 0 to let it run */ static int random_kthread_control = 0; static struct proc *random_kthread_proc; static void random_kthread(void *arg /* NOTUSED */) { int pl, src, overthreshhold[2], newtail; struct harvest *event; struct source *source; #ifdef DEBUG mtx_lock(&Giant); printf("OWNERSHIP Giant == %d sched_lock == %d\n", mtx_owned(&Giant), mtx_owned(&sched_lock)); mtx_unlock(&Giant); #endif for (pl = 0; pl < 2; pl++) yarrow_hash_init(&random_state.pool[pl].hash, NULL, 0); for (;;) { if (harvestring.tail == harvestring.head) tsleep(&harvestring, PUSER, "rndslp", hz/10); else { /* Suck the harvested entropy out of the queue and hash * it into the appropriate pool. */ newtail = (harvestring.tail + 1) & HARVEST_RING_MASK; event = &harvestring.data[harvestring.tail]; /* Bump the ring counter. This action is assumed * to be atomic. */ harvestring.tail = newtail; pl = random_state.which = !random_state.which; source = &random_state.pool[pl].source[event->source]; yarrow_hash_iterate(&random_state.pool[pl].hash, event->entropy, sizeof(event->entropy)); yarrow_hash_iterate(&random_state.pool[pl].hash, &event->somecounter, sizeof(event->somecounter)); source->frac += event->frac; source->bits += event->bits + source->frac/1024; source->frac %= 1024; /* Count the over-threshold sources in each pool */ for (pl = 0; pl < 2; pl++) { overthreshhold[pl] = 0; for (src = 0; src < ENTROPYSOURCE; src++) { if (random_state.pool[pl].source[src].bits > random_state.pool[pl].thresh) overthreshhold[pl]++; } } /* if any fast source over threshhold, reseed */ if (overthreshhold[FAST]) reseed(FAST); /* if enough slow sources are over threshhold, reseed */ if (overthreshhold[SLOW] >= random_state.slowoverthresh) reseed(SLOW); } /* Is the thread scheduled for a shutdown? */ if (random_kthread_control != 0) { #ifdef DEBUG mtx_lock(&Giant); printf("Random kthread setting terminate\n"); mtx_unlock(&Giant); #endif random_set_wakeup_exit(&random_kthread_control); /* NOTREACHED */ break; } } } int random_init(void) { int error; #ifdef DEBUG mtx_lock(&Giant); printf("Random initialise\n"); mtx_unlock(&Giant); #endif /* This can be turned off by the very paranoid * a reseed will turn it back on. */ random_state.seeded = 1; /* Yarrow parameters. Do not adjust these unless you have * have a very good clue about what they do! */ random_state.gengateinterval = 10; random_state.bins = 10; random_state.pool[0].thresh = 100; random_state.pool[1].thresh = 160; random_state.slowoverthresh = 2; random_state.which = FAST; mtx_init(&random_reseed_mtx, "random reseed", MTX_DEF); harvestring.head = 0; harvestring.tail = 0; /* Start the hash/reseed thread */ error = kthread_create(random_kthread, NULL, &random_kthread_proc, RFHIGHPID, "random"); if (error != 0) return error; /* Register the randomness harvesting routine */ random_init_harvester(random_harvest_internal, read_random_real); #ifdef DEBUG mtx_lock(&Giant); printf("Random initialise finish\n"); mtx_unlock(&Giant); #endif return 0; } void random_deinit(void) { #ifdef DEBUG mtx_lock(&Giant); printf("Random deinitialise\n"); mtx_unlock(&Giant); #endif /* Deregister the randomness harvesting routine */ random_deinit_harvester(); #ifdef DEBUG mtx_lock(&Giant); printf("Random deinitialise waiting for thread to terminate\n"); mtx_unlock(&Giant); #endif /* Command the hash/reseed thread to end and wait for it to finish */ random_kthread_control = -1; tsleep((void *)&random_kthread_control, PUSER, "rndend", 0); #ifdef DEBUG mtx_lock(&Giant); printf("Random deinitialise removing mutexes\n"); mtx_unlock(&Giant); #endif mtx_destroy(&random_reseed_mtx); #ifdef DEBUG mtx_lock(&Giant); printf("Random deinitialise finish\n"); mtx_unlock(&Giant); #endif } static void reseed(int fastslow) { /* Interrupt-context stack is a limited resource; make large * structures static. */ static u_char v[TIMEBIN][KEYSIZE]; /* v[i] */ static struct yarrowhash context; u_char hash[KEYSIZE]; /* h' */ u_char temp[KEYSIZE]; int i, j; #ifdef DEBUG mtx_lock(&Giant); printf("Reseed type %d\n", fastslow); mtx_unlock(&Giant); #endif /* The reseed task must not be jumped on */ mtx_lock(&random_reseed_mtx); /* 1. Hash the accumulated entropy into v[0] */ yarrow_hash_init(&context, NULL, 0); /* Feed the slow pool hash in if slow */ if (fastslow == SLOW) yarrow_hash_iterate(&context, &random_state.pool[SLOW].hash, sizeof(struct yarrowhash)); yarrow_hash_iterate(&context, &random_state.pool[FAST].hash, sizeof(struct yarrowhash)); /* 2. Compute hash values for all v. _Supposed_ to be computationally * intensive. */ if (random_state.bins > TIMEBIN) random_state.bins = TIMEBIN; for (i = 1; i < random_state.bins; i++) { yarrow_hash_init(&context, NULL, 0); /* v[i] #= h(v[i-1]) */ yarrow_hash_iterate(&context, v[i - 1], KEYSIZE); /* v[i] #= h(v[0]) */ yarrow_hash_iterate(&context, v[0], KEYSIZE); /* v[i] #= h(i) */ yarrow_hash_iterate(&context, &i, sizeof(int)); /* Return the hashval */ yarrow_hash_finish(&context, v[i]); } /* 3. Compute a new key; h' is the identity function here; * it is not being ignored! */ yarrow_hash_init(&context, NULL, 0); yarrow_hash_iterate(&context, &random_state.key, KEYSIZE); for (i = 1; i < random_state.bins; i++) yarrow_hash_iterate(&context, &v[i], KEYSIZE); yarrow_hash_finish(&context, temp); yarrow_encrypt_init(&random_state.key, temp, KEYSIZE); /* 4. Recompute the counter */ random_state.counter = 0; yarrow_encrypt(&random_state.key, &random_state.counter, temp, sizeof(random_state.counter)); memcpy(&random_state.counter, temp, random_state.counter); /* 5. Reset entropy estimate accumulators to zero */ for (i = 0; i <= fastslow; i++) { for (j = 0; j < ENTROPYSOURCE; j++) { if (random_state.pool[i].source[j].bits > random_state.pool[i].thresh) { random_state.pool[i].source[j].bits = 0; random_state.pool[i].source[j].frac = 0; } } } /* 6. Wipe memory of intermediate values */ memset((void *)v, 0, sizeof(v)); memset((void *)temp, 0, sizeof(temp)); memset((void *)hash, 0, sizeof(hash)); /* 7. Dump to seed file */ /* XXX Not done here yet */ /* Release the reseed mutex */ mtx_unlock(&random_reseed_mtx); #ifdef DEBUG mtx_lock(&Giant); printf("Reseed finish\n"); mtx_unlock(&Giant); #endif if (!random_state.seeded) { random_state.seeded = 1; selwakeup(&random_state.rsel); wakeup(&random_state); } } u_int read_random_real(void *buf, u_int count) { static u_int64_t genval; static int cur = 0; static int gate = 1; u_int i; u_int retval; /* The reseed task must not be jumped on */ mtx_lock(&random_reseed_mtx); if (gate) { generator_gate(); random_state.outputblocks = 0; gate = 0; } if (count >= sizeof(random_state.counter)) { retval = 0; for (i = 0; i < count; i += sizeof(random_state.counter)) { random_state.counter++; yarrow_encrypt(&random_state.key, &random_state.counter, &genval, sizeof(random_state.counter)); memcpy((char *)buf + i, &genval, sizeof(random_state.counter)); if (++random_state.outputblocks >= random_state.gengateinterval) { generator_gate(); random_state.outputblocks = 0; } retval += sizeof(random_state.counter); } } else { if (!cur) { random_state.counter++; yarrow_encrypt(&random_state.key, &random_state.counter, &genval, sizeof(random_state.counter)); memcpy(buf, &genval, count); cur = sizeof(random_state.counter) - count; if (++random_state.outputblocks >= random_state.gengateinterval) { generator_gate(); random_state.outputblocks = 0; } retval = count; } else { retval = cur < count ? cur : count; memcpy(buf, (char *)&genval + (sizeof(random_state.counter) - cur), retval); cur -= retval; } } mtx_unlock(&random_reseed_mtx); return retval; } void write_random(void *buf, u_int count) { u_int i; /* Break the input up into HARVESTSIZE chunks. * The writer has too much control here, so "estimate" the * the entropy as zero. */ for (i = 0; i < count; i += HARVESTSIZE) { random_harvest_internal(get_cyclecount(), (char *)buf + i, HARVESTSIZE, 0, 0, RANDOM_WRITE); } /* Maybe the loop iterated at least once */ if (i > count) i -= HARVESTSIZE; /* Get the last bytes even if the input length is not * a multiple of HARVESTSIZE. */ count %= HARVESTSIZE; if (count) { random_harvest_internal(get_cyclecount(), (char *)buf + i, count, 0, 0, RANDOM_WRITE); } } static void generator_gate(void) { int i; u_char temp[KEYSIZE]; #ifdef DEBUG mtx_lock(&Giant); printf("Generator gate\n"); mtx_unlock(&Giant); #endif for (i = 0; i < KEYSIZE; i += sizeof(random_state.counter)) { random_state.counter++; yarrow_encrypt(&random_state.key, &random_state.counter, &(temp[i]), sizeof(random_state.counter)); } yarrow_encrypt_init(&random_state.key, temp, KEYSIZE); memset((void *)temp, 0, KEYSIZE); #ifdef DEBUG mtx_lock(&Giant); printf("Generator gate finish\n"); mtx_unlock(&Giant); #endif } /* Entropy harvesting routine. This is supposed to be fast; do * not do anything slow in here! */ static void random_harvest_internal(u_int64_t somecounter, void *entropy, u_int count, u_int bits, u_int frac, enum esource origin) { struct harvest *harvest; int newhead; newhead = (harvestring.head + 1) & HARVEST_RING_MASK; if (newhead != harvestring.tail) { /* Add the harvested data to the ring buffer */ harvest = &harvestring.data[harvestring.head]; /* Stuff the harvested data into the ring */ harvest->somecounter = somecounter; count = count > HARVESTSIZE ? HARVESTSIZE : count; memcpy(harvest->entropy, entropy, count); harvest->size = count; harvest->bits = bits; harvest->frac = frac; harvest->source = origin < ENTROPYSOURCE ? origin : 0; /* Bump the ring counter. This action is assumed * to be atomic. */ harvestring.head = newhead; } } /* Helper routine to perform explicit reseeds */ void random_reseed(void) { reseed(FAST); }