/* * Copyright (C) 2001 Eduardo Horvath. * Copyright (c) 2001-2003 Thomas Moestl * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * from: NetBSD: gem.c,v 1.21 2002/06/01 23:50:58 lukem Exp * * $FreeBSD$ */ /* * Driver for Sun GEM ethernet controllers. */ #define GEM_DEBUG #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define TRIES 10000 static void gem_start(struct ifnet *); static void gem_stop(struct ifnet *, int); static int gem_ioctl(struct ifnet *, u_long, caddr_t); static void gem_cddma_callback(void *, bus_dma_segment_t *, int, int); static void gem_rxdma_callback(void *, bus_dma_segment_t *, int, bus_size_t, int); static void gem_txdma_callback(void *, bus_dma_segment_t *, int, bus_size_t, int); static void gem_tick(void *); static void gem_watchdog(struct ifnet *); static void gem_init(void *); static void gem_init_regs(struct gem_softc *sc); static int gem_ringsize(int sz); static int gem_meminit(struct gem_softc *); static int gem_load_txmbuf(struct gem_softc *, struct mbuf *); static void gem_mifinit(struct gem_softc *); static int gem_bitwait(struct gem_softc *sc, bus_addr_t r, u_int32_t clr, u_int32_t set); static int gem_reset_rx(struct gem_softc *); static int gem_reset_tx(struct gem_softc *); static int gem_disable_rx(struct gem_softc *); static int gem_disable_tx(struct gem_softc *); static void gem_rxdrain(struct gem_softc *); static int gem_add_rxbuf(struct gem_softc *, int); static void gem_setladrf(struct gem_softc *); struct mbuf *gem_get(struct gem_softc *, int, int); static void gem_eint(struct gem_softc *, u_int); static void gem_rint(struct gem_softc *); #if 0 static void gem_rint_timeout(void *); #endif static void gem_tint(struct gem_softc *); #ifdef notyet static void gem_power(int, void *); #endif devclass_t gem_devclass; DRIVER_MODULE(miibus, gem, miibus_driver, miibus_devclass, 0, 0); MODULE_DEPEND(gem, miibus, 1, 1, 1); #ifdef GEM_DEBUG #include #define KTR_GEM KTR_CT2 #endif #define GEM_NSEGS GEM_NTXSEGS /* * gem_attach: * * Attach a Gem interface to the system. */ int gem_attach(sc) struct gem_softc *sc; { struct ifnet *ifp = &sc->sc_arpcom.ac_if; struct mii_softc *child; int i, error; u_int32_t v; /* Make sure the chip is stopped. */ ifp->if_softc = sc; gem_reset(sc); error = bus_dma_tag_create(NULL, 1, 0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES, GEM_NSEGS, BUS_SPACE_MAXSIZE_32BIT, 0, &sc->sc_pdmatag); if (error) return (error); error = bus_dma_tag_create(sc->sc_pdmatag, 1, 0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, MAXBSIZE, 1, BUS_SPACE_MAXSIZE_32BIT, BUS_DMA_ALLOCNOW, &sc->sc_rdmatag); if (error) goto fail_ptag; error = bus_dma_tag_create(sc->sc_pdmatag, 1, 0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, GEM_TD_BUFSIZE, GEM_NTXSEGS, BUS_SPACE_MAXSIZE_32BIT, BUS_DMA_ALLOCNOW, &sc->sc_tdmatag); if (error) goto fail_rtag; error = bus_dma_tag_create(sc->sc_pdmatag, PAGE_SIZE, 0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, sizeof(struct gem_control_data), 1, sizeof(struct gem_control_data), BUS_DMA_ALLOCNOW, &sc->sc_cdmatag); if (error) goto fail_ttag; /* * Allocate the control data structures, and create and load the * DMA map for it. */ if ((error = bus_dmamem_alloc(sc->sc_cdmatag, (void **)&sc->sc_control_data, 0, &sc->sc_cddmamap))) { device_printf(sc->sc_dev, "unable to allocate control data," " error = %d\n", error); goto fail_ctag; } sc->sc_cddma = 0; if ((error = bus_dmamap_load(sc->sc_cdmatag, sc->sc_cddmamap, sc->sc_control_data, sizeof(struct gem_control_data), gem_cddma_callback, sc, 0)) != 0 || sc->sc_cddma == 0) { device_printf(sc->sc_dev, "unable to load control data DMA " "map, error = %d\n", error); goto fail_cmem; } /* * Initialize the transmit job descriptors. */ STAILQ_INIT(&sc->sc_txfreeq); STAILQ_INIT(&sc->sc_txdirtyq); /* * Create the transmit buffer DMA maps. */ error = ENOMEM; for (i = 0; i < GEM_TXQUEUELEN; i++) { struct gem_txsoft *txs; txs = &sc->sc_txsoft[i]; txs->txs_mbuf = NULL; txs->txs_ndescs = 0; if ((error = bus_dmamap_create(sc->sc_tdmatag, 0, &txs->txs_dmamap)) != 0) { device_printf(sc->sc_dev, "unable to create tx DMA map " "%d, error = %d\n", i, error); goto fail_txd; } STAILQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q); } /* * Create the receive buffer DMA maps. */ for (i = 0; i < GEM_NRXDESC; i++) { if ((error = bus_dmamap_create(sc->sc_rdmatag, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) { device_printf(sc->sc_dev, "unable to create rx DMA map " "%d, error = %d\n", i, error); goto fail_rxd; } sc->sc_rxsoft[i].rxs_mbuf = NULL; } gem_mifinit(sc); if ((error = mii_phy_probe(sc->sc_dev, &sc->sc_miibus, gem_mediachange, gem_mediastatus)) != 0) { device_printf(sc->sc_dev, "phy probe failed: %d\n", error); goto fail_rxd; } sc->sc_mii = device_get_softc(sc->sc_miibus); /* * From this point forward, the attachment cannot fail. A failure * before this point releases all resources that may have been * allocated. */ /* Announce ourselves. */ device_printf(sc->sc_dev, "Ethernet address:"); for (i = 0; i < 6; i++) printf("%c%02x", i > 0 ? ':' : ' ', sc->sc_arpcom.ac_enaddr[i]); /* Get RX FIFO size */ sc->sc_rxfifosize = 64 * bus_space_read_4(sc->sc_bustag, sc->sc_h, GEM_RX_FIFO_SIZE); printf(", %uKB RX fifo", sc->sc_rxfifosize / 1024); /* Get TX FIFO size */ v = bus_space_read_4(sc->sc_bustag, sc->sc_h, GEM_TX_FIFO_SIZE); printf(", %uKB TX fifo\n", v / 16); /* Initialize ifnet structure. */ ifp->if_softc = sc; ifp->if_unit = device_get_unit(sc->sc_dev); ifp->if_name = "gem"; ifp->if_mtu = ETHERMTU; ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; ifp->if_start = gem_start; ifp->if_ioctl = gem_ioctl; ifp->if_watchdog = gem_watchdog; ifp->if_init = gem_init; ifp->if_output = ether_output; ifp->if_snd.ifq_maxlen = GEM_TXQUEUELEN; /* * Walk along the list of attached MII devices and * establish an `MII instance' to `phy number' * mapping. We'll use this mapping in media change * requests to determine which phy to use to program * the MIF configuration register. */ for (child = LIST_FIRST(&sc->sc_mii->mii_phys); child != NULL; child = LIST_NEXT(child, mii_list)) { /* * Note: we support just two PHYs: the built-in * internal device and an external on the MII * connector. */ if (child->mii_phy > 1 || child->mii_inst > 1) { device_printf(sc->sc_dev, "cannot accomodate " "MII device %s at phy %d, instance %d\n", device_get_name(child->mii_dev), child->mii_phy, child->mii_inst); continue; } sc->sc_phys[child->mii_inst] = child->mii_phy; } /* * Now select and activate the PHY we will use. * * The order of preference is External (MDI1), * Internal (MDI0), Serial Link (no MII). */ if (sc->sc_phys[1]) { #ifdef GEM_DEBUG printf("using external phy\n"); #endif sc->sc_mif_config |= GEM_MIF_CONFIG_PHY_SEL; } else { #ifdef GEM_DEBUG printf("using internal phy\n"); #endif sc->sc_mif_config &= ~GEM_MIF_CONFIG_PHY_SEL; } bus_space_write_4(sc->sc_bustag, sc->sc_h, GEM_MIF_CONFIG, sc->sc_mif_config); /* Attach the interface. */ ether_ifattach(ifp, sc->sc_arpcom.ac_enaddr); #if notyet /* * Add a suspend hook to make sure we come back up after a * resume. */ sc->sc_powerhook = powerhook_establish(gem_power, sc); if (sc->sc_powerhook == NULL) device_printf(sc->sc_dev, "WARNING: unable to establish power " "hook\n"); #endif callout_init(&sc->sc_tick_ch, 0); callout_init(&sc->sc_rx_ch, 0); return (0); /* * Free any resources we've allocated during the failed attach * attempt. Do this in reverse order and fall through. */ fail_rxd: for (i = 0; i < GEM_NRXDESC; i++) { if (sc->sc_rxsoft[i].rxs_dmamap != NULL) bus_dmamap_destroy(sc->sc_rdmatag, sc->sc_rxsoft[i].rxs_dmamap); } fail_txd: for (i = 0; i < GEM_TXQUEUELEN; i++) { if (sc->sc_txsoft[i].txs_dmamap != NULL) bus_dmamap_destroy(sc->sc_tdmatag, sc->sc_txsoft[i].txs_dmamap); } bus_dmamap_unload(sc->sc_cdmatag, sc->sc_cddmamap); fail_cmem: bus_dmamem_free(sc->sc_cdmatag, sc->sc_control_data, sc->sc_cddmamap); fail_ctag: bus_dma_tag_destroy(sc->sc_cdmatag); fail_ttag: bus_dma_tag_destroy(sc->sc_tdmatag); fail_rtag: bus_dma_tag_destroy(sc->sc_rdmatag); fail_ptag: bus_dma_tag_destroy(sc->sc_pdmatag); return (error); } static void gem_cddma_callback(xsc, segs, nsegs, error) void *xsc; bus_dma_segment_t *segs; int nsegs; int error; { struct gem_softc *sc = (struct gem_softc *)xsc; if (error != 0) return; if (nsegs != 1) { /* can't happen... */ panic("gem_cddma_callback: bad control buffer segment count"); } sc->sc_cddma = segs[0].ds_addr; } static void gem_rxdma_callback(xsc, segs, nsegs, totsz, error) void *xsc; bus_dma_segment_t *segs; int nsegs; bus_size_t totsz; int error; { struct gem_rxsoft *rxs = (struct gem_rxsoft *)xsc; if (error != 0) return; KASSERT(nsegs == 1, ("gem_rxdma_callback: bad dma segment count")); rxs->rxs_paddr = segs[0].ds_addr; } static void gem_txdma_callback(xsc, segs, nsegs, totsz, error) void *xsc; bus_dma_segment_t *segs; int nsegs; bus_size_t totsz; int error; { struct gem_txdma *txd = (struct gem_txdma *)xsc; struct gem_softc *sc = txd->txd_sc; struct gem_txsoft *txs = txd->txd_txs; bus_size_t len = 0; uint64_t flags = 0; int seg, nexttx; if (error != 0) return; /* * Ensure we have enough descriptors free to describe * the packet. Note, we always reserve one descriptor * at the end of the ring as a termination point, to * prevent wrap-around. */ if (nsegs > sc->sc_txfree - 1) { txs->txs_ndescs = -1; return; } txs->txs_ndescs = nsegs; nexttx = txs->txs_firstdesc; /* * Initialize the transmit descriptors. */ for (seg = 0; seg < nsegs; seg++, nexttx = GEM_NEXTTX(nexttx)) { CTR5(KTR_GEM, "txdma_cb: mapping seg %d (txd %d), len " "%lx, addr %#lx (%#lx)", seg, nexttx, segs[seg].ds_len, segs[seg].ds_addr, GEM_DMA_WRITE(sc, segs[seg].ds_addr)); if (segs[seg].ds_len == 0) continue; sc->sc_txdescs[nexttx].gd_addr = GEM_DMA_WRITE(sc, segs[seg].ds_addr); KASSERT(segs[seg].ds_len < GEM_TD_BUFSIZE, ("gem_txdma_callback: segment size too large!")); flags = segs[seg].ds_len & GEM_TD_BUFSIZE; if (len == 0) { CTR2(KTR_GEM, "txdma_cb: start of packet at seg %d, " "tx %d", seg, nexttx); flags |= GEM_TD_START_OF_PACKET; if (++sc->sc_txwin > GEM_NTXSEGS * 2 / 3) { sc->sc_txwin = 0; flags |= GEM_TD_INTERRUPT_ME; } } if (len + segs[seg].ds_len == totsz) { CTR2(KTR_GEM, "txdma_cb: end of packet at seg %d, " "tx %d", seg, nexttx); flags |= GEM_TD_END_OF_PACKET; } sc->sc_txdescs[nexttx].gd_flags = GEM_DMA_WRITE(sc, flags); txs->txs_lastdesc = nexttx; len += segs[seg].ds_len; } KASSERT((flags & GEM_TD_END_OF_PACKET) != 0, ("gem_txdma_callback: missed end of packet!")); } static void gem_tick(arg) void *arg; { struct gem_softc *sc = arg; int s; s = splnet(); mii_tick(sc->sc_mii); splx(s); callout_reset(&sc->sc_tick_ch, hz, gem_tick, sc); } static int gem_bitwait(sc, r, clr, set) struct gem_softc *sc; bus_addr_t r; u_int32_t clr; u_int32_t set; { int i; u_int32_t reg; for (i = TRIES; i--; DELAY(100)) { reg = bus_space_read_4(sc->sc_bustag, sc->sc_h, r); if ((r & clr) == 0 && (r & set) == set) return (1); } return (0); } void gem_reset(sc) struct gem_softc *sc; { bus_space_tag_t t = sc->sc_bustag; bus_space_handle_t h = sc->sc_h; int s; s = splnet(); CTR1(KTR_GEM, "%s: gem_reset", device_get_name(sc->sc_dev)); gem_reset_rx(sc); gem_reset_tx(sc); /* Do a full reset */ bus_space_write_4(t, h, GEM_RESET, GEM_RESET_RX | GEM_RESET_TX); if (!gem_bitwait(sc, GEM_RESET, GEM_RESET_RX | GEM_RESET_TX, 0)) device_printf(sc->sc_dev, "cannot reset device\n"); splx(s); } /* * gem_rxdrain: * * Drain the receive queue. */ static void gem_rxdrain(sc) struct gem_softc *sc; { struct gem_rxsoft *rxs; int i; for (i = 0; i < GEM_NRXDESC; i++) { rxs = &sc->sc_rxsoft[i]; if (rxs->rxs_mbuf != NULL) { bus_dmamap_unload(sc->sc_rdmatag, rxs->rxs_dmamap); m_freem(rxs->rxs_mbuf); rxs->rxs_mbuf = NULL; } } } /* * Reset the whole thing. */ static void gem_stop(ifp, disable) struct ifnet *ifp; int disable; { struct gem_softc *sc = (struct gem_softc *)ifp->if_softc; struct gem_txsoft *txs; CTR1(KTR_GEM, "%s: gem_stop", device_get_name(sc->sc_dev)); callout_stop(&sc->sc_tick_ch); /* XXX - Should we reset these instead? */ gem_disable_tx(sc); gem_disable_rx(sc); /* * Release any queued transmit buffers. */ while ((txs = STAILQ_FIRST(&sc->sc_txdirtyq)) != NULL) { STAILQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q); if (txs->txs_ndescs != 0) { bus_dmamap_unload(sc->sc_tdmatag, txs->txs_dmamap); if (txs->txs_mbuf != NULL) { m_freem(txs->txs_mbuf); txs->txs_mbuf = NULL; } } STAILQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q); } if (disable) gem_rxdrain(sc); /* * Mark the interface down and cancel the watchdog timer. */ ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE); ifp->if_timer = 0; } /* * Reset the receiver */ int gem_reset_rx(sc) struct gem_softc *sc; { bus_space_tag_t t = sc->sc_bustag; bus_space_handle_t h = sc->sc_h; /* * Resetting while DMA is in progress can cause a bus hang, so we * disable DMA first. */ gem_disable_rx(sc); bus_space_write_4(t, h, GEM_RX_CONFIG, 0); /* Wait till it finishes */ if (!gem_bitwait(sc, GEM_RX_CONFIG, 1, 0)) device_printf(sc->sc_dev, "cannot disable read dma\n"); /* Wait 5ms extra. */ DELAY(5000); /* Finally, reset the ERX */ bus_space_write_4(t, h, GEM_RESET, GEM_RESET_RX); /* Wait till it finishes */ if (!gem_bitwait(sc, GEM_RESET, GEM_RESET_TX, 0)) { device_printf(sc->sc_dev, "cannot reset receiver\n"); return (1); } return (0); } /* * Reset the transmitter */ static int gem_reset_tx(sc) struct gem_softc *sc; { bus_space_tag_t t = sc->sc_bustag; bus_space_handle_t h = sc->sc_h; int i; /* * Resetting while DMA is in progress can cause a bus hang, so we * disable DMA first. */ gem_disable_tx(sc); bus_space_write_4(t, h, GEM_TX_CONFIG, 0); /* Wait till it finishes */ if (!gem_bitwait(sc, GEM_TX_CONFIG, 1, 0)) device_printf(sc->sc_dev, "cannot disable read dma\n"); /* Wait 5ms extra. */ DELAY(5000); /* Finally, reset the ETX */ bus_space_write_4(t, h, GEM_RESET, GEM_RESET_TX); /* Wait till it finishes */ for (i = TRIES; i--; DELAY(100)) if ((bus_space_read_4(t, h, GEM_RESET) & GEM_RESET_TX) == 0) break; if (!gem_bitwait(sc, GEM_RESET, GEM_RESET_TX, 0)) { device_printf(sc->sc_dev, "cannot reset receiver\n"); return (1); } return (0); } /* * disable receiver. */ static int gem_disable_rx(sc) struct gem_softc *sc; { bus_space_tag_t t = sc->sc_bustag; bus_space_handle_t h = sc->sc_h; u_int32_t cfg; /* Flip the enable bit */ cfg = bus_space_read_4(t, h, GEM_MAC_RX_CONFIG); cfg &= ~GEM_MAC_RX_ENABLE; bus_space_write_4(t, h, GEM_MAC_RX_CONFIG, cfg); /* Wait for it to finish */ return (gem_bitwait(sc, GEM_MAC_RX_CONFIG, GEM_MAC_RX_ENABLE, 0)); } /* * disable transmitter. */ static int gem_disable_tx(sc) struct gem_softc *sc; { bus_space_tag_t t = sc->sc_bustag; bus_space_handle_t h = sc->sc_h; u_int32_t cfg; /* Flip the enable bit */ cfg = bus_space_read_4(t, h, GEM_MAC_TX_CONFIG); cfg &= ~GEM_MAC_TX_ENABLE; bus_space_write_4(t, h, GEM_MAC_TX_CONFIG, cfg); /* Wait for it to finish */ return (gem_bitwait(sc, GEM_MAC_TX_CONFIG, GEM_MAC_TX_ENABLE, 0)); } /* * Initialize interface. */ static int gem_meminit(sc) struct gem_softc *sc; { struct gem_rxsoft *rxs; int i, error; /* * Initialize the transmit descriptor ring. */ memset((void *)sc->sc_txdescs, 0, sizeof(sc->sc_txdescs)); for (i = 0; i < GEM_NTXDESC; i++) { sc->sc_txdescs[i].gd_flags = 0; sc->sc_txdescs[i].gd_addr = 0; } GEM_CDTXSYNC(sc, 0, GEM_NTXDESC, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); sc->sc_txfree = GEM_MAXTXFREE; sc->sc_txnext = 0; sc->sc_txwin = 0; /* * Initialize the receive descriptor and receive job * descriptor rings. */ for (i = 0; i < GEM_NRXDESC; i++) { rxs = &sc->sc_rxsoft[i]; if (rxs->rxs_mbuf == NULL) { if ((error = gem_add_rxbuf(sc, i)) != 0) { device_printf(sc->sc_dev, "unable to " "allocate or map rx buffer %d, error = " "%d\n", i, error); /* * XXX Should attempt to run with fewer receive * XXX buffers instead of just failing. */ gem_rxdrain(sc); return (1); } } else GEM_INIT_RXDESC(sc, i); } sc->sc_rxptr = 0; return (0); } static int gem_ringsize(sz) int sz; { int v = 0; switch (sz) { case 32: v = GEM_RING_SZ_32; break; case 64: v = GEM_RING_SZ_64; break; case 128: v = GEM_RING_SZ_128; break; case 256: v = GEM_RING_SZ_256; break; case 512: v = GEM_RING_SZ_512; break; case 1024: v = GEM_RING_SZ_1024; break; case 2048: v = GEM_RING_SZ_2048; break; case 4096: v = GEM_RING_SZ_4096; break; case 8192: v = GEM_RING_SZ_8192; break; default: printf("gem: invalid Receive Descriptor ring size\n"); break; } return (v); } /* * Initialization of interface; set up initialization block * and transmit/receive descriptor rings. */ static void gem_init(xsc) void *xsc; { struct gem_softc *sc = (struct gem_softc *)xsc; struct ifnet *ifp = &sc->sc_arpcom.ac_if; bus_space_tag_t t = sc->sc_bustag; bus_space_handle_t h = sc->sc_h; int s; u_int32_t v; s = splnet(); CTR1(KTR_GEM, "%s: gem_init: calling stop", device_get_name(sc->sc_dev)); /* * Initialization sequence. The numbered steps below correspond * to the sequence outlined in section 6.3.5.1 in the Ethernet * Channel Engine manual (part of the PCIO manual). * See also the STP2002-STQ document from Sun Microsystems. */ /* step 1 & 2. Reset the Ethernet Channel */ gem_stop(&sc->sc_arpcom.ac_if, 0); gem_reset(sc); CTR1(KTR_GEM, "%s: gem_init: restarting", device_get_name(sc->sc_dev)); /* Re-initialize the MIF */ gem_mifinit(sc); /* step 3. Setup data structures in host memory */ gem_meminit(sc); /* step 4. TX MAC registers & counters */ gem_init_regs(sc); /* XXX: VLAN code from NetBSD temporarily removed. */ bus_space_write_4(t, h, GEM_MAC_MAC_MAX_FRAME, (ETHER_MAX_LEN + sizeof(struct ether_header)) | (0x2000<<16)); /* step 5. RX MAC registers & counters */ gem_setladrf(sc); /* step 6 & 7. Program Descriptor Ring Base Addresses */ /* NOTE: we use only 32-bit DMA addresses here. */ bus_space_write_4(t, h, GEM_TX_RING_PTR_HI, 0); bus_space_write_4(t, h, GEM_TX_RING_PTR_LO, GEM_CDTXADDR(sc, 0)); bus_space_write_4(t, h, GEM_RX_RING_PTR_HI, 0); bus_space_write_4(t, h, GEM_RX_RING_PTR_LO, GEM_CDRXADDR(sc, 0)); CTR3(KTR_GEM, "loading rx ring %lx, tx ring %lx, cddma %lx", GEM_CDRXADDR(sc, 0), GEM_CDTXADDR(sc, 0), sc->sc_cddma); /* step 8. Global Configuration & Interrupt Mask */ bus_space_write_4(t, h, GEM_INTMASK, ~(GEM_INTR_TX_INTME| GEM_INTR_TX_EMPTY| GEM_INTR_RX_DONE|GEM_INTR_RX_NOBUF| GEM_INTR_RX_TAG_ERR|GEM_INTR_PCS| GEM_INTR_MAC_CONTROL|GEM_INTR_MIF| GEM_INTR_BERR)); bus_space_write_4(t, h, GEM_MAC_RX_MASK, GEM_MAC_RX_DONE|GEM_MAC_RX_FRAME_CNT); bus_space_write_4(t, h, GEM_MAC_TX_MASK, 0xffff); /* XXXX */ bus_space_write_4(t, h, GEM_MAC_CONTROL_MASK, 0); /* XXXX */ /* step 9. ETX Configuration: use mostly default values */ /* Enable DMA */ v = gem_ringsize(GEM_NTXDESC /*XXX*/); bus_space_write_4(t, h, GEM_TX_CONFIG, v|GEM_TX_CONFIG_TXDMA_EN| ((0x400<<10)&GEM_TX_CONFIG_TXFIFO_TH)); /* step 10. ERX Configuration */ /* Encode Receive Descriptor ring size: four possible values */ v = gem_ringsize(GEM_NRXDESC /*XXX*/); /* Enable DMA */ bus_space_write_4(t, h, GEM_RX_CONFIG, v|(GEM_THRSH_1024<sc_rxfifosize / 256) | ( (sc->sc_rxfifosize / 256) << 12)); bus_space_write_4(t, h, GEM_RX_BLANKING, (6<<12)|6); /* step 11. Configure Media */ mii_mediachg(sc->sc_mii); /* step 12. RX_MAC Configuration Register */ v = bus_space_read_4(t, h, GEM_MAC_RX_CONFIG); v |= GEM_MAC_RX_ENABLE; bus_space_write_4(t, h, GEM_MAC_RX_CONFIG, v); /* step 14. Issue Transmit Pending command */ /* step 15. Give the reciever a swift kick */ bus_space_write_4(t, h, GEM_RX_KICK, GEM_NRXDESC-4); /* Start the one second timer. */ callout_reset(&sc->sc_tick_ch, hz, gem_tick, sc); ifp->if_flags |= IFF_RUNNING; ifp->if_flags &= ~IFF_OACTIVE; ifp->if_timer = 0; sc->sc_ifflags = ifp->if_flags; splx(s); } static int gem_load_txmbuf(sc, m0) struct gem_softc *sc; struct mbuf *m0; { struct gem_txdma txd; struct gem_txsoft *txs; int error; /* Get a work queue entry. */ if ((txs = STAILQ_FIRST(&sc->sc_txfreeq)) == NULL) { /* Ran out of descriptors. */ return (-1); } txd.txd_sc = sc; txd.txd_txs = txs; txs->txs_mbuf = m0; txs->txs_firstdesc = sc->sc_txnext; error = bus_dmamap_load_mbuf(sc->sc_tdmatag, txs->txs_dmamap, m0, gem_txdma_callback, &txd, BUS_DMA_NOWAIT); if (error != 0) goto fail; if (txs->txs_ndescs == -1) { error = -1; goto fail; } /* Sync the DMA map. */ bus_dmamap_sync(sc->sc_tdmatag, txs->txs_dmamap, BUS_DMASYNC_PREWRITE); CTR3(KTR_GEM, "load_mbuf: setting firstdesc=%d, lastdesc=%d, " "ndescs=%d", txs->txs_firstdesc, txs->txs_lastdesc, txs->txs_ndescs); STAILQ_REMOVE_HEAD(&sc->sc_txfreeq, txs_q); STAILQ_INSERT_TAIL(&sc->sc_txdirtyq, txs, txs_q); /* Sync the descriptors we're using. */ GEM_CDTXSYNC(sc, sc->sc_txnext, txs->txs_ndescs, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); sc->sc_txnext = GEM_NEXTTX(txs->txs_lastdesc); sc->sc_txfree -= txs->txs_ndescs; return (0); fail: CTR1(KTR_GEM, "gem_load_txmbuf failed (%d)", error); bus_dmamap_unload(sc->sc_tdmatag, txs->txs_dmamap); return (error); } static void gem_init_regs(sc) struct gem_softc *sc; { bus_space_tag_t t = sc->sc_bustag; bus_space_handle_t h = sc->sc_h; const u_char *laddr = sc->sc_arpcom.ac_enaddr; u_int32_t v; /* These regs are not cleared on reset */ if (!sc->sc_inited) { /* Wooo. Magic values. */ bus_space_write_4(t, h, GEM_MAC_IPG0, 0); bus_space_write_4(t, h, GEM_MAC_IPG1, 8); bus_space_write_4(t, h, GEM_MAC_IPG2, 4); bus_space_write_4(t, h, GEM_MAC_MAC_MIN_FRAME, ETHER_MIN_LEN); /* Max frame and max burst size */ bus_space_write_4(t, h, GEM_MAC_MAC_MAX_FRAME, ETHER_MAX_LEN | (0x2000<<16)); bus_space_write_4(t, h, GEM_MAC_PREAMBLE_LEN, 0x7); bus_space_write_4(t, h, GEM_MAC_JAM_SIZE, 0x4); bus_space_write_4(t, h, GEM_MAC_ATTEMPT_LIMIT, 0x10); /* Dunno.... */ bus_space_write_4(t, h, GEM_MAC_CONTROL_TYPE, 0x8088); bus_space_write_4(t, h, GEM_MAC_RANDOM_SEED, ((laddr[5]<<8)|laddr[4])&0x3ff); /* Secondary MAC addr set to 0:0:0:0:0:0 */ bus_space_write_4(t, h, GEM_MAC_ADDR3, 0); bus_space_write_4(t, h, GEM_MAC_ADDR4, 0); bus_space_write_4(t, h, GEM_MAC_ADDR5, 0); /* MAC control addr set to 01:80:c2:00:00:01 */ bus_space_write_4(t, h, GEM_MAC_ADDR6, 0x0001); bus_space_write_4(t, h, GEM_MAC_ADDR7, 0xc200); bus_space_write_4(t, h, GEM_MAC_ADDR8, 0x0180); /* MAC filter addr set to 0:0:0:0:0:0 */ bus_space_write_4(t, h, GEM_MAC_ADDR_FILTER0, 0); bus_space_write_4(t, h, GEM_MAC_ADDR_FILTER1, 0); bus_space_write_4(t, h, GEM_MAC_ADDR_FILTER2, 0); bus_space_write_4(t, h, GEM_MAC_ADR_FLT_MASK1_2, 0); bus_space_write_4(t, h, GEM_MAC_ADR_FLT_MASK0, 0); sc->sc_inited = 1; } /* Counters need to be zeroed */ bus_space_write_4(t, h, GEM_MAC_NORM_COLL_CNT, 0); bus_space_write_4(t, h, GEM_MAC_FIRST_COLL_CNT, 0); bus_space_write_4(t, h, GEM_MAC_EXCESS_COLL_CNT, 0); bus_space_write_4(t, h, GEM_MAC_LATE_COLL_CNT, 0); bus_space_write_4(t, h, GEM_MAC_DEFER_TMR_CNT, 0); bus_space_write_4(t, h, GEM_MAC_PEAK_ATTEMPTS, 0); bus_space_write_4(t, h, GEM_MAC_RX_FRAME_COUNT, 0); bus_space_write_4(t, h, GEM_MAC_RX_LEN_ERR_CNT, 0); bus_space_write_4(t, h, GEM_MAC_RX_ALIGN_ERR, 0); bus_space_write_4(t, h, GEM_MAC_RX_CRC_ERR_CNT, 0); bus_space_write_4(t, h, GEM_MAC_RX_CODE_VIOL, 0); /* Un-pause stuff */ #if 0 bus_space_write_4(t, h, GEM_MAC_SEND_PAUSE_CMD, 0x1BF0); #else bus_space_write_4(t, h, GEM_MAC_SEND_PAUSE_CMD, 0); #endif /* * Set the station address. */ bus_space_write_4(t, h, GEM_MAC_ADDR0, (laddr[4]<<8)|laddr[5]); bus_space_write_4(t, h, GEM_MAC_ADDR1, (laddr[2]<<8)|laddr[3]); bus_space_write_4(t, h, GEM_MAC_ADDR2, (laddr[0]<<8)|laddr[1]); /* * Enable MII outputs. Enable GMII if there is a gigabit PHY. */ sc->sc_mif_config = bus_space_read_4(t, h, GEM_MIF_CONFIG); v = GEM_MAC_XIF_TX_MII_ENA; if (sc->sc_mif_config & GEM_MIF_CONFIG_MDI1) { v |= GEM_MAC_XIF_FDPLX_LED; if (sc->sc_flags & GEM_GIGABIT) v |= GEM_MAC_XIF_GMII_MODE; } bus_space_write_4(t, h, GEM_MAC_XIF_CONFIG, v); } static void gem_start(ifp) struct ifnet *ifp; { struct gem_softc *sc = (struct gem_softc *)ifp->if_softc; struct mbuf *m0 = NULL; int firsttx, ntx, ofree, txmfail; if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING) return; /* * Remember the previous number of free descriptors and * the first descriptor we'll use. */ ofree = sc->sc_txfree; firsttx = sc->sc_txnext; CTR3(KTR_GEM, "%s: gem_start: txfree %d, txnext %d", device_get_name(sc->sc_dev), ofree, firsttx); /* * Loop through the send queue, setting up transmit descriptors * until we drain the queue, or use up all available transmit * descriptors. */ txmfail = 0; for (ntx = 0;; ntx++) { /* * Grab a packet off the queue. */ IF_DEQUEUE(&ifp->if_snd, m0); if (m0 == NULL) break; txmfail = gem_load_txmbuf(sc, m0); if (txmfail > 0) { /* Drop the mbuf and complain. */ printf("gem_start: error %d while loading mbuf dma " "map\n", txmfail); continue; } /* Not enough descriptors. */ if (txmfail == -1) { if (sc->sc_txfree == GEM_MAXTXFREE) panic("gem_start: mbuf chain too long!"); IF_PREPEND(&ifp->if_snd, m0); break; } /* Kick the transmitter. */ CTR2(KTR_GEM, "%s: gem_start: kicking tx %d", device_get_name(sc->sc_dev), sc->sc_txnext); bus_space_write_4(sc->sc_bustag, sc->sc_h, GEM_TX_KICK, sc->sc_txnext); if (ifp->if_bpf != NULL) bpf_mtap(ifp->if_bpf, m0); } if (txmfail == -1 || sc->sc_txfree == 0) { /* No more slots left; notify upper layer. */ ifp->if_flags |= IFF_OACTIVE; } if (ntx > 0) { CTR2(KTR_GEM, "%s: packets enqueued, OWN on %d", device_get_name(sc->sc_dev), firsttx); /* Set a watchdog timer in case the chip flakes out. */ ifp->if_timer = 5; CTR2(KTR_GEM, "%s: gem_start: watchdog %d", device_get_name(sc->sc_dev), ifp->if_timer); } } /* * Transmit interrupt. */ static void gem_tint(sc) struct gem_softc *sc; { struct ifnet *ifp = &sc->sc_arpcom.ac_if; bus_space_tag_t t = sc->sc_bustag; bus_space_handle_t mac = sc->sc_h; struct gem_txsoft *txs; int txlast; int progress = 0; CTR1(KTR_GEM, "%s: gem_tint", device_get_name(sc->sc_dev)); /* * Unload collision counters */ ifp->if_collisions += bus_space_read_4(t, mac, GEM_MAC_NORM_COLL_CNT) + bus_space_read_4(t, mac, GEM_MAC_FIRST_COLL_CNT) + bus_space_read_4(t, mac, GEM_MAC_EXCESS_COLL_CNT) + bus_space_read_4(t, mac, GEM_MAC_LATE_COLL_CNT); /* * then clear the hardware counters. */ bus_space_write_4(t, mac, GEM_MAC_NORM_COLL_CNT, 0); bus_space_write_4(t, mac, GEM_MAC_FIRST_COLL_CNT, 0); bus_space_write_4(t, mac, GEM_MAC_EXCESS_COLL_CNT, 0); bus_space_write_4(t, mac, GEM_MAC_LATE_COLL_CNT, 0); /* * Go through our Tx list and free mbufs for those * frames that have been transmitted. */ while ((txs = STAILQ_FIRST(&sc->sc_txdirtyq)) != NULL) { GEM_CDTXSYNC(sc, txs->txs_lastdesc, txs->txs_ndescs, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE); #ifdef GEM_DEBUG if (ifp->if_flags & IFF_DEBUG) { int i; printf(" txsoft %p transmit chain:\n", txs); for (i = txs->txs_firstdesc;; i = GEM_NEXTTX(i)) { printf("descriptor %d: ", i); printf("gd_flags: 0x%016llx\t", (long long) GEM_DMA_READ(sc, sc->sc_txdescs[i].gd_flags)); printf("gd_addr: 0x%016llx\n", (long long) GEM_DMA_READ(sc, sc->sc_txdescs[i].gd_addr)); if (i == txs->txs_lastdesc) break; } } #endif /* * In theory, we could harveast some descriptors before * the ring is empty, but that's a bit complicated. * * GEM_TX_COMPLETION points to the last descriptor * processed +1. */ txlast = bus_space_read_4(t, mac, GEM_TX_COMPLETION); CTR3(KTR_GEM, "gem_tint: txs->txs_firstdesc = %d, " "txs->txs_lastdesc = %d, txlast = %d", txs->txs_firstdesc, txs->txs_lastdesc, txlast); if (txs->txs_firstdesc <= txs->txs_lastdesc) { if ((txlast >= txs->txs_firstdesc) && (txlast <= txs->txs_lastdesc)) break; } else { /* Ick -- this command wraps */ if ((txlast >= txs->txs_firstdesc) || (txlast <= txs->txs_lastdesc)) break; } CTR0(KTR_GEM, "gem_tint: releasing a desc"); STAILQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q); sc->sc_txfree += txs->txs_ndescs; bus_dmamap_sync(sc->sc_tdmatag, txs->txs_dmamap, BUS_DMASYNC_POSTWRITE); bus_dmamap_unload(sc->sc_tdmatag, txs->txs_dmamap); if (txs->txs_mbuf != NULL) { m_freem(txs->txs_mbuf); txs->txs_mbuf = NULL; } STAILQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q); ifp->if_opackets++; progress = 1; } CTR3(KTR_GEM, "gem_tint: GEM_TX_STATE_MACHINE %x " "GEM_TX_DATA_PTR %llx " "GEM_TX_COMPLETION %x", bus_space_read_4(sc->sc_bustag, sc->sc_h, GEM_TX_STATE_MACHINE), ((long long) bus_space_read_4(sc->sc_bustag, sc->sc_h, GEM_TX_DATA_PTR_HI) << 32) | bus_space_read_4(sc->sc_bustag, sc->sc_h, GEM_TX_DATA_PTR_LO), bus_space_read_4(sc->sc_bustag, sc->sc_h, GEM_TX_COMPLETION)); if (progress) { if (sc->sc_txfree == GEM_NTXDESC - 1) sc->sc_txwin = 0; /* Freed some descriptors, so reset IFF_OACTIVE and restart. */ ifp->if_flags &= ~IFF_OACTIVE; gem_start(ifp); if (STAILQ_EMPTY(&sc->sc_txdirtyq)) ifp->if_timer = 0; } CTR2(KTR_GEM, "%s: gem_tint: watchdog %d", device_get_name(sc->sc_dev), ifp->if_timer); } #if 0 static void gem_rint_timeout(arg) void *arg; { gem_rint((struct gem_softc *)arg); } #endif /* * Receive interrupt. */ static void gem_rint(sc) struct gem_softc *sc; { struct ifnet *ifp = &sc->sc_arpcom.ac_if; bus_space_tag_t t = sc->sc_bustag; bus_space_handle_t h = sc->sc_h; struct gem_rxsoft *rxs; struct mbuf *m; u_int64_t rxstat; u_int32_t rxcomp; int i, len, progress = 0; callout_stop(&sc->sc_rx_ch); CTR1(KTR_GEM, "%s: gem_rint", device_get_name(sc->sc_dev)); /* * Read the completion register once. This limits * how long the following loop can execute. */ rxcomp = bus_space_read_4(t, h, GEM_RX_COMPLETION); CTR2(KTR_GEM, "gem_rint: sc->rxptr %d, complete %d", sc->sc_rxptr, rxcomp); for (i = sc->sc_rxptr; i != rxcomp; i = GEM_NEXTRX(i)) { rxs = &sc->sc_rxsoft[i]; GEM_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE); rxstat = GEM_DMA_READ(sc, sc->sc_rxdescs[i].gd_flags); if (rxstat & GEM_RD_OWN) { #if 0 /* XXX: In case of emergency, re-enable this. */ /* * The descriptor is still marked as owned, although * it is supposed to have completed. This has been * observed on some machines. Just exiting here * might leave the packet sitting around until another * one arrives to trigger a new interrupt, which is * generally undesirable, so set up a timeout. */ callout_reset(&sc->sc_rx_ch, GEM_RXOWN_TICKS, gem_rint_timeout, sc); #endif break; } progress++; ifp->if_ipackets++; if (rxstat & GEM_RD_BAD_CRC) { ifp->if_ierrors++; device_printf(sc->sc_dev, "receive error: CRC error\n"); GEM_INIT_RXDESC(sc, i); continue; } bus_dmamap_sync(sc->sc_rdmatag, rxs->rxs_dmamap, BUS_DMASYNC_POSTREAD); #ifdef GEM_DEBUG if (ifp->if_flags & IFF_DEBUG) { printf(" rxsoft %p descriptor %d: ", rxs, i); printf("gd_flags: 0x%016llx\t", (long long) GEM_DMA_READ(sc, sc->sc_rxdescs[i].gd_flags)); printf("gd_addr: 0x%016llx\n", (long long) GEM_DMA_READ(sc, sc->sc_rxdescs[i].gd_addr)); } #endif /* * No errors; receive the packet. Note the Gem * includes the CRC with every packet. */ len = GEM_RD_BUFLEN(rxstat); /* * Allocate a new mbuf cluster. If that fails, we are * out of memory, and must drop the packet and recycle * the buffer that's already attached to this descriptor. */ m = rxs->rxs_mbuf; if (gem_add_rxbuf(sc, i) != 0) { ifp->if_ierrors++; GEM_INIT_RXDESC(sc, i); bus_dmamap_sync(sc->sc_rdmatag, rxs->rxs_dmamap, BUS_DMASYNC_PREREAD); continue; } m->m_data += 2; /* We're already off by two */ m->m_pkthdr.rcvif = ifp; m->m_pkthdr.len = m->m_len = len - ETHER_CRC_LEN; /* Pass it on. */ (*ifp->if_input)(ifp, m); } if (progress) { /* Update the receive pointer. */ if (i == sc->sc_rxptr) { device_printf(sc->sc_dev, "rint: ring wrap\n"); } sc->sc_rxptr = i; bus_space_write_4(t, h, GEM_RX_KICK, GEM_PREVRX(i)); } CTR2(KTR_GEM, "gem_rint: done sc->rxptr %d, complete %d", sc->sc_rxptr, bus_space_read_4(t, h, GEM_RX_COMPLETION)); } /* * gem_add_rxbuf: * * Add a receive buffer to the indicated descriptor. */ static int gem_add_rxbuf(sc, idx) struct gem_softc *sc; int idx; { struct gem_rxsoft *rxs = &sc->sc_rxsoft[idx]; struct mbuf *m; int error; m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR); if (m == NULL) return (ENOBUFS); m->m_len = m->m_pkthdr.len = m->m_ext.ext_size; #ifdef GEM_DEBUG /* bzero the packet to check dma */ memset(m->m_ext.ext_buf, 0, m->m_ext.ext_size); #endif if (rxs->rxs_mbuf != NULL) bus_dmamap_unload(sc->sc_rdmatag, rxs->rxs_dmamap); rxs->rxs_mbuf = m; error = bus_dmamap_load_mbuf(sc->sc_rdmatag, rxs->rxs_dmamap, m, gem_rxdma_callback, rxs, BUS_DMA_NOWAIT); if (error != 0 || rxs->rxs_paddr == 0) { device_printf(sc->sc_dev, "can't load rx DMA map %d, error = " "%d\n", idx, error); panic("gem_add_rxbuf"); /* XXX */ } bus_dmamap_sync(sc->sc_rdmatag, rxs->rxs_dmamap, BUS_DMASYNC_PREREAD); GEM_INIT_RXDESC(sc, idx); return (0); } static void gem_eint(sc, status) struct gem_softc *sc; u_int status; { if ((status & GEM_INTR_MIF) != 0) { device_printf(sc->sc_dev, "XXXlink status changed\n"); return; } device_printf(sc->sc_dev, "status=%x\n", status); } void gem_intr(v) void *v; { struct gem_softc *sc = (struct gem_softc *)v; bus_space_tag_t t = sc->sc_bustag; bus_space_handle_t seb = sc->sc_h; u_int32_t status; status = bus_space_read_4(t, seb, GEM_STATUS); CTR3(KTR_GEM, "%s: gem_intr: cplt %x, status %x", device_get_name(sc->sc_dev), (status>>19), (u_int)status); if ((status & (GEM_INTR_RX_TAG_ERR | GEM_INTR_BERR)) != 0) gem_eint(sc, status); if ((status & (GEM_INTR_TX_EMPTY | GEM_INTR_TX_INTME)) != 0) gem_tint(sc); if ((status & (GEM_INTR_RX_DONE | GEM_INTR_RX_NOBUF)) != 0) gem_rint(sc); /* We should eventually do more than just print out error stats. */ if (status & GEM_INTR_TX_MAC) { int txstat = bus_space_read_4(t, seb, GEM_MAC_TX_STATUS); if (txstat & ~GEM_MAC_TX_XMIT_DONE) device_printf(sc->sc_dev, "MAC tx fault, status %x\n", txstat); if (txstat & (GEM_MAC_TX_UNDERRUN | GEM_MAC_TX_PKT_TOO_LONG)) gem_init(sc); } if (status & GEM_INTR_RX_MAC) { int rxstat = bus_space_read_4(t, seb, GEM_MAC_RX_STATUS); if (rxstat & ~(GEM_MAC_RX_DONE | GEM_MAC_RX_FRAME_CNT)) device_printf(sc->sc_dev, "MAC rx fault, status %x\n", rxstat); if ((rxstat & GEM_MAC_RX_OVERFLOW) != 0) gem_init(sc); } } static void gem_watchdog(ifp) struct ifnet *ifp; { struct gem_softc *sc = ifp->if_softc; CTR3(KTR_GEM, "gem_watchdog: GEM_RX_CONFIG %x GEM_MAC_RX_STATUS %x " "GEM_MAC_RX_CONFIG %x", bus_space_read_4(sc->sc_bustag, sc->sc_h, GEM_RX_CONFIG), bus_space_read_4(sc->sc_bustag, sc->sc_h, GEM_MAC_RX_STATUS), bus_space_read_4(sc->sc_bustag, sc->sc_h, GEM_MAC_RX_CONFIG)); CTR3(KTR_GEM, "gem_watchdog: GEM_TX_CONFIG %x GEM_MAC_TX_STATUS %x " "GEM_MAC_TX_CONFIG %x", bus_space_read_4(sc->sc_bustag, sc->sc_h, GEM_TX_CONFIG), bus_space_read_4(sc->sc_bustag, sc->sc_h, GEM_MAC_TX_STATUS), bus_space_read_4(sc->sc_bustag, sc->sc_h, GEM_MAC_TX_CONFIG)); device_printf(sc->sc_dev, "device timeout\n"); ++ifp->if_oerrors; /* Try to get more packets going. */ gem_start(ifp); } /* * Initialize the MII Management Interface */ static void gem_mifinit(sc) struct gem_softc *sc; { bus_space_tag_t t = sc->sc_bustag; bus_space_handle_t mif = sc->sc_h; /* Configure the MIF in frame mode */ sc->sc_mif_config = bus_space_read_4(t, mif, GEM_MIF_CONFIG); sc->sc_mif_config &= ~GEM_MIF_CONFIG_BB_ENA; bus_space_write_4(t, mif, GEM_MIF_CONFIG, sc->sc_mif_config); } /* * MII interface * * The GEM MII interface supports at least three different operating modes: * * Bitbang mode is implemented using data, clock and output enable registers. * * Frame mode is implemented by loading a complete frame into the frame * register and polling the valid bit for completion. * * Polling mode uses the frame register but completion is indicated by * an interrupt. * */ int gem_mii_readreg(dev, phy, reg) device_t dev; int phy, reg; { struct gem_softc *sc = device_get_softc(dev); bus_space_tag_t t = sc->sc_bustag; bus_space_handle_t mif = sc->sc_h; int n; u_int32_t v; #ifdef GEM_DEBUG_PHY printf("gem_mii_readreg: phy %d reg %d\n", phy, reg); #endif #if 0 /* Select the desired PHY in the MIF configuration register */ v = bus_space_read_4(t, mif, GEM_MIF_CONFIG); /* Clear PHY select bit */ v &= ~GEM_MIF_CONFIG_PHY_SEL; if (phy == GEM_PHYAD_EXTERNAL) /* Set PHY select bit to get at external device */ v |= GEM_MIF_CONFIG_PHY_SEL; bus_space_write_4(t, mif, GEM_MIF_CONFIG, v); #endif /* Construct the frame command */ v = (reg << GEM_MIF_REG_SHIFT) | (phy << GEM_MIF_PHY_SHIFT) | GEM_MIF_FRAME_READ; bus_space_write_4(t, mif, GEM_MIF_FRAME, v); for (n = 0; n < 100; n++) { DELAY(1); v = bus_space_read_4(t, mif, GEM_MIF_FRAME); if (v & GEM_MIF_FRAME_TA0) return (v & GEM_MIF_FRAME_DATA); } device_printf(sc->sc_dev, "mii_read timeout\n"); return (0); } int gem_mii_writereg(dev, phy, reg, val) device_t dev; int phy, reg, val; { struct gem_softc *sc = device_get_softc(dev); bus_space_tag_t t = sc->sc_bustag; bus_space_handle_t mif = sc->sc_h; int n; u_int32_t v; #ifdef GEM_DEBUG_PHY printf("gem_mii_writereg: phy %d reg %d val %x\n", phy, reg, val); #endif #if 0 /* Select the desired PHY in the MIF configuration register */ v = bus_space_read_4(t, mif, GEM_MIF_CONFIG); /* Clear PHY select bit */ v &= ~GEM_MIF_CONFIG_PHY_SEL; if (phy == GEM_PHYAD_EXTERNAL) /* Set PHY select bit to get at external device */ v |= GEM_MIF_CONFIG_PHY_SEL; bus_space_write_4(t, mif, GEM_MIF_CONFIG, v); #endif /* Construct the frame command */ v = GEM_MIF_FRAME_WRITE | (phy << GEM_MIF_PHY_SHIFT) | (reg << GEM_MIF_REG_SHIFT) | (val & GEM_MIF_FRAME_DATA); bus_space_write_4(t, mif, GEM_MIF_FRAME, v); for (n = 0; n < 100; n++) { DELAY(1); v = bus_space_read_4(t, mif, GEM_MIF_FRAME); if (v & GEM_MIF_FRAME_TA0) return (1); } device_printf(sc->sc_dev, "mii_write timeout\n"); return (0); } void gem_mii_statchg(dev) device_t dev; { struct gem_softc *sc = device_get_softc(dev); #ifdef GEM_DEBUG int instance = IFM_INST(sc->sc_mii->mii_media.ifm_cur->ifm_media); #endif bus_space_tag_t t = sc->sc_bustag; bus_space_handle_t mac = sc->sc_h; u_int32_t v; #ifdef GEM_DEBUG if (sc->sc_debug) printf("gem_mii_statchg: status change: phy = %d\n", sc->sc_phys[instance]); #endif /* Set tx full duplex options */ bus_space_write_4(t, mac, GEM_MAC_TX_CONFIG, 0); DELAY(10000); /* reg must be cleared and delay before changing. */ v = GEM_MAC_TX_ENA_IPG0|GEM_MAC_TX_NGU|GEM_MAC_TX_NGU_LIMIT| GEM_MAC_TX_ENABLE; if ((IFM_OPTIONS(sc->sc_mii->mii_media_active) & IFM_FDX) != 0) { v |= GEM_MAC_TX_IGN_CARRIER|GEM_MAC_TX_IGN_COLLIS; } bus_space_write_4(t, mac, GEM_MAC_TX_CONFIG, v); /* XIF Configuration */ /* We should really calculate all this rather than rely on defaults */ v = bus_space_read_4(t, mac, GEM_MAC_XIF_CONFIG); v = GEM_MAC_XIF_LINK_LED; v |= GEM_MAC_XIF_TX_MII_ENA; /* If an external transceiver is connected, enable its MII drivers */ sc->sc_mif_config = bus_space_read_4(t, mac, GEM_MIF_CONFIG); if ((sc->sc_mif_config & GEM_MIF_CONFIG_MDI1) != 0) { /* External MII needs echo disable if half duplex. */ if ((IFM_OPTIONS(sc->sc_mii->mii_media_active) & IFM_FDX) != 0) /* turn on full duplex LED */ v |= GEM_MAC_XIF_FDPLX_LED; else /* half duplex -- disable echo */ v |= GEM_MAC_XIF_ECHO_DISABL; if (IFM_SUBTYPE(sc->sc_mii->mii_media_active) == IFM_1000_T) v |= GEM_MAC_XIF_GMII_MODE; else v &= ~GEM_MAC_XIF_GMII_MODE; } else { /* Internal MII needs buf enable */ v |= GEM_MAC_XIF_MII_BUF_ENA; } bus_space_write_4(t, mac, GEM_MAC_XIF_CONFIG, v); } int gem_mediachange(ifp) struct ifnet *ifp; { struct gem_softc *sc = ifp->if_softc; /* XXX Add support for serial media. */ return (mii_mediachg(sc->sc_mii)); } void gem_mediastatus(ifp, ifmr) struct ifnet *ifp; struct ifmediareq *ifmr; { struct gem_softc *sc = ifp->if_softc; if ((ifp->if_flags & IFF_UP) == 0) return; mii_pollstat(sc->sc_mii); ifmr->ifm_active = sc->sc_mii->mii_media_active; ifmr->ifm_status = sc->sc_mii->mii_media_status; } /* * Process an ioctl request. */ static int gem_ioctl(ifp, cmd, data) struct ifnet *ifp; u_long cmd; caddr_t data; { struct gem_softc *sc = ifp->if_softc; struct ifreq *ifr = (struct ifreq *)data; int s, error = 0; switch (cmd) { case SIOCSIFADDR: case SIOCGIFADDR: case SIOCSIFMTU: error = ether_ioctl(ifp, cmd, data); break; case SIOCSIFFLAGS: if (ifp->if_flags & IFF_UP) { if ((sc->sc_ifflags ^ ifp->if_flags) == IFF_PROMISC) gem_setladrf(sc); else gem_init(sc); } else { if (ifp->if_flags & IFF_RUNNING) gem_stop(ifp, 0); } sc->sc_ifflags = ifp->if_flags; error = 0; break; case SIOCADDMULTI: case SIOCDELMULTI: gem_setladrf(sc); error = 0; break; case SIOCGIFMEDIA: case SIOCSIFMEDIA: error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii->mii_media, cmd); break; default: error = ENOTTY; break; } /* Try to get things going again */ if (ifp->if_flags & IFF_UP) gem_start(ifp); splx(s); return (error); } /* * Set up the logical address filter. */ static void gem_setladrf(sc) struct gem_softc *sc; { struct ifnet *ifp = &sc->sc_arpcom.ac_if; struct ifmultiaddr *inm; struct sockaddr_dl *sdl; bus_space_tag_t t = sc->sc_bustag; bus_space_handle_t h = sc->sc_h; u_char *cp; u_int32_t crc; u_int32_t hash[16]; u_int32_t v; int len; int i; /* Get current RX configuration */ v = bus_space_read_4(t, h, GEM_MAC_RX_CONFIG); /* * Turn off promiscuous mode, promiscuous group mode (all multicast), * and hash filter. Depending on the case, the right bit will be * enabled. */ v &= ~(GEM_MAC_RX_PROMISCUOUS|GEM_MAC_RX_HASH_FILTER| GEM_MAC_RX_PROMISC_GRP); if ((ifp->if_flags & IFF_PROMISC) != 0) { /* Turn on promiscuous mode */ v |= GEM_MAC_RX_PROMISCUOUS; goto chipit; } if ((ifp->if_flags & IFF_ALLMULTI) != 0) { hash[3] = hash[2] = hash[1] = hash[0] = 0xffff; ifp->if_flags |= IFF_ALLMULTI; v |= GEM_MAC_RX_PROMISC_GRP; goto chipit; } /* * Set up multicast address filter by passing all multicast addresses * through a crc generator, and then using the high order 8 bits as an * index into the 256 bit logical address filter. The high order 4 * bits selects the word, while the other 4 bits select the bit within * the word (where bit 0 is the MSB). */ /* Clear hash table */ memset(hash, 0, sizeof(hash)); TAILQ_FOREACH(inm, &sc->sc_arpcom.ac_if.if_multiaddrs, ifma_link) { if (inm->ifma_addr->sa_family != AF_LINK) continue; sdl = (struct sockaddr_dl *)inm->ifma_addr; cp = LLADDR(sdl); crc = 0xffffffff; for (len = sdl->sdl_alen; --len >= 0;) { int octet = *cp++; int i; #define MC_POLY_LE 0xedb88320UL /* mcast crc, little endian */ for (i = 0; i < 8; i++) { if ((crc & 1) ^ (octet & 1)) { crc >>= 1; crc ^= MC_POLY_LE; } else { crc >>= 1; } octet >>= 1; } } /* Just want the 8 most significant bits. */ crc >>= 24; /* Set the corresponding bit in the filter. */ hash[crc >> 4] |= 1 << (15 - (crc & 15)); } v |= GEM_MAC_RX_HASH_FILTER; ifp->if_flags &= ~IFF_ALLMULTI; /* Now load the hash table into the chip (if we are using it) */ for (i = 0; i < 16; i++) { bus_space_write_4(t, h, GEM_MAC_HASH0 + i * (GEM_MAC_HASH1-GEM_MAC_HASH0), hash[i]); } chipit: bus_space_write_4(t, h, GEM_MAC_RX_CONFIG, v); } #if notyet /* * gem_power: * * Power management (suspend/resume) hook. */ void static gem_power(why, arg) int why; void *arg; { struct gem_softc *sc = arg; struct ifnet *ifp = &sc->sc_arpcom.ac_if; int s; s = splnet(); switch (why) { case PWR_SUSPEND: case PWR_STANDBY: gem_stop(ifp, 1); if (sc->sc_power != NULL) (*sc->sc_power)(sc, why); break; case PWR_RESUME: if (ifp->if_flags & IFF_UP) { if (sc->sc_power != NULL) (*sc->sc_power)(sc, why); gem_init(ifp); } break; case PWR_SOFTSUSPEND: case PWR_SOFTSTANDBY: case PWR_SOFTRESUME: break; } splx(s); } #endif