/*- * Copyright (c) 2007-2009 Bruce Simpson. * Copyright (c) 2005 Robert N. M. Watson. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. The name of the author may not be used to endorse or promote * products derived from this software without specific prior written * permission. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ /* * IPv4 multicast socket, group, and socket option processing module. */ #include __FBSDID("$FreeBSD$"); #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifndef KTR_IGMPV3 #define KTR_IGMPV3 KTR_INET #endif #ifndef __SOCKUNION_DECLARED union sockunion { struct sockaddr_storage ss; struct sockaddr sa; struct sockaddr_dl sdl; struct sockaddr_in sin; }; typedef union sockunion sockunion_t; #define __SOCKUNION_DECLARED #endif /* __SOCKUNION_DECLARED */ static MALLOC_DEFINE(M_INMFILTER, "in_mfilter", "IPv4 multicast PCB-layer source filter"); static MALLOC_DEFINE(M_IPMADDR, "in_multi", "IPv4 multicast group"); static MALLOC_DEFINE(M_IPMOPTS, "ip_moptions", "IPv4 multicast options"); static MALLOC_DEFINE(M_IPMSOURCE, "ip_msource", "IPv4 multicast IGMP-layer source filter"); /* * Locking: * - Lock order is: Giant, INP_WLOCK, IN_MULTI_LOCK, IGMP_LOCK, IF_ADDR_LOCK. * - The IF_ADDR_LOCK is implicitly taken by inm_lookup() earlier, however * it can be taken by code in net/if.c also. * - ip_moptions and in_mfilter are covered by the INP_WLOCK. * * struct in_multi is covered by IN_MULTI_LOCK. There isn't strictly * any need for in_multi itself to be virtualized -- it is bound to an ifp * anyway no matter what happens. */ struct mtx in_multi_mtx; MTX_SYSINIT(in_multi_mtx, &in_multi_mtx, "in_multi_mtx", MTX_DEF); /* * Functions with non-static linkage defined in this file should be * declared in in_var.h: * imo_multi_filter() * in_addmulti() * in_delmulti() * in_joingroup() * in_joingroup_locked() * in_leavegroup() * in_leavegroup_locked() * and ip_var.h: * inp_freemoptions() * inp_getmoptions() * inp_setmoptions() * * XXX: Both carp and pf need to use the legacy (*,G) KPIs in_addmulti() * and in_delmulti(). */ static void imf_commit(struct in_mfilter *); static int imf_get_source(struct in_mfilter *imf, const struct sockaddr_in *psin, struct in_msource **); static struct in_msource * imf_graft(struct in_mfilter *, const uint8_t, const struct sockaddr_in *); static void imf_leave(struct in_mfilter *); static int imf_prune(struct in_mfilter *, const struct sockaddr_in *); static void imf_purge(struct in_mfilter *); static void imf_rollback(struct in_mfilter *); static void imf_reap(struct in_mfilter *); static int imo_grow(struct ip_moptions *); static size_t imo_match_group(const struct ip_moptions *, const struct ifnet *, const struct sockaddr *); static struct in_msource * imo_match_source(const struct ip_moptions *, const size_t, const struct sockaddr *); static void ims_merge(struct ip_msource *ims, const struct in_msource *lims, const int rollback); static int in_getmulti(struct ifnet *, const struct in_addr *, struct in_multi **); static int inm_get_source(struct in_multi *inm, const in_addr_t haddr, const int noalloc, struct ip_msource **pims); #ifdef KTR static int inm_is_ifp_detached(const struct in_multi *); #endif static int inm_merge(struct in_multi *, /*const*/ struct in_mfilter *); static void inm_purge(struct in_multi *); static void inm_reap(struct in_multi *); static struct ip_moptions * inp_findmoptions(struct inpcb *); static void inp_freemoptions_internal(struct ip_moptions *); static void inp_gcmoptions(void *, int); static int inp_get_source_filters(struct inpcb *, struct sockopt *); static int inp_join_group(struct inpcb *, struct sockopt *); static int inp_leave_group(struct inpcb *, struct sockopt *); static struct ifnet * inp_lookup_mcast_ifp(const struct inpcb *, const struct sockaddr_in *, const struct in_addr); static int inp_block_unblock_source(struct inpcb *, struct sockopt *); static int inp_set_multicast_if(struct inpcb *, struct sockopt *); static int inp_set_source_filters(struct inpcb *, struct sockopt *); static int sysctl_ip_mcast_filters(SYSCTL_HANDLER_ARGS); static SYSCTL_NODE(_net_inet_ip, OID_AUTO, mcast, CTLFLAG_RW, 0, "IPv4 multicast"); static u_long in_mcast_maxgrpsrc = IP_MAX_GROUP_SRC_FILTER; SYSCTL_ULONG(_net_inet_ip_mcast, OID_AUTO, maxgrpsrc, CTLFLAG_RWTUN, &in_mcast_maxgrpsrc, 0, "Max source filters per group"); static u_long in_mcast_maxsocksrc = IP_MAX_SOCK_SRC_FILTER; SYSCTL_ULONG(_net_inet_ip_mcast, OID_AUTO, maxsocksrc, CTLFLAG_RWTUN, &in_mcast_maxsocksrc, 0, "Max source filters per socket"); int in_mcast_loop = IP_DEFAULT_MULTICAST_LOOP; SYSCTL_INT(_net_inet_ip_mcast, OID_AUTO, loop, CTLFLAG_RWTUN, &in_mcast_loop, 0, "Loopback multicast datagrams by default"); static SYSCTL_NODE(_net_inet_ip_mcast, OID_AUTO, filters, CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_ip_mcast_filters, "Per-interface stack-wide source filters"); static STAILQ_HEAD(, ip_moptions) imo_gc_list = STAILQ_HEAD_INITIALIZER(imo_gc_list); static struct task imo_gc_task = TASK_INITIALIZER(0, inp_gcmoptions, NULL); #ifdef KTR /* * Inline function which wraps assertions for a valid ifp. * The ifnet layer will set the ifma's ifp pointer to NULL if the ifp * is detached. */ static int __inline inm_is_ifp_detached(const struct in_multi *inm) { struct ifnet *ifp; KASSERT(inm->inm_ifma != NULL, ("%s: no ifma", __func__)); ifp = inm->inm_ifma->ifma_ifp; if (ifp != NULL) { /* * Sanity check that netinet's notion of ifp is the * same as net's. */ KASSERT(inm->inm_ifp == ifp, ("%s: bad ifp", __func__)); } return (ifp == NULL); } #endif /* * Initialize an in_mfilter structure to a known state at t0, t1 * with an empty source filter list. */ static __inline void imf_init(struct in_mfilter *imf, const int st0, const int st1) { memset(imf, 0, sizeof(struct in_mfilter)); RB_INIT(&imf->imf_sources); imf->imf_st[0] = st0; imf->imf_st[1] = st1; } /* * Function for looking up an in_multi record for an IPv4 multicast address * on a given interface. ifp must be valid. If no record found, return NULL. * The IN_MULTI_LOCK and IF_ADDR_LOCK on ifp must be held. */ struct in_multi * inm_lookup_locked(struct ifnet *ifp, const struct in_addr ina) { struct ifmultiaddr *ifma; struct in_multi *inm; IN_MULTI_LOCK_ASSERT(); IF_ADDR_LOCK_ASSERT(ifp); inm = NULL; TAILQ_FOREACH(ifma, &((ifp)->if_multiaddrs), ifma_link) { if (ifma->ifma_addr->sa_family == AF_INET) { inm = (struct in_multi *)ifma->ifma_protospec; if (inm->inm_addr.s_addr == ina.s_addr) break; inm = NULL; } } return (inm); } /* * Wrapper for inm_lookup_locked(). * The IF_ADDR_LOCK will be taken on ifp and released on return. */ struct in_multi * inm_lookup(struct ifnet *ifp, const struct in_addr ina) { struct in_multi *inm; IN_MULTI_LOCK_ASSERT(); IF_ADDR_RLOCK(ifp); inm = inm_lookup_locked(ifp, ina); IF_ADDR_RUNLOCK(ifp); return (inm); } /* * Resize the ip_moptions vector to the next power-of-two minus 1. * May be called with locks held; do not sleep. */ static int imo_grow(struct ip_moptions *imo) { struct in_multi **nmships; struct in_multi **omships; struct in_mfilter *nmfilters; struct in_mfilter *omfilters; size_t idx; size_t newmax; size_t oldmax; nmships = NULL; nmfilters = NULL; omships = imo->imo_membership; omfilters = imo->imo_mfilters; oldmax = imo->imo_max_memberships; newmax = ((oldmax + 1) * 2) - 1; if (newmax <= IP_MAX_MEMBERSHIPS) { nmships = (struct in_multi **)realloc(omships, sizeof(struct in_multi *) * newmax, M_IPMOPTS, M_NOWAIT); nmfilters = (struct in_mfilter *)realloc(omfilters, sizeof(struct in_mfilter) * newmax, M_INMFILTER, M_NOWAIT); if (nmships != NULL && nmfilters != NULL) { /* Initialize newly allocated source filter heads. */ for (idx = oldmax; idx < newmax; idx++) { imf_init(&nmfilters[idx], MCAST_UNDEFINED, MCAST_EXCLUDE); } imo->imo_max_memberships = newmax; imo->imo_membership = nmships; imo->imo_mfilters = nmfilters; } } if (nmships == NULL || nmfilters == NULL) { if (nmships != NULL) free(nmships, M_IPMOPTS); if (nmfilters != NULL) free(nmfilters, M_INMFILTER); return (ETOOMANYREFS); } return (0); } /* * Find an IPv4 multicast group entry for this ip_moptions instance * which matches the specified group, and optionally an interface. * Return its index into the array, or -1 if not found. */ static size_t imo_match_group(const struct ip_moptions *imo, const struct ifnet *ifp, const struct sockaddr *group) { const struct sockaddr_in *gsin; struct in_multi **pinm; int idx; int nmships; gsin = (const struct sockaddr_in *)group; /* The imo_membership array may be lazy allocated. */ if (imo->imo_membership == NULL || imo->imo_num_memberships == 0) return (-1); nmships = imo->imo_num_memberships; pinm = &imo->imo_membership[0]; for (idx = 0; idx < nmships; idx++, pinm++) { if (*pinm == NULL) continue; if ((ifp == NULL || ((*pinm)->inm_ifp == ifp)) && in_hosteq((*pinm)->inm_addr, gsin->sin_addr)) { break; } } if (idx >= nmships) idx = -1; return (idx); } /* * Find an IPv4 multicast source entry for this imo which matches * the given group index for this socket, and source address. * * NOTE: This does not check if the entry is in-mode, merely if * it exists, which may not be the desired behaviour. */ static struct in_msource * imo_match_source(const struct ip_moptions *imo, const size_t gidx, const struct sockaddr *src) { struct ip_msource find; struct in_mfilter *imf; struct ip_msource *ims; const sockunion_t *psa; KASSERT(src->sa_family == AF_INET, ("%s: !AF_INET", __func__)); KASSERT(gidx != -1 && gidx < imo->imo_num_memberships, ("%s: invalid index %d\n", __func__, (int)gidx)); /* The imo_mfilters array may be lazy allocated. */ if (imo->imo_mfilters == NULL) return (NULL); imf = &imo->imo_mfilters[gidx]; /* Source trees are keyed in host byte order. */ psa = (const sockunion_t *)src; find.ims_haddr = ntohl(psa->sin.sin_addr.s_addr); ims = RB_FIND(ip_msource_tree, &imf->imf_sources, &find); return ((struct in_msource *)ims); } /* * Perform filtering for multicast datagrams on a socket by group and source. * * Returns 0 if a datagram should be allowed through, or various error codes * if the socket was not a member of the group, or the source was muted, etc. */ int imo_multi_filter(const struct ip_moptions *imo, const struct ifnet *ifp, const struct sockaddr *group, const struct sockaddr *src) { size_t gidx; struct in_msource *ims; int mode; KASSERT(ifp != NULL, ("%s: null ifp", __func__)); gidx = imo_match_group(imo, ifp, group); if (gidx == -1) return (MCAST_NOTGMEMBER); /* * Check if the source was included in an (S,G) join. * Allow reception on exclusive memberships by default, * reject reception on inclusive memberships by default. * Exclude source only if an in-mode exclude filter exists. * Include source only if an in-mode include filter exists. * NOTE: We are comparing group state here at IGMP t1 (now) * with socket-layer t0 (since last downcall). */ mode = imo->imo_mfilters[gidx].imf_st[1]; ims = imo_match_source(imo, gidx, src); if ((ims == NULL && mode == MCAST_INCLUDE) || (ims != NULL && ims->imsl_st[0] != mode)) return (MCAST_NOTSMEMBER); return (MCAST_PASS); } /* * Find and return a reference to an in_multi record for (ifp, group), * and bump its reference count. * If one does not exist, try to allocate it, and update link-layer multicast * filters on ifp to listen for group. * Assumes the IN_MULTI lock is held across the call. * Return 0 if successful, otherwise return an appropriate error code. */ static int in_getmulti(struct ifnet *ifp, const struct in_addr *group, struct in_multi **pinm) { struct sockaddr_in gsin; struct ifmultiaddr *ifma; struct in_ifinfo *ii; struct in_multi *inm; int error; IN_MULTI_LOCK_ASSERT(); ii = (struct in_ifinfo *)ifp->if_afdata[AF_INET]; inm = inm_lookup(ifp, *group); if (inm != NULL) { /* * If we already joined this group, just bump the * refcount and return it. */ KASSERT(inm->inm_refcount >= 1, ("%s: bad refcount %d", __func__, inm->inm_refcount)); ++inm->inm_refcount; *pinm = inm; return (0); } memset(&gsin, 0, sizeof(gsin)); gsin.sin_family = AF_INET; gsin.sin_len = sizeof(struct sockaddr_in); gsin.sin_addr = *group; /* * Check if a link-layer group is already associated * with this network-layer group on the given ifnet. */ error = if_addmulti(ifp, (struct sockaddr *)&gsin, &ifma); if (error != 0) return (error); /* XXX ifma_protospec must be covered by IF_ADDR_LOCK */ IF_ADDR_WLOCK(ifp); /* * If something other than netinet is occupying the link-layer * group, print a meaningful error message and back out of * the allocation. * Otherwise, bump the refcount on the existing network-layer * group association and return it. */ if (ifma->ifma_protospec != NULL) { inm = (struct in_multi *)ifma->ifma_protospec; #ifdef INVARIANTS KASSERT(ifma->ifma_addr != NULL, ("%s: no ifma_addr", __func__)); KASSERT(ifma->ifma_addr->sa_family == AF_INET, ("%s: ifma not AF_INET", __func__)); KASSERT(inm != NULL, ("%s: no ifma_protospec", __func__)); if (inm->inm_ifma != ifma || inm->inm_ifp != ifp || !in_hosteq(inm->inm_addr, *group)) panic("%s: ifma %p is inconsistent with %p (%s)", __func__, ifma, inm, inet_ntoa(*group)); #endif ++inm->inm_refcount; *pinm = inm; IF_ADDR_WUNLOCK(ifp); return (0); } IF_ADDR_WLOCK_ASSERT(ifp); /* * A new in_multi record is needed; allocate and initialize it. * We DO NOT perform an IGMP join as the in_ layer may need to * push an initial source list down to IGMP to support SSM. * * The initial source filter state is INCLUDE, {} as per the RFC. */ inm = malloc(sizeof(*inm), M_IPMADDR, M_NOWAIT | M_ZERO); if (inm == NULL) { IF_ADDR_WUNLOCK(ifp); if_delmulti_ifma(ifma); return (ENOMEM); } inm->inm_addr = *group; inm->inm_ifp = ifp; inm->inm_igi = ii->ii_igmp; inm->inm_ifma = ifma; inm->inm_refcount = 1; inm->inm_state = IGMP_NOT_MEMBER; mbufq_init(&inm->inm_scq, IGMP_MAX_STATE_CHANGES); inm->inm_st[0].iss_fmode = MCAST_UNDEFINED; inm->inm_st[1].iss_fmode = MCAST_UNDEFINED; RB_INIT(&inm->inm_srcs); ifma->ifma_protospec = inm; *pinm = inm; IF_ADDR_WUNLOCK(ifp); return (0); } /* * Drop a reference to an in_multi record. * * If the refcount drops to 0, free the in_multi record and * delete the underlying link-layer membership. */ void inm_release_locked(struct in_multi *inm) { struct ifmultiaddr *ifma; IN_MULTI_LOCK_ASSERT(); CTR2(KTR_IGMPV3, "%s: refcount is %d", __func__, inm->inm_refcount); if (--inm->inm_refcount > 0) { CTR2(KTR_IGMPV3, "%s: refcount is now %d", __func__, inm->inm_refcount); return; } CTR2(KTR_IGMPV3, "%s: freeing inm %p", __func__, inm); ifma = inm->inm_ifma; /* XXX this access is not covered by IF_ADDR_LOCK */ CTR2(KTR_IGMPV3, "%s: purging ifma %p", __func__, ifma); KASSERT(ifma->ifma_protospec == inm, ("%s: ifma_protospec != inm", __func__)); ifma->ifma_protospec = NULL; inm_purge(inm); free(inm, M_IPMADDR); if_delmulti_ifma(ifma); } /* * Clear recorded source entries for a group. * Used by the IGMP code. Caller must hold the IN_MULTI lock. * FIXME: Should reap. */ void inm_clear_recorded(struct in_multi *inm) { struct ip_msource *ims; IN_MULTI_LOCK_ASSERT(); RB_FOREACH(ims, ip_msource_tree, &inm->inm_srcs) { if (ims->ims_stp) { ims->ims_stp = 0; --inm->inm_st[1].iss_rec; } } KASSERT(inm->inm_st[1].iss_rec == 0, ("%s: iss_rec %d not 0", __func__, inm->inm_st[1].iss_rec)); } /* * Record a source as pending for a Source-Group IGMPv3 query. * This lives here as it modifies the shared tree. * * inm is the group descriptor. * naddr is the address of the source to record in network-byte order. * * If the net.inet.igmp.sgalloc sysctl is non-zero, we will * lazy-allocate a source node in response to an SG query. * Otherwise, no allocation is performed. This saves some memory * with the trade-off that the source will not be reported to the * router if joined in the window between the query response and * the group actually being joined on the local host. * * VIMAGE: XXX: Currently the igmp_sgalloc feature has been removed. * This turns off the allocation of a recorded source entry if * the group has not been joined. * * Return 0 if the source didn't exist or was already marked as recorded. * Return 1 if the source was marked as recorded by this function. * Return <0 if any error occured (negated errno code). */ int inm_record_source(struct in_multi *inm, const in_addr_t naddr) { struct ip_msource find; struct ip_msource *ims, *nims; IN_MULTI_LOCK_ASSERT(); find.ims_haddr = ntohl(naddr); ims = RB_FIND(ip_msource_tree, &inm->inm_srcs, &find); if (ims && ims->ims_stp) return (0); if (ims == NULL) { if (inm->inm_nsrc == in_mcast_maxgrpsrc) return (-ENOSPC); nims = malloc(sizeof(struct ip_msource), M_IPMSOURCE, M_NOWAIT | M_ZERO); if (nims == NULL) return (-ENOMEM); nims->ims_haddr = find.ims_haddr; RB_INSERT(ip_msource_tree, &inm->inm_srcs, nims); ++inm->inm_nsrc; ims = nims; } /* * Mark the source as recorded and update the recorded * source count. */ ++ims->ims_stp; ++inm->inm_st[1].iss_rec; return (1); } /* * Return a pointer to an in_msource owned by an in_mfilter, * given its source address. * Lazy-allocate if needed. If this is a new entry its filter state is * undefined at t0. * * imf is the filter set being modified. * haddr is the source address in *host* byte-order. * * SMPng: May be called with locks held; malloc must not block. */ static int imf_get_source(struct in_mfilter *imf, const struct sockaddr_in *psin, struct in_msource **plims) { struct ip_msource find; struct ip_msource *ims, *nims; struct in_msource *lims; int error; error = 0; ims = NULL; lims = NULL; /* key is host byte order */ find.ims_haddr = ntohl(psin->sin_addr.s_addr); ims = RB_FIND(ip_msource_tree, &imf->imf_sources, &find); lims = (struct in_msource *)ims; if (lims == NULL) { if (imf->imf_nsrc == in_mcast_maxsocksrc) return (ENOSPC); nims = malloc(sizeof(struct in_msource), M_INMFILTER, M_NOWAIT | M_ZERO); if (nims == NULL) return (ENOMEM); lims = (struct in_msource *)nims; lims->ims_haddr = find.ims_haddr; lims->imsl_st[0] = MCAST_UNDEFINED; RB_INSERT(ip_msource_tree, &imf->imf_sources, nims); ++imf->imf_nsrc; } *plims = lims; return (error); } /* * Graft a source entry into an existing socket-layer filter set, * maintaining any required invariants and checking allocations. * * The source is marked as being in the new filter mode at t1. * * Return the pointer to the new node, otherwise return NULL. */ static struct in_msource * imf_graft(struct in_mfilter *imf, const uint8_t st1, const struct sockaddr_in *psin) { struct ip_msource *nims; struct in_msource *lims; nims = malloc(sizeof(struct in_msource), M_INMFILTER, M_NOWAIT | M_ZERO); if (nims == NULL) return (NULL); lims = (struct in_msource *)nims; lims->ims_haddr = ntohl(psin->sin_addr.s_addr); lims->imsl_st[0] = MCAST_UNDEFINED; lims->imsl_st[1] = st1; RB_INSERT(ip_msource_tree, &imf->imf_sources, nims); ++imf->imf_nsrc; return (lims); } /* * Prune a source entry from an existing socket-layer filter set, * maintaining any required invariants and checking allocations. * * The source is marked as being left at t1, it is not freed. * * Return 0 if no error occurred, otherwise return an errno value. */ static int imf_prune(struct in_mfilter *imf, const struct sockaddr_in *psin) { struct ip_msource find; struct ip_msource *ims; struct in_msource *lims; /* key is host byte order */ find.ims_haddr = ntohl(psin->sin_addr.s_addr); ims = RB_FIND(ip_msource_tree, &imf->imf_sources, &find); if (ims == NULL) return (ENOENT); lims = (struct in_msource *)ims; lims->imsl_st[1] = MCAST_UNDEFINED; return (0); } /* * Revert socket-layer filter set deltas at t1 to t0 state. */ static void imf_rollback(struct in_mfilter *imf) { struct ip_msource *ims, *tims; struct in_msource *lims; RB_FOREACH_SAFE(ims, ip_msource_tree, &imf->imf_sources, tims) { lims = (struct in_msource *)ims; if (lims->imsl_st[0] == lims->imsl_st[1]) { /* no change at t1 */ continue; } else if (lims->imsl_st[0] != MCAST_UNDEFINED) { /* revert change to existing source at t1 */ lims->imsl_st[1] = lims->imsl_st[0]; } else { /* revert source added t1 */ CTR2(KTR_IGMPV3, "%s: free ims %p", __func__, ims); RB_REMOVE(ip_msource_tree, &imf->imf_sources, ims); free(ims, M_INMFILTER); imf->imf_nsrc--; } } imf->imf_st[1] = imf->imf_st[0]; } /* * Mark socket-layer filter set as INCLUDE {} at t1. */ static void imf_leave(struct in_mfilter *imf) { struct ip_msource *ims; struct in_msource *lims; RB_FOREACH(ims, ip_msource_tree, &imf->imf_sources) { lims = (struct in_msource *)ims; lims->imsl_st[1] = MCAST_UNDEFINED; } imf->imf_st[1] = MCAST_INCLUDE; } /* * Mark socket-layer filter set deltas as committed. */ static void imf_commit(struct in_mfilter *imf) { struct ip_msource *ims; struct in_msource *lims; RB_FOREACH(ims, ip_msource_tree, &imf->imf_sources) { lims = (struct in_msource *)ims; lims->imsl_st[0] = lims->imsl_st[1]; } imf->imf_st[0] = imf->imf_st[1]; } /* * Reap unreferenced sources from socket-layer filter set. */ static void imf_reap(struct in_mfilter *imf) { struct ip_msource *ims, *tims; struct in_msource *lims; RB_FOREACH_SAFE(ims, ip_msource_tree, &imf->imf_sources, tims) { lims = (struct in_msource *)ims; if ((lims->imsl_st[0] == MCAST_UNDEFINED) && (lims->imsl_st[1] == MCAST_UNDEFINED)) { CTR2(KTR_IGMPV3, "%s: free lims %p", __func__, ims); RB_REMOVE(ip_msource_tree, &imf->imf_sources, ims); free(ims, M_INMFILTER); imf->imf_nsrc--; } } } /* * Purge socket-layer filter set. */ static void imf_purge(struct in_mfilter *imf) { struct ip_msource *ims, *tims; RB_FOREACH_SAFE(ims, ip_msource_tree, &imf->imf_sources, tims) { CTR2(KTR_IGMPV3, "%s: free ims %p", __func__, ims); RB_REMOVE(ip_msource_tree, &imf->imf_sources, ims); free(ims, M_INMFILTER); imf->imf_nsrc--; } imf->imf_st[0] = imf->imf_st[1] = MCAST_UNDEFINED; KASSERT(RB_EMPTY(&imf->imf_sources), ("%s: imf_sources not empty", __func__)); } /* * Look up a source filter entry for a multicast group. * * inm is the group descriptor to work with. * haddr is the host-byte-order IPv4 address to look up. * noalloc may be non-zero to suppress allocation of sources. * *pims will be set to the address of the retrieved or allocated source. * * SMPng: NOTE: may be called with locks held. * Return 0 if successful, otherwise return a non-zero error code. */ static int inm_get_source(struct in_multi *inm, const in_addr_t haddr, const int noalloc, struct ip_msource **pims) { struct ip_msource find; struct ip_msource *ims, *nims; #ifdef KTR struct in_addr ia; #endif find.ims_haddr = haddr; ims = RB_FIND(ip_msource_tree, &inm->inm_srcs, &find); if (ims == NULL && !noalloc) { if (inm->inm_nsrc == in_mcast_maxgrpsrc) return (ENOSPC); nims = malloc(sizeof(struct ip_msource), M_IPMSOURCE, M_NOWAIT | M_ZERO); if (nims == NULL) return (ENOMEM); nims->ims_haddr = haddr; RB_INSERT(ip_msource_tree, &inm->inm_srcs, nims); ++inm->inm_nsrc; ims = nims; #ifdef KTR ia.s_addr = htonl(haddr); CTR3(KTR_IGMPV3, "%s: allocated %s as %p", __func__, inet_ntoa(ia), ims); #endif } *pims = ims; return (0); } /* * Merge socket-layer source into IGMP-layer source. * If rollback is non-zero, perform the inverse of the merge. */ static void ims_merge(struct ip_msource *ims, const struct in_msource *lims, const int rollback) { int n = rollback ? -1 : 1; #ifdef KTR struct in_addr ia; ia.s_addr = htonl(ims->ims_haddr); #endif if (lims->imsl_st[0] == MCAST_EXCLUDE) { CTR3(KTR_IGMPV3, "%s: t1 ex -= %d on %s", __func__, n, inet_ntoa(ia)); ims->ims_st[1].ex -= n; } else if (lims->imsl_st[0] == MCAST_INCLUDE) { CTR3(KTR_IGMPV3, "%s: t1 in -= %d on %s", __func__, n, inet_ntoa(ia)); ims->ims_st[1].in -= n; } if (lims->imsl_st[1] == MCAST_EXCLUDE) { CTR3(KTR_IGMPV3, "%s: t1 ex += %d on %s", __func__, n, inet_ntoa(ia)); ims->ims_st[1].ex += n; } else if (lims->imsl_st[1] == MCAST_INCLUDE) { CTR3(KTR_IGMPV3, "%s: t1 in += %d on %s", __func__, n, inet_ntoa(ia)); ims->ims_st[1].in += n; } } /* * Atomically update the global in_multi state, when a membership's * filter list is being updated in any way. * * imf is the per-inpcb-membership group filter pointer. * A fake imf may be passed for in-kernel consumers. * * XXX This is a candidate for a set-symmetric-difference style loop * which would eliminate the repeated lookup from root of ims nodes, * as they share the same key space. * * If any error occurred this function will back out of refcounts * and return a non-zero value. */ static int inm_merge(struct in_multi *inm, /*const*/ struct in_mfilter *imf) { struct ip_msource *ims, *nims; struct in_msource *lims; int schanged, error; int nsrc0, nsrc1; schanged = 0; error = 0; nsrc1 = nsrc0 = 0; /* * Update the source filters first, as this may fail. * Maintain count of in-mode filters at t0, t1. These are * used to work out if we transition into ASM mode or not. * Maintain a count of source filters whose state was * actually modified by this operation. */ RB_FOREACH(ims, ip_msource_tree, &imf->imf_sources) { lims = (struct in_msource *)ims; if (lims->imsl_st[0] == imf->imf_st[0]) nsrc0++; if (lims->imsl_st[1] == imf->imf_st[1]) nsrc1++; if (lims->imsl_st[0] == lims->imsl_st[1]) continue; error = inm_get_source(inm, lims->ims_haddr, 0, &nims); ++schanged; if (error) break; ims_merge(nims, lims, 0); } if (error) { struct ip_msource *bims; RB_FOREACH_REVERSE_FROM(ims, ip_msource_tree, nims) { lims = (struct in_msource *)ims; if (lims->imsl_st[0] == lims->imsl_st[1]) continue; (void)inm_get_source(inm, lims->ims_haddr, 1, &bims); if (bims == NULL) continue; ims_merge(bims, lims, 1); } goto out_reap; } CTR3(KTR_IGMPV3, "%s: imf filters in-mode: %d at t0, %d at t1", __func__, nsrc0, nsrc1); /* Handle transition between INCLUDE {n} and INCLUDE {} on socket. */ if (imf->imf_st[0] == imf->imf_st[1] && imf->imf_st[1] == MCAST_INCLUDE) { if (nsrc1 == 0) { CTR1(KTR_IGMPV3, "%s: --in on inm at t1", __func__); --inm->inm_st[1].iss_in; } } /* Handle filter mode transition on socket. */ if (imf->imf_st[0] != imf->imf_st[1]) { CTR3(KTR_IGMPV3, "%s: imf transition %d to %d", __func__, imf->imf_st[0], imf->imf_st[1]); if (imf->imf_st[0] == MCAST_EXCLUDE) { CTR1(KTR_IGMPV3, "%s: --ex on inm at t1", __func__); --inm->inm_st[1].iss_ex; } else if (imf->imf_st[0] == MCAST_INCLUDE) { CTR1(KTR_IGMPV3, "%s: --in on inm at t1", __func__); --inm->inm_st[1].iss_in; } if (imf->imf_st[1] == MCAST_EXCLUDE) { CTR1(KTR_IGMPV3, "%s: ex++ on inm at t1", __func__); inm->inm_st[1].iss_ex++; } else if (imf->imf_st[1] == MCAST_INCLUDE && nsrc1 > 0) { CTR1(KTR_IGMPV3, "%s: in++ on inm at t1", __func__); inm->inm_st[1].iss_in++; } } /* * Track inm filter state in terms of listener counts. * If there are any exclusive listeners, stack-wide * membership is exclusive. * Otherwise, if only inclusive listeners, stack-wide is inclusive. * If no listeners remain, state is undefined at t1, * and the IGMP lifecycle for this group should finish. */ if (inm->inm_st[1].iss_ex > 0) { CTR1(KTR_IGMPV3, "%s: transition to EX", __func__); inm->inm_st[1].iss_fmode = MCAST_EXCLUDE; } else if (inm->inm_st[1].iss_in > 0) { CTR1(KTR_IGMPV3, "%s: transition to IN", __func__); inm->inm_st[1].iss_fmode = MCAST_INCLUDE; } else { CTR1(KTR_IGMPV3, "%s: transition to UNDEF", __func__); inm->inm_st[1].iss_fmode = MCAST_UNDEFINED; } /* Decrement ASM listener count on transition out of ASM mode. */ if (imf->imf_st[0] == MCAST_EXCLUDE && nsrc0 == 0) { if ((imf->imf_st[1] != MCAST_EXCLUDE) || (imf->imf_st[1] == MCAST_EXCLUDE && nsrc1 > 0)) CTR1(KTR_IGMPV3, "%s: --asm on inm at t1", __func__); --inm->inm_st[1].iss_asm; } /* Increment ASM listener count on transition to ASM mode. */ if (imf->imf_st[1] == MCAST_EXCLUDE && nsrc1 == 0) { CTR1(KTR_IGMPV3, "%s: asm++ on inm at t1", __func__); inm->inm_st[1].iss_asm++; } CTR3(KTR_IGMPV3, "%s: merged imf %p to inm %p", __func__, imf, inm); inm_print(inm); out_reap: if (schanged > 0) { CTR1(KTR_IGMPV3, "%s: sources changed; reaping", __func__); inm_reap(inm); } return (error); } /* * Mark an in_multi's filter set deltas as committed. * Called by IGMP after a state change has been enqueued. */ void inm_commit(struct in_multi *inm) { struct ip_msource *ims; CTR2(KTR_IGMPV3, "%s: commit inm %p", __func__, inm); CTR1(KTR_IGMPV3, "%s: pre commit:", __func__); inm_print(inm); RB_FOREACH(ims, ip_msource_tree, &inm->inm_srcs) { ims->ims_st[0] = ims->ims_st[1]; } inm->inm_st[0] = inm->inm_st[1]; } /* * Reap unreferenced nodes from an in_multi's filter set. */ static void inm_reap(struct in_multi *inm) { struct ip_msource *ims, *tims; RB_FOREACH_SAFE(ims, ip_msource_tree, &inm->inm_srcs, tims) { if (ims->ims_st[0].ex > 0 || ims->ims_st[0].in > 0 || ims->ims_st[1].ex > 0 || ims->ims_st[1].in > 0 || ims->ims_stp != 0) continue; CTR2(KTR_IGMPV3, "%s: free ims %p", __func__, ims); RB_REMOVE(ip_msource_tree, &inm->inm_srcs, ims); free(ims, M_IPMSOURCE); inm->inm_nsrc--; } } /* * Purge all source nodes from an in_multi's filter set. */ static void inm_purge(struct in_multi *inm) { struct ip_msource *ims, *tims; RB_FOREACH_SAFE(ims, ip_msource_tree, &inm->inm_srcs, tims) { CTR2(KTR_IGMPV3, "%s: free ims %p", __func__, ims); RB_REMOVE(ip_msource_tree, &inm->inm_srcs, ims); free(ims, M_IPMSOURCE); inm->inm_nsrc--; } } /* * Join a multicast group; unlocked entry point. * * SMPng: XXX: in_joingroup() is called from in_control() when Giant * is not held. Fortunately, ifp is unlikely to have been detached * at this point, so we assume it's OK to recurse. */ int in_joingroup(struct ifnet *ifp, const struct in_addr *gina, /*const*/ struct in_mfilter *imf, struct in_multi **pinm) { int error; IN_MULTI_LOCK(); error = in_joingroup_locked(ifp, gina, imf, pinm); IN_MULTI_UNLOCK(); return (error); } /* * Join a multicast group; real entry point. * * Only preserves atomicity at inm level. * NOTE: imf argument cannot be const due to sys/tree.h limitations. * * If the IGMP downcall fails, the group is not joined, and an error * code is returned. */ int in_joingroup_locked(struct ifnet *ifp, const struct in_addr *gina, /*const*/ struct in_mfilter *imf, struct in_multi **pinm) { struct in_mfilter timf; struct in_multi *inm; int error; IN_MULTI_LOCK_ASSERT(); CTR4(KTR_IGMPV3, "%s: join %s on %p(%s))", __func__, inet_ntoa(*gina), ifp, ifp->if_xname); error = 0; inm = NULL; /* * If no imf was specified (i.e. kernel consumer), * fake one up and assume it is an ASM join. */ if (imf == NULL) { imf_init(&timf, MCAST_UNDEFINED, MCAST_EXCLUDE); imf = &timf; } error = in_getmulti(ifp, gina, &inm); if (error) { CTR1(KTR_IGMPV3, "%s: in_getmulti() failure", __func__); return (error); } CTR1(KTR_IGMPV3, "%s: merge inm state", __func__); error = inm_merge(inm, imf); if (error) { CTR1(KTR_IGMPV3, "%s: failed to merge inm state", __func__); goto out_inm_release; } CTR1(KTR_IGMPV3, "%s: doing igmp downcall", __func__); error = igmp_change_state(inm); if (error) { CTR1(KTR_IGMPV3, "%s: failed to update source", __func__); goto out_inm_release; } out_inm_release: if (error) { CTR2(KTR_IGMPV3, "%s: dropping ref on %p", __func__, inm); inm_release_locked(inm); } else { *pinm = inm; } return (error); } /* * Leave a multicast group; unlocked entry point. */ int in_leavegroup(struct in_multi *inm, /*const*/ struct in_mfilter *imf) { int error; IN_MULTI_LOCK(); error = in_leavegroup_locked(inm, imf); IN_MULTI_UNLOCK(); return (error); } /* * Leave a multicast group; real entry point. * All source filters will be expunged. * * Only preserves atomicity at inm level. * * Holding the write lock for the INP which contains imf * is highly advisable. We can't assert for it as imf does not * contain a back-pointer to the owning inp. * * Note: This is not the same as inm_release(*) as this function also * makes a state change downcall into IGMP. */ int in_leavegroup_locked(struct in_multi *inm, /*const*/ struct in_mfilter *imf) { struct in_mfilter timf; int error; error = 0; IN_MULTI_LOCK_ASSERT(); CTR5(KTR_IGMPV3, "%s: leave inm %p, %s/%s, imf %p", __func__, inm, inet_ntoa(inm->inm_addr), (inm_is_ifp_detached(inm) ? "null" : inm->inm_ifp->if_xname), imf); /* * If no imf was specified (i.e. kernel consumer), * fake one up and assume it is an ASM join. */ if (imf == NULL) { imf_init(&timf, MCAST_EXCLUDE, MCAST_UNDEFINED); imf = &timf; } /* * Begin state merge transaction at IGMP layer. * * As this particular invocation should not cause any memory * to be allocated, and there is no opportunity to roll back * the transaction, it MUST NOT fail. */ CTR1(KTR_IGMPV3, "%s: merge inm state", __func__); error = inm_merge(inm, imf); KASSERT(error == 0, ("%s: failed to merge inm state", __func__)); CTR1(KTR_IGMPV3, "%s: doing igmp downcall", __func__); CURVNET_SET(inm->inm_ifp->if_vnet); error = igmp_change_state(inm); CURVNET_RESTORE(); if (error) CTR1(KTR_IGMPV3, "%s: failed igmp downcall", __func__); CTR2(KTR_IGMPV3, "%s: dropping ref on %p", __func__, inm); inm_release_locked(inm); return (error); } /*#ifndef BURN_BRIDGES*/ /* * Join an IPv4 multicast group in (*,G) exclusive mode. * The group must be a 224.0.0.0/24 link-scope group. * This KPI is for legacy kernel consumers only. */ struct in_multi * in_addmulti(struct in_addr *ap, struct ifnet *ifp) { struct in_multi *pinm; int error; KASSERT(IN_LOCAL_GROUP(ntohl(ap->s_addr)), ("%s: %s not in 224.0.0.0/24", __func__, inet_ntoa(*ap))); error = in_joingroup(ifp, ap, NULL, &pinm); if (error != 0) pinm = NULL; return (pinm); } /* * Leave an IPv4 multicast group, assumed to be in exclusive (*,G) mode. * This KPI is for legacy kernel consumers only. */ void in_delmulti(struct in_multi *inm) { (void)in_leavegroup(inm, NULL); } /*#endif*/ /* * Block or unblock an ASM multicast source on an inpcb. * This implements the delta-based API described in RFC 3678. * * The delta-based API applies only to exclusive-mode memberships. * An IGMP downcall will be performed. * * SMPng: NOTE: Must take Giant as a join may create a new ifma. * * Return 0 if successful, otherwise return an appropriate error code. */ static int inp_block_unblock_source(struct inpcb *inp, struct sockopt *sopt) { struct group_source_req gsr; sockunion_t *gsa, *ssa; struct ifnet *ifp; struct in_mfilter *imf; struct ip_moptions *imo; struct in_msource *ims; struct in_multi *inm; size_t idx; uint16_t fmode; int error, doblock; ifp = NULL; error = 0; doblock = 0; memset(&gsr, 0, sizeof(struct group_source_req)); gsa = (sockunion_t *)&gsr.gsr_group; ssa = (sockunion_t *)&gsr.gsr_source; switch (sopt->sopt_name) { case IP_BLOCK_SOURCE: case IP_UNBLOCK_SOURCE: { struct ip_mreq_source mreqs; error = sooptcopyin(sopt, &mreqs, sizeof(struct ip_mreq_source), sizeof(struct ip_mreq_source)); if (error) return (error); gsa->sin.sin_family = AF_INET; gsa->sin.sin_len = sizeof(struct sockaddr_in); gsa->sin.sin_addr = mreqs.imr_multiaddr; ssa->sin.sin_family = AF_INET; ssa->sin.sin_len = sizeof(struct sockaddr_in); ssa->sin.sin_addr = mreqs.imr_sourceaddr; if (!in_nullhost(mreqs.imr_interface)) INADDR_TO_IFP(mreqs.imr_interface, ifp); if (sopt->sopt_name == IP_BLOCK_SOURCE) doblock = 1; CTR3(KTR_IGMPV3, "%s: imr_interface = %s, ifp = %p", __func__, inet_ntoa(mreqs.imr_interface), ifp); break; } case MCAST_BLOCK_SOURCE: case MCAST_UNBLOCK_SOURCE: error = sooptcopyin(sopt, &gsr, sizeof(struct group_source_req), sizeof(struct group_source_req)); if (error) return (error); if (gsa->sin.sin_family != AF_INET || gsa->sin.sin_len != sizeof(struct sockaddr_in)) return (EINVAL); if (ssa->sin.sin_family != AF_INET || ssa->sin.sin_len != sizeof(struct sockaddr_in)) return (EINVAL); if (gsr.gsr_interface == 0 || V_if_index < gsr.gsr_interface) return (EADDRNOTAVAIL); ifp = ifnet_byindex(gsr.gsr_interface); if (sopt->sopt_name == MCAST_BLOCK_SOURCE) doblock = 1; break; default: CTR2(KTR_IGMPV3, "%s: unknown sopt_name %d", __func__, sopt->sopt_name); return (EOPNOTSUPP); break; } if (!IN_MULTICAST(ntohl(gsa->sin.sin_addr.s_addr))) return (EINVAL); /* * Check if we are actually a member of this group. */ imo = inp_findmoptions(inp); idx = imo_match_group(imo, ifp, &gsa->sa); if (idx == -1 || imo->imo_mfilters == NULL) { error = EADDRNOTAVAIL; goto out_inp_locked; } KASSERT(imo->imo_mfilters != NULL, ("%s: imo_mfilters not allocated", __func__)); imf = &imo->imo_mfilters[idx]; inm = imo->imo_membership[idx]; /* * Attempting to use the delta-based API on an * non exclusive-mode membership is an error. */ fmode = imf->imf_st[0]; if (fmode != MCAST_EXCLUDE) { error = EINVAL; goto out_inp_locked; } /* * Deal with error cases up-front: * Asked to block, but already blocked; or * Asked to unblock, but nothing to unblock. * If adding a new block entry, allocate it. */ ims = imo_match_source(imo, idx, &ssa->sa); if ((ims != NULL && doblock) || (ims == NULL && !doblock)) { CTR3(KTR_IGMPV3, "%s: source %s %spresent", __func__, inet_ntoa(ssa->sin.sin_addr), doblock ? "" : "not "); error = EADDRNOTAVAIL; goto out_inp_locked; } INP_WLOCK_ASSERT(inp); /* * Begin state merge transaction at socket layer. */ if (doblock) { CTR2(KTR_IGMPV3, "%s: %s source", __func__, "block"); ims = imf_graft(imf, fmode, &ssa->sin); if (ims == NULL) error = ENOMEM; } else { CTR2(KTR_IGMPV3, "%s: %s source", __func__, "allow"); error = imf_prune(imf, &ssa->sin); } if (error) { CTR1(KTR_IGMPV3, "%s: merge imf state failed", __func__); goto out_imf_rollback; } /* * Begin state merge transaction at IGMP layer. */ IN_MULTI_LOCK(); CTR1(KTR_IGMPV3, "%s: merge inm state", __func__); error = inm_merge(inm, imf); if (error) { CTR1(KTR_IGMPV3, "%s: failed to merge inm state", __func__); goto out_in_multi_locked; } CTR1(KTR_IGMPV3, "%s: doing igmp downcall", __func__); error = igmp_change_state(inm); if (error) CTR1(KTR_IGMPV3, "%s: failed igmp downcall", __func__); out_in_multi_locked: IN_MULTI_UNLOCK(); out_imf_rollback: if (error) imf_rollback(imf); else imf_commit(imf); imf_reap(imf); out_inp_locked: INP_WUNLOCK(inp); return (error); } /* * Given an inpcb, return its multicast options structure pointer. Accepts * an unlocked inpcb pointer, but will return it locked. May sleep. * * SMPng: NOTE: Potentially calls malloc(M_WAITOK) with Giant held. * SMPng: NOTE: Returns with the INP write lock held. */ static struct ip_moptions * inp_findmoptions(struct inpcb *inp) { struct ip_moptions *imo; struct in_multi **immp; struct in_mfilter *imfp; size_t idx; INP_WLOCK(inp); if (inp->inp_moptions != NULL) return (inp->inp_moptions); INP_WUNLOCK(inp); imo = malloc(sizeof(*imo), M_IPMOPTS, M_WAITOK); immp = malloc(sizeof(*immp) * IP_MIN_MEMBERSHIPS, M_IPMOPTS, M_WAITOK | M_ZERO); imfp = malloc(sizeof(struct in_mfilter) * IP_MIN_MEMBERSHIPS, M_INMFILTER, M_WAITOK); imo->imo_multicast_ifp = NULL; imo->imo_multicast_addr.s_addr = INADDR_ANY; imo->imo_multicast_vif = -1; imo->imo_multicast_ttl = IP_DEFAULT_MULTICAST_TTL; imo->imo_multicast_loop = in_mcast_loop; imo->imo_num_memberships = 0; imo->imo_max_memberships = IP_MIN_MEMBERSHIPS; imo->imo_membership = immp; /* Initialize per-group source filters. */ for (idx = 0; idx < IP_MIN_MEMBERSHIPS; idx++) imf_init(&imfp[idx], MCAST_UNDEFINED, MCAST_EXCLUDE); imo->imo_mfilters = imfp; INP_WLOCK(inp); if (inp->inp_moptions != NULL) { free(imfp, M_INMFILTER); free(immp, M_IPMOPTS); free(imo, M_IPMOPTS); return (inp->inp_moptions); } inp->inp_moptions = imo; return (imo); } /* * Discard the IP multicast options (and source filters). To minimize * the amount of work done while holding locks such as the INP's * pcbinfo lock (which is used in the receive path), the free * operation is performed asynchronously in a separate task. * * SMPng: NOTE: assumes INP write lock is held. */ void inp_freemoptions(struct ip_moptions *imo) { KASSERT(imo != NULL, ("%s: ip_moptions is NULL", __func__)); IN_MULTI_LOCK(); STAILQ_INSERT_TAIL(&imo_gc_list, imo, imo_link); IN_MULTI_UNLOCK(); taskqueue_enqueue(taskqueue_thread, &imo_gc_task); } static void inp_freemoptions_internal(struct ip_moptions *imo) { struct in_mfilter *imf; size_t idx, nmships; nmships = imo->imo_num_memberships; for (idx = 0; idx < nmships; ++idx) { imf = imo->imo_mfilters ? &imo->imo_mfilters[idx] : NULL; if (imf) imf_leave(imf); (void)in_leavegroup(imo->imo_membership[idx], imf); if (imf) imf_purge(imf); } if (imo->imo_mfilters) free(imo->imo_mfilters, M_INMFILTER); free(imo->imo_membership, M_IPMOPTS); free(imo, M_IPMOPTS); } static void inp_gcmoptions(void *context, int pending) { struct ip_moptions *imo; IN_MULTI_LOCK(); while (!STAILQ_EMPTY(&imo_gc_list)) { imo = STAILQ_FIRST(&imo_gc_list); STAILQ_REMOVE_HEAD(&imo_gc_list, imo_link); IN_MULTI_UNLOCK(); inp_freemoptions_internal(imo); IN_MULTI_LOCK(); } IN_MULTI_UNLOCK(); } /* * Atomically get source filters on a socket for an IPv4 multicast group. * Called with INP lock held; returns with lock released. */ static int inp_get_source_filters(struct inpcb *inp, struct sockopt *sopt) { struct __msfilterreq msfr; sockunion_t *gsa; struct ifnet *ifp; struct ip_moptions *imo; struct in_mfilter *imf; struct ip_msource *ims; struct in_msource *lims; struct sockaddr_in *psin; struct sockaddr_storage *ptss; struct sockaddr_storage *tss; int error; size_t idx, nsrcs, ncsrcs; INP_WLOCK_ASSERT(inp); imo = inp->inp_moptions; KASSERT(imo != NULL, ("%s: null ip_moptions", __func__)); INP_WUNLOCK(inp); error = sooptcopyin(sopt, &msfr, sizeof(struct __msfilterreq), sizeof(struct __msfilterreq)); if (error) return (error); if (msfr.msfr_ifindex == 0 || V_if_index < msfr.msfr_ifindex) return (EINVAL); ifp = ifnet_byindex(msfr.msfr_ifindex); if (ifp == NULL) return (EINVAL); INP_WLOCK(inp); /* * Lookup group on the socket. */ gsa = (sockunion_t *)&msfr.msfr_group; idx = imo_match_group(imo, ifp, &gsa->sa); if (idx == -1 || imo->imo_mfilters == NULL) { INP_WUNLOCK(inp); return (EADDRNOTAVAIL); } imf = &imo->imo_mfilters[idx]; /* * Ignore memberships which are in limbo. */ if (imf->imf_st[1] == MCAST_UNDEFINED) { INP_WUNLOCK(inp); return (EAGAIN); } msfr.msfr_fmode = imf->imf_st[1]; /* * If the user specified a buffer, copy out the source filter * entries to userland gracefully. * We only copy out the number of entries which userland * has asked for, but we always tell userland how big the * buffer really needs to be. */ if (msfr.msfr_nsrcs > in_mcast_maxsocksrc) msfr.msfr_nsrcs = in_mcast_maxsocksrc; tss = NULL; if (msfr.msfr_srcs != NULL && msfr.msfr_nsrcs > 0) { tss = malloc(sizeof(struct sockaddr_storage) * msfr.msfr_nsrcs, M_TEMP, M_NOWAIT | M_ZERO); if (tss == NULL) { INP_WUNLOCK(inp); return (ENOBUFS); } } /* * Count number of sources in-mode at t0. * If buffer space exists and remains, copy out source entries. */ nsrcs = msfr.msfr_nsrcs; ncsrcs = 0; ptss = tss; RB_FOREACH(ims, ip_msource_tree, &imf->imf_sources) { lims = (struct in_msource *)ims; if (lims->imsl_st[0] == MCAST_UNDEFINED || lims->imsl_st[0] != imf->imf_st[0]) continue; ++ncsrcs; if (tss != NULL && nsrcs > 0) { psin = (struct sockaddr_in *)ptss; psin->sin_family = AF_INET; psin->sin_len = sizeof(struct sockaddr_in); psin->sin_addr.s_addr = htonl(lims->ims_haddr); psin->sin_port = 0; ++ptss; --nsrcs; } } INP_WUNLOCK(inp); if (tss != NULL) { error = copyout(tss, msfr.msfr_srcs, sizeof(struct sockaddr_storage) * msfr.msfr_nsrcs); free(tss, M_TEMP); if (error) return (error); } msfr.msfr_nsrcs = ncsrcs; error = sooptcopyout(sopt, &msfr, sizeof(struct __msfilterreq)); return (error); } /* * Return the IP multicast options in response to user getsockopt(). */ int inp_getmoptions(struct inpcb *inp, struct sockopt *sopt) { struct rm_priotracker in_ifa_tracker; struct ip_mreqn mreqn; struct ip_moptions *imo; struct ifnet *ifp; struct in_ifaddr *ia; int error, optval; u_char coptval; INP_WLOCK(inp); imo = inp->inp_moptions; /* * If socket is neither of type SOCK_RAW or SOCK_DGRAM, * or is a divert socket, reject it. */ if (inp->inp_socket->so_proto->pr_protocol == IPPROTO_DIVERT || (inp->inp_socket->so_proto->pr_type != SOCK_RAW && inp->inp_socket->so_proto->pr_type != SOCK_DGRAM)) { INP_WUNLOCK(inp); return (EOPNOTSUPP); } error = 0; switch (sopt->sopt_name) { case IP_MULTICAST_VIF: if (imo != NULL) optval = imo->imo_multicast_vif; else optval = -1; INP_WUNLOCK(inp); error = sooptcopyout(sopt, &optval, sizeof(int)); break; case IP_MULTICAST_IF: memset(&mreqn, 0, sizeof(struct ip_mreqn)); if (imo != NULL) { ifp = imo->imo_multicast_ifp; if (!in_nullhost(imo->imo_multicast_addr)) { mreqn.imr_address = imo->imo_multicast_addr; } else if (ifp != NULL) { mreqn.imr_ifindex = ifp->if_index; IFP_TO_IA(ifp, ia, &in_ifa_tracker); if (ia != NULL) { mreqn.imr_address = IA_SIN(ia)->sin_addr; ifa_free(&ia->ia_ifa); } } } INP_WUNLOCK(inp); if (sopt->sopt_valsize == sizeof(struct ip_mreqn)) { error = sooptcopyout(sopt, &mreqn, sizeof(struct ip_mreqn)); } else { error = sooptcopyout(sopt, &mreqn.imr_address, sizeof(struct in_addr)); } break; case IP_MULTICAST_TTL: if (imo == 0) optval = coptval = IP_DEFAULT_MULTICAST_TTL; else optval = coptval = imo->imo_multicast_ttl; INP_WUNLOCK(inp); if (sopt->sopt_valsize == sizeof(u_char)) error = sooptcopyout(sopt, &coptval, sizeof(u_char)); else error = sooptcopyout(sopt, &optval, sizeof(int)); break; case IP_MULTICAST_LOOP: if (imo == 0) optval = coptval = IP_DEFAULT_MULTICAST_LOOP; else optval = coptval = imo->imo_multicast_loop; INP_WUNLOCK(inp); if (sopt->sopt_valsize == sizeof(u_char)) error = sooptcopyout(sopt, &coptval, sizeof(u_char)); else error = sooptcopyout(sopt, &optval, sizeof(int)); break; case IP_MSFILTER: if (imo == NULL) { error = EADDRNOTAVAIL; INP_WUNLOCK(inp); } else { error = inp_get_source_filters(inp, sopt); } break; default: INP_WUNLOCK(inp); error = ENOPROTOOPT; break; } INP_UNLOCK_ASSERT(inp); return (error); } /* * Look up the ifnet to use for a multicast group membership, * given the IPv4 address of an interface, and the IPv4 group address. * * This routine exists to support legacy multicast applications * which do not understand that multicast memberships are scoped to * specific physical links in the networking stack, or which need * to join link-scope groups before IPv4 addresses are configured. * * If inp is non-NULL, use this socket's current FIB number for any * required FIB lookup. * If ina is INADDR_ANY, look up the group address in the unicast FIB, * and use its ifp; usually, this points to the default next-hop. * * If the FIB lookup fails, attempt to use the first non-loopback * interface with multicast capability in the system as a * last resort. The legacy IPv4 ASM API requires that we do * this in order to allow groups to be joined when the routing * table has not yet been populated during boot. * * Returns NULL if no ifp could be found. * * SMPng: TODO: Acquire the appropriate locks for INADDR_TO_IFP. * FUTURE: Implement IPv4 source-address selection. */ static struct ifnet * inp_lookup_mcast_ifp(const struct inpcb *inp, const struct sockaddr_in *gsin, const struct in_addr ina) { struct rm_priotracker in_ifa_tracker; struct ifnet *ifp; KASSERT(gsin->sin_family == AF_INET, ("%s: not AF_INET", __func__)); KASSERT(IN_MULTICAST(ntohl(gsin->sin_addr.s_addr)), ("%s: not multicast", __func__)); ifp = NULL; if (!in_nullhost(ina)) { INADDR_TO_IFP(ina, ifp); } else { struct route ro; ro.ro_rt = NULL; memcpy(&ro.ro_dst, gsin, sizeof(struct sockaddr_in)); in_rtalloc_ign(&ro, 0, inp ? inp->inp_inc.inc_fibnum : 0); if (ro.ro_rt != NULL) { ifp = ro.ro_rt->rt_ifp; KASSERT(ifp != NULL, ("%s: null ifp", __func__)); RTFREE(ro.ro_rt); } else { struct in_ifaddr *ia; struct ifnet *mifp; mifp = NULL; IN_IFADDR_RLOCK(&in_ifa_tracker); TAILQ_FOREACH(ia, &V_in_ifaddrhead, ia_link) { mifp = ia->ia_ifp; if (!(mifp->if_flags & IFF_LOOPBACK) && (mifp->if_flags & IFF_MULTICAST)) { ifp = mifp; break; } } IN_IFADDR_RUNLOCK(&in_ifa_tracker); } } return (ifp); } /* * Join an IPv4 multicast group, possibly with a source. */ static int inp_join_group(struct inpcb *inp, struct sockopt *sopt) { struct group_source_req gsr; sockunion_t *gsa, *ssa; struct ifnet *ifp; struct in_mfilter *imf; struct ip_moptions *imo; struct in_multi *inm; struct in_msource *lims; size_t idx; int error, is_new; ifp = NULL; imf = NULL; lims = NULL; error = 0; is_new = 0; memset(&gsr, 0, sizeof(struct group_source_req)); gsa = (sockunion_t *)&gsr.gsr_group; gsa->ss.ss_family = AF_UNSPEC; ssa = (sockunion_t *)&gsr.gsr_source; ssa->ss.ss_family = AF_UNSPEC; switch (sopt->sopt_name) { case IP_ADD_MEMBERSHIP: case IP_ADD_SOURCE_MEMBERSHIP: { struct ip_mreq_source mreqs; if (sopt->sopt_name == IP_ADD_MEMBERSHIP) { error = sooptcopyin(sopt, &mreqs, sizeof(struct ip_mreq), sizeof(struct ip_mreq)); /* * Do argument switcharoo from ip_mreq into * ip_mreq_source to avoid using two instances. */ mreqs.imr_interface = mreqs.imr_sourceaddr; mreqs.imr_sourceaddr.s_addr = INADDR_ANY; } else if (sopt->sopt_name == IP_ADD_SOURCE_MEMBERSHIP) { error = sooptcopyin(sopt, &mreqs, sizeof(struct ip_mreq_source), sizeof(struct ip_mreq_source)); } if (error) return (error); gsa->sin.sin_family = AF_INET; gsa->sin.sin_len = sizeof(struct sockaddr_in); gsa->sin.sin_addr = mreqs.imr_multiaddr; if (sopt->sopt_name == IP_ADD_SOURCE_MEMBERSHIP) { ssa->sin.sin_family = AF_INET; ssa->sin.sin_len = sizeof(struct sockaddr_in); ssa->sin.sin_addr = mreqs.imr_sourceaddr; } if (!IN_MULTICAST(ntohl(gsa->sin.sin_addr.s_addr))) return (EINVAL); ifp = inp_lookup_mcast_ifp(inp, &gsa->sin, mreqs.imr_interface); CTR3(KTR_IGMPV3, "%s: imr_interface = %s, ifp = %p", __func__, inet_ntoa(mreqs.imr_interface), ifp); break; } case MCAST_JOIN_GROUP: case MCAST_JOIN_SOURCE_GROUP: if (sopt->sopt_name == MCAST_JOIN_GROUP) { error = sooptcopyin(sopt, &gsr, sizeof(struct group_req), sizeof(struct group_req)); } else if (sopt->sopt_name == MCAST_JOIN_SOURCE_GROUP) { error = sooptcopyin(sopt, &gsr, sizeof(struct group_source_req), sizeof(struct group_source_req)); } if (error) return (error); if (gsa->sin.sin_family != AF_INET || gsa->sin.sin_len != sizeof(struct sockaddr_in)) return (EINVAL); /* * Overwrite the port field if present, as the sockaddr * being copied in may be matched with a binary comparison. */ gsa->sin.sin_port = 0; if (sopt->sopt_name == MCAST_JOIN_SOURCE_GROUP) { if (ssa->sin.sin_family != AF_INET || ssa->sin.sin_len != sizeof(struct sockaddr_in)) return (EINVAL); ssa->sin.sin_port = 0; } if (!IN_MULTICAST(ntohl(gsa->sin.sin_addr.s_addr))) return (EINVAL); if (gsr.gsr_interface == 0 || V_if_index < gsr.gsr_interface) return (EADDRNOTAVAIL); ifp = ifnet_byindex(gsr.gsr_interface); break; default: CTR2(KTR_IGMPV3, "%s: unknown sopt_name %d", __func__, sopt->sopt_name); return (EOPNOTSUPP); break; } if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) return (EADDRNOTAVAIL); imo = inp_findmoptions(inp); idx = imo_match_group(imo, ifp, &gsa->sa); if (idx == -1) { is_new = 1; } else { inm = imo->imo_membership[idx]; imf = &imo->imo_mfilters[idx]; if (ssa->ss.ss_family != AF_UNSPEC) { /* * MCAST_JOIN_SOURCE_GROUP on an exclusive membership * is an error. On an existing inclusive membership, * it just adds the source to the filter list. */ if (imf->imf_st[1] != MCAST_INCLUDE) { error = EINVAL; goto out_inp_locked; } /* * Throw out duplicates. * * XXX FIXME: This makes a naive assumption that * even if entries exist for *ssa in this imf, * they will be rejected as dupes, even if they * are not valid in the current mode (in-mode). * * in_msource is transactioned just as for anything * else in SSM -- but note naive use of inm_graft() * below for allocating new filter entries. * * This is only an issue if someone mixes the * full-state SSM API with the delta-based API, * which is discouraged in the relevant RFCs. */ lims = imo_match_source(imo, idx, &ssa->sa); if (lims != NULL /*&& lims->imsl_st[1] == MCAST_INCLUDE*/) { error = EADDRNOTAVAIL; goto out_inp_locked; } } else { /* * MCAST_JOIN_GROUP on an existing exclusive * membership is an error; return EADDRINUSE * to preserve 4.4BSD API idempotence, and * avoid tedious detour to code below. * NOTE: This is bending RFC 3678 a bit. * * On an existing inclusive membership, this is also * an error; if you want to change filter mode, * you must use the userland API setsourcefilter(). * XXX We don't reject this for imf in UNDEFINED * state at t1, because allocation of a filter * is atomic with allocation of a membership. */ error = EINVAL; if (imf->imf_st[1] == MCAST_EXCLUDE) error = EADDRINUSE; goto out_inp_locked; } } /* * Begin state merge transaction at socket layer. */ INP_WLOCK_ASSERT(inp); if (is_new) { if (imo->imo_num_memberships == imo->imo_max_memberships) { error = imo_grow(imo); if (error) goto out_inp_locked; } /* * Allocate the new slot upfront so we can deal with * grafting the new source filter in same code path * as for join-source on existing membership. */ idx = imo->imo_num_memberships; imo->imo_membership[idx] = NULL; imo->imo_num_memberships++; KASSERT(imo->imo_mfilters != NULL, ("%s: imf_mfilters vector was not allocated", __func__)); imf = &imo->imo_mfilters[idx]; KASSERT(RB_EMPTY(&imf->imf_sources), ("%s: imf_sources not empty", __func__)); } /* * Graft new source into filter list for this inpcb's * membership of the group. The in_multi may not have * been allocated yet if this is a new membership, however, * the in_mfilter slot will be allocated and must be initialized. * * Note: Grafting of exclusive mode filters doesn't happen * in this path. * XXX: Should check for non-NULL lims (node exists but may * not be in-mode) for interop with full-state API. */ if (ssa->ss.ss_family != AF_UNSPEC) { /* Membership starts in IN mode */ if (is_new) { CTR1(KTR_IGMPV3, "%s: new join w/source", __func__); imf_init(imf, MCAST_UNDEFINED, MCAST_INCLUDE); } else { CTR2(KTR_IGMPV3, "%s: %s source", __func__, "allow"); } lims = imf_graft(imf, MCAST_INCLUDE, &ssa->sin); if (lims == NULL) { CTR1(KTR_IGMPV3, "%s: merge imf state failed", __func__); error = ENOMEM; goto out_imo_free; } } else { /* No address specified; Membership starts in EX mode */ if (is_new) { CTR1(KTR_IGMPV3, "%s: new join w/o source", __func__); imf_init(imf, MCAST_UNDEFINED, MCAST_EXCLUDE); } } /* * Begin state merge transaction at IGMP layer. */ IN_MULTI_LOCK(); if (is_new) { error = in_joingroup_locked(ifp, &gsa->sin.sin_addr, imf, &inm); if (error) { CTR1(KTR_IGMPV3, "%s: in_joingroup_locked failed", __func__); IN_MULTI_UNLOCK(); goto out_imo_free; } imo->imo_membership[idx] = inm; } else { CTR1(KTR_IGMPV3, "%s: merge inm state", __func__); error = inm_merge(inm, imf); if (error) { CTR1(KTR_IGMPV3, "%s: failed to merge inm state", __func__); goto out_in_multi_locked; } CTR1(KTR_IGMPV3, "%s: doing igmp downcall", __func__); error = igmp_change_state(inm); if (error) { CTR1(KTR_IGMPV3, "%s: failed igmp downcall", __func__); goto out_in_multi_locked; } } out_in_multi_locked: IN_MULTI_UNLOCK(); INP_WLOCK_ASSERT(inp); if (error) { imf_rollback(imf); if (is_new) imf_purge(imf); else imf_reap(imf); } else { imf_commit(imf); } out_imo_free: if (error && is_new) { imo->imo_membership[idx] = NULL; --imo->imo_num_memberships; } out_inp_locked: INP_WUNLOCK(inp); return (error); } /* * Leave an IPv4 multicast group on an inpcb, possibly with a source. */ static int inp_leave_group(struct inpcb *inp, struct sockopt *sopt) { struct group_source_req gsr; struct ip_mreq_source mreqs; sockunion_t *gsa, *ssa; struct ifnet *ifp; struct in_mfilter *imf; struct ip_moptions *imo; struct in_msource *ims; struct in_multi *inm; size_t idx; int error, is_final; ifp = NULL; error = 0; is_final = 1; memset(&gsr, 0, sizeof(struct group_source_req)); gsa = (sockunion_t *)&gsr.gsr_group; gsa->ss.ss_family = AF_UNSPEC; ssa = (sockunion_t *)&gsr.gsr_source; ssa->ss.ss_family = AF_UNSPEC; switch (sopt->sopt_name) { case IP_DROP_MEMBERSHIP: case IP_DROP_SOURCE_MEMBERSHIP: if (sopt->sopt_name == IP_DROP_MEMBERSHIP) { error = sooptcopyin(sopt, &mreqs, sizeof(struct ip_mreq), sizeof(struct ip_mreq)); /* * Swap interface and sourceaddr arguments, * as ip_mreq and ip_mreq_source are laid * out differently. */ mreqs.imr_interface = mreqs.imr_sourceaddr; mreqs.imr_sourceaddr.s_addr = INADDR_ANY; } else if (sopt->sopt_name == IP_DROP_SOURCE_MEMBERSHIP) { error = sooptcopyin(sopt, &mreqs, sizeof(struct ip_mreq_source), sizeof(struct ip_mreq_source)); } if (error) return (error); gsa->sin.sin_family = AF_INET; gsa->sin.sin_len = sizeof(struct sockaddr_in); gsa->sin.sin_addr = mreqs.imr_multiaddr; if (sopt->sopt_name == IP_DROP_SOURCE_MEMBERSHIP) { ssa->sin.sin_family = AF_INET; ssa->sin.sin_len = sizeof(struct sockaddr_in); ssa->sin.sin_addr = mreqs.imr_sourceaddr; } /* * Attempt to look up hinted ifp from interface address. * Fallthrough with null ifp iff lookup fails, to * preserve 4.4BSD mcast API idempotence. * XXX NOTE WELL: The RFC 3678 API is preferred because * using an IPv4 address as a key is racy. */ if (!in_nullhost(mreqs.imr_interface)) INADDR_TO_IFP(mreqs.imr_interface, ifp); CTR3(KTR_IGMPV3, "%s: imr_interface = %s, ifp = %p", __func__, inet_ntoa(mreqs.imr_interface), ifp); break; case MCAST_LEAVE_GROUP: case MCAST_LEAVE_SOURCE_GROUP: if (sopt->sopt_name == MCAST_LEAVE_GROUP) { error = sooptcopyin(sopt, &gsr, sizeof(struct group_req), sizeof(struct group_req)); } else if (sopt->sopt_name == MCAST_LEAVE_SOURCE_GROUP) { error = sooptcopyin(sopt, &gsr, sizeof(struct group_source_req), sizeof(struct group_source_req)); } if (error) return (error); if (gsa->sin.sin_family != AF_INET || gsa->sin.sin_len != sizeof(struct sockaddr_in)) return (EINVAL); if (sopt->sopt_name == MCAST_LEAVE_SOURCE_GROUP) { if (ssa->sin.sin_family != AF_INET || ssa->sin.sin_len != sizeof(struct sockaddr_in)) return (EINVAL); } if (gsr.gsr_interface == 0 || V_if_index < gsr.gsr_interface) return (EADDRNOTAVAIL); ifp = ifnet_byindex(gsr.gsr_interface); if (ifp == NULL) return (EADDRNOTAVAIL); break; default: CTR2(KTR_IGMPV3, "%s: unknown sopt_name %d", __func__, sopt->sopt_name); return (EOPNOTSUPP); break; } if (!IN_MULTICAST(ntohl(gsa->sin.sin_addr.s_addr))) return (EINVAL); /* * Find the membership in the membership array. */ imo = inp_findmoptions(inp); idx = imo_match_group(imo, ifp, &gsa->sa); if (idx == -1) { error = EADDRNOTAVAIL; goto out_inp_locked; } inm = imo->imo_membership[idx]; imf = &imo->imo_mfilters[idx]; if (ssa->ss.ss_family != AF_UNSPEC) is_final = 0; /* * Begin state merge transaction at socket layer. */ INP_WLOCK_ASSERT(inp); /* * If we were instructed only to leave a given source, do so. * MCAST_LEAVE_SOURCE_GROUP is only valid for inclusive memberships. */ if (is_final) { imf_leave(imf); } else { if (imf->imf_st[0] == MCAST_EXCLUDE) { error = EADDRNOTAVAIL; goto out_inp_locked; } ims = imo_match_source(imo, idx, &ssa->sa); if (ims == NULL) { CTR3(KTR_IGMPV3, "%s: source %s %spresent", __func__, inet_ntoa(ssa->sin.sin_addr), "not "); error = EADDRNOTAVAIL; goto out_inp_locked; } CTR2(KTR_IGMPV3, "%s: %s source", __func__, "block"); error = imf_prune(imf, &ssa->sin); if (error) { CTR1(KTR_IGMPV3, "%s: merge imf state failed", __func__); goto out_inp_locked; } } /* * Begin state merge transaction at IGMP layer. */ IN_MULTI_LOCK(); if (is_final) { /* * Give up the multicast address record to which * the membership points. */ (void)in_leavegroup_locked(inm, imf); } else { CTR1(KTR_IGMPV3, "%s: merge inm state", __func__); error = inm_merge(inm, imf); if (error) { CTR1(KTR_IGMPV3, "%s: failed to merge inm state", __func__); goto out_in_multi_locked; } CTR1(KTR_IGMPV3, "%s: doing igmp downcall", __func__); error = igmp_change_state(inm); if (error) { CTR1(KTR_IGMPV3, "%s: failed igmp downcall", __func__); } } out_in_multi_locked: IN_MULTI_UNLOCK(); if (error) imf_rollback(imf); else imf_commit(imf); imf_reap(imf); if (is_final) { /* Remove the gap in the membership and filter array. */ for (++idx; idx < imo->imo_num_memberships; ++idx) { imo->imo_membership[idx-1] = imo->imo_membership[idx]; imo->imo_mfilters[idx-1] = imo->imo_mfilters[idx]; } imo->imo_num_memberships--; } out_inp_locked: INP_WUNLOCK(inp); return (error); } /* * Select the interface for transmitting IPv4 multicast datagrams. * * Either an instance of struct in_addr or an instance of struct ip_mreqn * may be passed to this socket option. An address of INADDR_ANY or an * interface index of 0 is used to remove a previous selection. * When no interface is selected, one is chosen for every send. */ static int inp_set_multicast_if(struct inpcb *inp, struct sockopt *sopt) { struct in_addr addr; struct ip_mreqn mreqn; struct ifnet *ifp; struct ip_moptions *imo; int error; if (sopt->sopt_valsize == sizeof(struct ip_mreqn)) { /* * An interface index was specified using the * Linux-derived ip_mreqn structure. */ error = sooptcopyin(sopt, &mreqn, sizeof(struct ip_mreqn), sizeof(struct ip_mreqn)); if (error) return (error); if (mreqn.imr_ifindex < 0 || V_if_index < mreqn.imr_ifindex) return (EINVAL); if (mreqn.imr_ifindex == 0) { ifp = NULL; } else { ifp = ifnet_byindex(mreqn.imr_ifindex); if (ifp == NULL) return (EADDRNOTAVAIL); } } else { /* * An interface was specified by IPv4 address. * This is the traditional BSD usage. */ error = sooptcopyin(sopt, &addr, sizeof(struct in_addr), sizeof(struct in_addr)); if (error) return (error); if (in_nullhost(addr)) { ifp = NULL; } else { INADDR_TO_IFP(addr, ifp); if (ifp == NULL) return (EADDRNOTAVAIL); } CTR3(KTR_IGMPV3, "%s: ifp = %p, addr = %s", __func__, ifp, inet_ntoa(addr)); } /* Reject interfaces which do not support multicast. */ if (ifp != NULL && (ifp->if_flags & IFF_MULTICAST) == 0) return (EOPNOTSUPP); imo = inp_findmoptions(inp); imo->imo_multicast_ifp = ifp; imo->imo_multicast_addr.s_addr = INADDR_ANY; INP_WUNLOCK(inp); return (0); } /* * Atomically set source filters on a socket for an IPv4 multicast group. * * SMPng: NOTE: Potentially calls malloc(M_WAITOK) with Giant held. */ static int inp_set_source_filters(struct inpcb *inp, struct sockopt *sopt) { struct __msfilterreq msfr; sockunion_t *gsa; struct ifnet *ifp; struct in_mfilter *imf; struct ip_moptions *imo; struct in_multi *inm; size_t idx; int error; error = sooptcopyin(sopt, &msfr, sizeof(struct __msfilterreq), sizeof(struct __msfilterreq)); if (error) return (error); if (msfr.msfr_nsrcs > in_mcast_maxsocksrc) return (ENOBUFS); if ((msfr.msfr_fmode != MCAST_EXCLUDE && msfr.msfr_fmode != MCAST_INCLUDE)) return (EINVAL); if (msfr.msfr_group.ss_family != AF_INET || msfr.msfr_group.ss_len != sizeof(struct sockaddr_in)) return (EINVAL); gsa = (sockunion_t *)&msfr.msfr_group; if (!IN_MULTICAST(ntohl(gsa->sin.sin_addr.s_addr))) return (EINVAL); gsa->sin.sin_port = 0; /* ignore port */ if (msfr.msfr_ifindex == 0 || V_if_index < msfr.msfr_ifindex) return (EADDRNOTAVAIL); ifp = ifnet_byindex(msfr.msfr_ifindex); if (ifp == NULL) return (EADDRNOTAVAIL); /* * Take the INP write lock. * Check if this socket is a member of this group. */ imo = inp_findmoptions(inp); idx = imo_match_group(imo, ifp, &gsa->sa); if (idx == -1 || imo->imo_mfilters == NULL) { error = EADDRNOTAVAIL; goto out_inp_locked; } inm = imo->imo_membership[idx]; imf = &imo->imo_mfilters[idx]; /* * Begin state merge transaction at socket layer. */ INP_WLOCK_ASSERT(inp); imf->imf_st[1] = msfr.msfr_fmode; /* * Apply any new source filters, if present. * Make a copy of the user-space source vector so * that we may copy them with a single copyin. This * allows us to deal with page faults up-front. */ if (msfr.msfr_nsrcs > 0) { struct in_msource *lims; struct sockaddr_in *psin; struct sockaddr_storage *kss, *pkss; int i; INP_WUNLOCK(inp); CTR2(KTR_IGMPV3, "%s: loading %lu source list entries", __func__, (unsigned long)msfr.msfr_nsrcs); kss = malloc(sizeof(struct sockaddr_storage) * msfr.msfr_nsrcs, M_TEMP, M_WAITOK); error = copyin(msfr.msfr_srcs, kss, sizeof(struct sockaddr_storage) * msfr.msfr_nsrcs); if (error) { free(kss, M_TEMP); return (error); } INP_WLOCK(inp); /* * Mark all source filters as UNDEFINED at t1. * Restore new group filter mode, as imf_leave() * will set it to INCLUDE. */ imf_leave(imf); imf->imf_st[1] = msfr.msfr_fmode; /* * Update socket layer filters at t1, lazy-allocating * new entries. This saves a bunch of memory at the * cost of one RB_FIND() per source entry; duplicate * entries in the msfr_nsrcs vector are ignored. * If we encounter an error, rollback transaction. * * XXX This too could be replaced with a set-symmetric * difference like loop to avoid walking from root * every time, as the key space is common. */ for (i = 0, pkss = kss; i < msfr.msfr_nsrcs; i++, pkss++) { psin = (struct sockaddr_in *)pkss; if (psin->sin_family != AF_INET) { error = EAFNOSUPPORT; break; } if (psin->sin_len != sizeof(struct sockaddr_in)) { error = EINVAL; break; } error = imf_get_source(imf, psin, &lims); if (error) break; lims->imsl_st[1] = imf->imf_st[1]; } free(kss, M_TEMP); } if (error) goto out_imf_rollback; INP_WLOCK_ASSERT(inp); IN_MULTI_LOCK(); /* * Begin state merge transaction at IGMP layer. */ CTR1(KTR_IGMPV3, "%s: merge inm state", __func__); error = inm_merge(inm, imf); if (error) { CTR1(KTR_IGMPV3, "%s: failed to merge inm state", __func__); goto out_in_multi_locked; } CTR1(KTR_IGMPV3, "%s: doing igmp downcall", __func__); error = igmp_change_state(inm); if (error) CTR1(KTR_IGMPV3, "%s: failed igmp downcall", __func__); out_in_multi_locked: IN_MULTI_UNLOCK(); out_imf_rollback: if (error) imf_rollback(imf); else imf_commit(imf); imf_reap(imf); out_inp_locked: INP_WUNLOCK(inp); return (error); } /* * Set the IP multicast options in response to user setsockopt(). * * Many of the socket options handled in this function duplicate the * functionality of socket options in the regular unicast API. However, * it is not possible to merge the duplicate code, because the idempotence * of the IPv4 multicast part of the BSD Sockets API must be preserved; * the effects of these options must be treated as separate and distinct. * * SMPng: XXX: Unlocked read of inp_socket believed OK. * FUTURE: The IP_MULTICAST_VIF option may be eliminated if MROUTING * is refactored to no longer use vifs. */ int inp_setmoptions(struct inpcb *inp, struct sockopt *sopt) { struct ip_moptions *imo; int error; error = 0; /* * If socket is neither of type SOCK_RAW or SOCK_DGRAM, * or is a divert socket, reject it. */ if (inp->inp_socket->so_proto->pr_protocol == IPPROTO_DIVERT || (inp->inp_socket->so_proto->pr_type != SOCK_RAW && inp->inp_socket->so_proto->pr_type != SOCK_DGRAM)) return (EOPNOTSUPP); switch (sopt->sopt_name) { case IP_MULTICAST_VIF: { int vifi; /* * Select a multicast VIF for transmission. * Only useful if multicast forwarding is active. */ if (legal_vif_num == NULL) { error = EOPNOTSUPP; break; } error = sooptcopyin(sopt, &vifi, sizeof(int), sizeof(int)); if (error) break; if (!legal_vif_num(vifi) && (vifi != -1)) { error = EINVAL; break; } imo = inp_findmoptions(inp); imo->imo_multicast_vif = vifi; INP_WUNLOCK(inp); break; } case IP_MULTICAST_IF: error = inp_set_multicast_if(inp, sopt); break; case IP_MULTICAST_TTL: { u_char ttl; /* * Set the IP time-to-live for outgoing multicast packets. * The original multicast API required a char argument, * which is inconsistent with the rest of the socket API. * We allow either a char or an int. */ if (sopt->sopt_valsize == sizeof(u_char)) { error = sooptcopyin(sopt, &ttl, sizeof(u_char), sizeof(u_char)); if (error) break; } else { u_int ittl; error = sooptcopyin(sopt, &ittl, sizeof(u_int), sizeof(u_int)); if (error) break; if (ittl > 255) { error = EINVAL; break; } ttl = (u_char)ittl; } imo = inp_findmoptions(inp); imo->imo_multicast_ttl = ttl; INP_WUNLOCK(inp); break; } case IP_MULTICAST_LOOP: { u_char loop; /* * Set the loopback flag for outgoing multicast packets. * Must be zero or one. The original multicast API required a * char argument, which is inconsistent with the rest * of the socket API. We allow either a char or an int. */ if (sopt->sopt_valsize == sizeof(u_char)) { error = sooptcopyin(sopt, &loop, sizeof(u_char), sizeof(u_char)); if (error) break; } else { u_int iloop; error = sooptcopyin(sopt, &iloop, sizeof(u_int), sizeof(u_int)); if (error) break; loop = (u_char)iloop; } imo = inp_findmoptions(inp); imo->imo_multicast_loop = !!loop; INP_WUNLOCK(inp); break; } case IP_ADD_MEMBERSHIP: case IP_ADD_SOURCE_MEMBERSHIP: case MCAST_JOIN_GROUP: case MCAST_JOIN_SOURCE_GROUP: error = inp_join_group(inp, sopt); break; case IP_DROP_MEMBERSHIP: case IP_DROP_SOURCE_MEMBERSHIP: case MCAST_LEAVE_GROUP: case MCAST_LEAVE_SOURCE_GROUP: error = inp_leave_group(inp, sopt); break; case IP_BLOCK_SOURCE: case IP_UNBLOCK_SOURCE: case MCAST_BLOCK_SOURCE: case MCAST_UNBLOCK_SOURCE: error = inp_block_unblock_source(inp, sopt); break; case IP_MSFILTER: error = inp_set_source_filters(inp, sopt); break; default: error = EOPNOTSUPP; break; } INP_UNLOCK_ASSERT(inp); return (error); } /* * Expose IGMP's multicast filter mode and source list(s) to userland, * keyed by (ifindex, group). * The filter mode is written out as a uint32_t, followed by * 0..n of struct in_addr. * For use by ifmcstat(8). * SMPng: NOTE: unlocked read of ifindex space. */ static int sysctl_ip_mcast_filters(SYSCTL_HANDLER_ARGS) { struct in_addr src, group; struct ifnet *ifp; struct ifmultiaddr *ifma; struct in_multi *inm; struct ip_msource *ims; int *name; int retval; u_int namelen; uint32_t fmode, ifindex; name = (int *)arg1; namelen = arg2; if (req->newptr != NULL) return (EPERM); if (namelen != 2) return (EINVAL); ifindex = name[0]; if (ifindex <= 0 || ifindex > V_if_index) { CTR2(KTR_IGMPV3, "%s: ifindex %u out of range", __func__, ifindex); return (ENOENT); } group.s_addr = name[1]; if (!IN_MULTICAST(ntohl(group.s_addr))) { CTR2(KTR_IGMPV3, "%s: group %s is not multicast", __func__, inet_ntoa(group)); return (EINVAL); } ifp = ifnet_byindex(ifindex); if (ifp == NULL) { CTR2(KTR_IGMPV3, "%s: no ifp for ifindex %u", __func__, ifindex); return (ENOENT); } retval = sysctl_wire_old_buffer(req, sizeof(uint32_t) + (in_mcast_maxgrpsrc * sizeof(struct in_addr))); if (retval) return (retval); IN_MULTI_LOCK(); IF_ADDR_RLOCK(ifp); TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { if (ifma->ifma_addr->sa_family != AF_INET || ifma->ifma_protospec == NULL) continue; inm = (struct in_multi *)ifma->ifma_protospec; if (!in_hosteq(inm->inm_addr, group)) continue; fmode = inm->inm_st[1].iss_fmode; retval = SYSCTL_OUT(req, &fmode, sizeof(uint32_t)); if (retval != 0) break; RB_FOREACH(ims, ip_msource_tree, &inm->inm_srcs) { #ifdef KTR struct in_addr ina; ina.s_addr = htonl(ims->ims_haddr); CTR2(KTR_IGMPV3, "%s: visit node %s", __func__, inet_ntoa(ina)); #endif /* * Only copy-out sources which are in-mode. */ if (fmode != ims_get_mode(inm, ims, 1)) { CTR1(KTR_IGMPV3, "%s: skip non-in-mode", __func__); continue; } src.s_addr = htonl(ims->ims_haddr); retval = SYSCTL_OUT(req, &src, sizeof(struct in_addr)); if (retval != 0) break; } } IF_ADDR_RUNLOCK(ifp); IN_MULTI_UNLOCK(); return (retval); } #if defined(KTR) && (KTR_COMPILE & KTR_IGMPV3) static const char *inm_modestrs[] = { "un", "in", "ex" }; static const char * inm_mode_str(const int mode) { if (mode >= MCAST_UNDEFINED && mode <= MCAST_EXCLUDE) return (inm_modestrs[mode]); return ("??"); } static const char *inm_statestrs[] = { "not-member", "silent", "idle", "lazy", "sleeping", "awakening", "query-pending", "sg-query-pending", "leaving" }; static const char * inm_state_str(const int state) { if (state >= IGMP_NOT_MEMBER && state <= IGMP_LEAVING_MEMBER) return (inm_statestrs[state]); return ("??"); } /* * Dump an in_multi structure to the console. */ void inm_print(const struct in_multi *inm) { int t; if ((ktr_mask & KTR_IGMPV3) == 0) return; printf("%s: --- begin inm %p ---\n", __func__, inm); printf("addr %s ifp %p(%s) ifma %p\n", inet_ntoa(inm->inm_addr), inm->inm_ifp, inm->inm_ifp->if_xname, inm->inm_ifma); printf("timer %u state %s refcount %u scq.len %u\n", inm->inm_timer, inm_state_str(inm->inm_state), inm->inm_refcount, inm->inm_scq.mq_len); printf("igi %p nsrc %lu sctimer %u scrv %u\n", inm->inm_igi, inm->inm_nsrc, inm->inm_sctimer, inm->inm_scrv); for (t = 0; t < 2; t++) { printf("t%d: fmode %s asm %u ex %u in %u rec %u\n", t, inm_mode_str(inm->inm_st[t].iss_fmode), inm->inm_st[t].iss_asm, inm->inm_st[t].iss_ex, inm->inm_st[t].iss_in, inm->inm_st[t].iss_rec); } printf("%s: --- end inm %p ---\n", __func__, inm); } #else /* !KTR || !(KTR_COMPILE & KTR_IGMPV3) */ void inm_print(const struct in_multi *inm) { } #endif /* KTR && (KTR_COMPILE & KTR_IGMPV3) */ RB_GENERATE(ip_msource_tree, ip_msource, ims_link, ip_msource_cmp);