/*- * Copyright (c) 2016 Jared McNeill * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * $FreeBSD$ */ /* * Allwinner Gigabit Ethernet MAC (EMAC) controller */ #include "opt_device_polling.h" #include __FBSDID("$FreeBSD$"); #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "miibus_if.h" #include "gpio_if.h" #define RD4(sc, reg) bus_read_4((sc)->res[_RES_EMAC], (reg)) #define WR4(sc, reg, val) bus_write_4((sc)->res[_RES_EMAC], (reg), (val)) #define AWG_LOCK(sc) mtx_lock(&(sc)->mtx) #define AWG_UNLOCK(sc) mtx_unlock(&(sc)->mtx); #define AWG_ASSERT_LOCKED(sc) mtx_assert(&(sc)->mtx, MA_OWNED) #define AWG_ASSERT_UNLOCKED(sc) mtx_assert(&(sc)->mtx, MA_NOTOWNED) #define DESC_ALIGN 4 #define TX_DESC_COUNT 1024 #define TX_DESC_SIZE (sizeof(struct emac_desc) * TX_DESC_COUNT) #define RX_DESC_COUNT 256 #define RX_DESC_SIZE (sizeof(struct emac_desc) * RX_DESC_COUNT) #define DESC_OFF(n) ((n) * sizeof(struct emac_desc)) #define TX_NEXT(n) (((n) + 1) & (TX_DESC_COUNT - 1)) #define TX_SKIP(n, o) (((n) + (o)) & (TX_DESC_COUNT - 1)) #define RX_NEXT(n) (((n) + 1) & (RX_DESC_COUNT - 1)) #define TX_MAX_SEGS 20 #define SOFT_RST_RETRY 1000 #define MII_BUSY_RETRY 1000 #define MDIO_FREQ 2500000 #define BURST_LEN_DEFAULT 8 #define RX_TX_PRI_DEFAULT 0 #define PAUSE_TIME_DEFAULT 0x400 #define TX_INTERVAL_DEFAULT 64 #define RX_BATCH_DEFAULT 64 /* syscon EMAC clock register */ #define EMAC_CLK_EPHY_ADDR (0x1f << 20) /* H3 */ #define EMAC_CLK_EPHY_ADDR_SHIFT 20 #define EMAC_CLK_EPHY_LED_POL (1 << 17) /* H3 */ #define EMAC_CLK_EPHY_SHUTDOWN (1 << 16) /* H3 */ #define EMAC_CLK_EPHY_SELECT (1 << 15) /* H3 */ #define EMAC_CLK_RMII_EN (1 << 13) #define EMAC_CLK_ETXDC (0x7 << 10) #define EMAC_CLK_ETXDC_SHIFT 10 #define EMAC_CLK_ERXDC (0x1f << 5) #define EMAC_CLK_ERXDC_SHIFT 5 #define EMAC_CLK_PIT (0x1 << 2) #define EMAC_CLK_PIT_MII (0 << 2) #define EMAC_CLK_PIT_RGMII (1 << 2) #define EMAC_CLK_SRC (0x3 << 0) #define EMAC_CLK_SRC_MII (0 << 0) #define EMAC_CLK_SRC_EXT_RGMII (1 << 0) #define EMAC_CLK_SRC_RGMII (2 << 0) /* Burst length of RX and TX DMA transfers */ static int awg_burst_len = BURST_LEN_DEFAULT; TUNABLE_INT("hw.awg.burst_len", &awg_burst_len); /* RX / TX DMA priority. If 1, RX DMA has priority over TX DMA. */ static int awg_rx_tx_pri = RX_TX_PRI_DEFAULT; TUNABLE_INT("hw.awg.rx_tx_pri", &awg_rx_tx_pri); /* Pause time field in the transmitted control frame */ static int awg_pause_time = PAUSE_TIME_DEFAULT; TUNABLE_INT("hw.awg.pause_time", &awg_pause_time); /* Request a TX interrupt every descriptors */ static int awg_tx_interval = TX_INTERVAL_DEFAULT; TUNABLE_INT("hw.awg.tx_interval", &awg_tx_interval); /* Maximum number of mbufs to send to if_input */ static int awg_rx_batch = RX_BATCH_DEFAULT; TUNABLE_INT("hw.awg.rx_batch", &awg_rx_batch); enum awg_type { EMAC_A83T = 1, EMAC_H3, EMAC_A64, }; static struct ofw_compat_data compat_data[] = { { "allwinner,sun8i-a83t-emac", EMAC_A83T }, { "allwinner,sun8i-h3-emac", EMAC_H3 }, { "allwinner,sun50i-a64-emac", EMAC_A64 }, { NULL, 0 } }; struct awg_bufmap { bus_dmamap_t map; struct mbuf *mbuf; }; struct awg_txring { bus_dma_tag_t desc_tag; bus_dmamap_t desc_map; struct emac_desc *desc_ring; bus_addr_t desc_ring_paddr; bus_dma_tag_t buf_tag; struct awg_bufmap buf_map[TX_DESC_COUNT]; u_int cur, next, queued; u_int segs; }; struct awg_rxring { bus_dma_tag_t desc_tag; bus_dmamap_t desc_map; struct emac_desc *desc_ring; bus_addr_t desc_ring_paddr; bus_dma_tag_t buf_tag; struct awg_bufmap buf_map[RX_DESC_COUNT]; bus_dmamap_t buf_spare_map; u_int cur; }; enum { _RES_EMAC, _RES_IRQ, _RES_SYSCON, _RES_NITEMS }; struct awg_softc { struct resource *res[_RES_NITEMS]; struct mtx mtx; if_t ifp; device_t dev; device_t miibus; struct callout stat_ch; struct task link_task; void *ih; u_int mdc_div_ratio_m; int link; int if_flags; enum awg_type type; struct awg_txring tx; struct awg_rxring rx; }; static struct resource_spec awg_spec[] = { { SYS_RES_MEMORY, 0, RF_ACTIVE }, { SYS_RES_IRQ, 0, RF_ACTIVE }, { SYS_RES_MEMORY, 1, RF_ACTIVE | RF_OPTIONAL }, { -1, 0 } }; static void awg_txeof(struct awg_softc *sc); static int awg_miibus_readreg(device_t dev, int phy, int reg) { struct awg_softc *sc; int retry, val; sc = device_get_softc(dev); val = 0; WR4(sc, EMAC_MII_CMD, (sc->mdc_div_ratio_m << MDC_DIV_RATIO_M_SHIFT) | (phy << PHY_ADDR_SHIFT) | (reg << PHY_REG_ADDR_SHIFT) | MII_BUSY); for (retry = MII_BUSY_RETRY; retry > 0; retry--) { if ((RD4(sc, EMAC_MII_CMD) & MII_BUSY) == 0) { val = RD4(sc, EMAC_MII_DATA); break; } DELAY(10); } if (retry == 0) device_printf(dev, "phy read timeout, phy=%d reg=%d\n", phy, reg); return (val); } static int awg_miibus_writereg(device_t dev, int phy, int reg, int val) { struct awg_softc *sc; int retry; sc = device_get_softc(dev); WR4(sc, EMAC_MII_DATA, val); WR4(sc, EMAC_MII_CMD, (sc->mdc_div_ratio_m << MDC_DIV_RATIO_M_SHIFT) | (phy << PHY_ADDR_SHIFT) | (reg << PHY_REG_ADDR_SHIFT) | MII_WR | MII_BUSY); for (retry = MII_BUSY_RETRY; retry > 0; retry--) { if ((RD4(sc, EMAC_MII_CMD) & MII_BUSY) == 0) break; DELAY(10); } if (retry == 0) device_printf(dev, "phy write timeout, phy=%d reg=%d\n", phy, reg); return (0); } static void awg_update_link_locked(struct awg_softc *sc) { struct mii_data *mii; uint32_t val; AWG_ASSERT_LOCKED(sc); if ((if_getdrvflags(sc->ifp) & IFF_DRV_RUNNING) == 0) return; mii = device_get_softc(sc->miibus); if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) == (IFM_ACTIVE | IFM_AVALID)) { switch (IFM_SUBTYPE(mii->mii_media_active)) { case IFM_1000_T: case IFM_1000_SX: case IFM_100_TX: case IFM_10_T: sc->link = 1; break; default: sc->link = 0; break; } } else sc->link = 0; if (sc->link == 0) return; val = RD4(sc, EMAC_BASIC_CTL_0); val &= ~(BASIC_CTL_SPEED | BASIC_CTL_DUPLEX); if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T || IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_SX) val |= BASIC_CTL_SPEED_1000 << BASIC_CTL_SPEED_SHIFT; else if (IFM_SUBTYPE(mii->mii_media_active) == IFM_100_TX) val |= BASIC_CTL_SPEED_100 << BASIC_CTL_SPEED_SHIFT; else val |= BASIC_CTL_SPEED_10 << BASIC_CTL_SPEED_SHIFT; if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) val |= BASIC_CTL_DUPLEX; WR4(sc, EMAC_BASIC_CTL_0, val); val = RD4(sc, EMAC_RX_CTL_0); val &= ~RX_FLOW_CTL_EN; if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_RXPAUSE) != 0) val |= RX_FLOW_CTL_EN; WR4(sc, EMAC_RX_CTL_0, val); val = RD4(sc, EMAC_TX_FLOW_CTL); val &= ~(PAUSE_TIME|TX_FLOW_CTL_EN); if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_TXPAUSE) != 0) val |= TX_FLOW_CTL_EN; if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) val |= awg_pause_time << PAUSE_TIME_SHIFT; WR4(sc, EMAC_TX_FLOW_CTL, val); } static void awg_link_task(void *arg, int pending) { struct awg_softc *sc; sc = arg; AWG_LOCK(sc); awg_update_link_locked(sc); AWG_UNLOCK(sc); } static void awg_miibus_statchg(device_t dev) { struct awg_softc *sc; sc = device_get_softc(dev); taskqueue_enqueue(taskqueue_swi, &sc->link_task); } static void awg_media_status(if_t ifp, struct ifmediareq *ifmr) { struct awg_softc *sc; struct mii_data *mii; sc = if_getsoftc(ifp); mii = device_get_softc(sc->miibus); AWG_LOCK(sc); mii_pollstat(mii); ifmr->ifm_active = mii->mii_media_active; ifmr->ifm_status = mii->mii_media_status; AWG_UNLOCK(sc); } static int awg_media_change(if_t ifp) { struct awg_softc *sc; struct mii_data *mii; int error; sc = if_getsoftc(ifp); mii = device_get_softc(sc->miibus); AWG_LOCK(sc); error = mii_mediachg(mii); AWG_UNLOCK(sc); return (error); } static int awg_encap(struct awg_softc *sc, struct mbuf **mp) { bus_dmamap_t map; bus_dma_segment_t segs[TX_MAX_SEGS]; int error, nsegs, cur, first, last, i; u_int csum_flags; uint32_t flags, status; struct mbuf *m; cur = first = sc->tx.cur; map = sc->tx.buf_map[first].map; m = *mp; error = bus_dmamap_load_mbuf_sg(sc->tx.buf_tag, map, m, segs, &nsegs, BUS_DMA_NOWAIT); if (error == EFBIG) { m = m_collapse(m, M_NOWAIT, TX_MAX_SEGS); if (m == NULL) { device_printf(sc->dev, "awg_encap: m_collapse failed\n"); m_freem(*mp); *mp = NULL; return (ENOMEM); } *mp = m; error = bus_dmamap_load_mbuf_sg(sc->tx.buf_tag, map, m, segs, &nsegs, BUS_DMA_NOWAIT); if (error != 0) { m_freem(*mp); *mp = NULL; } } if (error != 0) { device_printf(sc->dev, "awg_encap: bus_dmamap_load_mbuf_sg failed\n"); return (error); } if (nsegs == 0) { m_freem(*mp); *mp = NULL; return (EIO); } if (sc->tx.queued + nsegs > TX_DESC_COUNT) { bus_dmamap_unload(sc->tx.buf_tag, map); return (ENOBUFS); } bus_dmamap_sync(sc->tx.buf_tag, map, BUS_DMASYNC_PREWRITE); flags = TX_FIR_DESC; status = 0; if ((m->m_pkthdr.csum_flags & CSUM_IP) != 0) { if ((m->m_pkthdr.csum_flags & (CSUM_TCP|CSUM_UDP)) != 0) csum_flags = TX_CHECKSUM_CTL_FULL; else csum_flags = TX_CHECKSUM_CTL_IP; flags |= (csum_flags << TX_CHECKSUM_CTL_SHIFT); } for (i = 0; i < nsegs; i++) { sc->tx.segs++; if (i == nsegs - 1) { flags |= TX_LAST_DESC; /* * Can only request TX completion * interrupt on last descriptor. */ if (sc->tx.segs >= awg_tx_interval) { sc->tx.segs = 0; flags |= TX_INT_CTL; } } sc->tx.desc_ring[cur].addr = htole32((uint32_t)segs[i].ds_addr); sc->tx.desc_ring[cur].size = htole32(flags | segs[i].ds_len); sc->tx.desc_ring[cur].status = htole32(status); flags &= ~TX_FIR_DESC; /* * Setting of the valid bit in the first descriptor is * deferred until the whole chain is fully set up. */ status = TX_DESC_CTL; ++sc->tx.queued; cur = TX_NEXT(cur); } sc->tx.cur = cur; /* Store mapping and mbuf in the last segment */ last = TX_SKIP(cur, TX_DESC_COUNT - 1); sc->tx.buf_map[first].map = sc->tx.buf_map[last].map; sc->tx.buf_map[last].map = map; sc->tx.buf_map[last].mbuf = m; /* * The whole mbuf chain has been DMA mapped, * fix the first descriptor. */ sc->tx.desc_ring[first].status = htole32(TX_DESC_CTL); return (0); } static void awg_clean_txbuf(struct awg_softc *sc, int index) { struct awg_bufmap *bmap; --sc->tx.queued; bmap = &sc->tx.buf_map[index]; if (bmap->mbuf != NULL) { bus_dmamap_sync(sc->tx.buf_tag, bmap->map, BUS_DMASYNC_POSTWRITE); bus_dmamap_unload(sc->tx.buf_tag, bmap->map); m_freem(bmap->mbuf); bmap->mbuf = NULL; } } static void awg_setup_rxdesc(struct awg_softc *sc, int index, bus_addr_t paddr) { uint32_t status, size; status = RX_DESC_CTL; size = MCLBYTES - 1; sc->rx.desc_ring[index].addr = htole32((uint32_t)paddr); sc->rx.desc_ring[index].size = htole32(size); sc->rx.desc_ring[index].status = htole32(status); } static void awg_reuse_rxdesc(struct awg_softc *sc, int index) { sc->rx.desc_ring[index].status = htole32(RX_DESC_CTL); } static int awg_newbuf_rx(struct awg_softc *sc, int index) { struct mbuf *m; bus_dma_segment_t seg; bus_dmamap_t map; int nsegs; m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR); if (m == NULL) return (ENOBUFS); m->m_pkthdr.len = m->m_len = m->m_ext.ext_size; m_adj(m, ETHER_ALIGN); if (bus_dmamap_load_mbuf_sg(sc->rx.buf_tag, sc->rx.buf_spare_map, m, &seg, &nsegs, BUS_DMA_NOWAIT) != 0) { m_freem(m); return (ENOBUFS); } if (sc->rx.buf_map[index].mbuf != NULL) { bus_dmamap_sync(sc->rx.buf_tag, sc->rx.buf_map[index].map, BUS_DMASYNC_POSTREAD); bus_dmamap_unload(sc->rx.buf_tag, sc->rx.buf_map[index].map); } map = sc->rx.buf_map[index].map; sc->rx.buf_map[index].map = sc->rx.buf_spare_map; sc->rx.buf_spare_map = map; bus_dmamap_sync(sc->rx.buf_tag, sc->rx.buf_map[index].map, BUS_DMASYNC_PREREAD); sc->rx.buf_map[index].mbuf = m; awg_setup_rxdesc(sc, index, seg.ds_addr); return (0); } static void awg_start_locked(struct awg_softc *sc) { struct mbuf *m; uint32_t val; if_t ifp; int cnt, err; AWG_ASSERT_LOCKED(sc); if (!sc->link) return; ifp = sc->ifp; if ((if_getdrvflags(ifp) & (IFF_DRV_RUNNING|IFF_DRV_OACTIVE)) != IFF_DRV_RUNNING) return; for (cnt = 0; ; cnt++) { m = if_dequeue(ifp); if (m == NULL) break; err = awg_encap(sc, &m); if (err != 0) { if (err == ENOBUFS) if_setdrvflagbits(ifp, IFF_DRV_OACTIVE, 0); if (m != NULL) if_sendq_prepend(ifp, m); break; } if_bpfmtap(ifp, m); } if (cnt != 0) { bus_dmamap_sync(sc->tx.desc_tag, sc->tx.desc_map, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); /* Start and run TX DMA */ val = RD4(sc, EMAC_TX_CTL_1); WR4(sc, EMAC_TX_CTL_1, val | TX_DMA_START); } } static void awg_start(if_t ifp) { struct awg_softc *sc; sc = if_getsoftc(ifp); AWG_LOCK(sc); awg_start_locked(sc); AWG_UNLOCK(sc); } static void awg_tick(void *softc) { struct awg_softc *sc; struct mii_data *mii; if_t ifp; int link; sc = softc; ifp = sc->ifp; mii = device_get_softc(sc->miibus); AWG_ASSERT_LOCKED(sc); if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) == 0) return; link = sc->link; mii_tick(mii); if (sc->link && !link) awg_start_locked(sc); callout_reset(&sc->stat_ch, hz, awg_tick, sc); } /* Bit Reversal - http://aggregate.org/MAGIC/#Bit%20Reversal */ static uint32_t bitrev32(uint32_t x) { x = (((x & 0xaaaaaaaa) >> 1) | ((x & 0x55555555) << 1)); x = (((x & 0xcccccccc) >> 2) | ((x & 0x33333333) << 2)); x = (((x & 0xf0f0f0f0) >> 4) | ((x & 0x0f0f0f0f) << 4)); x = (((x & 0xff00ff00) >> 8) | ((x & 0x00ff00ff) << 8)); return (x >> 16) | (x << 16); } static void awg_setup_rxfilter(struct awg_softc *sc) { uint32_t val, crc, hashreg, hashbit, hash[2], machi, maclo; int mc_count, mcnt, i; uint8_t *eaddr, *mta; if_t ifp; AWG_ASSERT_LOCKED(sc); ifp = sc->ifp; val = 0; hash[0] = hash[1] = 0; mc_count = if_multiaddr_count(ifp, -1); if (if_getflags(ifp) & IFF_PROMISC) val |= DIS_ADDR_FILTER; else if (if_getflags(ifp) & IFF_ALLMULTI) { val |= RX_ALL_MULTICAST; hash[0] = hash[1] = ~0; } else if (mc_count > 0) { val |= HASH_MULTICAST; mta = malloc(sizeof(unsigned char) * ETHER_ADDR_LEN * mc_count, M_DEVBUF, M_NOWAIT); if (mta == NULL) { if_printf(ifp, "failed to allocate temporary multicast list\n"); return; } if_multiaddr_array(ifp, mta, &mcnt, mc_count); for (i = 0; i < mcnt; i++) { crc = ether_crc32_le(mta + (i * ETHER_ADDR_LEN), ETHER_ADDR_LEN) & 0x7f; crc = bitrev32(~crc) >> 26; hashreg = (crc >> 5); hashbit = (crc & 0x1f); hash[hashreg] |= (1 << hashbit); } free(mta, M_DEVBUF); } /* Write our unicast address */ eaddr = IF_LLADDR(ifp); machi = (eaddr[5] << 8) | eaddr[4]; maclo = (eaddr[3] << 24) | (eaddr[2] << 16) | (eaddr[1] << 8) | (eaddr[0] << 0); WR4(sc, EMAC_ADDR_HIGH(0), machi); WR4(sc, EMAC_ADDR_LOW(0), maclo); /* Multicast hash filters */ WR4(sc, EMAC_RX_HASH_0, hash[1]); WR4(sc, EMAC_RX_HASH_1, hash[0]); /* RX frame filter config */ WR4(sc, EMAC_RX_FRM_FLT, val); } static void awg_enable_intr(struct awg_softc *sc) { /* Enable interrupts */ WR4(sc, EMAC_INT_EN, RX_INT_EN | TX_INT_EN | TX_BUF_UA_INT_EN); } static void awg_disable_intr(struct awg_softc *sc) { /* Disable interrupts */ WR4(sc, EMAC_INT_EN, 0); } static void awg_init_locked(struct awg_softc *sc) { struct mii_data *mii; uint32_t val; if_t ifp; mii = device_get_softc(sc->miibus); ifp = sc->ifp; AWG_ASSERT_LOCKED(sc); if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) return; awg_setup_rxfilter(sc); /* Configure DMA burst length and priorities */ val = awg_burst_len << BASIC_CTL_BURST_LEN_SHIFT; if (awg_rx_tx_pri) val |= BASIC_CTL_RX_TX_PRI; WR4(sc, EMAC_BASIC_CTL_1, val); /* Enable interrupts */ #ifdef DEVICE_POLLING if ((if_getcapenable(ifp) & IFCAP_POLLING) == 0) awg_enable_intr(sc); else awg_disable_intr(sc); #else awg_enable_intr(sc); #endif /* Enable transmit DMA */ val = RD4(sc, EMAC_TX_CTL_1); WR4(sc, EMAC_TX_CTL_1, val | TX_DMA_EN | TX_MD | TX_NEXT_FRAME); /* Enable receive DMA */ val = RD4(sc, EMAC_RX_CTL_1); WR4(sc, EMAC_RX_CTL_1, val | RX_DMA_EN | RX_MD); /* Enable transmitter */ val = RD4(sc, EMAC_TX_CTL_0); WR4(sc, EMAC_TX_CTL_0, val | TX_EN); /* Enable receiver */ val = RD4(sc, EMAC_RX_CTL_0); WR4(sc, EMAC_RX_CTL_0, val | RX_EN | CHECK_CRC); if_setdrvflagbits(ifp, IFF_DRV_RUNNING, IFF_DRV_OACTIVE); mii_mediachg(mii); callout_reset(&sc->stat_ch, hz, awg_tick, sc); } static void awg_init(void *softc) { struct awg_softc *sc; sc = softc; AWG_LOCK(sc); awg_init_locked(sc); AWG_UNLOCK(sc); } static void awg_stop(struct awg_softc *sc) { if_t ifp; uint32_t val; int i; AWG_ASSERT_LOCKED(sc); ifp = sc->ifp; callout_stop(&sc->stat_ch); /* Stop transmit DMA and flush data in the TX FIFO */ val = RD4(sc, EMAC_TX_CTL_1); val &= ~TX_DMA_EN; val |= FLUSH_TX_FIFO; WR4(sc, EMAC_TX_CTL_1, val); /* Disable transmitter */ val = RD4(sc, EMAC_TX_CTL_0); WR4(sc, EMAC_TX_CTL_0, val & ~TX_EN); /* Disable receiver */ val = RD4(sc, EMAC_RX_CTL_0); WR4(sc, EMAC_RX_CTL_0, val & ~RX_EN); /* Disable interrupts */ awg_disable_intr(sc); /* Disable transmit DMA */ val = RD4(sc, EMAC_TX_CTL_1); WR4(sc, EMAC_TX_CTL_1, val & ~TX_DMA_EN); /* Disable receive DMA */ val = RD4(sc, EMAC_RX_CTL_1); WR4(sc, EMAC_RX_CTL_1, val & ~RX_DMA_EN); sc->link = 0; /* Finish handling transmitted buffers */ awg_txeof(sc); /* Release any untransmitted buffers. */ for (i = sc->tx.next; sc->tx.queued > 0; i = TX_NEXT(i)) { val = le32toh(sc->tx.desc_ring[i].status); if ((val & TX_DESC_CTL) != 0) break; awg_clean_txbuf(sc, i); } sc->tx.next = i; for (; sc->tx.queued > 0; i = TX_NEXT(i)) { sc->tx.desc_ring[i].status = 0; awg_clean_txbuf(sc, i); } sc->tx.cur = sc->tx.next; bus_dmamap_sync(sc->tx.desc_tag, sc->tx.desc_map, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); /* Setup RX buffers for reuse */ bus_dmamap_sync(sc->rx.desc_tag, sc->rx.desc_map, BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); for (i = sc->rx.cur; ; i = RX_NEXT(i)) { val = le32toh(sc->rx.desc_ring[i].status); if ((val & RX_DESC_CTL) != 0) break; awg_reuse_rxdesc(sc, i); } sc->rx.cur = i; bus_dmamap_sync(sc->rx.desc_tag, sc->rx.desc_map, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING | IFF_DRV_OACTIVE); } static int awg_rxintr(struct awg_softc *sc) { if_t ifp; struct mbuf *m, *mh, *mt; int error, index, len, cnt, npkt; uint32_t status; ifp = sc->ifp; mh = mt = NULL; cnt = 0; npkt = 0; bus_dmamap_sync(sc->rx.desc_tag, sc->rx.desc_map, BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); for (index = sc->rx.cur; ; index = RX_NEXT(index)) { status = le32toh(sc->rx.desc_ring[index].status); if ((status & RX_DESC_CTL) != 0) break; len = (status & RX_FRM_LEN) >> RX_FRM_LEN_SHIFT; if (len == 0) { if ((status & (RX_NO_ENOUGH_BUF_ERR | RX_OVERFLOW_ERR)) != 0) if_inc_counter(ifp, IFCOUNTER_IERRORS, 1); awg_reuse_rxdesc(sc, index); continue; } m = sc->rx.buf_map[index].mbuf; error = awg_newbuf_rx(sc, index); if (error != 0) { if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1); awg_reuse_rxdesc(sc, index); continue; } m->m_pkthdr.rcvif = ifp; m->m_pkthdr.len = len; m->m_len = len; if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1); if ((if_getcapenable(ifp) & IFCAP_RXCSUM) != 0 && (status & RX_FRM_TYPE) != 0) { m->m_pkthdr.csum_flags = CSUM_IP_CHECKED; if ((status & RX_HEADER_ERR) == 0) m->m_pkthdr.csum_flags |= CSUM_IP_VALID; if ((status & RX_PAYLOAD_ERR) == 0) { m->m_pkthdr.csum_flags |= CSUM_DATA_VALID | CSUM_PSEUDO_HDR; m->m_pkthdr.csum_data = 0xffff; } } m->m_nextpkt = NULL; if (mh == NULL) mh = m; else mt->m_nextpkt = m; mt = m; ++cnt; ++npkt; if (cnt == awg_rx_batch) { AWG_UNLOCK(sc); if_input(ifp, mh); AWG_LOCK(sc); mh = mt = NULL; cnt = 0; } } if (index != sc->rx.cur) { bus_dmamap_sync(sc->rx.desc_tag, sc->rx.desc_map, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); } if (mh != NULL) { AWG_UNLOCK(sc); if_input(ifp, mh); AWG_LOCK(sc); } sc->rx.cur = index; return (npkt); } static void awg_txeof(struct awg_softc *sc) { struct emac_desc *desc; uint32_t status, size; if_t ifp; int i, prog; AWG_ASSERT_LOCKED(sc); bus_dmamap_sync(sc->tx.desc_tag, sc->tx.desc_map, BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); ifp = sc->ifp; prog = 0; for (i = sc->tx.next; sc->tx.queued > 0; i = TX_NEXT(i)) { desc = &sc->tx.desc_ring[i]; status = le32toh(desc->status); if ((status & TX_DESC_CTL) != 0) break; size = le32toh(desc->size); if (size & TX_LAST_DESC) { if ((status & (TX_HEADER_ERR | TX_PAYLOAD_ERR)) != 0) if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); else if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1); } prog++; awg_clean_txbuf(sc, i); } if (prog > 0) { sc->tx.next = i; if_setdrvflagbits(ifp, 0, IFF_DRV_OACTIVE); } } static void awg_intr(void *arg) { struct awg_softc *sc; uint32_t val; sc = arg; AWG_LOCK(sc); val = RD4(sc, EMAC_INT_STA); WR4(sc, EMAC_INT_STA, val); if (val & RX_INT) awg_rxintr(sc); if (val & TX_INT) awg_txeof(sc); if (val & (TX_INT | TX_BUF_UA_INT)) { if (!if_sendq_empty(sc->ifp)) awg_start_locked(sc); } AWG_UNLOCK(sc); } #ifdef DEVICE_POLLING static int awg_poll(if_t ifp, enum poll_cmd cmd, int count) { struct awg_softc *sc; uint32_t val; int rx_npkts; sc = if_getsoftc(ifp); rx_npkts = 0; AWG_LOCK(sc); if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) == 0) { AWG_UNLOCK(sc); return (0); } rx_npkts = awg_rxintr(sc); awg_txeof(sc); if (!if_sendq_empty(ifp)) awg_start_locked(sc); if (cmd == POLL_AND_CHECK_STATUS) { val = RD4(sc, EMAC_INT_STA); if (val != 0) WR4(sc, EMAC_INT_STA, val); } AWG_UNLOCK(sc); return (rx_npkts); } #endif static int awg_ioctl(if_t ifp, u_long cmd, caddr_t data) { struct awg_softc *sc; struct mii_data *mii; struct ifreq *ifr; int flags, mask, error; sc = if_getsoftc(ifp); mii = device_get_softc(sc->miibus); ifr = (struct ifreq *)data; error = 0; switch (cmd) { case SIOCSIFFLAGS: AWG_LOCK(sc); if (if_getflags(ifp) & IFF_UP) { if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) { flags = if_getflags(ifp) ^ sc->if_flags; if ((flags & (IFF_PROMISC|IFF_ALLMULTI)) != 0) awg_setup_rxfilter(sc); } else awg_init_locked(sc); } else { if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) awg_stop(sc); } sc->if_flags = if_getflags(ifp); AWG_UNLOCK(sc); break; case SIOCADDMULTI: case SIOCDELMULTI: if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) { AWG_LOCK(sc); awg_setup_rxfilter(sc); AWG_UNLOCK(sc); } break; case SIOCSIFMEDIA: case SIOCGIFMEDIA: error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, cmd); break; case SIOCSIFCAP: mask = ifr->ifr_reqcap ^ if_getcapenable(ifp); #ifdef DEVICE_POLLING if (mask & IFCAP_POLLING) { if ((ifr->ifr_reqcap & IFCAP_POLLING) != 0) { error = ether_poll_register(awg_poll, ifp); if (error != 0) break; AWG_LOCK(sc); awg_disable_intr(sc); if_setcapenablebit(ifp, IFCAP_POLLING, 0); AWG_UNLOCK(sc); } else { error = ether_poll_deregister(ifp); AWG_LOCK(sc); awg_enable_intr(sc); if_setcapenablebit(ifp, 0, IFCAP_POLLING); AWG_UNLOCK(sc); } } #endif if (mask & IFCAP_VLAN_MTU) if_togglecapenable(ifp, IFCAP_VLAN_MTU); if (mask & IFCAP_RXCSUM) if_togglecapenable(ifp, IFCAP_RXCSUM); if (mask & IFCAP_TXCSUM) if_togglecapenable(ifp, IFCAP_TXCSUM); if ((if_getcapenable(ifp) & IFCAP_TXCSUM) != 0) if_sethwassistbits(ifp, CSUM_IP | CSUM_UDP | CSUM_TCP, 0); else if_sethwassistbits(ifp, 0, CSUM_IP | CSUM_UDP | CSUM_TCP); break; default: error = ether_ioctl(ifp, cmd, data); break; } return (error); } static int awg_setup_phy(device_t dev) { struct awg_softc *sc; clk_t clk_tx, clk_tx_parent; const char *tx_parent_name; char *phy_type; phandle_t node; uint32_t reg, tx_delay, rx_delay; int error; sc = device_get_softc(dev); node = ofw_bus_get_node(dev); if (OF_getprop_alloc(node, "phy-mode", 1, (void **)&phy_type) == 0) return (0); if (bootverbose) device_printf(dev, "PHY type: %s, conf mode: %s\n", phy_type, sc->res[_RES_SYSCON] != NULL ? "reg" : "clk"); if (sc->res[_RES_SYSCON] != NULL) { reg = bus_read_4(sc->res[_RES_SYSCON], 0); reg &= ~(EMAC_CLK_PIT | EMAC_CLK_SRC | EMAC_CLK_RMII_EN); if (strcmp(phy_type, "rgmii") == 0) reg |= EMAC_CLK_PIT_RGMII | EMAC_CLK_SRC_RGMII; else if (strcmp(phy_type, "rmii") == 0) reg |= EMAC_CLK_RMII_EN; else reg |= EMAC_CLK_PIT_MII | EMAC_CLK_SRC_MII; if (OF_getencprop(node, "tx-delay", &tx_delay, sizeof(tx_delay)) > 0) { reg &= ~EMAC_CLK_ETXDC; reg |= (tx_delay << EMAC_CLK_ETXDC_SHIFT); } if (OF_getencprop(node, "rx-delay", &rx_delay, sizeof(rx_delay)) > 0) { reg &= ~EMAC_CLK_ERXDC; reg |= (rx_delay << EMAC_CLK_ERXDC_SHIFT); } if (sc->type == EMAC_H3) { if (OF_hasprop(node, "allwinner,use-internal-phy")) { reg |= EMAC_CLK_EPHY_SELECT; reg &= ~EMAC_CLK_EPHY_SHUTDOWN; if (OF_hasprop(node, "allwinner,leds-active-low")) reg |= EMAC_CLK_EPHY_LED_POL; else reg &= ~EMAC_CLK_EPHY_LED_POL; /* Set internal PHY addr to 1 */ reg &= ~EMAC_CLK_EPHY_ADDR; reg |= (1 << EMAC_CLK_EPHY_ADDR_SHIFT); } else { reg &= ~EMAC_CLK_EPHY_SELECT; } } if (bootverbose) device_printf(dev, "EMAC clock: 0x%08x\n", reg); bus_write_4(sc->res[_RES_SYSCON], 0, reg); } else { if (strcmp(phy_type, "rgmii") == 0) tx_parent_name = "emac_int_tx"; else tx_parent_name = "mii_phy_tx"; /* Get the TX clock */ error = clk_get_by_ofw_name(dev, 0, "tx", &clk_tx); if (error != 0) { device_printf(dev, "cannot get tx clock\n"); goto fail; } /* Find the desired parent clock based on phy-mode property */ error = clk_get_by_name(dev, tx_parent_name, &clk_tx_parent); if (error != 0) { device_printf(dev, "cannot get clock '%s'\n", tx_parent_name); goto fail; } /* Set TX clock parent */ error = clk_set_parent_by_clk(clk_tx, clk_tx_parent); if (error != 0) { device_printf(dev, "cannot set tx clock parent\n"); goto fail; } /* Enable TX clock */ error = clk_enable(clk_tx); if (error != 0) { device_printf(dev, "cannot enable tx clock\n"); goto fail; } } error = 0; fail: OF_prop_free(phy_type); return (error); } static int awg_setup_extres(device_t dev) { struct awg_softc *sc; hwreset_t rst_ahb, rst_ephy; clk_t clk_ahb, clk_ephy; regulator_t reg; phandle_t node; uint64_t freq; int error, div; sc = device_get_softc(dev); node = ofw_bus_get_node(dev); rst_ahb = rst_ephy = NULL; clk_ahb = clk_ephy = NULL; reg = NULL; /* Get AHB clock and reset resources */ error = hwreset_get_by_ofw_name(dev, 0, "ahb", &rst_ahb); if (error != 0) { device_printf(dev, "cannot get ahb reset\n"); goto fail; } if (hwreset_get_by_ofw_name(dev, 0, "ephy", &rst_ephy) != 0) rst_ephy = NULL; error = clk_get_by_ofw_name(dev, 0, "ahb", &clk_ahb); if (error != 0) { device_printf(dev, "cannot get ahb clock\n"); goto fail; } if (clk_get_by_ofw_name(dev, 0, "ephy", &clk_ephy) != 0) clk_ephy = NULL; /* Configure PHY for MII or RGMII mode */ if (awg_setup_phy(dev) != 0) goto fail; /* Enable clocks */ error = clk_enable(clk_ahb); if (error != 0) { device_printf(dev, "cannot enable ahb clock\n"); goto fail; } if (clk_ephy != NULL) { error = clk_enable(clk_ephy); if (error != 0) { device_printf(dev, "cannot enable ephy clock\n"); goto fail; } } /* De-assert reset */ error = hwreset_deassert(rst_ahb); if (error != 0) { device_printf(dev, "cannot de-assert ahb reset\n"); goto fail; } if (rst_ephy != NULL) { error = hwreset_deassert(rst_ephy); if (error != 0) { device_printf(dev, "cannot de-assert ephy reset\n"); goto fail; } } /* Enable PHY regulator if applicable */ if (regulator_get_by_ofw_property(dev, 0, "phy-supply", ®) == 0) { error = regulator_enable(reg); if (error != 0) { device_printf(dev, "cannot enable PHY regulator\n"); goto fail; } } /* Determine MDC clock divide ratio based on AHB clock */ error = clk_get_freq(clk_ahb, &freq); if (error != 0) { device_printf(dev, "cannot get AHB clock frequency\n"); goto fail; } div = freq / MDIO_FREQ; if (div <= 16) sc->mdc_div_ratio_m = MDC_DIV_RATIO_M_16; else if (div <= 32) sc->mdc_div_ratio_m = MDC_DIV_RATIO_M_32; else if (div <= 64) sc->mdc_div_ratio_m = MDC_DIV_RATIO_M_64; else if (div <= 128) sc->mdc_div_ratio_m = MDC_DIV_RATIO_M_128; else { device_printf(dev, "cannot determine MDC clock divide ratio\n"); error = ENXIO; goto fail; } if (bootverbose) device_printf(dev, "AHB frequency %ju Hz, MDC div: 0x%x\n", (uintmax_t)freq, sc->mdc_div_ratio_m); return (0); fail: if (reg != NULL) regulator_release(reg); if (clk_ephy != NULL) clk_release(clk_ephy); if (clk_ahb != NULL) clk_release(clk_ahb); if (rst_ephy != NULL) hwreset_release(rst_ephy); if (rst_ahb != NULL) hwreset_release(rst_ahb); return (error); } static void awg_get_eaddr(device_t dev, uint8_t *eaddr) { struct awg_softc *sc; uint32_t maclo, machi, rnd; u_char rootkey[16]; sc = device_get_softc(dev); machi = RD4(sc, EMAC_ADDR_HIGH(0)) & 0xffff; maclo = RD4(sc, EMAC_ADDR_LOW(0)); if (maclo == 0xffffffff && machi == 0xffff) { /* MAC address in hardware is invalid, create one */ if (aw_sid_get_rootkey(rootkey) == 0 && (rootkey[3] | rootkey[12] | rootkey[13] | rootkey[14] | rootkey[15]) != 0) { /* MAC address is derived from the root key in SID */ maclo = (rootkey[13] << 24) | (rootkey[12] << 16) | (rootkey[3] << 8) | 0x02; machi = (rootkey[15] << 8) | rootkey[14]; } else { /* Create one */ rnd = arc4random(); maclo = 0x00f2 | (rnd & 0xffff0000); machi = rnd & 0xffff; } } eaddr[0] = maclo & 0xff; eaddr[1] = (maclo >> 8) & 0xff; eaddr[2] = (maclo >> 16) & 0xff; eaddr[3] = (maclo >> 24) & 0xff; eaddr[4] = machi & 0xff; eaddr[5] = (machi >> 8) & 0xff; } #ifdef AWG_DEBUG static void awg_dump_regs(device_t dev) { static const struct { const char *name; u_int reg; } regs[] = { { "BASIC_CTL_0", EMAC_BASIC_CTL_0 }, { "BASIC_CTL_1", EMAC_BASIC_CTL_1 }, { "INT_STA", EMAC_INT_STA }, { "INT_EN", EMAC_INT_EN }, { "TX_CTL_0", EMAC_TX_CTL_0 }, { "TX_CTL_1", EMAC_TX_CTL_1 }, { "TX_FLOW_CTL", EMAC_TX_FLOW_CTL }, { "TX_DMA_LIST", EMAC_TX_DMA_LIST }, { "RX_CTL_0", EMAC_RX_CTL_0 }, { "RX_CTL_1", EMAC_RX_CTL_1 }, { "RX_DMA_LIST", EMAC_RX_DMA_LIST }, { "RX_FRM_FLT", EMAC_RX_FRM_FLT }, { "RX_HASH_0", EMAC_RX_HASH_0 }, { "RX_HASH_1", EMAC_RX_HASH_1 }, { "MII_CMD", EMAC_MII_CMD }, { "ADDR_HIGH0", EMAC_ADDR_HIGH(0) }, { "ADDR_LOW0", EMAC_ADDR_LOW(0) }, { "TX_DMA_STA", EMAC_TX_DMA_STA }, { "TX_DMA_CUR_DESC", EMAC_TX_DMA_CUR_DESC }, { "TX_DMA_CUR_BUF", EMAC_TX_DMA_CUR_BUF }, { "RX_DMA_STA", EMAC_RX_DMA_STA }, { "RX_DMA_CUR_DESC", EMAC_RX_DMA_CUR_DESC }, { "RX_DMA_CUR_BUF", EMAC_RX_DMA_CUR_BUF }, { "RGMII_STA", EMAC_RGMII_STA }, }; struct awg_softc *sc; unsigned int n; sc = device_get_softc(dev); for (n = 0; n < nitems(regs); n++) device_printf(dev, " %-20s %08x\n", regs[n].name, RD4(sc, regs[n].reg)); } #endif #define GPIO_ACTIVE_LOW 1 static int awg_phy_reset(device_t dev) { pcell_t gpio_prop[4], delay_prop[3]; phandle_t node, gpio_node; device_t gpio; uint32_t pin, flags; uint32_t pin_value; node = ofw_bus_get_node(dev); if (OF_getencprop(node, "allwinner,reset-gpio", gpio_prop, sizeof(gpio_prop)) <= 0) return (0); if (OF_getencprop(node, "allwinner,reset-delays-us", delay_prop, sizeof(delay_prop)) <= 0) return (ENXIO); gpio_node = OF_node_from_xref(gpio_prop[0]); if ((gpio = OF_device_from_xref(gpio_prop[0])) == NULL) return (ENXIO); if (GPIO_MAP_GPIOS(gpio, node, gpio_node, nitems(gpio_prop) - 1, gpio_prop + 1, &pin, &flags) != 0) return (ENXIO); pin_value = GPIO_PIN_LOW; if (OF_hasprop(node, "allwinner,reset-active-low")) pin_value = GPIO_PIN_HIGH; if (flags & GPIO_ACTIVE_LOW) pin_value = !pin_value; GPIO_PIN_SETFLAGS(gpio, pin, GPIO_PIN_OUTPUT); GPIO_PIN_SET(gpio, pin, pin_value); DELAY(delay_prop[0]); GPIO_PIN_SET(gpio, pin, !pin_value); DELAY(delay_prop[1]); GPIO_PIN_SET(gpio, pin, pin_value); DELAY(delay_prop[2]); return (0); } static int awg_reset(device_t dev) { struct awg_softc *sc; int retry; sc = device_get_softc(dev); /* Reset PHY if necessary */ if (awg_phy_reset(dev) != 0) { device_printf(dev, "failed to reset PHY\n"); return (ENXIO); } /* Soft reset all registers and logic */ WR4(sc, EMAC_BASIC_CTL_1, BASIC_CTL_SOFT_RST); /* Wait for soft reset bit to self-clear */ for (retry = SOFT_RST_RETRY; retry > 0; retry--) { if ((RD4(sc, EMAC_BASIC_CTL_1) & BASIC_CTL_SOFT_RST) == 0) break; DELAY(10); } if (retry == 0) { device_printf(dev, "soft reset timed out\n"); #ifdef AWG_DEBUG awg_dump_regs(dev); #endif return (ETIMEDOUT); } return (0); } static void awg_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nseg, int error) { if (error != 0) return; *(bus_addr_t *)arg = segs[0].ds_addr; } static int awg_setup_dma(device_t dev) { struct awg_softc *sc; int error, i; sc = device_get_softc(dev); /* Setup TX ring */ error = bus_dma_tag_create( bus_get_dma_tag(dev), /* Parent tag */ DESC_ALIGN, 0, /* alignment, boundary */ BUS_SPACE_MAXADDR_32BIT, /* lowaddr */ BUS_SPACE_MAXADDR, /* highaddr */ NULL, NULL, /* filter, filterarg */ TX_DESC_SIZE, 1, /* maxsize, nsegs */ TX_DESC_SIZE, /* maxsegsize */ 0, /* flags */ NULL, NULL, /* lockfunc, lockarg */ &sc->tx.desc_tag); if (error != 0) { device_printf(dev, "cannot create TX descriptor ring tag\n"); return (error); } error = bus_dmamem_alloc(sc->tx.desc_tag, (void **)&sc->tx.desc_ring, BUS_DMA_COHERENT | BUS_DMA_WAITOK | BUS_DMA_ZERO, &sc->tx.desc_map); if (error != 0) { device_printf(dev, "cannot allocate TX descriptor ring\n"); return (error); } error = bus_dmamap_load(sc->tx.desc_tag, sc->tx.desc_map, sc->tx.desc_ring, TX_DESC_SIZE, awg_dmamap_cb, &sc->tx.desc_ring_paddr, 0); if (error != 0) { device_printf(dev, "cannot load TX descriptor ring\n"); return (error); } for (i = 0; i < TX_DESC_COUNT; i++) sc->tx.desc_ring[i].next = htole32(sc->tx.desc_ring_paddr + DESC_OFF(TX_NEXT(i))); error = bus_dma_tag_create( bus_get_dma_tag(dev), /* Parent tag */ 1, 0, /* alignment, boundary */ BUS_SPACE_MAXADDR_32BIT, /* lowaddr */ BUS_SPACE_MAXADDR, /* highaddr */ NULL, NULL, /* filter, filterarg */ MCLBYTES, TX_MAX_SEGS, /* maxsize, nsegs */ MCLBYTES, /* maxsegsize */ 0, /* flags */ NULL, NULL, /* lockfunc, lockarg */ &sc->tx.buf_tag); if (error != 0) { device_printf(dev, "cannot create TX buffer tag\n"); return (error); } sc->tx.queued = 0; for (i = 0; i < TX_DESC_COUNT; i++) { error = bus_dmamap_create(sc->tx.buf_tag, 0, &sc->tx.buf_map[i].map); if (error != 0) { device_printf(dev, "cannot create TX buffer map\n"); return (error); } } /* Setup RX ring */ error = bus_dma_tag_create( bus_get_dma_tag(dev), /* Parent tag */ DESC_ALIGN, 0, /* alignment, boundary */ BUS_SPACE_MAXADDR_32BIT, /* lowaddr */ BUS_SPACE_MAXADDR, /* highaddr */ NULL, NULL, /* filter, filterarg */ RX_DESC_SIZE, 1, /* maxsize, nsegs */ RX_DESC_SIZE, /* maxsegsize */ 0, /* flags */ NULL, NULL, /* lockfunc, lockarg */ &sc->rx.desc_tag); if (error != 0) { device_printf(dev, "cannot create RX descriptor ring tag\n"); return (error); } error = bus_dmamem_alloc(sc->rx.desc_tag, (void **)&sc->rx.desc_ring, BUS_DMA_COHERENT | BUS_DMA_WAITOK | BUS_DMA_ZERO, &sc->rx.desc_map); if (error != 0) { device_printf(dev, "cannot allocate RX descriptor ring\n"); return (error); } error = bus_dmamap_load(sc->rx.desc_tag, sc->rx.desc_map, sc->rx.desc_ring, RX_DESC_SIZE, awg_dmamap_cb, &sc->rx.desc_ring_paddr, 0); if (error != 0) { device_printf(dev, "cannot load RX descriptor ring\n"); return (error); } error = bus_dma_tag_create( bus_get_dma_tag(dev), /* Parent tag */ 1, 0, /* alignment, boundary */ BUS_SPACE_MAXADDR_32BIT, /* lowaddr */ BUS_SPACE_MAXADDR, /* highaddr */ NULL, NULL, /* filter, filterarg */ MCLBYTES, 1, /* maxsize, nsegs */ MCLBYTES, /* maxsegsize */ 0, /* flags */ NULL, NULL, /* lockfunc, lockarg */ &sc->rx.buf_tag); if (error != 0) { device_printf(dev, "cannot create RX buffer tag\n"); return (error); } error = bus_dmamap_create(sc->rx.buf_tag, 0, &sc->rx.buf_spare_map); if (error != 0) { device_printf(dev, "cannot create RX buffer spare map\n"); return (error); } for (i = 0; i < RX_DESC_COUNT; i++) { sc->rx.desc_ring[i].next = htole32(sc->rx.desc_ring_paddr + DESC_OFF(RX_NEXT(i))); error = bus_dmamap_create(sc->rx.buf_tag, 0, &sc->rx.buf_map[i].map); if (error != 0) { device_printf(dev, "cannot create RX buffer map\n"); return (error); } sc->rx.buf_map[i].mbuf = NULL; error = awg_newbuf_rx(sc, i); if (error != 0) { device_printf(dev, "cannot create RX buffer\n"); return (error); } } bus_dmamap_sync(sc->rx.desc_tag, sc->rx.desc_map, BUS_DMASYNC_PREWRITE); /* Write transmit and receive descriptor base address registers */ WR4(sc, EMAC_TX_DMA_LIST, sc->tx.desc_ring_paddr); WR4(sc, EMAC_RX_DMA_LIST, sc->rx.desc_ring_paddr); return (0); } static int awg_probe(device_t dev) { if (!ofw_bus_status_okay(dev)) return (ENXIO); if (ofw_bus_search_compatible(dev, compat_data)->ocd_data == 0) return (ENXIO); device_set_desc(dev, "Allwinner Gigabit Ethernet"); return (BUS_PROBE_DEFAULT); } static int awg_attach(device_t dev) { uint8_t eaddr[ETHER_ADDR_LEN]; struct awg_softc *sc; phandle_t node; int error; sc = device_get_softc(dev); sc->dev = dev; sc->type = ofw_bus_search_compatible(dev, compat_data)->ocd_data; node = ofw_bus_get_node(dev); if (bus_alloc_resources(dev, awg_spec, sc->res) != 0) { device_printf(dev, "cannot allocate resources for device\n"); return (ENXIO); } mtx_init(&sc->mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK, MTX_DEF); callout_init_mtx(&sc->stat_ch, &sc->mtx, 0); TASK_INIT(&sc->link_task, 0, awg_link_task, sc); /* Setup clocks and regulators */ error = awg_setup_extres(dev); if (error != 0) return (error); /* Read MAC address before resetting the chip */ awg_get_eaddr(dev, eaddr); /* Soft reset EMAC core */ error = awg_reset(dev); if (error != 0) return (error); /* Setup DMA descriptors */ error = awg_setup_dma(dev); if (error != 0) return (error); /* Install interrupt handler */ error = bus_setup_intr(dev, sc->res[_RES_IRQ], INTR_TYPE_NET | INTR_MPSAFE, NULL, awg_intr, sc, &sc->ih); if (error != 0) { device_printf(dev, "cannot setup interrupt handler\n"); return (error); } /* Setup ethernet interface */ sc->ifp = if_alloc(IFT_ETHER); if_setsoftc(sc->ifp, sc); if_initname(sc->ifp, device_get_name(dev), device_get_unit(dev)); if_setflags(sc->ifp, IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST); if_setstartfn(sc->ifp, awg_start); if_setioctlfn(sc->ifp, awg_ioctl); if_setinitfn(sc->ifp, awg_init); if_setsendqlen(sc->ifp, TX_DESC_COUNT - 1); if_setsendqready(sc->ifp); if_sethwassist(sc->ifp, CSUM_IP | CSUM_UDP | CSUM_TCP); if_setcapabilities(sc->ifp, IFCAP_VLAN_MTU | IFCAP_HWCSUM); if_setcapenable(sc->ifp, if_getcapabilities(sc->ifp)); #ifdef DEVICE_POLLING if_setcapabilitiesbit(sc->ifp, IFCAP_POLLING, 0); #endif /* Attach MII driver */ error = mii_attach(dev, &sc->miibus, sc->ifp, awg_media_change, awg_media_status, BMSR_DEFCAPMASK, MII_PHY_ANY, MII_OFFSET_ANY, MIIF_DOPAUSE); if (error != 0) { device_printf(dev, "cannot attach PHY\n"); return (error); } /* Attach ethernet interface */ ether_ifattach(sc->ifp, eaddr); return (0); } static device_method_t awg_methods[] = { /* Device interface */ DEVMETHOD(device_probe, awg_probe), DEVMETHOD(device_attach, awg_attach), /* MII interface */ DEVMETHOD(miibus_readreg, awg_miibus_readreg), DEVMETHOD(miibus_writereg, awg_miibus_writereg), DEVMETHOD(miibus_statchg, awg_miibus_statchg), DEVMETHOD_END }; static driver_t awg_driver = { "awg", awg_methods, sizeof(struct awg_softc), }; static devclass_t awg_devclass; DRIVER_MODULE(awg, simplebus, awg_driver, awg_devclass, 0, 0); DRIVER_MODULE(miibus, awg, miibus_driver, miibus_devclass, 0, 0); MODULE_DEPEND(awg, ether, 1, 1, 1); MODULE_DEPEND(awg, miibus, 1, 1, 1);