/*- * Copyright (c) 2011 * Ben Gray . * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ /** * Driver for the I2C module on the TI SoC. * * This driver is heavily based on the TWI driver for the AT91 (at91_twi.c). * * CAUTION: The I2Ci registers are limited to 16 bit and 8 bit data accesses, * 32 bit data access is not allowed and can corrupt register content. * * This driver currently doesn't use DMA for the transfer, although I hope to * incorporate that sometime in the future. The idea being that for transaction * larger than a certain size the DMA engine is used, for anything less the * normal interrupt/fifo driven option is used. * * * WARNING: This driver uses mtx_sleep and interrupts to perform transactions, * which means you can't do a transaction during startup before the interrupts * have been enabled. Hint - the freebsd function config_intrhook_establish(). */ #include __FBSDID("$FreeBSD$"); #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "iicbus_if.h" /** * I2C device driver context, a pointer to this is stored in the device * driver structure. */ struct ti_i2c_softc { device_t sc_dev; uint32_t device_id; struct resource* sc_irq_res; struct resource* sc_mem_res; device_t sc_iicbus; void* sc_irq_h; struct mtx sc_mtx; volatile uint16_t sc_stat_flags; /* contains the status flags last IRQ */ uint16_t sc_i2c_addr; uint16_t sc_rev; }; struct ti_i2c_clock_config { int speed; int bitrate; uint8_t psc; /* Fast/Standard mode prescale divider */ uint8_t scll; /* Fast/Standard mode SCL low time */ uint8_t sclh; /* Fast/Standard mode SCL high time */ uint8_t hsscll; /* High Speed mode SCL low time */ uint8_t hssclh; /* High Speed mode SCL high time */ }; static struct ti_i2c_clock_config ti_i2c_clock_configs[] = { #if defined(SOC_OMAP4) { IIC_SLOW, 100000, 23, 13, 15, 0, 0}, { IIC_FAST, 400000, 9, 5, 7, 0, 0}, { IIC_FASTEST, 3310000, 1, 113, 115, 7, 10}, #elif defined(SOC_TI_AM335X) { IIC_SLOW, 100000, 3, 53, 55, 0, 0}, { IIC_FAST, 400000, 3, 8, 10, 0, 0}, { IIC_FASTEST, 400000, 3, 8, 10, 0, 0}, /* This might be higher */ #else #error "TI I2C driver is not supported on this SoC" #endif { -1, 0 } }; #define TI_I2C_REV1 0x003C /* OMAP3 */ #define TI_I2C_REV2 0x000A /* OMAP4 */ /** * Locking macros used throughout the driver */ #define TI_I2C_LOCK(_sc) mtx_lock(&(_sc)->sc_mtx) #define TI_I2C_UNLOCK(_sc) mtx_unlock(&(_sc)->sc_mtx) #define TI_I2C_LOCK_INIT(_sc) \ mtx_init(&_sc->sc_mtx, device_get_nameunit(_sc->sc_dev), \ "ti_i2c", MTX_DEF) #define TI_I2C_LOCK_DESTROY(_sc) mtx_destroy(&_sc->sc_mtx); #define TI_I2C_ASSERT_LOCKED(_sc) mtx_assert(&_sc->sc_mtx, MA_OWNED); #define TI_I2C_ASSERT_UNLOCKED(_sc) mtx_assert(&_sc->sc_mtx, MA_NOTOWNED); #ifdef DEBUG #define ti_i2c_dbg(_sc, fmt, args...) \ device_printf((_sc)->sc_dev, fmt, ##args) #else #define ti_i2c_dbg(_sc, fmt, args...) #endif static devclass_t ti_i2c_devclass; /* bus entry points */ static int ti_i2c_probe(device_t dev); static int ti_i2c_attach(device_t dev); static int ti_i2c_detach(device_t dev); static void ti_i2c_intr(void *); /* OFW routine */ static phandle_t ti_i2c_get_node(device_t bus, device_t dev); /* helper routines */ static int ti_i2c_activate(device_t dev); static void ti_i2c_deactivate(device_t dev); /** * ti_i2c_read_2 - reads a 16-bit value from one of the I2C registers * @sc: I2C device context * @off: the byte offset within the register bank to read from. * * * LOCKING: * No locking required * * RETURNS: * 16-bit value read from the register. */ static inline uint16_t ti_i2c_read_2(struct ti_i2c_softc *sc, bus_size_t off) { return bus_read_2(sc->sc_mem_res, off); } /** * ti_i2c_write_2 - writes a 16-bit value to one of the I2C registers * @sc: I2C device context * @off: the byte offset within the register bank to read from. * @val: the value to write into the register * * LOCKING: * No locking required * * RETURNS: * 16-bit value read from the register. */ static inline void ti_i2c_write_2(struct ti_i2c_softc *sc, bus_size_t off, uint16_t val) { bus_write_2(sc->sc_mem_res, off, val); } /** * ti_i2c_read_reg - reads a 16-bit value from one of the I2C registers * take into account revision-dependent register offset * @sc: I2C device context * @off: the byte offset within the register bank to read from. * * * LOCKING: * No locking required * * RETURNS: * 16-bit value read from the register. */ static inline uint16_t ti_i2c_read_reg(struct ti_i2c_softc *sc, bus_size_t off) { /* XXXOMAP3: FIXME add registers mapping here */ return bus_read_2(sc->sc_mem_res, off); } /** * ti_i2c_write_reg - writes a 16-bit value to one of the I2C registers * take into account revision-dependent register offset * @sc: I2C device context * @off: the byte offset within the register bank to read from. * @val: the value to write into the register * * LOCKING: * No locking required * * RETURNS: * 16-bit value read from the register. */ static inline void ti_i2c_write_reg(struct ti_i2c_softc *sc, bus_size_t off, uint16_t val) { /* XXXOMAP3: FIXME add registers mapping here */ bus_write_2(sc->sc_mem_res, off, val); } /** * ti_i2c_set_intr_enable - writes the interrupt enable register * @sc: I2C device context * @ie: bitmask of the interrupts to enable * * This function is needed as writing the I2C_IE register on the OMAP4 devices * doesn't seem to actually enable the interrupt, rather you have to write * through the I2C_IRQENABLE_CLR and I2C_IRQENABLE_SET registers. * * LOCKING: * No locking required * * RETURNS: * Nothing. */ static inline void ti_i2c_set_intr_enable(struct ti_i2c_softc *sc, uint16_t ie) { /* XXXOMAP3: FIXME */ ti_i2c_write_2(sc, I2C_REG_IRQENABLE_CLR, 0xffff); if (ie) ti_i2c_write_2(sc, I2C_REG_IRQENABLE_SET, ie); } /** * ti_i2c_reset - attach function for the driver * @dev: i2c device handle * * * * LOCKING: * Called from timer context * * RETURNS: * EH_HANDLED or EH_NOT_HANDLED */ static int ti_i2c_reset(device_t dev, u_char speed, u_char addr, u_char *oldaddr) { struct ti_i2c_softc *sc = device_get_softc(dev); struct ti_i2c_clock_config *clkcfg; uint16_t con_reg; clkcfg = ti_i2c_clock_configs; while (clkcfg->speed != -1) { if (clkcfg->speed == speed) break; /* take slow if speed is unknown */ if ((speed == IIC_UNKNOWN) && (clkcfg->speed == IIC_SLOW)) break; clkcfg++; } if (clkcfg->speed == -1) return (EINVAL); TI_I2C_LOCK(sc); if (oldaddr) *oldaddr = sc->sc_i2c_addr; sc->sc_i2c_addr = addr; /* First disable the controller while changing the clocks */ con_reg = ti_i2c_read_reg(sc, I2C_REG_CON); ti_i2c_write_reg(sc, I2C_REG_CON, 0x0000); /* Program the prescaler */ ti_i2c_write_reg(sc, I2C_REG_PSC, clkcfg->psc); /* Set the bitrate */ ti_i2c_write_reg(sc, I2C_REG_SCLL, clkcfg->scll | (clkcfg->hsscll<<8)); ti_i2c_write_reg(sc, I2C_REG_SCLH, clkcfg->sclh | (clkcfg->hssclh<<8)); /* Set the remote slave address */ ti_i2c_write_reg(sc, I2C_REG_SA, addr); /* Check if we are dealing with high speed mode */ if ((clkcfg->hsscll + clkcfg->hssclh) > 0) con_reg = I2C_CON_OPMODE_HS; else con_reg = I2C_CON_OPMODE_STD; /* Enable the I2C module again */ ti_i2c_write_reg(sc, I2C_REG_CON, I2C_CON_I2C_EN | con_reg); TI_I2C_UNLOCK(sc); return 0; } /** * ti_i2c_intr - interrupt handler for the I2C module * @dev: i2c device handle * * * * LOCKING: * Called from timer context * * RETURNS: * EH_HANDLED or EH_NOT_HANDLED */ static void ti_i2c_intr(void *arg) { struct ti_i2c_softc *sc = (struct ti_i2c_softc*) arg; uint16_t status; status = ti_i2c_read_reg(sc, I2C_REG_STAT); if (status == 0) return; TI_I2C_LOCK(sc); /* save the flags */ sc->sc_stat_flags |= status; /* clear the status flags */ ti_i2c_write_reg(sc, I2C_REG_STAT, status); /* wakeup the process the started the transaction */ wakeup(sc); TI_I2C_UNLOCK(sc); return; } /** * ti_i2c_wait - waits for the specific event to occur * @sc: i2c driver context * @flags: the event(s) to wait on, this is a bitmask of the I2C_STAT_??? flags * @statp: if not null will contain the status flags upon return * @timo: the number of ticks to wait * * * * LOCKING: * The driver context must be locked before calling this function. Internally * the function sleeps, releasing the lock as it does so, however the lock is * always retaken before this function returns. * * RETURNS: * 0 if the event(s) were tripped within timeout period * EBUSY if timedout waiting for the events * ENXIO if a NACK event was received */ static int ti_i2c_wait(struct ti_i2c_softc *sc, uint16_t flags, uint16_t *statp, int timo) { int waittime = timo; int start_ticks = ticks; int rc; TI_I2C_ASSERT_LOCKED(sc); /* check if the condition has already occured, the interrupt routine will * clear the status flags. */ if ((sc->sc_stat_flags & flags) == 0) { /* condition(s) haven't occured so sleep on the IRQ */ while (waittime > 0) { rc = mtx_sleep(sc, &sc->sc_mtx, 0, "I2Cwait", waittime); if (rc == EWOULDBLOCK) { /* timed-out, simply break out of the loop */ break; } else { /* IRQ has been tripped, but need to sanity check we have the * right events in the status flag. */ if ((sc->sc_stat_flags & flags) != 0) break; /* event hasn't been tripped so wait some more */ waittime -= (ticks - start_ticks); start_ticks = ticks; } } } /* copy the actual status bits */ if (statp != NULL) *statp = sc->sc_stat_flags; /* return the status found */ if ((sc->sc_stat_flags & flags) != 0) rc = 0; else rc = EBUSY; /* clear the flags set by the interrupt handler */ sc->sc_stat_flags = 0; return (rc); } /** * ti_i2c_wait_for_free_bus - waits for the bus to become free * @sc: i2c driver context * @timo: the time to wait for the bus to become free * * * * LOCKING: * The driver context must be locked before calling this function. Internally * the function sleeps, releasing the lock as it does so, however the lock is * always taken before this function returns. * * RETURNS: * 0 if the event(s) were tripped within timeout period * EBUSY if timedout waiting for the events * ENXIO if a NACK event was received */ static int ti_i2c_wait_for_free_bus(struct ti_i2c_softc *sc, int timo) { /* check if the bus is free, BB bit = 0 */ if ((ti_i2c_read_reg(sc, I2C_REG_STAT) & I2C_STAT_BB) == 0) return 0; /* enable bus free interrupts */ ti_i2c_set_intr_enable(sc, I2C_IE_BF); /* wait for the bus free interrupt to be tripped */ return ti_i2c_wait(sc, I2C_STAT_BF, NULL, timo); } /** * ti_i2c_read_bytes - attempts to perform a read operation * @sc: i2c driver context * @buf: buffer to hold the received bytes * @len: the number of bytes to read * * This function assumes the slave address is already set * * LOCKING: * The context lock should be held before calling this function * * RETURNS: * 0 on function succeeded * EINVAL if invalid message is passed as an arg */ static int ti_i2c_read_bytes(struct ti_i2c_softc *sc, uint8_t *buf, uint16_t len) { int timo = (hz / 4); int err = 0; uint16_t con_reg; uint16_t events; uint16_t status; uint32_t amount = 0; uint32_t sofar = 0; uint32_t i; /* wait for the bus to become free */ err = ti_i2c_wait_for_free_bus(sc, timo); if (err != 0) { device_printf(sc->sc_dev, "bus never freed\n"); return (err); } /* set the events to wait for */ events = I2C_IE_RDR | /* Receive draining interrupt */ I2C_IE_RRDY | /* Receive Data Ready interrupt */ I2C_IE_ARDY | /* Register Access Ready interrupt */ I2C_IE_NACK | /* No Acknowledgment interrupt */ I2C_IE_AL; /* enable interrupts for the events we want */ ti_i2c_set_intr_enable(sc, events); /* write the number of bytes to read */ ti_i2c_write_reg(sc, I2C_REG_CNT, len); /* clear the write bit and initiate the read transaction. Setting the STT * (start) bit initiates the transfer. */ con_reg = ti_i2c_read_reg(sc, I2C_REG_CON); con_reg &= ~I2C_CON_TRX; con_reg |= I2C_CON_MST | I2C_CON_STT | I2C_CON_STP; ti_i2c_write_reg(sc, I2C_REG_CON, con_reg); /* reading loop */ while (1) { /* wait for an event */ err = ti_i2c_wait(sc, events, &status, timo); if (err != 0) { break; } /* check for the error conditions */ if (status & I2C_STAT_NACK) { /* no ACK from slave */ ti_i2c_dbg(sc, "NACK\n"); err = ENXIO; break; } if (status & I2C_STAT_AL) { /* arbitration lost */ ti_i2c_dbg(sc, "Arbitration lost\n"); err = ENXIO; break; } /* check if we have finished */ if (status & I2C_STAT_ARDY) { /* register access ready - transaction complete basically */ ti_i2c_dbg(sc, "ARDY transaction complete\n"); err = 0; break; } /* read some data */ if (status & I2C_STAT_RDR) { /* Receive draining interrupt - last data received */ ti_i2c_dbg(sc, "Receive draining interrupt\n"); /* get the number of bytes in the FIFO */ amount = ti_i2c_read_reg(sc, I2C_REG_BUFSTAT); amount >>= 8; amount &= 0x3f; } else if (status & I2C_STAT_RRDY) { /* Receive data ready interrupt - enough data received */ ti_i2c_dbg(sc, "Receive data ready interrupt\n"); /* get the number of bytes in the FIFO */ amount = ti_i2c_read_reg(sc, I2C_REG_BUF); amount >>= 8; amount &= 0x3f; amount += 1; } /* sanity check we haven't overwritten the array */ if ((sofar + amount) > len) { ti_i2c_dbg(sc, "to many bytes to read\n"); amount = (len - sofar); } /* read the bytes from the fifo */ for (i = 0; i < amount; i++) { buf[sofar++] = (uint8_t)(ti_i2c_read_reg(sc, I2C_REG_DATA) & 0xff); } /* attempt to clear the receive ready bits */ ti_i2c_write_reg(sc, I2C_REG_STAT, I2C_STAT_RDR | I2C_STAT_RRDY); } /* reset the registers regardless if there was an error or not */ ti_i2c_set_intr_enable(sc, 0x0000); ti_i2c_write_reg(sc, I2C_REG_CON, I2C_CON_I2C_EN | I2C_CON_MST | I2C_CON_STP); return (err); } /** * ti_i2c_write_bytes - attempts to perform a read operation * @sc: i2c driver context * @buf: buffer containing the bytes to write * @len: the number of bytes to write * * This function assumes the slave address is already set * * LOCKING: * The context lock should be held before calling this function * * RETURNS: * 0 on function succeeded * EINVAL if invalid message is passed as an arg */ static int ti_i2c_write_bytes(struct ti_i2c_softc *sc, const uint8_t *buf, uint16_t len) { int timo = (hz / 4); int err = 0; uint16_t con_reg; uint16_t events; uint16_t status; uint32_t amount = 0; uint32_t sofar = 0; uint32_t i; /* wait for the bus to become free */ err = ti_i2c_wait_for_free_bus(sc, timo); if (err != 0) return (err); /* set the events to wait for */ events = I2C_IE_XDR | /* Transmit draining interrupt */ I2C_IE_XRDY | /* Transmit Data Ready interrupt */ I2C_IE_ARDY | /* Register Access Ready interrupt */ I2C_IE_NACK | /* No Acknowledgment interrupt */ I2C_IE_AL; /* enable interrupts for the events we want*/ ti_i2c_set_intr_enable(sc, events); /* write the number of bytes to write */ ti_i2c_write_reg(sc, I2C_REG_CNT, len); /* set the write bit and initiate the write transaction. Setting the STT * (start) bit initiates the transfer. */ con_reg = ti_i2c_read_reg(sc, I2C_REG_CON); con_reg |= I2C_CON_TRX | I2C_CON_MST | I2C_CON_STT | I2C_CON_STP; ti_i2c_write_reg(sc, I2C_REG_CON, con_reg); /* writing loop */ while (1) { /* wait for an event */ err = ti_i2c_wait(sc, events, &status, timo); if (err != 0) { break; } /* check for the error conditions */ if (status & I2C_STAT_NACK) { /* no ACK from slave */ ti_i2c_dbg(sc, "NACK\n"); err = ENXIO; break; } if (status & I2C_STAT_AL) { /* arbitration lost */ ti_i2c_dbg(sc, "Arbitration lost\n"); err = ENXIO; break; } /* check if we have finished */ if (status & I2C_STAT_ARDY) { /* register access ready - transaction complete basically */ ti_i2c_dbg(sc, "ARDY transaction complete\n"); err = 0; break; } /* read some data */ if (status & I2C_STAT_XDR) { /* Receive draining interrupt - last data received */ ti_i2c_dbg(sc, "Transmit draining interrupt\n"); /* get the number of bytes in the FIFO */ amount = ti_i2c_read_reg(sc, I2C_REG_BUFSTAT); amount &= 0x3f; } else if (status & I2C_STAT_XRDY) { /* Receive data ready interrupt - enough data received */ ti_i2c_dbg(sc, "Transmit data ready interrupt\n"); /* get the number of bytes in the FIFO */ amount = ti_i2c_read_reg(sc, I2C_REG_BUF); amount &= 0x3f; amount += 1; } /* sanity check we haven't overwritten the array */ if ((sofar + amount) > len) { ti_i2c_dbg(sc, "to many bytes to write\n"); amount = (len - sofar); } /* write the bytes from the fifo */ for (i = 0; i < amount; i++) { ti_i2c_write_reg(sc, I2C_REG_DATA, buf[sofar++]); } /* attempt to clear the transmit ready bits */ ti_i2c_write_reg(sc, I2C_REG_STAT, I2C_STAT_XDR | I2C_STAT_XRDY); } /* reset the registers regardless if there was an error or not */ ti_i2c_set_intr_enable(sc, 0x0000); ti_i2c_write_reg(sc, I2C_REG_CON, I2C_CON_I2C_EN | I2C_CON_MST | I2C_CON_STP); return (err); } /** * ti_i2c_transfer - called to perform the transfer * @dev: i2c device handle * @msgs: the messages to send/receive * @nmsgs: the number of messages in the msgs array * * * LOCKING: * Internally locked * * RETURNS: * 0 on function succeeded * EINVAL if invalid message is passed as an arg */ static int ti_i2c_transfer(device_t dev, struct iic_msg *msgs, uint32_t nmsgs) { struct ti_i2c_softc *sc = device_get_softc(dev); int err = 0; uint32_t i; uint16_t len; uint8_t *buf; TI_I2C_LOCK(sc); for (i = 0; i < nmsgs; i++) { len = msgs[i].len; buf = msgs[i].buf; /* zero byte transfers aren't allowed */ if (len == 0 || buf == NULL) { err = EINVAL; goto out; } /* set the slave address */ ti_i2c_write_reg(sc, I2C_REG_SA, msgs[i].slave); /* perform the read or write */ if (msgs[i].flags & IIC_M_RD) { err = ti_i2c_read_bytes(sc, buf, len); } else { err = ti_i2c_write_bytes(sc, buf, len); } } out: TI_I2C_UNLOCK(sc); return (err); } /** * ti_i2c_callback - not sure about this one * @dev: i2c device handle * * * * LOCKING: * Called from timer context * * RETURNS: * EH_HANDLED or EH_NOT_HANDLED */ static int ti_i2c_callback(device_t dev, int index, caddr_t data) { int error = 0; switch (index) { case IIC_REQUEST_BUS: break; case IIC_RELEASE_BUS: break; default: error = EINVAL; } return (error); } /** * ti_i2c_activate - initialises and activates an I2C bus * @dev: i2c device handle * @num: the number of the I2C controller to activate; 1, 2 or 3 * * * LOCKING: * Assumed called in an atomic context. * * RETURNS: * nothing */ static int ti_i2c_activate(device_t dev) { struct ti_i2c_softc *sc = (struct ti_i2c_softc*) device_get_softc(dev); unsigned int timeout = 0; uint16_t con_reg; int err; clk_ident_t clk; /* * The following sequence is taken from the OMAP3530 technical reference * * 1. Enable the functional and interface clocks (see Section 18.3.1.1.1). */ clk = I2C0_CLK + sc->device_id; err = ti_prcm_clk_enable(clk); if (err) return (err); /* There seems to be a bug in the I2C reset mechanism, for some reason you * need to disable the I2C module before issuing the reset and then enable * it again after to detect the reset done. * * I found this out by looking at the Linux driver implementation, thanks * linux guys! */ /* Disable the I2C controller */ ti_i2c_write_reg(sc, I2C_REG_CON, 0x0000); /* Issue a softreset to the controller */ /* XXXOMAP3: FIXME */ bus_write_2(sc->sc_mem_res, I2C_REG_SYSC, 0x0002); /* Re-enable the module and then check for the reset done */ ti_i2c_write_reg(sc, I2C_REG_CON, I2C_CON_I2C_EN); while ((ti_i2c_read_reg(sc, I2C_REG_SYSS) & 0x01) == 0x00) { if (timeout++ > 100) { return (EBUSY); } DELAY(100); } /* Disable the I2C controller once again, now that the reset has finished */ ti_i2c_write_reg(sc, I2C_REG_CON, 0x0000); /* 2. Program the prescaler to obtain an approximately 12-MHz internal * sampling clock (I2Ci_INTERNAL_CLK) by programming the corresponding * value in the I2Ci.I2C_PSC[3:0] PSC field. * This value depends on the frequency of the functional clock (I2Ci_FCLK). * Because this frequency is 96MHz, the I2Ci.I2C_PSC[7:0] PSC field value * is 0x7. */ /* Program the prescaler to obtain an approximately 12-MHz internal * sampling clock. */ ti_i2c_write_reg(sc, I2C_REG_PSC, 0x0017); /* 3. Program the I2Ci.I2C_SCLL[7:0] SCLL and I2Ci.I2C_SCLH[7:0] SCLH fields * to obtain a bit rate of 100K bps or 400K bps. These values depend on * the internal sampling clock frequency (see Table 18-12). */ /* Set the bitrate to 100kbps */ ti_i2c_write_reg(sc, I2C_REG_SCLL, 0x000d); ti_i2c_write_reg(sc, I2C_REG_SCLH, 0x000f); /* 4. (Optional) Program the I2Ci.I2C_SCLL[15:8] HSSCLL and * I2Ci.I2C_SCLH[15:8] HSSCLH fields to obtain a bit rate of 400K bps or * 3.4M bps (for the second phase of HS mode). These values depend on the * internal sampling clock frequency (see Table 18-12). * * 5. (Optional) If a bit rate of 3.4M bps is used and the bus line * capacitance exceeds 45 pF, program the CONTROL.CONTROL_DEVCONF1[12] * I2C1HSMASTER bit for I2C1, the CONTROL.CONTROL_DEVCONF1[13] * I2C2HSMASTER bit for I2C2, or the CONTROL.CONTROL_DEVCONF1[14] * I2C3HSMASTER bit for I2C3. */ /* 6. Configure the Own Address of the I2C controller by storing it in the * I2Ci.I2C_OA0 register. Up to four Own Addresses can be programmed in * the I2Ci.I2C_OAi registers (with I = 0, 1, 2, 3) for each I2C * controller. * * Note: For a 10-bit address, set the corresponding expand Own Address bit * in the I2Ci.I2C_CON register. */ /* Driver currently always in single master mode so ignore this step */ /* 7. Set the TX threshold (in transmitter mode) and the RX threshold (in * receiver mode) by setting the I2Ci.I2C_BUF[5:0]XTRSH field to (TX * threshold - 1) and the I2Ci.I2C_BUF[13:8]RTRSH field to (RX threshold * - 1), where the TX and RX thresholds are greater than or equal to 1. */ /* Set the FIFO buffer threshold, note I2C1 & I2C2 have 8 byte FIFO, whereas * I2C3 has 64 bytes. Threshold set to 5 for now. */ ti_i2c_write_reg(sc, I2C_REG_BUF, 0x0404); /* * 8. Take the I2C controller out of reset by setting the I2Ci.I2C_CON[15] * I2C_EN bit to 1. */ ti_i2c_write_reg(sc, I2C_REG_CON, I2C_CON_I2C_EN | I2C_CON_OPMODE_STD); /* * To initialize the I2C controller, perform the following steps: * * 1. Configure the I2Ci.I2C_CON register: * · For master or slave mode, set the I2Ci.I2C_CON[10] MST bit (0: slave, * 1: master). * · For transmitter or receiver mode, set the I2Ci.I2C_CON[9] TRX bit * (0: receiver, 1: transmitter). */ con_reg = ti_i2c_read_reg(sc, I2C_REG_CON); con_reg |= I2C_CON_MST; ti_i2c_write_reg(sc, I2C_REG_CON, con_reg); /* 2. If using an interrupt to transmit/receive data, set to 1 the * corresponding bit in the I2Ci.I2C_IE register (the I2Ci.I2C_IE[4] * XRDY_IE bit for the transmit interrupt, the I2Ci.I2C_IE[3] RRDY bit * for the receive interrupt). */ ti_i2c_set_intr_enable(sc, I2C_IE_XRDY | I2C_IE_RRDY); /* 3. If using DMA to receive/transmit data, set to 1 the corresponding bit * in the I2Ci.I2C_BUF register (the I2Ci.I2C_BUF[15] RDMA_EN bit for the * receive DMA channel, the I2Ci.I2C_BUF[7] XDMA_EN bit for the transmit * DMA channel). */ /* not using DMA for now, so ignore this */ return (0); } /** * ti_i2c_deactivate - deactivates the controller and releases resources * @dev: i2c device handle * * * * LOCKING: * Assumed called in an atomic context. * * RETURNS: * nothing */ static void ti_i2c_deactivate(device_t dev) { struct ti_i2c_softc *sc = device_get_softc(dev); clk_ident_t clk; /* Disable the controller - cancel all transactions */ ti_i2c_write_reg(sc, I2C_REG_CON, 0x0000); /* Release the interrupt handler */ if (sc->sc_irq_h) { bus_teardown_intr(dev, sc->sc_irq_res, sc->sc_irq_h); sc->sc_irq_h = 0; } bus_generic_detach(sc->sc_dev); /* Unmap the I2C controller registers */ if (sc->sc_mem_res != 0) { bus_release_resource(dev, SYS_RES_MEMORY, rman_get_rid(sc->sc_irq_res), sc->sc_mem_res); sc->sc_mem_res = NULL; } /* Release the IRQ resource */ if (sc->sc_irq_res != NULL) { bus_release_resource(dev, SYS_RES_IRQ, rman_get_rid(sc->sc_irq_res), sc->sc_irq_res); sc->sc_irq_res = NULL; } /* Finally disable the functional and interface clocks */ clk = I2C0_CLK + sc->device_id; ti_prcm_clk_disable(clk); return; } /** * ti_i2c_probe - probe function for the driver * @dev: i2c device handle * * * * LOCKING: * * * RETURNS: * Always returns 0 */ static int ti_i2c_probe(device_t dev) { if (!ofw_bus_status_okay(dev)) return (ENXIO); if (!ofw_bus_is_compatible(dev, "ti,i2c")) return (ENXIO); device_set_desc(dev, "TI I2C Controller"); return (0); } /** * ti_i2c_attach - attach function for the driver * @dev: i2c device handle * * Initialised driver data structures and activates the I2C controller. * * LOCKING: * * * RETURNS: * */ static int ti_i2c_attach(device_t dev) { struct ti_i2c_softc *sc = device_get_softc(dev); phandle_t node; pcell_t did; int err; int rid; sc->sc_dev = dev; /* Get the i2c device id from FDT */ node = ofw_bus_get_node(dev); if ((OF_getprop(node, "i2c-device-id", &did, sizeof(did))) <= 0) { device_printf(dev, "missing i2c-device-id attribute in FDT\n"); return (ENXIO); } sc->device_id = fdt32_to_cpu(did); TI_I2C_LOCK_INIT(sc); /* Get the memory resource for the register mapping */ rid = 0; sc->sc_mem_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid, RF_ACTIVE); if (sc->sc_mem_res == NULL) panic("%s: Cannot map registers", device_get_name(dev)); /* Allocate an IRQ resource for the MMC controller */ rid = 0; sc->sc_irq_res = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid, RF_ACTIVE | RF_SHAREABLE); if (sc->sc_irq_res == NULL) { err = ENOMEM; goto out; } /* First we _must_ activate the H/W */ err = ti_i2c_activate(dev); if (err) { device_printf(dev, "ti_i2c_activate failed\n"); goto out; } /* XXXOMAP3: FIXME get proper revision here */ /* Read the version number of the I2C module */ sc->sc_rev = ti_i2c_read_2(sc, I2C_REG_REVNB_HI) & 0xff; device_printf(dev, "I2C revision %d.%d\n", sc->sc_rev >> 4, sc->sc_rev & 0xf); /* activate the interrupt */ err = bus_setup_intr(dev, sc->sc_irq_res, INTR_TYPE_MISC | INTR_MPSAFE, NULL, ti_i2c_intr, sc, &sc->sc_irq_h); if (err) goto out; /* Attach to the iicbus */ if ((sc->sc_iicbus = device_add_child(dev, "iicbus", -1)) == NULL) device_printf(dev, "could not allocate iicbus instance\n"); /* Probe and attach the iicbus */ bus_generic_attach(dev); out: if (err) { ti_i2c_deactivate(dev); TI_I2C_LOCK_DESTROY(sc); } return (err); } /** * ti_i2c_detach - detach function for the driver * @dev: i2c device handle * * * * LOCKING: * * * RETURNS: * Always returns 0 */ static int ti_i2c_detach(device_t dev) { struct ti_i2c_softc *sc = device_get_softc(dev); int rv; ti_i2c_deactivate(dev); if (sc->sc_iicbus && (rv = device_delete_child(dev, sc->sc_iicbus)) != 0) return (rv); TI_I2C_LOCK_DESTROY(sc); return (0); } static phandle_t ti_i2c_get_node(device_t bus, device_t dev) { /* * Share controller node with iibus device */ return ofw_bus_get_node(bus); } static device_method_t ti_i2c_methods[] = { /* Device interface */ DEVMETHOD(device_probe, ti_i2c_probe), DEVMETHOD(device_attach, ti_i2c_attach), DEVMETHOD(device_detach, ti_i2c_detach), /* OFW methods */ DEVMETHOD(ofw_bus_get_node, ti_i2c_get_node), /* iicbus interface */ DEVMETHOD(iicbus_callback, ti_i2c_callback), DEVMETHOD(iicbus_reset, ti_i2c_reset), DEVMETHOD(iicbus_transfer, ti_i2c_transfer), { 0, 0 } }; static driver_t ti_i2c_driver = { "iichb", ti_i2c_methods, sizeof(struct ti_i2c_softc), }; DRIVER_MODULE(ti_iic, simplebus, ti_i2c_driver, ti_i2c_devclass, 0, 0); DRIVER_MODULE(iicbus, ti_iic, iicbus_driver, iicbus_devclass, 0, 0); MODULE_DEPEND(ti_iic, ti_prcm, 1, 1, 1); MODULE_DEPEND(ti_iic, iicbus, 1, 1, 1);