/*- * Copyright (c) 2004 Poul-Henning Kamp * Copyright (c) 1990 The Regents of the University of California. * All rights reserved. * * This code is derived from software contributed to Berkeley by * Don Ahn. * * Libretto PCMCIA floppy support by David Horwitt (dhorwitt@ucsd.edu) * aided by the Linux floppy driver modifications from David Bateman * (dbateman@eng.uts.edu.au). * * Copyright (c) 1993, 1994 by * jc@irbs.UUCP (John Capo) * vak@zebub.msk.su (Serge Vakulenko) * ache@astral.msk.su (Andrew A. Chernov) * * Copyright (c) 1993, 1994, 1995 by * joerg_wunsch@uriah.sax.de (Joerg Wunsch) * dufault@hda.com (Peter Dufault) * * Copyright (c) 2001 Joerg Wunsch, * joerg_wunsch@uriah.heep.sax.de (Joerg Wunsch) * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 4. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * from: @(#)fd.c 7.4 (Berkeley) 5/25/91 * */ #include <sys/cdefs.h> __FBSDID("$FreeBSD$"); #include "opt_fdc.h" #include <sys/param.h> #include <sys/bio.h> #include <sys/bus.h> #include <sys/devicestat.h> #include <sys/disk.h> #include <sys/fcntl.h> #include <sys/fdcio.h> #include <sys/filio.h> #include <sys/kernel.h> #include <sys/kthread.h> #include <sys/lock.h> #include <sys/malloc.h> #include <sys/module.h> #include <sys/mutex.h> #include <sys/priv.h> #include <sys/proc.h> #include <sys/rman.h> #include <sys/sysctl.h> #include <sys/systm.h> #include <geom/geom.h> #include <machine/bus.h> #include <machine/clock.h> #include <machine/stdarg.h> #include <isa/isavar.h> #include <isa/isareg.h> #include <dev/fdc/fdcvar.h> #include <isa/rtc.h> #include <dev/ic/nec765.h> /* * Runtime configuration hints/flags */ /* configuration flags for fd */ #define FD_TYPEMASK 0x0f /* drive type, matches enum * fd_drivetype; on i386 machines, if * given as 0, use RTC type for fd0 * and fd1 */ #define FD_NO_CHLINE 0x10 /* drive does not support changeline * aka. unit attention */ #define FD_NO_PROBE 0x20 /* don't probe drive (seek test), just * assume it is there */ /* * Things that could conceiveably considered parameters or tweakables */ /* * Maximal number of bytes in a cylinder. * This is used for ISADMA bouncebuffer allocation and sets the max * xfersize we support. * * 2.88M format has 2 x 36 x 512, allow for hacked up density. */ #define MAX_BYTES_PER_CYL (2 * 40 * 512) /* * Timeout value for the PIO loops to wait until the FDC main status * register matches our expectations (request for master, direction * bit). This is supposed to be a number of microseconds, although * timing might actually not be very accurate. * * Timeouts of 100 msec are believed to be required for some broken * (old) hardware. */ #define FDSTS_TIMEOUT 100000 /* * After this many errors, stop whining. Close will reset this count. */ #define FDC_ERRMAX 100 /* * AutoDensity search lists for each drive type. */ static struct fd_type fd_searchlist_360k[] = { { FDF_5_360 }, { 0 } }; static struct fd_type fd_searchlist_12m[] = { { FDF_5_1200 | FL_AUTO }, { FDF_5_360 | FL_2STEP | FL_AUTO}, { 0 } }; static struct fd_type fd_searchlist_720k[] = { { FDF_3_720 }, { 0 } }; static struct fd_type fd_searchlist_144m[] = { { FDF_3_1440 | FL_AUTO}, { FDF_3_720 | FL_AUTO}, { 0 } }; static struct fd_type fd_searchlist_288m[] = { { FDF_3_1440 | FL_AUTO }, #if 0 { FDF_3_2880 | FL_AUTO }, /* XXX: probably doesn't work */ #endif { FDF_3_720 | FL_AUTO}, { 0 } }; /* * Order must match enum fd_drivetype in <sys/fdcio.h>. */ static struct fd_type *fd_native_types[] = { NULL, /* FDT_NONE */ fd_searchlist_360k, /* FDT_360K */ fd_searchlist_12m, /* FDT_12M */ fd_searchlist_720k, /* FDT_720K */ fd_searchlist_144m, /* FDT_144M */ fd_searchlist_288m, /* FDT_288M_1 (mapped to FDT_288M) */ fd_searchlist_288m, /* FDT_288M */ }; /* * Internals start here */ /* registers */ #define FDOUT 2 /* Digital Output Register (W) */ #define FDO_FDSEL 0x03 /* floppy device select */ #define FDO_FRST 0x04 /* floppy controller reset */ #define FDO_FDMAEN 0x08 /* enable floppy DMA and Interrupt */ #define FDO_MOEN0 0x10 /* motor enable drive 0 */ #define FDO_MOEN1 0x20 /* motor enable drive 1 */ #define FDO_MOEN2 0x40 /* motor enable drive 2 */ #define FDO_MOEN3 0x80 /* motor enable drive 3 */ #define FDSTS 4 /* NEC 765 Main Status Register (R) */ #define FDDSR 4 /* Data Rate Select Register (W) */ #define FDDATA 5 /* NEC 765 Data Register (R/W) */ #define FDCTL 7 /* Control Register (W) */ /* * The YE-DATA PC Card floppies use PIO to read in the data rather * than DMA due to the wild variability of DMA for the PC Card * devices. DMA was deleted from the PC Card specification in version * 7.2 of the standard, but that post-dates the YE-DATA devices by many * years. * * In addition, if we cannot setup the DMA resources for the ISA * attachment, we'll use this same offset for data transfer. However, * that almost certainly won't work. * * For this mode, offset 0 and 1 must be used to setup the transfer * for this floppy. This is OK for PC Card YE Data devices, but for * ISA this is likely wrong. These registers are only available on * those systems that map them to the floppy drive. Newer systems do * not do this, and we should likely prohibit access to them (or * disallow NODMA to be set). */ #define FDBCDR 0 /* And 1 */ #define FD_YE_DATAPORT 6 /* Drive Data port */ #define FDI_DCHG 0x80 /* diskette has been changed */ /* requires drive and motor being selected */ /* is cleared by any step pulse to drive */ /* * We have three private BIO commands. */ #define BIO_PROBE BIO_CMD0 #define BIO_RDID BIO_CMD1 #define BIO_FMT BIO_CMD2 /* * Per drive structure (softc). */ struct fd_data { u_char *fd_ioptr; /* IO pointer */ u_int fd_iosize; /* Size of IO chunks */ u_int fd_iocount; /* Outstanding requests */ struct fdc_data *fdc; /* pointer to controller structure */ int fdsu; /* this units number on this controller */ enum fd_drivetype type; /* drive type */ struct fd_type *ft; /* pointer to current type descriptor */ struct fd_type fts; /* type descriptors */ int sectorsize; int flags; #define FD_WP (1<<0) /* Write protected */ #define FD_MOTOR (1<<1) /* motor should be on */ #define FD_MOTORWAIT (1<<2) /* motor should be on */ #define FD_EMPTY (1<<3) /* no media */ #define FD_NEWDISK (1<<4) /* media changed */ #define FD_ISADMA (1<<5) /* isa dma started */ int track; /* where we think the head is */ #define FD_NO_TRACK -2 int options; /* FDOPT_* */ struct callout toffhandle; struct g_geom *fd_geom; struct g_provider *fd_provider; device_t dev; struct bio_queue_head fd_bq; }; #define FD_NOT_VALID -2 static driver_intr_t fdc_intr; static driver_filter_t fdc_intr_fast; static void fdc_reset(struct fdc_data *); static int fd_probe_disk(struct fd_data *, int *); SYSCTL_NODE(_debug, OID_AUTO, fdc, CTLFLAG_RW, 0, "fdc driver"); static int fifo_threshold = 8; SYSCTL_INT(_debug_fdc, OID_AUTO, fifo, CTLFLAG_RW, &fifo_threshold, 0, "FIFO threshold setting"); static int debugflags = 0; SYSCTL_INT(_debug_fdc, OID_AUTO, debugflags, CTLFLAG_RW, &debugflags, 0, "Debug flags"); static int retries = 10; SYSCTL_INT(_debug_fdc, OID_AUTO, retries, CTLFLAG_RW, &retries, 0, "Number of retries to attempt"); static int spec1 = 0xaf; SYSCTL_INT(_debug_fdc, OID_AUTO, spec1, CTLFLAG_RW, &spec1, 0, "Specification byte one (step-rate + head unload)"); static int spec2 = 0x10; SYSCTL_INT(_debug_fdc, OID_AUTO, spec2, CTLFLAG_RW, &spec2, 0, "Specification byte two (head load time + no-dma)"); static int settle; SYSCTL_INT(_debug_fdc, OID_AUTO, settle, CTLFLAG_RW, &settle, 0, "Head settling time in sec/hz"); static void fdprinttype(struct fd_type *ft) { printf("(%d,%d,%d,%d,%d,%d,%d,%d,%d,%d,%d,0x%x)", ft->sectrac, ft->secsize, ft->datalen, ft->gap, ft->tracks, ft->size, ft->trans, ft->heads, ft->f_gap, ft->f_inter, ft->offset_side2, ft->flags); } static void fdsettype(struct fd_data *fd, struct fd_type *ft) { fd->ft = ft; ft->size = ft->sectrac * ft->heads * ft->tracks; fd->sectorsize = 128 << fd->ft->secsize; } /* * Bus space handling (access to low-level IO). */ __inline static void fdregwr(struct fdc_data *fdc, int reg, uint8_t v) { bus_space_write_1(fdc->iot, fdc->ioh[reg], fdc->ioff[reg], v); } __inline static uint8_t fdregrd(struct fdc_data *fdc, int reg) { return bus_space_read_1(fdc->iot, fdc->ioh[reg], fdc->ioff[reg]); } static void fdctl_wr(struct fdc_data *fdc, u_int8_t v) { fdregwr(fdc, FDCTL, v); } static void fdout_wr(struct fdc_data *fdc, u_int8_t v) { fdregwr(fdc, FDOUT, v); } static u_int8_t fdsts_rd(struct fdc_data *fdc) { return fdregrd(fdc, FDSTS); } static void fddsr_wr(struct fdc_data *fdc, u_int8_t v) { fdregwr(fdc, FDDSR, v); } static void fddata_wr(struct fdc_data *fdc, u_int8_t v) { fdregwr(fdc, FDDATA, v); } static u_int8_t fddata_rd(struct fdc_data *fdc) { return fdregrd(fdc, FDDATA); } static u_int8_t fdin_rd(struct fdc_data *fdc) { return fdregrd(fdc, FDCTL); } /* * Magic pseudo-DMA initialization for YE FDC. Sets count and * direction. */ static void fdbcdr_wr(struct fdc_data *fdc, int iswrite, uint16_t count) { fdregwr(fdc, FDBCDR, (count - 1) & 0xff); fdregwr(fdc, FDBCDR + 1, (iswrite ? 0x80 : 0) | (((count - 1) >> 8) & 0x7f)); } static int fdc_err(struct fdc_data *fdc, const char *s) { fdc->fdc_errs++; if (s) { if (fdc->fdc_errs < FDC_ERRMAX) device_printf(fdc->fdc_dev, "%s", s); else if (fdc->fdc_errs == FDC_ERRMAX) device_printf(fdc->fdc_dev, "too many errors, not " "logging any more\n"); } return (1); } /* * FDC IO functions, take care of the main status register, timeout * in case the desired status bits are never set. * * These PIO loops initially start out with short delays between * each iteration in the expectation that the required condition * is usually met quickly, so it can be handled immediately. */ static int fdc_in(struct fdc_data *fdc, int *ptr) { int i, j, step; step = 1; for (j = 0; j < FDSTS_TIMEOUT; j += step) { i = fdsts_rd(fdc) & (NE7_DIO | NE7_RQM); if (i == (NE7_DIO|NE7_RQM)) { i = fddata_rd(fdc); if (ptr) *ptr = i; return (0); } if (i == NE7_RQM) return (fdc_err(fdc, "ready for output in input\n")); step += step; DELAY(step); } return (fdc_err(fdc, bootverbose? "input ready timeout\n": 0)); } static int fdc_out(struct fdc_data *fdc, int x) { int i, j, step; step = 1; for (j = 0; j < FDSTS_TIMEOUT; j += step) { i = fdsts_rd(fdc) & (NE7_DIO | NE7_RQM); if (i == NE7_RQM) { fddata_wr(fdc, x); return (0); } if (i == (NE7_DIO|NE7_RQM)) return (fdc_err(fdc, "ready for input in output\n")); step += step; DELAY(step); } return (fdc_err(fdc, bootverbose? "output ready timeout\n": 0)); } /* * fdc_cmd: Send a command to the chip. * Takes a varargs with this structure: * # of output bytes * output bytes as int [...] * # of input bytes * input bytes as int* [...] */ static int fdc_cmd(struct fdc_data *fdc, int n_out, ...) { u_char cmd = 0; int n_in; int n, i; va_list ap; va_start(ap, n_out); for (n = 0; n < n_out; n++) { i = va_arg(ap, int); if (n == 0) cmd = i; if (fdc_out(fdc, i) < 0) { char msg[50]; snprintf(msg, sizeof(msg), "cmd %x failed at out byte %d of %d\n", cmd, n + 1, n_out); fdc->flags |= FDC_NEEDS_RESET; va_end(ap); return fdc_err(fdc, msg); } } n_in = va_arg(ap, int); for (n = 0; n < n_in; n++) { int *ptr = va_arg(ap, int *); if (fdc_in(fdc, ptr) < 0) { char msg[50]; snprintf(msg, sizeof(msg), "cmd %02x failed at in byte %d of %d\n", cmd, n + 1, n_in); fdc->flags |= FDC_NEEDS_RESET; va_end(ap); return fdc_err(fdc, msg); } } va_end(ap); return (0); } static void fdc_reset(struct fdc_data *fdc) { int i, r[10]; if (fdc->fdct == FDC_ENHANCED) { /* Try a software reset, default precomp, and 500 kb/s */ fddsr_wr(fdc, I8207X_DSR_SR); } else { /* Try a hardware reset, keep motor on */ fdout_wr(fdc, fdc->fdout & ~(FDO_FRST|FDO_FDMAEN)); DELAY(100); /* enable FDC, but defer interrupts a moment */ fdout_wr(fdc, fdc->fdout & ~FDO_FDMAEN); } DELAY(100); fdout_wr(fdc, fdc->fdout); /* XXX after a reset, silently believe the FDC will accept commands */ if (fdc_cmd(fdc, 3, NE7CMD_SPECIFY, spec1, spec2, 0)) device_printf(fdc->fdc_dev, " SPECIFY failed in reset\n"); if (fdc->fdct == FDC_ENHANCED) { if (fdc_cmd(fdc, 4, I8207X_CONFIG, 0, 0x40 | /* Enable Implied Seek */ 0x10 | /* Polling disabled */ (fifo_threshold - 1), /* Fifo threshold */ 0x00, /* Precomp track */ 0)) device_printf(fdc->fdc_dev, " CONFIGURE failed in reset\n"); if (debugflags & 1) { if (fdc_cmd(fdc, 1, I8207X_DUMPREG, 10, &r[0], &r[1], &r[2], &r[3], &r[4], &r[5], &r[6], &r[7], &r[8], &r[9])) device_printf(fdc->fdc_dev, " DUMPREG failed in reset\n"); for (i = 0; i < 10; i++) printf(" %02x", r[i]); printf("\n"); } } } static int fdc_sense_drive(struct fdc_data *fdc, int *st3p) { int st3; if (fdc_cmd(fdc, 2, NE7CMD_SENSED, fdc->fd->fdsu, 1, &st3)) return (fdc_err(fdc, "Sense Drive Status failed\n")); if (st3p) *st3p = st3; return (0); } static int fdc_sense_int(struct fdc_data *fdc, int *st0p, int *cylp) { int cyl, st0, ret; ret = fdc_cmd(fdc, 1, NE7CMD_SENSEI, 1, &st0); if (ret) { (void)fdc_err(fdc, "sense intr err reading stat reg 0\n"); return (ret); } if (st0p) *st0p = st0; if ((st0 & NE7_ST0_IC) == NE7_ST0_IC_IV) { /* * There doesn't seem to have been an interrupt. */ return (FD_NOT_VALID); } if (fdc_in(fdc, &cyl) < 0) return fdc_err(fdc, "can't get cyl num\n"); if (cylp) *cylp = cyl; return (0); } static int fdc_read_status(struct fdc_data *fdc) { int i, ret, status; for (i = ret = 0; i < 7; i++) { ret = fdc_in(fdc, &status); fdc->status[i] = status; if (ret != 0) break; } if (ret == 0) fdc->flags |= FDC_STAT_VALID; else fdc->flags &= ~FDC_STAT_VALID; return ret; } /* * Select this drive */ static void fd_select(struct fd_data *fd) { struct fdc_data *fdc; /* XXX: lock controller */ fdc = fd->fdc; fdc->fdout &= ~FDO_FDSEL; fdc->fdout |= FDO_FDMAEN | FDO_FRST | fd->fdsu; fdout_wr(fdc, fdc->fdout); } static void fd_turnon(void *arg) { struct fd_data *fd; struct bio *bp; int once; fd = arg; mtx_assert(&fd->fdc->fdc_mtx, MA_OWNED); fd->flags &= ~FD_MOTORWAIT; fd->flags |= FD_MOTOR; once = 0; for (;;) { bp = bioq_takefirst(&fd->fd_bq); if (bp == NULL) break; bioq_disksort(&fd->fdc->head, bp); once = 1; } if (once) wakeup(&fd->fdc->head); } static void fd_motor(struct fd_data *fd, int turnon) { struct fdc_data *fdc; fdc = fd->fdc; /* mtx_assert(&fdc->fdc_mtx, MA_OWNED); */ if (turnon) { fd->flags |= FD_MOTORWAIT; fdc->fdout |= (FDO_MOEN0 << fd->fdsu); callout_reset(&fd->toffhandle, hz, fd_turnon, fd); } else { callout_stop(&fd->toffhandle); fd->flags &= ~(FD_MOTOR|FD_MOTORWAIT); fdc->fdout &= ~(FDO_MOEN0 << fd->fdsu); } fdout_wr(fdc, fdc->fdout); } static void fd_turnoff(void *xfd) { struct fd_data *fd = xfd; mtx_assert(&fd->fdc->fdc_mtx, MA_OWNED); fd_motor(fd, 0); } /* * fdc_intr - wake up the worker thread. */ static void fdc_intr(void *arg) { wakeup(arg); } static int fdc_intr_fast(void *arg) { wakeup(arg); return(FILTER_HANDLED); } /* * fdc_pio(): perform programmed IO read/write for YE PCMCIA floppy. */ static void fdc_pio(struct fdc_data *fdc) { u_char *cptr; struct bio *bp; u_int count; bp = fdc->bp; cptr = fdc->fd->fd_ioptr; count = fdc->fd->fd_iosize; if (bp->bio_cmd == BIO_READ) { fdbcdr_wr(fdc, 0, count); bus_space_read_multi_1(fdc->iot, fdc->ioh[FD_YE_DATAPORT], fdc->ioff[FD_YE_DATAPORT], cptr, count); } else { bus_space_write_multi_1(fdc->iot, fdc->ioh[FD_YE_DATAPORT], fdc->ioff[FD_YE_DATAPORT], cptr, count); fdbcdr_wr(fdc, 0, count); /* needed? */ } } static int fdc_biodone(struct fdc_data *fdc, int error) { struct fd_data *fd; struct bio *bp; fd = fdc->fd; bp = fdc->bp; mtx_lock(&fdc->fdc_mtx); if (--fd->fd_iocount == 0) callout_reset(&fd->toffhandle, 4 * hz, fd_turnoff, fd); fdc->bp = NULL; fdc->fd = NULL; mtx_unlock(&fdc->fdc_mtx); if (bp->bio_to != NULL) { if ((debugflags & 2) && fd->fdc->retry > 0) printf("retries: %d\n", fd->fdc->retry); g_io_deliver(bp, error); return (0); } bp->bio_error = error; bp->bio_flags |= BIO_DONE; wakeup(bp); return (0); } static int retry_line; static int fdc_worker(struct fdc_data *fdc) { struct fd_data *fd; struct bio *bp; int i, nsect; int st0, st3, cyl, mfm, steptrac, cylinder, descyl, sec; int head; static int need_recal; struct fdc_readid *idp; struct fd_formb *finfo; /* Have we exhausted our retries ? */ bp = fdc->bp; fd = fdc->fd; if (bp != NULL && (fdc->retry >= retries || (fd->options & FDOPT_NORETRY))) { if ((debugflags & 4)) printf("Too many retries (EIO)\n"); if (fdc->flags & FDC_NEEDS_RESET) { mtx_lock(&fdc->fdc_mtx); fd->flags |= FD_EMPTY; mtx_unlock(&fdc->fdc_mtx); } return (fdc_biodone(fdc, EIO)); } /* Disable ISADMA if we bailed while it was active */ if (fd != NULL && (fd->flags & FD_ISADMA)) { mtx_lock(&Giant); isa_dmadone( bp->bio_cmd & BIO_READ ? ISADMA_READ : ISADMA_WRITE, fd->fd_ioptr, fd->fd_iosize, fdc->dmachan); mtx_unlock(&Giant); mtx_lock(&fdc->fdc_mtx); fd->flags &= ~FD_ISADMA; mtx_unlock(&fdc->fdc_mtx); } /* Unwedge the controller ? */ if (fdc->flags & FDC_NEEDS_RESET) { fdc->flags &= ~FDC_NEEDS_RESET; fdc_reset(fdc); tsleep(fdc, PRIBIO, "fdcrst", hz); /* Discard results */ for (i = 0; i < 4; i++) fdc_sense_int(fdc, &st0, &cyl); /* All drives must recal */ need_recal = 0xf; } /* Pick up a request, if need be wait for it */ if (fdc->bp == NULL) { mtx_lock(&fdc->fdc_mtx); do { fdc->bp = bioq_takefirst(&fdc->head); if (fdc->bp == NULL) msleep(&fdc->head, &fdc->fdc_mtx, PRIBIO, "-", hz); } while (fdc->bp == NULL && (fdc->flags & FDC_KTHREAD_EXIT) == 0); mtx_unlock(&fdc->fdc_mtx); if (fdc->bp == NULL) /* * Nothing to do, worker thread has been * requested to stop. */ return (0); bp = fdc->bp; fd = fdc->fd = bp->bio_driver1; fdc->retry = 0; fd->fd_ioptr = bp->bio_data; if (bp->bio_cmd & BIO_FMT) { i = offsetof(struct fd_formb, fd_formb_cylno(0)); fd->fd_ioptr += i; fd->fd_iosize = bp->bio_length - i; } } /* Select drive, setup params */ fd_select(fd); if (fdc->fdct == FDC_ENHANCED) fddsr_wr(fdc, fd->ft->trans); else fdctl_wr(fdc, fd->ft->trans); if (bp->bio_cmd & BIO_PROBE) { if ((!(device_get_flags(fd->dev) & FD_NO_CHLINE) && !(fdin_rd(fdc) & FDI_DCHG) && !(fd->flags & FD_EMPTY)) || fd_probe_disk(fd, &need_recal) == 0) return (fdc_biodone(fdc, 0)); return (1); } /* * If we are dead just flush the requests */ if (fd->flags & FD_EMPTY) return (fdc_biodone(fdc, ENXIO)); /* Check if we lost our media */ if (fdin_rd(fdc) & FDI_DCHG) { if (debugflags & 0x40) printf("Lost disk\n"); mtx_lock(&fdc->fdc_mtx); fd->flags |= FD_EMPTY; fd->flags |= FD_NEWDISK; mtx_unlock(&fdc->fdc_mtx); g_topology_lock(); g_orphan_provider(fd->fd_provider, ENXIO); fd->fd_provider->flags |= G_PF_WITHER; fd->fd_provider = g_new_providerf(fd->fd_geom, fd->fd_geom->name); g_error_provider(fd->fd_provider, 0); g_topology_unlock(); return (fdc_biodone(fdc, ENXIO)); } /* Check if the floppy is write-protected */ if(bp->bio_cmd & (BIO_FMT | BIO_WRITE)) { retry_line = __LINE__; if(fdc_sense_drive(fdc, &st3) != 0) return (1); if(st3 & NE7_ST3_WP) return (fdc_biodone(fdc, EROFS)); } mfm = (fd->ft->flags & FL_MFM)? NE7CMD_MFM: 0; steptrac = (fd->ft->flags & FL_2STEP)? 2: 1; i = fd->ft->sectrac * fd->ft->heads; cylinder = bp->bio_pblkno / i; descyl = cylinder * steptrac; sec = bp->bio_pblkno % i; nsect = i - sec; head = sec / fd->ft->sectrac; sec = sec % fd->ft->sectrac + 1; /* If everything is going swimmingly, use multisector xfer */ if (fdc->retry == 0 && bp->bio_cmd & (BIO_READ|BIO_WRITE)) { fd->fd_iosize = imin(nsect * fd->sectorsize, bp->bio_resid); nsect = fd->fd_iosize / fd->sectorsize; } else if (bp->bio_cmd & (BIO_READ|BIO_WRITE)) { fd->fd_iosize = fd->sectorsize; nsect = 1; } /* Do RECAL if we need to or are going to track zero anyway */ if ((need_recal & (1 << fd->fdsu)) || (cylinder == 0 && fd->track != 0) || fdc->retry > 2) { retry_line = __LINE__; if (fdc_cmd(fdc, 2, NE7CMD_RECAL, fd->fdsu, 0)) return (1); tsleep(fdc, PRIBIO, "fdrecal", hz); retry_line = __LINE__; if (fdc_sense_int(fdc, &st0, &cyl) == FD_NOT_VALID) return (1); /* XXX */ retry_line = __LINE__; if ((st0 & 0xc0) || cyl != 0) return (1); need_recal &= ~(1 << fd->fdsu); fd->track = 0; /* let the heads settle */ if (settle) tsleep(fdc->fd, PRIBIO, "fdhdstl", settle); } /* * SEEK to where we want to be * * Enhanced controllers do implied seeks for read&write as long as * we do not need multiple steps per track. */ if (cylinder != fd->track && ( fdc->fdct != FDC_ENHANCED || descyl != cylinder || (bp->bio_cmd & (BIO_RDID|BIO_FMT)))) { retry_line = __LINE__; if (fdc_cmd(fdc, 3, NE7CMD_SEEK, fd->fdsu, descyl, 0)) return (1); tsleep(fdc, PRIBIO, "fdseek", hz); retry_line = __LINE__; if (fdc_sense_int(fdc, &st0, &cyl) == FD_NOT_VALID) return (1); /* XXX */ retry_line = __LINE__; if ((st0 & 0xc0) || cyl != descyl) { need_recal |= (1 << fd->fdsu); return (1); } /* let the heads settle */ if (settle) tsleep(fdc->fd, PRIBIO, "fdhdstl", settle); } fd->track = cylinder; if (debugflags & 8) printf("op %x bn %ju siz %u ptr %p retry %d\n", bp->bio_cmd, bp->bio_pblkno, fd->fd_iosize, fd->fd_ioptr, fdc->retry); /* Setup ISADMA if we need it and have it */ if ((bp->bio_cmd & (BIO_READ|BIO_WRITE|BIO_FMT)) && !(fdc->flags & FDC_NODMA)) { mtx_lock(&Giant); isa_dmastart( bp->bio_cmd & BIO_READ ? ISADMA_READ : ISADMA_WRITE, fd->fd_ioptr, fd->fd_iosize, fdc->dmachan); mtx_unlock(&Giant); mtx_lock(&fdc->fdc_mtx); fd->flags |= FD_ISADMA; mtx_unlock(&fdc->fdc_mtx); } /* Do PIO if we have to */ if (fdc->flags & FDC_NODMA) { if (bp->bio_cmd & (BIO_READ|BIO_WRITE|BIO_FMT)) fdbcdr_wr(fdc, 1, fd->fd_iosize); if (bp->bio_cmd & (BIO_WRITE|BIO_FMT)) fdc_pio(fdc); } switch(bp->bio_cmd) { case BIO_FMT: /* formatting */ finfo = (struct fd_formb *)bp->bio_data; retry_line = __LINE__; if (fdc_cmd(fdc, 6, NE7CMD_FORMAT | mfm, head << 2 | fd->fdsu, finfo->fd_formb_secshift, finfo->fd_formb_nsecs, finfo->fd_formb_gaplen, finfo->fd_formb_fillbyte, 0)) return (1); break; case BIO_RDID: retry_line = __LINE__; if (fdc_cmd(fdc, 2, NE7CMD_READID | mfm, head << 2 | fd->fdsu, 0)) return (1); break; case BIO_READ: retry_line = __LINE__; if (fdc_cmd(fdc, 9, NE7CMD_READ | NE7CMD_SK | mfm | NE7CMD_MT, head << 2 | fd->fdsu, /* head & unit */ fd->track, /* track */ head, /* head */ sec, /* sector + 1 */ fd->ft->secsize, /* sector size */ fd->ft->sectrac, /* sectors/track */ fd->ft->gap, /* gap size */ fd->ft->datalen, /* data length */ 0)) return (1); break; case BIO_WRITE: retry_line = __LINE__; if (fdc_cmd(fdc, 9, NE7CMD_WRITE | mfm | NE7CMD_MT, head << 2 | fd->fdsu, /* head & unit */ fd->track, /* track */ head, /* head */ sec, /* sector + 1 */ fd->ft->secsize, /* sector size */ fd->ft->sectrac, /* sectors/track */ fd->ft->gap, /* gap size */ fd->ft->datalen, /* data length */ 0)) return (1); break; default: KASSERT(0 == 1, ("Wrong bio_cmd %x\n", bp->bio_cmd)); } /* Wait for interrupt */ i = tsleep(fdc, PRIBIO, "fddata", hz); /* PIO if the read looks good */ if (i == 0 && (fdc->flags & FDC_NODMA) && (bp->bio_cmd & BIO_READ)) fdc_pio(fdc); /* Finish DMA */ if (fd->flags & FD_ISADMA) { mtx_lock(&Giant); isa_dmadone( bp->bio_cmd & BIO_READ ? ISADMA_READ : ISADMA_WRITE, fd->fd_ioptr, fd->fd_iosize, fdc->dmachan); mtx_unlock(&Giant); mtx_lock(&fdc->fdc_mtx); fd->flags &= ~FD_ISADMA; mtx_unlock(&fdc->fdc_mtx); } if (i != 0) { /* * Timeout. * * Due to IBM's brain-dead design, the FDC has a faked ready * signal, hardwired to ready == true. Thus, any command * issued if there's no diskette in the drive will _never_ * complete, and must be aborted by resetting the FDC. * Many thanks, Big Blue! */ retry_line = __LINE__; fdc->flags |= FDC_NEEDS_RESET; return (1); } retry_line = __LINE__; if (fdc_read_status(fdc)) return (1); if (debugflags & 0x10) printf(" -> %x %x %x %x\n", fdc->status[0], fdc->status[1], fdc->status[2], fdc->status[3]); st0 = fdc->status[0] & NE7_ST0_IC; if (st0 != 0) { retry_line = __LINE__; if (st0 == NE7_ST0_IC_AT && fdc->status[1] & NE7_ST1_OR) { /* * DMA overrun. Someone hogged the bus and * didn't release it in time for the next * FDC transfer. */ return (1); } retry_line = __LINE__; if(st0 == NE7_ST0_IC_IV) { fdc->flags |= FDC_NEEDS_RESET; return (1); } retry_line = __LINE__; if(st0 == NE7_ST0_IC_AT && fdc->status[2] & NE7_ST2_WC) { need_recal |= (1 << fd->fdsu); return (1); } if (debugflags & 0x20) { printf("status %02x %02x %02x %02x %02x %02x\n", fdc->status[0], fdc->status[1], fdc->status[2], fdc->status[3], fdc->status[4], fdc->status[5]); } retry_line = __LINE__; return (1); } /* All OK */ switch(bp->bio_cmd) { case BIO_RDID: /* copy out ID field contents */ idp = (struct fdc_readid *)bp->bio_data; idp->cyl = fdc->status[3]; idp->head = fdc->status[4]; idp->sec = fdc->status[5]; idp->secshift = fdc->status[6]; if (debugflags & 0x40) printf("c %d h %d s %d z %d\n", idp->cyl, idp->head, idp->sec, idp->secshift); break; case BIO_READ: case BIO_WRITE: bp->bio_pblkno += nsect; bp->bio_resid -= fd->fd_iosize; bp->bio_completed += fd->fd_iosize; fd->fd_ioptr += fd->fd_iosize; /* Since we managed to get something done, reset the retry */ fdc->retry = 0; if (bp->bio_resid > 0) return (0); break; case BIO_FMT: break; } return (fdc_biodone(fdc, 0)); } static void fdc_thread(void *arg) { struct fdc_data *fdc; fdc = arg; int i; mtx_lock(&fdc->fdc_mtx); fdc->flags |= FDC_KTHREAD_ALIVE; while ((fdc->flags & FDC_KTHREAD_EXIT) == 0) { mtx_unlock(&fdc->fdc_mtx); i = fdc_worker(fdc); if (i && debugflags & 0x20) { if (fdc->bp != NULL) { g_print_bio(fdc->bp); printf("\n"); } printf("Retry line %d\n", retry_line); } fdc->retry += i; mtx_lock(&fdc->fdc_mtx); } fdc->flags &= ~(FDC_KTHREAD_EXIT | FDC_KTHREAD_ALIVE); mtx_unlock(&fdc->fdc_mtx); kproc_exit(0); } /* * Enqueue a request. */ static void fd_enqueue(struct fd_data *fd, struct bio *bp) { struct fdc_data *fdc; int call; call = 0; fdc = fd->fdc; mtx_lock(&fdc->fdc_mtx); /* If we go from idle, cancel motor turnoff */ if (fd->fd_iocount++ == 0) callout_stop(&fd->toffhandle); if (fd->flags & FD_MOTOR) { /* The motor is on, send it directly to the controller */ bioq_disksort(&fdc->head, bp); wakeup(&fdc->head); } else { /* Queue it on the drive until the motor has started */ bioq_insert_tail(&fd->fd_bq, bp); if (!(fd->flags & FD_MOTORWAIT)) fd_motor(fd, 1); } mtx_unlock(&fdc->fdc_mtx); } /* * Try to find out if we have a disk in the drive. */ static int fd_probe_disk(struct fd_data *fd, int *recal) { struct fdc_data *fdc; int st0, st3, cyl; int oopts, ret; fdc = fd->fdc; oopts = fd->options; fd->options |= FDOPT_NOERRLOG | FDOPT_NORETRY; ret = 1; /* * First recal, then seek to cyl#1, this clears the old condition on * the disk change line so we can examine it for current status. */ if (debugflags & 0x40) printf("New disk in probe\n"); mtx_lock(&fdc->fdc_mtx); fd->flags |= FD_NEWDISK; mtx_unlock(&fdc->fdc_mtx); if (fdc_cmd(fdc, 2, NE7CMD_RECAL, fd->fdsu, 0)) goto done; tsleep(fdc, PRIBIO, "fdrecal", hz); if (fdc_sense_int(fdc, &st0, &cyl) == FD_NOT_VALID) goto done; /* XXX */ if ((st0 & 0xc0) || cyl != 0) goto done; /* Seek to track 1 */ if (fdc_cmd(fdc, 3, NE7CMD_SEEK, fd->fdsu, 1, 0)) goto done; tsleep(fdc, PRIBIO, "fdseek", hz); if (fdc_sense_int(fdc, &st0, &cyl) == FD_NOT_VALID) goto done; /* XXX */ *recal |= (1 << fd->fdsu); if (fdin_rd(fdc) & FDI_DCHG) { if (debugflags & 0x40) printf("Empty in probe\n"); mtx_lock(&fdc->fdc_mtx); fd->flags |= FD_EMPTY; mtx_unlock(&fdc->fdc_mtx); } else { if (fdc_sense_drive(fdc, &st3) != 0) goto done; if (debugflags & 0x40) printf("Got disk in probe\n"); mtx_lock(&fdc->fdc_mtx); fd->flags &= ~FD_EMPTY; if (st3 & NE7_ST3_WP) fd->flags |= FD_WP; else fd->flags &= ~FD_WP; mtx_unlock(&fdc->fdc_mtx); } ret = 0; done: fd->options = oopts; return (ret); } static int fdmisccmd(struct fd_data *fd, u_int cmd, void *data) { struct bio *bp; struct fd_formb *finfo; struct fdc_readid *idfield; int error; bp = malloc(sizeof(struct bio), M_TEMP, M_WAITOK | M_ZERO); /* * Set up a bio request for fdstrategy(). bio_offset is faked * so that fdstrategy() will seek to the the requested * cylinder, and use the desired head. */ bp->bio_cmd = cmd; if (cmd == BIO_FMT) { finfo = (struct fd_formb *)data; bp->bio_pblkno = (finfo->cyl * fd->ft->heads + finfo->head) * fd->ft->sectrac; bp->bio_length = sizeof *finfo; } else if (cmd == BIO_RDID) { idfield = (struct fdc_readid *)data; bp->bio_pblkno = (idfield->cyl * fd->ft->heads + idfield->head) * fd->ft->sectrac; bp->bio_length = sizeof(struct fdc_readid); } else if (cmd == BIO_PROBE) { /* nothing */ } else panic("wrong cmd in fdmisccmd()"); bp->bio_offset = bp->bio_pblkno * fd->sectorsize; bp->bio_data = data; bp->bio_driver1 = fd; bp->bio_flags = 0; fd_enqueue(fd, bp); do { tsleep(bp, PRIBIO, "fdwait", hz); } while (!(bp->bio_flags & BIO_DONE)); error = bp->bio_error; free(bp, M_TEMP); return (error); } /* * Try figuring out the density of the media present in our device. */ static int fdautoselect(struct fd_data *fd) { struct fd_type *fdtp; struct fdc_readid id; int oopts, rv; if (!(fd->ft->flags & FL_AUTO)) return (0); fdtp = fd_native_types[fd->type]; fdsettype(fd, fdtp); if (!(fd->ft->flags & FL_AUTO)) return (0); /* * Try reading sector ID fields, first at cylinder 0, head 0, * then at cylinder 2, head N. We don't probe cylinder 1, * since for 5.25in DD media in a HD drive, there are no data * to read (2 step pulses per media cylinder required). For * two-sided media, the second probe always goes to head 1, so * we can tell them apart from single-sided media. As a * side-effect this means that single-sided media should be * mentioned in the search list after two-sided media of an * otherwise identical density. Media with a different number * of sectors per track but otherwise identical parameters * cannot be distinguished at all. * * If we successfully read an ID field on both cylinders where * the recorded values match our expectation, we are done. * Otherwise, we try the next density entry from the table. * * Stepping to cylinder 2 has the side-effect of clearing the * unit attention bit. */ oopts = fd->options; fd->options |= FDOPT_NOERRLOG | FDOPT_NORETRY; for (; fdtp->heads; fdtp++) { fdsettype(fd, fdtp); id.cyl = id.head = 0; rv = fdmisccmd(fd, BIO_RDID, &id); if (rv != 0) continue; if (id.cyl != 0 || id.head != 0 || id.secshift != fdtp->secsize) continue; id.cyl = 2; id.head = fd->ft->heads - 1; rv = fdmisccmd(fd, BIO_RDID, &id); if (id.cyl != 2 || id.head != fdtp->heads - 1 || id.secshift != fdtp->secsize) continue; if (rv == 0) break; } fd->options = oopts; if (fdtp->heads == 0) { if (debugflags & 0x40) device_printf(fd->dev, "autoselection failed\n"); fdsettype(fd, fd_native_types[fd->type]); return (-1); } else { if (debugflags & 0x40) { device_printf(fd->dev, "autoselected %d KB medium\n", fd->ft->size / 2); fdprinttype(fd->ft); } return (0); } } /* * GEOM class implementation */ static g_access_t fd_access; static g_start_t fd_start; static g_ioctl_t fd_ioctl; struct g_class g_fd_class = { .name = "FD", .version = G_VERSION, .start = fd_start, .access = fd_access, .ioctl = fd_ioctl, }; static int fd_access(struct g_provider *pp, int r, int w, int e) { struct fd_data *fd; struct fdc_data *fdc; int ar, aw, ae; int busy; fd = pp->geom->softc; fdc = fd->fdc; /* * If our provider is withering, we can only get negative requests * and we don't want to even see them */ if (pp->flags & G_PF_WITHER) return (0); ar = r + pp->acr; aw = w + pp->acw; ae = e + pp->ace; if (ar == 0 && aw == 0 && ae == 0) { device_unbusy(fd->dev); return (0); } busy = 0; if (pp->acr == 0 && pp->acw == 0 && pp->ace == 0) { if (fdmisccmd(fd, BIO_PROBE, NULL)) return (ENXIO); if (fd->flags & FD_EMPTY) return (ENXIO); if (fd->flags & FD_NEWDISK) { if (fdautoselect(fd) != 0 && (device_get_flags(fd->dev) & FD_NO_CHLINE)) { mtx_lock(&fdc->fdc_mtx); fd->flags |= FD_EMPTY; mtx_unlock(&fdc->fdc_mtx); return (ENXIO); } mtx_lock(&fdc->fdc_mtx); fd->flags &= ~FD_NEWDISK; mtx_unlock(&fdc->fdc_mtx); } device_busy(fd->dev); busy = 1; } if (w > 0 && (fd->flags & FD_WP)) { if (busy) device_unbusy(fd->dev); return (EROFS); } pp->sectorsize = fd->sectorsize; pp->stripesize = fd->ft->heads * fd->ft->sectrac * fd->sectorsize; pp->mediasize = pp->stripesize * fd->ft->tracks; return (0); } static void fd_start(struct bio *bp) { struct fdc_data * fdc; struct fd_data * fd; fd = bp->bio_to->geom->softc; fdc = fd->fdc; bp->bio_driver1 = fd; if (bp->bio_cmd & BIO_GETATTR) { if (g_handleattr_int(bp, "GEOM::fwsectors", fd->ft->sectrac)) return; if (g_handleattr_int(bp, "GEOM::fwheads", fd->ft->heads)) return; g_io_deliver(bp, ENOIOCTL); return; } if (!(bp->bio_cmd & (BIO_READ|BIO_WRITE))) { g_io_deliver(bp, EOPNOTSUPP); return; } bp->bio_pblkno = bp->bio_offset / fd->sectorsize; bp->bio_resid = bp->bio_length; fd_enqueue(fd, bp); return; } static int fd_ioctl(struct g_provider *pp, u_long cmd, void *data, int fflag, struct thread *td) { struct fd_data *fd; struct fdc_status *fsp; struct fdc_readid *rid; int error; fd = pp->geom->softc; switch (cmd) { case FD_GTYPE: /* get drive type */ *(struct fd_type *)data = *fd->ft; return (0); case FD_STYPE: /* set drive type */ /* * Allow setting drive type temporarily iff * currently unset. Used for fdformat so any * user can set it, and then start formatting. */ fd->fts = *(struct fd_type *)data; if (fd->fts.sectrac) { /* XXX: check for rubbish */ fdsettype(fd, &fd->fts); } else { fdsettype(fd, fd_native_types[fd->type]); } if (debugflags & 0x40) fdprinttype(fd->ft); return (0); case FD_GOPTS: /* get drive options */ *(int *)data = fd->options; return (0); case FD_SOPTS: /* set drive options */ fd->options = *(int *)data; return (0); case FD_CLRERR: error = priv_check(td, PRIV_DRIVER); if (error) return (error); fd->fdc->fdc_errs = 0; return (0); case FD_GSTAT: fsp = (struct fdc_status *)data; if ((fd->fdc->flags & FDC_STAT_VALID) == 0) return (EINVAL); memcpy(fsp->status, fd->fdc->status, 7 * sizeof(u_int)); return (0); case FD_GDTYPE: *(enum fd_drivetype *)data = fd->type; return (0); case FD_FORM: if (!(fflag & FWRITE)) return (EPERM); if (((struct fd_formb *)data)->format_version != FD_FORMAT_VERSION) return (EINVAL); /* wrong version of formatting prog */ error = fdmisccmd(fd, BIO_FMT, data); mtx_lock(&fd->fdc->fdc_mtx); fd->flags |= FD_NEWDISK; mtx_unlock(&fd->fdc->fdc_mtx); break; case FD_READID: rid = (struct fdc_readid *)data; if (rid->cyl > 85 || rid->head > 1) return (EINVAL); error = fdmisccmd(fd, BIO_RDID, data); break; case FIONBIO: case FIOASYNC: /* For backwards compat with old fd*(8) tools */ error = 0; break; default: if (debugflags & 0x80) printf("Unknown ioctl %lx\n", cmd); error = ENOIOCTL; break; } return (error); }; /* * Configuration/initialization stuff, per controller. */ devclass_t fdc_devclass; static devclass_t fd_devclass; struct fdc_ivars { int fdunit; int fdtype; }; void fdc_release_resources(struct fdc_data *fdc) { device_t dev; struct resource *last; int i; dev = fdc->fdc_dev; if (fdc->fdc_intr) bus_teardown_intr(dev, fdc->res_irq, fdc->fdc_intr); fdc->fdc_intr = NULL; if (fdc->res_irq != NULL) bus_release_resource(dev, SYS_RES_IRQ, fdc->rid_irq, fdc->res_irq); fdc->res_irq = NULL; last = NULL; for (i = 0; i < FDC_MAXREG; i++) { if (fdc->resio[i] != NULL && fdc->resio[i] != last) { bus_release_resource(dev, SYS_RES_IOPORT, fdc->ridio[i], fdc->resio[i]); last = fdc->resio[i]; fdc->resio[i] = NULL; } } if (fdc->res_drq != NULL) bus_release_resource(dev, SYS_RES_DRQ, fdc->rid_drq, fdc->res_drq); fdc->res_drq = NULL; } int fdc_read_ivar(device_t dev, device_t child, int which, uintptr_t *result) { struct fdc_ivars *ivars = device_get_ivars(child); switch (which) { case FDC_IVAR_FDUNIT: *result = ivars->fdunit; break; case FDC_IVAR_FDTYPE: *result = ivars->fdtype; break; default: return (ENOENT); } return (0); } int fdc_write_ivar(device_t dev, device_t child, int which, uintptr_t value) { struct fdc_ivars *ivars = device_get_ivars(child); switch (which) { case FDC_IVAR_FDUNIT: ivars->fdunit = value; break; case FDC_IVAR_FDTYPE: ivars->fdtype = value; break; default: return (ENOENT); } return (0); } int fdc_initial_reset(device_t dev, struct fdc_data *fdc) { int ic_type, part_id; /* * A status value of 0xff is very unlikely, but not theoretically * impossible, but it is far more likely to indicate an empty bus. */ if (fdsts_rd(fdc) == 0xff) return (ENXIO); /* * Assert a reset to the floppy controller and check that the status * register goes to zero. */ fdout_wr(fdc, 0); fdout_wr(fdc, 0); if (fdsts_rd(fdc) != 0) return (ENXIO); /* * Clear the reset and see it come ready. */ fdout_wr(fdc, FDO_FRST); DELAY(100); if (fdsts_rd(fdc) != 0x80) return (ENXIO); /* Then, see if it can handle a command. */ if (fdc_cmd(fdc, 3, NE7CMD_SPECIFY, 0xaf, 0x1e, 0)) return (ENXIO); /* * Try to identify the chip. * * The i8272 datasheet documents that unknown commands * will return ST0 as 0x80. The i8272 is supposedly identical * to the NEC765. * The i82077SL datasheet says 0x90 for the VERSION command, * and several "superio" chips emulate this. */ if (fdc_cmd(fdc, 1, NE7CMD_VERSION, 1, &ic_type)) return (ENXIO); if (fdc_cmd(fdc, 1, 0x18, 1, &part_id)) return (ENXIO); if (bootverbose) device_printf(dev, "ic_type %02x part_id %02x\n", ic_type, part_id); switch (ic_type & 0xff) { case 0x80: device_set_desc(dev, "NEC 765 or clone"); fdc->fdct = FDC_NE765; break; case 0x81: case 0x90: device_set_desc(dev, "Enhanced floppy controller"); fdc->fdct = FDC_ENHANCED; break; default: device_set_desc(dev, "Generic floppy controller"); fdc->fdct = FDC_UNKNOWN; break; } return (0); } int fdc_detach(device_t dev) { struct fdc_data *fdc; int error; fdc = device_get_softc(dev); /* have our children detached first */ if ((error = bus_generic_detach(dev))) return (error); if (fdc->fdc_intr) bus_teardown_intr(dev, fdc->res_irq, fdc->fdc_intr); fdc->fdc_intr = NULL; /* kill worker thread */ mtx_lock(&fdc->fdc_mtx); fdc->flags |= FDC_KTHREAD_EXIT; wakeup(&fdc->head); while ((fdc->flags & FDC_KTHREAD_ALIVE) != 0) msleep(fdc->fdc_thread, &fdc->fdc_mtx, PRIBIO, "fdcdet", 0); mtx_unlock(&fdc->fdc_mtx); /* reset controller, turn motor off */ fdout_wr(fdc, 0); if (!(fdc->flags & FDC_NODMA)) isa_dma_release(fdc->dmachan); fdc_release_resources(fdc); mtx_destroy(&fdc->fdc_mtx); return (0); } /* * Add a child device to the fdc controller. It will then be probed etc. */ device_t fdc_add_child(device_t dev, const char *name, int unit) { struct fdc_ivars *ivar; device_t child; ivar = malloc(sizeof *ivar, M_DEVBUF /* XXX */, M_NOWAIT | M_ZERO); if (ivar == NULL) return (NULL); child = device_add_child(dev, name, unit); if (child == NULL) { free(ivar, M_DEVBUF); return (NULL); } device_set_ivars(child, ivar); ivar->fdunit = unit; ivar->fdtype = FDT_NONE; if (resource_disabled(name, unit)) device_disable(child); return (child); } int fdc_attach(device_t dev) { struct fdc_data *fdc; int error; fdc = device_get_softc(dev); fdc->fdc_dev = dev; error = fdc_initial_reset(dev, fdc); if (error) { device_printf(dev, "does not respond\n"); return (error); } error = bus_setup_intr(dev, fdc->res_irq, INTR_TYPE_BIO | INTR_ENTROPY | ((fdc->flags & FDC_NOFAST) ? INTR_MPSAFE : 0), ((fdc->flags & FDC_NOFAST) ? NULL : fdc_intr_fast), ((fdc->flags & FDC_NOFAST) ? fdc_intr : NULL), fdc, &fdc->fdc_intr); if (error) { device_printf(dev, "cannot setup interrupt\n"); return (error); } if (!(fdc->flags & FDC_NODMA)) { error = isa_dma_acquire(fdc->dmachan); if (!error) { error = isa_dma_init(fdc->dmachan, MAX_BYTES_PER_CYL, M_WAITOK); if (error) isa_dma_release(fdc->dmachan); } if (error) return (error); } fdc->fdcu = device_get_unit(dev); fdc->flags |= FDC_NEEDS_RESET; mtx_init(&fdc->fdc_mtx, "fdc lock", NULL, MTX_DEF); /* reset controller, turn motor off, clear fdout mirror reg */ fdout_wr(fdc, fdc->fdout = 0); bioq_init(&fdc->head); kproc_create(fdc_thread, fdc, &fdc->fdc_thread, 0, 0, "fdc%d", device_get_unit(dev)); settle = hz / 8; return (0); } int fdc_hints_probe(device_t dev) { const char *name, *dname; int i, error, dunit; /* * Probe and attach any children. We should probably detect * devices from the BIOS unless overridden. */ name = device_get_nameunit(dev); i = 0; while ((resource_find_match(&i, &dname, &dunit, "at", name)) == 0) { resource_int_value(dname, dunit, "drive", &dunit); fdc_add_child(dev, dname, dunit); } if ((error = bus_generic_attach(dev)) != 0) return (error); return (0); } int fdc_print_child(device_t me, device_t child) { int retval = 0, flags; retval += bus_print_child_header(me, child); retval += printf(" on %s drive %d", device_get_nameunit(me), fdc_get_fdunit(child)); if ((flags = device_get_flags(me)) != 0) retval += printf(" flags %#x", flags); retval += printf("\n"); return (retval); } /* * Configuration/initialization, per drive. */ static int fd_probe(device_t dev) { int i, unit; u_int st0, st3; struct fd_data *fd; struct fdc_data *fdc; int fdsu; int flags, type; fdsu = fdc_get_fdunit(dev); fd = device_get_softc(dev); fdc = device_get_softc(device_get_parent(dev)); flags = device_get_flags(dev); fd->dev = dev; fd->fdc = fdc; fd->fdsu = fdsu; unit = device_get_unit(dev); /* Auto-probe if fdinfo is present, but always allow override. */ type = flags & FD_TYPEMASK; if (type == FDT_NONE && (type = fdc_get_fdtype(dev)) != FDT_NONE) { fd->type = type; goto done; } else { /* make sure fdautoselect() will be called */ fd->flags = FD_EMPTY; fd->type = type; } #if (defined(__i386__) && !defined(PC98)) || defined(__amd64__) if (fd->type == FDT_NONE && (unit == 0 || unit == 1)) { /* Look up what the BIOS thinks we have. */ if (unit == 0) fd->type = (rtcin(RTC_FDISKETTE) & 0xf0) >> 4; else fd->type = rtcin(RTC_FDISKETTE) & 0x0f; if (fd->type == FDT_288M_1) fd->type = FDT_288M; } #endif /* __i386__ || __amd64__ */ /* is there a unit? */ if (fd->type == FDT_NONE) return (ENXIO); /* mtx_lock(&fdc->fdc_mtx); */ /* select it */ fd_select(fd); fd_motor(fd, 1); fdc->fd = fd; fdc_reset(fdc); /* XXX reset, then unreset, etc. */ DELAY(1000000); /* 1 sec */ if ((flags & FD_NO_PROBE) == 0) { /* If we're at track 0 first seek inwards. */ if ((fdc_sense_drive(fdc, &st3) == 0) && (st3 & NE7_ST3_T0)) { /* Seek some steps... */ if (fdc_cmd(fdc, 3, NE7CMD_SEEK, fdsu, 10, 0) == 0) { /* ...wait a moment... */ DELAY(300000); /* make ctrlr happy: */ fdc_sense_int(fdc, NULL, NULL); } } for (i = 0; i < 2; i++) { /* * we must recalibrate twice, just in case the * heads have been beyond cylinder 76, since * most FDCs still barf when attempting to * recalibrate more than 77 steps */ /* go back to 0: */ if (fdc_cmd(fdc, 2, NE7CMD_RECAL, fdsu, 0) == 0) { /* a second being enough for full stroke seek*/ DELAY(i == 0 ? 1000000 : 300000); /* anything responding? */ if (fdc_sense_int(fdc, &st0, NULL) == 0 && (st0 & NE7_ST0_EC) == 0) break; /* already probed succesfully */ } } } fd_motor(fd, 0); fdc->fd = NULL; /* mtx_unlock(&fdc->fdc_mtx); */ if ((flags & FD_NO_PROBE) == 0 && (st0 & NE7_ST0_EC) != 0) /* no track 0 -> no drive present */ return (ENXIO); done: switch (fd->type) { case FDT_12M: device_set_desc(dev, "1200-KB 5.25\" drive"); break; case FDT_144M: device_set_desc(dev, "1440-KB 3.5\" drive"); break; case FDT_288M: device_set_desc(dev, "2880-KB 3.5\" drive (in 1440-KB mode)"); break; case FDT_360K: device_set_desc(dev, "360-KB 5.25\" drive"); break; case FDT_720K: device_set_desc(dev, "720-KB 3.5\" drive"); break; default: return (ENXIO); } fd->track = FD_NO_TRACK; fd->fdc = fdc; fd->fdsu = fdsu; fd->options = 0; callout_init_mtx(&fd->toffhandle, &fd->fdc->fdc_mtx, 0); /* initialize densities for subdevices */ fdsettype(fd, fd_native_types[fd->type]); return (0); } /* * We have to do this in a geom event because GEOM is not running * when fd_attach() is. * XXX: move fd_attach after geom like ata/scsi disks */ static void fd_attach2(void *arg, int flag) { struct fd_data *fd; fd = arg; fd->fd_geom = g_new_geomf(&g_fd_class, "fd%d", device_get_unit(fd->dev)); fd->fd_provider = g_new_providerf(fd->fd_geom, fd->fd_geom->name); fd->fd_geom->softc = fd; g_error_provider(fd->fd_provider, 0); } static int fd_attach(device_t dev) { struct fd_data *fd; fd = device_get_softc(dev); g_post_event(fd_attach2, fd, M_WAITOK, NULL); fd->flags |= FD_EMPTY; bioq_init(&fd->fd_bq); return (0); } static void fd_detach_geom(void *arg, int flag) { struct fd_data *fd = arg; g_topology_assert(); g_wither_geom(fd->fd_geom, ENXIO); } static int fd_detach(device_t dev) { struct fd_data *fd; fd = device_get_softc(dev); g_waitfor_event(fd_detach_geom, fd, M_WAITOK, NULL); while (device_get_state(dev) == DS_BUSY) tsleep(fd, PZERO, "fdd", hz/10); callout_drain(&fd->toffhandle); return (0); } static device_method_t fd_methods[] = { /* Device interface */ DEVMETHOD(device_probe, fd_probe), DEVMETHOD(device_attach, fd_attach), DEVMETHOD(device_detach, fd_detach), DEVMETHOD(device_shutdown, bus_generic_shutdown), DEVMETHOD(device_suspend, bus_generic_suspend), /* XXX */ DEVMETHOD(device_resume, bus_generic_resume), /* XXX */ { 0, 0 } }; static driver_t fd_driver = { "fd", fd_methods, sizeof(struct fd_data) }; static int fdc_modevent(module_t mod, int type, void *data) { return (g_modevent(NULL, type, &g_fd_class)); } DRIVER_MODULE(fd, fdc, fd_driver, fd_devclass, fdc_modevent, 0);