/* * Device driver optimized for the Symbios/LSI 53C896/53C895A/53C1010 * PCI-SCSI controllers. * * Copyright (C) 1999 Gerard Roudier * * This driver also supports the following Symbios/LSI PCI-SCSI chips: * 53C810A, 53C825A, 53C860, 53C875, 53C876, 53C885, 53C895. * * but does not support earlier chips as the following ones: * 53C810, 53C815, 53C825. * * This driver for FreeBSD-CAM is derived from the Linux sym53c8xx driver. * Copyright (C) 1998-1999 Gerard Roudier * * The sym53c8xx driver is derived from the ncr53c8xx driver that had been * a port of the FreeBSD ncr driver to Linux-1.2.13. * * The original ncr driver has been written for 386bsd and FreeBSD by * Wolfgang Stanglmeier * Stefan Esser * Copyright (C) 1994 Wolfgang Stanglmeier * * The initialisation code, and part of the code that addresses * FreeBSD-CAM services is based on the aic7xxx driver for FreeBSD-CAM * written by Justin T. Gibbs. * * Other major contributions: * * NVRAM detection and reading. * Copyright (C) 1997 Richard Waltham * *----------------------------------------------------------------------------- * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. The name of the author may not be used to endorse or promote products * derived from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE AUTHORS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #define SYM_DRIVER_NAME "sym-1.0.0-19991205" #include #include /* For offsetof */ #include /* * Only use the BUS stuff for PCI under FreeBSD 4 and later versions. * Note that the old BUS stuff also works for FreeBSD 4 and spares * about 1.5KB for the driver objet file. */ #if __FreeBSD_version >= 400000 #define FreeBSD_4_Bus #endif #include #include #include #ifdef FreeBSD_4_Bus #include #include #endif #include #include #include #include #include #include #include #ifdef FreeBSD_4_Bus #include #include #endif #include #include #include #include #include #include #include #include #include #include #include #if 0 #include #include #include #endif /* Short and quite clear integer types */ typedef int8_t s8; typedef int16_t s16; typedef int32_t s32; typedef u_int8_t u8; typedef u_int16_t u16; typedef u_int32_t u32; /* Driver configuration and definitions */ #include "opt_sym.h" #include #include /* * On x86 architecture, write buffers management does not * reorder writes to memory. So, preventing compiler from * optimizing the code is enough to guarantee some ordering * when the CPU is writing data accessed by the PCI chip. * On Alpha architecture, explicit barriers are to be used. * By the way, the *BSD semantic associates the barrier * with some window on the BUS and the corresponding verbs * are for now unused. What a strangeness. The driver must * ensure that accesses from the CPU to the start and done * queues are not reordered by either the compiler or the * CPU and uses 'volatile' for this purpose. */ #ifdef __alpha__ #define MEMORY_BARRIER() alpha_mb() #else /*__i386__*/ #define MEMORY_BARRIER() do { ; } while(0) #endif /* * A la VMS/CAM-3 queue management. */ typedef struct sym_quehead { struct sym_quehead *flink; /* Forward pointer */ struct sym_quehead *blink; /* Backward pointer */ } SYM_QUEHEAD; #define sym_que_init(ptr) do { \ (ptr)->flink = (ptr); (ptr)->blink = (ptr); \ } while (0) static __inline struct sym_quehead *sym_que_first(struct sym_quehead *head) { return (head->flink == head) ? 0 : head->flink; } static __inline struct sym_quehead *sym_que_last(struct sym_quehead *head) { return (head->blink == head) ? 0 : head->blink; } static __inline void __sym_que_add(struct sym_quehead * new, struct sym_quehead * blink, struct sym_quehead * flink) { flink->blink = new; new->flink = flink; new->blink = blink; blink->flink = new; } static __inline void __sym_que_del(struct sym_quehead * blink, struct sym_quehead * flink) { flink->blink = blink; blink->flink = flink; } static __inline int sym_que_empty(struct sym_quehead *head) { return head->flink == head; } static __inline void sym_que_splice(struct sym_quehead *list, struct sym_quehead *head) { struct sym_quehead *first = list->flink; if (first != list) { struct sym_quehead *last = list->blink; struct sym_quehead *at = head->flink; first->blink = head; head->flink = first; last->flink = at; at->blink = last; } } #define sym_que_entry(ptr, type, member) \ ((type *)((char *)(ptr)-(unsigned long)(&((type *)0)->member))) #define sym_insque(new, pos) __sym_que_add(new, pos, (pos)->flink) #define sym_remque(el) __sym_que_del((el)->blink, (el)->flink) #define sym_insque_head(new, head) __sym_que_add(new, head, (head)->flink) static __inline struct sym_quehead *sym_remque_head(struct sym_quehead *head) { struct sym_quehead *elem = head->flink; if (elem != head) __sym_que_del(head, elem->flink); else elem = 0; return elem; } #define sym_insque_tail(new, head) __sym_que_add(new, (head)->blink, head) static __inline struct sym_quehead *sym_remque_tail(struct sym_quehead *head) { struct sym_quehead *elem = head->blink; if (elem != head) __sym_que_del(elem->blink, head); else elem = 0; return elem; } /* * This one may be usefull. */ #define FOR_EACH_QUEUED_ELEMENT(head, qp) \ for (qp = (head)->flink; qp != (head); qp = qp->flink) /* * FreeBSD does not offer our kind of queue in the CAM CCB. * So, we have to cast. */ #define sym_qptr(p) ((struct sym_quehead *) (p)) /* * Simple bitmap operations. */ #define sym_set_bit(p, n) (((u32 *)(p))[(n)>>5] |= (1<<((n)&0x1f))) #define sym_clr_bit(p, n) (((u32 *)(p))[(n)>>5] &= ~(1<<((n)&0x1f))) #define sym_is_bit(p, n) (((u32 *)(p))[(n)>>5] & (1<<((n)&0x1f))) /* * Number of tasks per device we want to handle. */ #if SYM_CONF_MAX_TAG_ORDER > 8 #error "more than 256 tags per logical unit not allowed." #endif #define SYM_CONF_MAX_TASK (1< SYM_CONF_MAX_TASK #undef SYM_CONF_MAX_TAG #define SYM_CONF_MAX_TAG SYM_CONF_MAX_TASK #endif /* * This one means 'NO TAG for this job' */ #define NO_TAG (256) /* * Number of SCSI targets. */ #if SYM_CONF_MAX_TARGET > 16 #error "more than 16 targets not allowed." #endif /* * Number of logical units per target. */ #if SYM_CONF_MAX_LUN > 64 #error "more than 64 logical units per target not allowed." #endif /* * Asynchronous pre-scaler (ns). Shall be 40 for * the SCSI timings to be compliant. */ #define SYM_CONF_MIN_ASYNC (40) /* * Number of entries in the START and DONE queues. * * We limit to 1 PAGE in order to succeed allocation of * these queues. Each entry is 8 bytes long (2 DWORDS). */ #ifdef SYM_CONF_MAX_START #define SYM_CONF_MAX_QUEUE (SYM_CONF_MAX_START+2) #else #define SYM_CONF_MAX_QUEUE (7*SYM_CONF_MAX_TASK+2) #define SYM_CONF_MAX_START (SYM_CONF_MAX_QUEUE-2) #endif #if SYM_CONF_MAX_QUEUE > PAGE_SIZE/8 #undef SYM_CONF_MAX_QUEUE #define SYM_CONF_MAX_QUEUE PAGE_SIZE/8 #undef SYM_CONF_MAX_START #define SYM_CONF_MAX_START (SYM_CONF_MAX_QUEUE-2) #endif /* * For this one, we want a short name :-) */ #define MAX_QUEUE SYM_CONF_MAX_QUEUE /* * This one should have been already defined. */ #ifndef offsetof #define offsetof(t, m) ((size_t) (&((t *)0)->m)) #endif /* * Active debugging tags and verbosity. */ #define DEBUG_ALLOC (0x0001) #define DEBUG_PHASE (0x0002) #define DEBUG_POLL (0x0004) #define DEBUG_QUEUE (0x0008) #define DEBUG_RESULT (0x0010) #define DEBUG_SCATTER (0x0020) #define DEBUG_SCRIPT (0x0040) #define DEBUG_TINY (0x0080) #define DEBUG_TIMING (0x0100) #define DEBUG_NEGO (0x0200) #define DEBUG_TAGS (0x0400) #define DEBUG_POINTER (0x0800) #if 0 static int sym_debug = 0; #define DEBUG_FLAGS sym_debug #else /* #define DEBUG_FLAGS (0x0631) */ #define DEBUG_FLAGS (0x0000) #endif #define sym_verbose (np->verbose) /* * Virtual to bus address translation. */ #ifdef __alpha__ #define vtobus(p) alpha_XXX_dmamap((vm_offset_t)(p)) #else /*__i386__*/ #define vtobus(p) vtophys(p) #endif /* * Copy from main memory to PCI memory space. */ #ifdef __alpha__ #define memcpy_to_pci(d, s, n) memcpy_toio((u32)(d), (void *)(s), (n)) #else /*__i386__*/ #define memcpy_to_pci(d, s, n) bcopy((s), (void *)(d), (n)) #endif /* * Insert a delay in micro-seconds and milli-seconds. */ static void UDELAY(long us) { DELAY(us); } static void MDELAY(long ms) { while (ms--) UDELAY(1000); } /* * Memory allocation/allocator. * We assume allocations are naturally aligned and if it is * not guaranteed, we may use our internal allocator. */ #ifdef SYM_CONF_USE_INTERNAL_ALLOCATOR /* * Simple power of two buddy-like allocator. * * This simple code is not intended to be fast, but to * provide power of 2 aligned memory allocations. * Since the SCRIPTS processor only supplies 8 bit arithmetic, * this allocator allows simple and fast address calculations * from the SCRIPTS code. In addition, cache line alignment * is guaranteed for power of 2 cache line size. * * This allocator has been developped for the Linux sym53c8xx * driver, since this O/S does not provide naturally aligned * allocations. * It has the vertue to allow the driver to use private pages * of memory that will be useful if we ever need to deal with * IO MMU for PCI. */ #define MEMO_SHIFT 4 /* 16 bytes minimum memory chunk */ #define MEMO_PAGE_ORDER 0 /* 1 PAGE maximum (for now (ever?) */ typedef unsigned long addr; /* Enough bits to bit-hack addresses */ #if 0 #define MEMO_FREE_UNUSED /* Free unused pages immediately */ #endif struct m_link { struct m_link *next; /* Simple links are enough */ }; #ifndef M_DMA_32BIT #define M_DMA_32BIT 0 /* Will this flag ever exist */ #endif #define get_pages() \ malloc(PAGE_SIZE< (PAGE_SIZE << MEMO_PAGE_ORDER)) return 0; while (size > s) { s <<= 1; ++i; } j = i; while (!h[j].next) { if (s == (PAGE_SIZE << MEMO_PAGE_ORDER)) { h[j].next = (struct m_link *)get_pages(); if (h[j].next) h[j].next->next = 0; break; } ++j; s <<= 1; } a = (addr) h[j].next; if (a) { h[j].next = h[j].next->next; while (j > i) { j -= 1; s >>= 1; h[j].next = (struct m_link *) (a+s); h[j].next->next = 0; } } #ifdef DEBUG printf("__sym_malloc(%d) = %p\n", size, (void *) a); #endif return (void *) a; } /* * Free a memory area allocated using sym_malloc(). * Coalesce buddies. * Free pages that become unused if MEMO_FREE_UNUSED is * defined. */ static void __sym_mfree(void *ptr, int size) { int i = 0; int s = (1 << MEMO_SHIFT); struct m_link *q; addr a, b; #ifdef DEBUG printf("sym_mfree(%p, %d)\n", ptr, size); #endif if (size > (PAGE_SIZE << MEMO_PAGE_ORDER)) return; while (size > s) { s <<= 1; ++i; } a = (addr) ptr; while (1) { #ifdef MEMO_FREE_UNUSED if (s == (PAGE_SIZE << MEMO_PAGE_ORDER)) { free_pages(a); break; } #endif b = a ^ s; q = &h[i]; while (q->next && q->next != (struct m_link *) b) { q = q->next; } if (!q->next) { ((struct m_link *) a)->next = h[i].next; h[i].next = (struct m_link *) a; break; } q->next = q->next->next; a = a & b; s <<= 1; ++i; } } #else /* !defined SYSCONF_USE_INTERNAL_ALLOCATOR */ /* * Using directly the system memory allocator. */ #define __sym_mfree(ptr, size) free((ptr), M_DEVBUF) #define __sym_malloc(size) malloc((size), M_DEVBUF, M_NOWAIT) #endif /* SYM_CONF_USE_INTERNAL_ALLOCATOR */ #define MEMO_WARN 1 static void *sym_calloc2(int size, char *name, int uflags) { void *p; p = __sym_malloc(size); if (DEBUG_FLAGS & DEBUG_ALLOC) printf ("new %-10s[%4d] @%p.\n", name, size, p); if (p) bzero(p, size); else if (uflags & MEMO_WARN) printf ("sym_calloc: failed to allocate %s[%d]\n", name, size); return p; } #define sym_calloc(s, n) sym_calloc2(s, n, MEMO_WARN) static void sym_mfree(void *ptr, int size, char *name) { if (DEBUG_FLAGS & DEBUG_ALLOC) printf ("freeing %-10s[%4d] @%p.\n", name, size, ptr); __sym_mfree(ptr, size); } /* * Print a buffer in hexadecimal format. */ static void sym_printb_hex (u_char *p, int n) { while (n-- > 0) printf (" %x", *p++); } /* * Same with a label at beginning and .\n at end. */ static void sym_printl_hex (char *label, u_char *p, int n) { printf ("%s", label); sym_printb_hex (p, n); printf (".\n"); } /* * Some poor sync table that refers to Tekram NVRAM layout. */ #ifdef SYM_CONF_NVRAM_SUPPORT static u_char Tekram_sync[16] = {25,31,37,43, 50,62,75,125, 12,15,18,21, 6,7,9,10}; #endif /* * Union of supported NVRAM formats. */ struct sym_nvram { int type; #define SYM_SYMBIOS_NVRAM (1) #define SYM_TEKRAM_NVRAM (2) #ifdef SYM_CONF_NVRAM_SUPPORT union { Symbios_nvram Symbios; Tekram_nvram Tekram; } data; #endif }; /* * This one is hopefully useless, but actually useful. :-) */ #ifndef assert #define assert(expression) { \ if (!(expression)) { \ (void)panic( \ "assertion \"%s\" failed: file \"%s\", line %d\n", \ #expression, \ __FILE__, __LINE__); \ } \ } #endif /* * Some provision for a possible big endian support. * By the way some Symbios chips also may support some kind * of big endian byte ordering. * For now, this stuff does not deserve any comments. :) */ #define sym_offb(o) (o) #define sym_offw(o) (o) #define cpu_to_scr(dw) (dw) #define scr_to_cpu(dw) (dw) /* * Access to the controller chip. * * If SYM_CONF_IOMAPPED is defined, the driver will use * normal IOs instead of the MEMORY MAPPED IO method * recommended by PCI specifications. */ /* * Define some understable verbs so we will not suffer of * having to deal with the stupid PC tokens for IO. */ #define io_read8(p) scr_to_cpu(inb((p))) #define io_read16(p) scr_to_cpu(inw((p))) #define io_read32(p) scr_to_cpu(inl((p))) #define io_write8(p, v) outb((p), cpu_to_scr(v)) #define io_write16(p, v) outw((p), cpu_to_scr(v)) #define io_write32(p, v) outl((p), cpu_to_scr(v)) #ifdef __alpha__ #define mmio_read8(a) readb(a) #define mmio_read16(a) readw(a) #define mmio_read32(a) readl(a) #define mmio_write8(a, b) writeb(a, b) #define mmio_write16(a, b) writew(a, b) #define mmio_write32(a, b) writel(a, b) #else /*__i386__*/ #define mmio_read8(a) scr_to_cpu((*(volatile unsigned char *) (a))) #define mmio_read16(a) scr_to_cpu((*(volatile unsigned short *) (a))) #define mmio_read32(a) scr_to_cpu((*(volatile unsigned int *) (a))) #define mmio_write8(a, b) (*(volatile unsigned char *) (a)) = cpu_to_scr(b) #define mmio_write16(a, b) (*(volatile unsigned short *) (a)) = cpu_to_scr(b) #define mmio_write32(a, b) (*(volatile unsigned int *) (a)) = cpu_to_scr(b) #endif /* * Normal IO */ #if defined(SYM_CONF_IOMAPPED) #define INB_OFF(o) io_read8(np->io_port + sym_offb(o)) #define OUTB_OFF(o, v) io_write8(np->io_port + sym_offb(o), (v)) #define INW_OFF(o) io_read16(np->io_port + sym_offw(o)) #define OUTW_OFF(o, v) io_write16(np->io_port + sym_offw(o), (v)) #define INL_OFF(o) io_read32(np->io_port + (o)) #define OUTL_OFF(o, v) io_write32(np->io_port + (o), (v)) #else /* Memory mapped IO */ #define INB_OFF(o) mmio_read8(np->mmio_va + sym_offb(o)) #define OUTB_OFF(o, v) mmio_write8(np->mmio_va + sym_offb(o), (v)) #define INW_OFF(o) mmio_read16(np->mmio_va + sym_offw(o)) #define OUTW_OFF(o, v) mmio_write16(np->mmio_va + sym_offw(o), (v)) #define INL_OFF(o) mmio_read32(np->mmio_va + (o)) #define OUTL_OFF(o, v) mmio_write32(np->mmio_va + (o), (v)) #endif /* * Common to both normal IO and MMIO. */ #define INB(r) INB_OFF(offsetof(struct sym_reg,r)) #define INW(r) INW_OFF(offsetof(struct sym_reg,r)) #define INL(r) INL_OFF(offsetof(struct sym_reg,r)) #define OUTB(r, v) OUTB_OFF(offsetof(struct sym_reg,r), (v)) #define OUTW(r, v) OUTW_OFF(offsetof(struct sym_reg,r), (v)) #define OUTL(r, v) OUTL_OFF(offsetof(struct sym_reg,r), (v)) #define OUTONB(r, m) OUTB(r, INB(r) | (m)) #define OUTOFFB(r, m) OUTB(r, INB(r) & ~(m)) #define OUTONW(r, m) OUTW(r, INW(r) | (m)) #define OUTOFFW(r, m) OUTW(r, INW(r) & ~(m)) #define OUTONL(r, m) OUTL(r, INL(r) | (m)) #define OUTOFFL(r, m) OUTL(r, INL(r) & ~(m)) /* * Command control block states. */ #define HS_IDLE (0) #define HS_BUSY (1) #define HS_NEGOTIATE (2) /* sync/wide data transfer*/ #define HS_DISCONNECT (3) /* Disconnected by target */ #define HS_DONEMASK (0x80) #define HS_COMPLETE (4|HS_DONEMASK) #define HS_SEL_TIMEOUT (5|HS_DONEMASK) /* Selection timeout */ #define HS_UNEXPECTED (6|HS_DONEMASK) /* Unexpected disconnect */ #define HS_COMP_ERR (7|HS_DONEMASK) /* Completed with error */ /* * Software Interrupt Codes */ #define SIR_BAD_SCSI_STATUS (1) #define SIR_SEL_ATN_NO_MSG_OUT (2) #define SIR_MSG_RECEIVED (3) #define SIR_MSG_WEIRD (4) #define SIR_NEGO_FAILED (5) #define SIR_NEGO_PROTO (6) #define SIR_SCRIPT_STOPPED (7) #define SIR_REJECT_TO_SEND (8) #define SIR_SWIDE_OVERRUN (9) #define SIR_SODL_UNDERRUN (10) #define SIR_RESEL_NO_MSG_IN (11) #define SIR_RESEL_NO_IDENTIFY (12) #define SIR_RESEL_BAD_LUN (13) #define SIR_TARGET_SELECTED (14) #define SIR_RESEL_BAD_I_T_L (15) #define SIR_RESEL_BAD_I_T_L_Q (16) #define SIR_ABORT_SENT (17) #define SIR_RESEL_ABORTED (18) #define SIR_MSG_OUT_DONE (19) #define SIR_COMPLETE_ERROR (20) #define SIR_MAX (20) /* * Extended error bit codes. * xerr_status field of struct sym_ccb. */ #define XE_EXTRA_DATA (1) /* unexpected data phase */ #define XE_BAD_PHASE (1<<1) /* illegal phase (4/5) */ #define XE_PARITY_ERR (1<<2) /* unrecovered SCSI parity error */ #define XE_SODL_UNRUN (1<<3) /* ODD transfer in DATA OUT phase */ #define XE_SWIDE_OVRUN (1<<4) /* ODD transfer in DATA IN phase */ /* * Negotiation status. * nego_status field of struct sym_ccb. */ #define NS_SYNC (1) #define NS_WIDE (2) #define NS_PPR (3) /* * A CCB hashed table is used to retrieve CCB address * from DSA value. */ #define CCB_HASH_SHIFT 8 #define CCB_HASH_SIZE (1UL << CCB_HASH_SHIFT) #define CCB_HASH_MASK (CCB_HASH_SIZE-1) #define CCB_HASH_CODE(dsa) (((dsa) >> 9) & CCB_HASH_MASK) /* * Device flags. */ #define SYM_DISC_ENABLED (1) #define SYM_TAGS_ENABLED (1<<1) #define SYM_SCAN_BOOT_DISABLED (1<<2) #define SYM_SCAN_LUNS_DISABLED (1<<3) /* * Device quirks. * Some devices, for example the CHEETAH 2 LVD, disconnects without * saving the DATA POINTER then reconnect and terminates the IO. * On reselection, the automatic RESTORE DATA POINTER makes the * CURRENT DATA POINTER not point at the end of the IO. * This behaviour just breaks our calculation of the residual. * For now, we just force an AUTO SAVE on disconnection and will * fix that in a further driver version. */ #define SYM_QUIRK_AUTOSAVE 1 /* * Misc. */ #define SYM_SNOOP_TIMEOUT (10000000) #define SYM_PCI_IO PCIR_MAPS #define SYM_PCI_MMIO (PCIR_MAPS + 4) #define SYM_PCI_RAM (PCIR_MAPS + 8) #define SYM_PCI_RAM64 (PCIR_MAPS + 12) /* * Back-pointer from the CAM CCB to our data structures. */ #define sym_hcb_ptr spriv_ptr0 /* #define sym_ccb_ptr spriv_ptr1 */ /* * We mostly have to deal with pointers. * Thus these typedef's. */ typedef struct sym_tcb *tcb_p; typedef struct sym_lcb *lcb_p; typedef struct sym_ccb *ccb_p; typedef struct sym_hcb *hcb_p; typedef struct sym_scr *script_p; typedef struct sym_scrh *scripth_p; /* * Gather negotiable parameters value */ struct sym_trans { u8 period; u8 offset; u8 width; u8 options; /* PPR options */ }; struct sym_tinfo { struct sym_trans current; struct sym_trans goal; struct sym_trans user; }; #define BUS_8_BIT MSG_EXT_WDTR_BUS_8_BIT #define BUS_16_BIT MSG_EXT_WDTR_BUS_16_BIT /* * Target Control Block */ struct sym_tcb { /* * LUN table used by the SCRIPTS processor. * An array of bus addresses is used on reselection. * LUN #0 is a special case, since multi-lun devices are rare, * and we we want to speed-up the general case and not waste * resources. */ u32 *luntbl; /* LCBs bus address table */ u32 luntbl_sa; /* bus address of this table */ u32 lun0_sa; /* bus address of LCB #0 */ /* * LUN table used by the C code. */ lcb_p lun0p; /* LCB of LUN #0 (usual case) */ #if SYM_CONF_MAX_LUN > 1 lcb_p *lunmp; /* Other LCBs [1..MAX_LUN] */ #endif /* * Bitmap that tells about LUNs that succeeded at least * 1 IO and therefore assumed to be a real device. * Avoid useless allocation of the LCB structure. */ u32 lun_map[(SYM_CONF_MAX_LUN+31)/32]; /* * Bitmap that tells about LUNs that haven't yet an LCB * allocated (not discovered or LCB allocation failed). */ u32 busy0_map[(SYM_CONF_MAX_LUN+31)/32]; /* * Actual SYNC/WIDE IO registers value for this target. * 'sval', 'wval' and 'uval' are read from SCRIPTS and * so have alignment constraints. */ /*0*/ u_char uval; /* -> SCNTL4 register */ /*1*/ u_char sval; /* -> SXFER io register */ /*2*/ u_char filler1; /*3*/ u_char wval; /* -> SCNTL3 io register */ /* * Transfer capabilities (SIP) */ struct sym_tinfo tinfo; /* * Keep track of the CCB used for the negotiation in order * to ensure that only 1 negotiation is queued at a time. */ ccb_p nego_cp; /* CCB used for the nego */ /* * Set when we want to reset the device. */ u_char to_reset; /* * Other user settable limits and options. * These limits are read from the NVRAM if present. */ u_char usrflags; u_short usrtags; }; /* * Logical Unit Control Block */ struct sym_lcb { /* * SCRIPTS address jumped by SCRIPTS on reselection. * For not probed logical units, this address points to * SCRIPTS that deal with bad LU handling (must be at * offset zero for that reason). */ /*0*/ u32 resel_sa; /* * Task (bus address of a CCB) read from SCRIPTS that points * to the unique ITL nexus allowed to be disconnected. */ u32 itl_task_sa; /* * Task table read from SCRIPTS that contains pointers to * ITLQ nexuses (bus addresses read from SCRIPTS). */ u32 *itlq_tbl; /* Kernel virtual address */ u32 itlq_tbl_sa; /* Bus address used by SCRIPTS */ /* * Busy CCBs management. */ u_short busy_itlq; /* Number of busy tagged CCBs */ u_short busy_itl; /* Number of busy untagged CCBs */ /* * Circular tag allocation buffer. */ u_short ia_tag; /* Tag allocation index */ u_short if_tag; /* Tag release index */ u_char *cb_tags; /* Circular tags buffer */ /* * Set when we want to clear all tasks. */ u_char to_clear; /* * Capabilities. */ u_char user_flags; u_char current_flags; }; /* * Action from SCRIPTS on a task. * Is part of the CCB, but is also used separately to plug * error handling action to perform from SCRIPTS. */ struct sym_actscr { u32 start; /* Jumped by SCRIPTS after selection */ u32 restart; /* Jumped by SCRIPTS on relection */ }; /* * Phase mismatch context. * * It is part of the CCB and is used as parameters for the * DATA pointer. We need two contexts to handle correctly the * SAVED DATA POINTER. */ struct sym_pmc { struct sym_tblmove sg; /* Updated interrupted SG block */ u32 ret; /* SCRIPT return address */ }; /* * LUN control block lookup. * We use a direct pointer for LUN #0, and a table of * pointers which is only allocated for devices that support * LUN(s) > 0. */ #if SYM_CONF_MAX_LUN <= 1 #define sym_lp(np, tp, lun) (!lun) ? (tp)->lun0p : 0 #else #define sym_lp(np, tp, lun) \ (!lun) ? (tp)->lun0p : (tp)->lunmp ? (tp)->lunmp[(lun)] : 0 #endif /* * Status are used by the host and the script processor. * * The last four bytes (status[4]) are copied to the * scratchb register (declared as scr0..scr3) just after the * select/reselect, and copied back just after disconnecting. * Inside the script the XX_REG are used. * * The first four bytes (scr_st[4]) are used inside the * script by "LOAD/STORE" commands. * Because source and destination must have the same alignment * in a DWORD, the fields HAVE to be at the choosen offsets. * xerr_st 0 (0x34) scratcha * nego_st 2 */ /* * Last four bytes (script) */ #define QU_REG scr0 #define HS_REG scr1 #define HS_PRT nc_scr1 #define SS_REG scr2 #define SS_PRT nc_scr2 #define HF_REG scr3 #define HF_PRT nc_scr3 /* * Last four bytes (host) */ #define actualquirks phys.status[0] #define host_status phys.status[1] #define ssss_status phys.status[2] #define host_flags phys.status[3] /* * Host flags */ #define HF_IN_PM0 1u #define HF_IN_PM1 (1u<<1) #define HF_ACT_PM (1u<<2) #define HF_DP_SAVED (1u<<3) #define HF_SENSE (1u<<4) #define HF_EXT_ERR (1u<<5) #ifdef SYM_CONF_IARB_SUPPORT #define HF_HINT_IARB (1u<<7) #endif /* * First four bytes (script) */ #define xerr_st scr_st[0] #define nego_st scr_st[2] /* * First four bytes (host) */ #define xerr_status phys.xerr_st #define nego_status phys.nego_st /* * Data Structure Block * * During execution of a ccb by the script processor, the * DSA (data structure address) register points to this * substructure of the ccb. */ struct dsb { /* * Start and restart SCRIPTS addresses (must be at 0). */ /*0*/ struct sym_actscr go; /* * SCRIPTS jump address that deal with data pointers. * 'savep' points to the position in the script responsible * for the actual transfer of data. * It's written on reception of a SAVE_DATA_POINTER message. */ u32 savep; /* Jump address to saved data pointer */ u32 lastp; /* SCRIPTS address at end of data */ u32 goalp; /* Not used for now */ /* * Status fields. */ u8 scr_st[4]; /* script status */ u8 status[4]; /* host status */ /* * Table data for Script */ struct sym_tblsel select; struct sym_tblmove smsg; struct sym_tblmove smsg_ext; struct sym_tblmove cmd; struct sym_tblmove sense; struct sym_tblmove data [SYM_CONF_MAX_SG]; /* * Phase mismatch contexts. * We need two to handle correctly the SAVED DATA POINTER. */ struct sym_pmc pm0; struct sym_pmc pm1; /* * Extra bytes count transferred in case of data overrun. */ u32 extra_bytes; }; /* * Our Command Control Block */ struct sym_ccb { /* * This is the data structure which is pointed by the DSA * register when it is executed by the script processor. * It must be the first entry. */ struct dsb phys; /* * Pointer to CAM ccb and related stuff. */ union ccb *cam_ccb; /* CAM scsiio ccb */ int data_len; /* Total data length */ int segments; /* Number of SG segments */ /* * Message areas. * We prepare a message to be sent after selection. * We may use a second one if the command is rescheduled * due to CHECK_CONDITION or COMMAND TERMINATED. * Contents are IDENTIFY and SIMPLE_TAG. * While negotiating sync or wide transfer, * a SDTR or WDTR message is appended. */ u_char scsi_smsg [12]; u_char scsi_smsg2[12]; /* * Auto request sense related fields. */ u_char sensecmd[6]; /* Request Sense command */ u_char sv_scsi_status; /* Saved SCSI status */ u_char sv_xerr_status; /* Saved extended status */ int sv_resid; /* Saved residual */ /* * Other fields. */ u_long ccb_ba; /* BUS address of this CCB */ u_short tag; /* Tag for this transfer */ /* NO_TAG means no tag */ u_char target; u_char lun; ccb_p link_ccb; /* Host adapter CCB chain */ ccb_p link_ccbh; /* Host adapter CCB hash chain */ SYM_QUEHEAD link_ccbq; /* Link to free/busy CCB queue */ u32 startp; /* Initial data pointer */ int ext_sg; /* Extreme data pointer, used */ int ext_ofs; /* to calculate the residual. */ u_char to_abort; /* Want this IO to be aborted */ }; #define CCB_PHYS(cp,lbl) (cp->ccb_ba + offsetof(struct sym_ccb, lbl)) /* * Host Control Block */ struct sym_hcb { /* * Idle task and invalid task actions and * their bus addresses. */ struct sym_actscr idletask, notask, bad_itl, bad_itlq; vm_offset_t idletask_ba, notask_ba, bad_itl_ba, bad_itlq_ba; /* * Dummy lun table to protect us against target * returning bad lun number on reselection. */ u32 *badluntbl; /* Table physical address */ u32 badlun_sa; /* SCRIPT handler BUS address */ /* * Bit 32-63 of the on-chip RAM bus address in LE format. * The START_RAM64 script loads the MMRS and MMWS from this * field. */ u32 scr_ram_seg; /* * Chip and controller indentification. */ #ifdef FreeBSD_4_Bus device_t device; #else pcici_t pci_tag; #endif int unit; char inst_name[8]; /* * Initial value of some IO register bits. * These values are assumed to have been set by BIOS, and may * be used to probe adapter implementation differences. */ u_char sv_scntl0, sv_scntl3, sv_dmode, sv_dcntl, sv_ctest3, sv_ctest4, sv_ctest5, sv_gpcntl, sv_stest2, sv_stest4, sv_scntl4, sv_stest1; /* * Actual initial value of IO register bits used by the * driver. They are loaded at initialisation according to * features that are to be enabled/disabled. */ u_char rv_scntl0, rv_scntl3, rv_dmode, rv_dcntl, rv_ctest3, rv_ctest4, rv_ctest5, rv_stest2, rv_ccntl0, rv_ccntl1, rv_scntl4; /* * Target data used by the CPU. */ struct sym_tcb target[SYM_CONF_MAX_TARGET]; /* * Target control block bus address array used by the SCRIPT * on reselection. */ u32 *targtbl; /* * CAM SIM information for this instance. */ struct cam_sim *sim; struct cam_path *path; /* * Allocated hardware resources. */ #ifdef FreeBSD_4_Bus struct resource *irq_res; struct resource *io_res; struct resource *mmio_res; struct resource *ram_res; int ram_id; void *intr; #endif /* * Bus stuff. * * My understanding of PCI is that all agents must share the * same addressing range and model. * But some hardware architecture guys provide complex and * brain-deaded stuff that makes shit. * This driver only support PCI compliant implementations and * deals with part of the BUS stuff complexity only to fit O/S * requirements. */ #ifdef FreeBSD_4_Bus bus_space_handle_t io_bsh; bus_space_tag_t io_tag; bus_space_handle_t mmio_bsh; bus_space_tag_t mmio_tag; bus_space_handle_t ram_bsh; bus_space_tag_t ram_tag; #endif /* * Virtual and physical bus addresses of the chip. */ vm_offset_t mmio_va; /* MMIO kernel virtual address */ vm_offset_t mmio_pa; /* MMIO CPU physical address */ vm_offset_t mmio_ba; /* MMIO BUS address */ int mmio_ws; /* MMIO Window size */ vm_offset_t ram_va; /* RAM kernel virtual address */ vm_offset_t ram_pa; /* RAM CPU physical address */ vm_offset_t ram_ba; /* RAM BUS address */ int ram_ws; /* RAM window size */ u32 io_port; /* IO port address */ /* * SCRIPTS virtual and physical bus addresses. * 'script' is loaded in the on-chip RAM if present. * 'scripth' stays in main memory for all chips except the * 53C895A, 53C896 and 53C1010 that provide 8K on-chip RAM. */ struct sym_scr *script0; /* Copies of script and scripth */ struct sym_scrh *scripth0; /* relocated for this host. */ vm_offset_t script_ba; /* Actual script and scripth */ vm_offset_t scripth_ba; /* bus addresses. */ vm_offset_t scripth0_ba; /* * General controller parameters and configuration. */ u_short device_id; /* PCI device id */ u_char revision_id; /* PCI device revision id */ u_int features; /* Chip features map */ u_char myaddr; /* SCSI id of the adapter */ u_char maxburst; /* log base 2 of dwords burst */ u_char maxwide; /* Maximum transfer width */ u_char minsync; /* Min sync period factor (ST) */ u_char maxsync; /* Max sync period factor (ST) */ u_char minsync_dt; /* Min sync period factor (DT) */ u_char maxsync_dt; /* Max sync period factor (DT) */ u_char maxoffs; /* Max scsi offset */ u_char multiplier; /* Clock multiplier (1,2,4) */ u_char clock_divn; /* Number of clock divisors */ u_long clock_khz; /* SCSI clock frequency in KHz */ /* * Start queue management. * It is filled up by the host processor and accessed by the * SCRIPTS processor in order to start SCSI commands. */ volatile /* Prevent code optimizations */ u32 *squeue; /* Start queue */ u_short squeueput; /* Next free slot of the queue */ u_short actccbs; /* Number of allocated CCBs */ /* * Command completion queue. * It is the same size as the start queue to avoid overflow. */ u_short dqueueget; /* Next position to scan */ volatile /* Prevent code optimizations */ u32 *dqueue; /* Completion (done) queue */ /* * Miscellaneous buffers accessed by the scripts-processor. * They shall be DWORD aligned, because they may be read or * written with a script command. */ u_char msgout[8]; /* Buffer for MESSAGE OUT */ u_char msgin [8]; /* Buffer for MESSAGE IN */ u32 lastmsg; /* Last SCSI message sent */ u_char scratch; /* Scratch for SCSI receive */ /* * Miscellaneous configuration and status parameters. */ u_char scsi_mode; /* Current SCSI BUS mode */ u_char verbose; /* Verbosity for this controller*/ u32 cache; /* Used for cache test at init. */ /* * CCB lists and queue. */ ccb_p ccbh[CCB_HASH_SIZE]; /* CCB hashed by DSA value */ ccb_p ccbc; /* CCB chain */ SYM_QUEHEAD free_ccbq; /* Queue of available CCBs */ SYM_QUEHEAD busy_ccbq; /* Queue of busy CCBs */ /* * During error handling and/or recovery, * active CCBs that are to be completed with * error or requeued are moved from the busy_ccbq * to the comp_ccbq prior to completion. */ SYM_QUEHEAD comp_ccbq; /* * CAM CCB pending queue. */ SYM_QUEHEAD cam_ccbq; /* * IMMEDIATE ARBITRATION (IARB) control. * * We keep track in 'last_cp' of the last CCB that has been * queued to the SCRIPTS processor and clear 'last_cp' when * this CCB completes. If last_cp is not zero at the moment * we queue a new CCB, we set a flag in 'last_cp' that is * used by the SCRIPTS as a hint for setting IARB. * We donnot set more than 'iarb_max' consecutive hints for * IARB in order to leave devices a chance to reselect. * By the way, any non zero value of 'iarb_max' is unfair. :) */ #ifdef SYM_CONF_IARB_SUPPORT u_short iarb_max; /* Max. # consecutive IARB hints*/ u_short iarb_count; /* Actual # of these hints */ ccb_p last_cp; #endif /* * Command abort handling. * We need to synchronize tightly with the SCRIPTS * processor in order to handle things correctly. */ u_char abrt_msg[4]; /* Message to send buffer */ struct sym_tblmove abrt_tbl; /* Table for the MOV of it */ struct sym_tblsel abrt_sel; /* Sync params for selection */ u_char istat_sem; /* Tells the chip to stop (SEM) */ }; #define SCRIPT_BA(np,lbl) (np->script_ba + offsetof(struct sym_scr, lbl)) #define SCRIPTH_BA(np,lbl) (np->scripth_ba + offsetof(struct sym_scrh,lbl)) #define SCRIPTH0_BA(np,lbl) (np->scripth0_ba + offsetof(struct sym_scrh,lbl)) /* * Scripts for SYMBIOS-Processor * * Use sym_fill_scripts() to create the variable parts. * Use sym_bind_script() to make a copy and bind to * physical bus addresses. * We have to know the offsets of all labels before we reach * them (for forward jumps). Therefore we declare a struct * here. If you make changes inside the script, * * DONT FORGET TO CHANGE THE LENGTHS HERE! */ /* * Script fragments which are loaded into the on-chip RAM * of 825A, 875, 876, 895, 895A, 896 and 1010 chips. * Must not exceed 4K bytes. */ struct sym_scr { u32 start [ 14]; u32 getjob_begin [ 4]; u32 getjob_end [ 4]; u32 select [ 8]; u32 wf_sel_done [ 2]; u32 send_ident [ 2]; #ifdef SYM_CONF_IARB_SUPPORT u32 select2 [ 8]; #else u32 select2 [ 2]; #endif u32 command [ 2]; #ifdef SYM_CONF_BROKEN_U3EN_SUPPORT u32 dispatch [ 18]; #else u32 dispatch [ 30]; #endif u32 sel_no_cmd [ 10]; u32 init [ 6]; u32 clrack [ 4]; u32 disp_msg_in [ 2]; u32 disp_status [ 4]; u32 datai_done [ 16]; u32 datao_done [ 10]; u32 ign_i_w_r_msg [ 4]; u32 dataphase [ 2]; u32 msg_in [ 2]; u32 msg_in2 [ 10]; #ifdef SYM_CONF_IARB_SUPPORT u32 status [ 14]; #else u32 status [ 10]; #endif u32 complete [ 8]; u32 complete2 [ 12]; u32 complete_error [ 4]; u32 done [ 14]; u32 done_end [ 2]; u32 save_dp [ 8]; u32 restore_dp [ 4]; u32 disconnect [ 20]; #ifdef SYM_CONF_IARB_SUPPORT u32 idle [ 4]; #else u32 idle [ 2]; #endif #ifdef SYM_CONF_IARB_SUPPORT u32 ungetjob [ 6]; #else u32 ungetjob [ 4]; #endif u32 reselect [ 4]; u32 reselected [ 20]; u32 resel_scntl4 [ 28]; #if SYM_CONF_MAX_TASK*4 > 512 u32 resel_tag [ 24]; #elif SYM_CONF_MAX_TASK*4 > 256 u32 resel_tag [ 18]; #else u32 resel_tag [ 14]; #endif u32 resel_dsa [ 2]; u32 resel_dsa1 [ 6]; u32 resel_no_tag [ 8]; u32 data_in [SYM_CONF_MAX_SG * 2]; u32 data_in2 [ 4]; u32 data_out [SYM_CONF_MAX_SG * 2]; u32 data_out2 [ 4]; #ifdef SYM_CONF_BROKEN_U3EN_SUPPORT u32 pm0_data [ 28]; u32 pm1_data [ 28]; #else u32 pm0_data [ 16]; u32 pm1_data [ 16]; #endif }; /* * Script fragments which stay in main memory for all chips * except for chips that support 8K on-chip RAM. */ struct sym_scrh { u32 start64 [ 2]; u32 sel_for_abort [ 18]; u32 sel_for_abort_1 [ 2]; u32 select_no_atn [ 8]; u32 wf_sel_done_no_atn [ 4]; u32 msg_in_etc [ 14]; u32 msg_received [ 4]; u32 msg_weird_seen [ 4]; u32 msg_extended [ 20]; u32 msg_bad [ 6]; u32 msg_weird [ 4]; u32 msg_weird1 [ 8]; u32 wdtr_resp [ 6]; u32 send_wdtr [ 4]; u32 sdtr_resp [ 6]; u32 send_sdtr [ 4]; u32 ppr_resp [ 6]; u32 send_ppr [ 4]; u32 nego_bad_phase [ 4]; u32 msg_out [ 4]; u32 msg_out_done [ 4]; #ifdef SYM_CONF_BROKEN_U3EN_SUPPORT u32 no_data [ 36]; #else u32 no_data [ 28]; #endif u32 abort_resel [ 16]; u32 resend_ident [ 4]; u32 ident_break [ 4]; u32 ident_break_atn [ 4]; #ifdef SYM_CONF_BROKEN_U3EN_SUPPORT u32 sdata_in [ 12]; #else u32 sdata_in [ 6]; #endif u32 resel_bad_lun [ 4]; u32 bad_i_t_l [ 4]; u32 bad_i_t_l_q [ 4]; u32 bad_status [ 6]; u32 pm_handle [ 20]; u32 pm_handle1 [ 4]; u32 pm_save [ 4]; u32 pm0_save [ 14]; u32 pm1_save [ 14]; /* SWIDE handling */ u32 swide_ma_32 [ 4]; u32 swide_ma_64 [ 6]; u32 swide_scr_64 [ 26]; u32 swide_scr_64_1 [ 12]; u32 swide_com_64 [ 6]; u32 swide_common [ 10]; u32 swide_fin_32 [ 24]; #ifdef SYM_CONF_BROKEN_U3EN_SUPPORT u32 dt_data_in [SYM_CONF_MAX_SG * 2]; u32 dt_data_in2 [ 4]; u32 dt_data_out [SYM_CONF_MAX_SG * 2]; u32 dt_data_out2 [ 4]; #endif /* Data area */ u32 zero [ 1]; u32 scratch [ 1]; u32 scratch1 [ 1]; u32 pm0_data_addr [ 1]; u32 pm1_data_addr [ 1]; u32 saved_dsa [ 1]; u32 saved_drs [ 1]; u32 done_pos [ 1]; u32 startpos [ 1]; u32 targtbl [ 1]; /* End of data area */ u32 snooptest [ 6]; u32 snoopend [ 2]; }; /* * Function prototypes. */ static void sym_fill_scripts (script_p scr, scripth_p scrh); static void sym_bind_script (hcb_p np, u32 *src, u32 *dst, int len); static void sym_save_initial_setting (hcb_p np); static int sym_prepare_setting (hcb_p np, struct sym_nvram *nvram); static int sym_prepare_nego (hcb_p np, ccb_p cp, int nego, u_char *msgptr); static void sym_put_start_queue (hcb_p np, ccb_p cp); static void sym_chip_reset (hcb_p np); static void sym_soft_reset (hcb_p np); static void sym_start_reset (hcb_p np); static int sym_reset_scsi_bus (hcb_p np, int enab_int); static int sym_wakeup_done (hcb_p np); static void sym_flush_busy_queue (hcb_p np, int cam_status); static void sym_flush_comp_queue (hcb_p np, int cam_status); static void sym_init (hcb_p np, int reset, char *msg); static int sym_getsync(hcb_p np, u_char dt, u_char sfac, u_char *divp, u_char *fakp); static void sym_setsync (hcb_p np, ccb_p cp, u_char ofs, u_char per, u_char div, u_char fak); static void sym_setwide (hcb_p np, ccb_p cp, u_char wide); static void sym_setpprot(hcb_p np, ccb_p cp, u_char dt, u_char ofs, u_char per, u_char wide, u_char div, u_char fak); static void sym_settrans(hcb_p np, ccb_p cp, u_char dt, u_char ofs, u_char per, u_char wide, u_char div, u_char fak); static void sym_log_hard_error (hcb_p np, u_short sist, u_char dstat); static void sym_intr (void *arg); static void sym_poll (struct cam_sim *sim); static void sym_recover_scsi_int (hcb_p np, u_char hsts); static void sym_int_sto (hcb_p np); static void sym_int_udc (hcb_p np); static void sym_int_sbmc (hcb_p np); static void sym_int_par (hcb_p np, u_short sist); static void sym_int_ma (hcb_p np); static int sym_dequeue_from_squeue(hcb_p np, int i, int target, int lun, int task); static void sym_sir_bad_scsi_status (hcb_p np, int num, ccb_p cp); static int sym_clear_tasks (hcb_p np, int status, int targ, int lun, int task); static void sym_sir_task_recovery (hcb_p np, int num); static int sym_evaluate_dp (hcb_p np, ccb_p cp, u32 scr, int *ofs); static void sym_modify_dp (hcb_p np, tcb_p tp, ccb_p cp, int ofs); static int sym_compute_residual (hcb_p np, ccb_p cp); static int sym_show_msg (u_char * msg); static void sym_print_msg (ccb_p cp, char *label, u_char *msg); static void sym_sync_nego (hcb_p np, tcb_p tp, ccb_p cp); static void sym_ppr_nego (hcb_p np, tcb_p tp, ccb_p cp); static void sym_wide_nego (hcb_p np, tcb_p tp, ccb_p cp); static void sym_nego_default (hcb_p np, tcb_p tp, ccb_p cp); static void sym_nego_rejected (hcb_p np, tcb_p tp, ccb_p cp); static void sym_int_sir (hcb_p np); static void sym_free_ccb (hcb_p np, ccb_p cp); static ccb_p sym_get_ccb (hcb_p np, u_char tn, u_char ln, u_char tag_order); static ccb_p sym_alloc_ccb (hcb_p np); static ccb_p sym_ccb_from_dsa (hcb_p np, u_long dsa); static lcb_p sym_alloc_lcb (hcb_p np, u_char tn, u_char ln); static void sym_alloc_lcb_tags (hcb_p np, u_char tn, u_char ln); static int sym_snooptest (hcb_p np); static void sym_selectclock(hcb_p np, u_char scntl3); static void sym_getclock (hcb_p np, int mult); static int sym_getpciclock (hcb_p np); static void sym_complete_ok (hcb_p np, ccb_p cp); static void sym_complete_error (hcb_p np, ccb_p cp); static void sym_timeout (void *arg); static int sym_abort_scsiio (hcb_p np, union ccb *ccb, int timed_out); static void sym_reset_dev (hcb_p np, union ccb *ccb); static void sym_action (struct cam_sim *sim, union ccb *ccb); static void sym_action1 (struct cam_sim *sim, union ccb *ccb); static int sym_setup_cdb (hcb_p np, struct ccb_scsiio *csio, ccb_p cp); static int sym_setup_data(hcb_p np, struct ccb_scsiio *csio, ccb_p cp); static int sym_scatter_virtual (hcb_p np, ccb_p cp, vm_offset_t vaddr, vm_size_t len); static int sym_scatter_physical (hcb_p np, ccb_p cp, vm_offset_t vaddr, vm_size_t len); static void sym_action2 (struct cam_sim *sim, union ccb *ccb); static void sym_update_trans (hcb_p np, tcb_p tp, struct sym_trans *tip, struct ccb_trans_settings *cts); static void sym_update_dflags(hcb_p np, u_char *flags, struct ccb_trans_settings *cts); #ifdef FreeBSD_4_Bus static struct sym_pci_chip *sym_find_pci_chip (device_t dev); static int sym_pci_probe (device_t dev); static int sym_pci_attach (device_t dev); #else static struct sym_pci_chip *sym_find_pci_chip (pcici_t tag); static const char *sym_pci_probe (pcici_t tag, pcidi_t type); static void sym_pci_attach (pcici_t tag, int unit); static int sym_pci_attach2 (pcici_t tag, int unit); #endif static void sym_pci_free (hcb_p np); static int sym_cam_attach (hcb_p np); static void sym_cam_free (hcb_p np); static void sym_nvram_setup_host (hcb_p np, struct sym_nvram *nvram); static void sym_nvram_setup_target (hcb_p np, int targ, struct sym_nvram *nvp); static int sym_read_nvram (hcb_p np, struct sym_nvram *nvp); /* * Return the name of the controller. */ static __inline char *sym_name(hcb_p np) { return np->inst_name; } /* * Scripts for SYMBIOS-Processor * * Use sym_bind_script for binding to physical addresses. * * NADDR generates a reference to a field of the controller data. * PADDR generates a reference to another part of the script. * RADDR generates a reference to a script processor register. * FADDR generates a reference to a script processor register * with offset. * */ #define RELOC_SOFTC 0x40000000 #define RELOC_LABEL 0x50000000 #define RELOC_REGISTER 0x60000000 #if 0 #define RELOC_KVAR 0x70000000 #endif #define RELOC_LABELH 0x80000000 #define RELOC_MASK 0xf0000000 #define NADDR(label) (RELOC_SOFTC | offsetof(struct sym_hcb, label)) #define PADDR(label) (RELOC_LABEL | offsetof(struct sym_scr, label)) #define PADDRH(label) (RELOC_LABELH | offsetof(struct sym_scrh, label)) #define RADDR(label) (RELOC_REGISTER | REG(label)) #define FADDR(label,ofs)(RELOC_REGISTER | ((REG(label))+(ofs))) #define KVAR(which) (RELOC_KVAR | (which)) #define SCR_DATA_ZERO 0xf00ff00f #ifdef RELOC_KVAR #define SCRIPT_KVAR_JIFFIES (0) #define SCRIPT_KVAR_FIRST SCRIPT_KVAR_XXXXXXX #define SCRIPT_KVAR_LAST SCRIPT_KVAR_XXXXXXX /* * Kernel variables referenced in the scripts. * THESE MUST ALL BE ALIGNED TO A 4-BYTE BOUNDARY. */ static void *script_kvars[] = { (void *)&xxxxxxx }; #endif static struct sym_scr script0 = { /*--------------------------< START >-----------------------*/ { /* * This NOP will be patched with LED ON * SCR_REG_REG (gpreg, SCR_AND, 0xfe) */ SCR_NO_OP, 0, /* * Clear SIGP. */ SCR_FROM_REG (ctest2), 0, /* * Stop here if the C code wants to perform * some error recovery procedure manually. * (Indicate this by setting SEM in ISTAT) */ SCR_FROM_REG (istat), 0, /* * Report to the C code the next position in * the start queue the SCRIPTS will schedule. * The C code must not change SCRATCHA. */ SCR_LOAD_ABS (scratcha, 4), PADDRH (startpos), SCR_INT ^ IFTRUE (MASK (SEM, SEM)), SIR_SCRIPT_STOPPED, /* * Start the next job. * * @DSA = start point for this job. * SCRATCHA = address of this job in the start queue. * * We will restore startpos with SCRATCHA if we fails the * arbitration or if it is the idle job. * * The below GETJOB_BEGIN to GETJOB_END section of SCRIPTS * is a critical path. If it is partially executed, it then * may happen that the job address is not yet in the DSA * and the the next queue position points to the next JOB. */ SCR_LOAD_ABS (dsa, 4), PADDRH (startpos), SCR_LOAD_REL (temp, 4), 4, }/*-------------------------< GETJOB_BEGIN >------------------*/,{ SCR_STORE_ABS (temp, 4), PADDRH (startpos), SCR_LOAD_REL (dsa, 4), 0, }/*-------------------------< GETJOB_END >--------------------*/,{ SCR_LOAD_REL (temp, 4), 0, SCR_RETURN, 0, }/*-------------------------< SELECT >----------------------*/,{ /* * DSA contains the address of a scheduled * data structure. * * SCRATCHA contains the address of the start queue * entry which points to the next job. * * Set Initiator mode. * * (Target mode is left as an exercise for the reader) */ SCR_CLR (SCR_TRG), 0, /* * And try to select this target. */ SCR_SEL_TBL_ATN ^ offsetof (struct dsb, select), PADDR (ungetjob), /* * Now there are 4 possibilities: * * (1) The chip looses arbitration. * This is ok, because it will try again, * when the bus becomes idle. * (But beware of the timeout function!) * * (2) The chip is reselected. * Then the script processor takes the jump * to the RESELECT label. * * (3) The chip wins arbitration. * Then it will execute SCRIPTS instruction until * the next instruction that checks SCSI phase. * Then will stop and wait for selection to be * complete or selection time-out to occur. * * After having won arbitration, the SCRIPTS * processor is able to execute instructions while * the SCSI core is performing SCSI selection. */ /* * load the savep (saved data pointer) into * the actual data pointer. */ SCR_LOAD_REL (temp, 4), offsetof (struct sym_ccb, phys.savep), /* * Initialize the status registers */ SCR_LOAD_REL (scr0, 4), offsetof (struct sym_ccb, phys.status), }/*-------------------------< WF_SEL_DONE >----------------------*/,{ SCR_INT ^ IFFALSE (WHEN (SCR_MSG_OUT)), SIR_SEL_ATN_NO_MSG_OUT, }/*-------------------------< SEND_IDENT >----------------------*/,{ /* * Selection complete. * Send the IDENTIFY and possibly the TAG message * and negotiation message if present. */ SCR_MOVE_TBL ^ SCR_MSG_OUT, offsetof (struct dsb, smsg), }/*-------------------------< SELECT2 >----------------------*/,{ #ifdef SYM_CONF_IARB_SUPPORT /* * Set IMMEDIATE ARBITRATION if we have been given * a hint to do so. (Some job to do after this one). */ SCR_FROM_REG (HF_REG), 0, SCR_JUMPR ^ IFFALSE (MASK (HF_HINT_IARB, HF_HINT_IARB)), 8, SCR_REG_REG (scntl1, SCR_OR, IARB), 0, #endif /* * Anticipate the COMMAND phase. * This is the PHASE we expect at this point. */ SCR_JUMP ^ IFFALSE (WHEN (SCR_COMMAND)), PADDR (sel_no_cmd), }/*-------------------------< COMMAND >--------------------*/,{ /* * ... and send the command */ SCR_MOVE_TBL ^ SCR_COMMAND, offsetof (struct dsb, cmd), }/*-----------------------< DISPATCH >----------------------*/,{ /* * MSG_IN is the only phase that shall be * entered at least once for each (re)selection. * So we test it first. */ SCR_JUMP ^ IFTRUE (WHEN (SCR_MSG_IN)), PADDR (msg_in), SCR_JUMP ^ IFTRUE (IF (SCR_DATA_OUT)), PADDR (dataphase), SCR_JUMP ^ IFTRUE (IF (SCR_DATA_IN)), PADDR (dataphase), SCR_JUMP ^ IFTRUE (IF (SCR_STATUS)), PADDR (status), SCR_JUMP ^ IFTRUE (IF (SCR_COMMAND)), PADDR (command), SCR_JUMP ^ IFTRUE (IF (SCR_MSG_OUT)), PADDRH (msg_out), #ifdef SYM_CONF_BROKEN_U3EN_SUPPORT SCR_JUMP ^ IFTRUE (IF (SCR_DT_DATA_OUT)), PADDR (dataphase), SCR_JUMP ^ IFTRUE (IF (SCR_DT_DATA_IN)), PADDR (dataphase), #else /* * Set the extended error flag. */ SCR_REG_REG (HF_REG, SCR_OR, HF_EXT_ERR), 0, /* * Discard one illegal phase byte, if required. */ SCR_LOAD_REL (scratcha, 1), offsetof (struct sym_ccb, xerr_status), SCR_REG_REG (scratcha, SCR_OR, XE_BAD_PHASE), 0, SCR_STORE_REL (scratcha, 1), offsetof (struct sym_ccb, xerr_status), SCR_JUMPR ^ IFFALSE (IF (SCR_ILG_OUT)), 8, SCR_MOVE_ABS (1) ^ SCR_ILG_OUT, NADDR (scratch), SCR_JUMPR ^ IFFALSE (IF (SCR_ILG_IN)), 8, SCR_MOVE_ABS (1) ^ SCR_ILG_IN, NADDR (scratch), #endif /* SYM_CONF_BROKEN_U3EN_SUPPORT */ SCR_JUMP, PADDR (dispatch), }/*---------------------< SEL_NO_CMD >----------------------*/,{ /* * The target does not switch to command * phase after IDENTIFY has been sent. * * If it stays in MSG OUT phase send it * the IDENTIFY again. */ SCR_JUMP ^ IFTRUE (WHEN (SCR_MSG_OUT)), PADDRH (resend_ident), /* * If target does not switch to MSG IN phase * and we sent a negotiation, assert the * failure immediately. */ SCR_JUMP ^ IFTRUE (WHEN (SCR_MSG_IN)), PADDR (dispatch), SCR_FROM_REG (HS_REG), 0, SCR_INT ^ IFTRUE (DATA (HS_NEGOTIATE)), SIR_NEGO_FAILED, /* * Jump to dispatcher. */ SCR_JUMP, PADDR (dispatch), }/*-------------------------< INIT >------------------------*/,{ /* * Wait for the SCSI RESET signal to be * inactive before restarting operations, * since the chip may hang on SEL_ATN * if SCSI RESET is active. */ SCR_FROM_REG (sstat0), 0, SCR_JUMPR ^ IFTRUE (MASK (IRST, IRST)), -16, SCR_JUMP, PADDR (start), }/*-------------------------< CLRACK >----------------------*/,{ /* * Terminate possible pending message phase. */ SCR_CLR (SCR_ACK), 0, SCR_JUMP, PADDR (dispatch), }/*-------------------------< DISP_MSG_IN >----------------------*/,{ /* * Anticipate MSG_IN phase then STATUS phase. * * May spare 2 SCRIPTS instructions when we have * completed the OUTPUT of the data and the device * goes directly to STATUS phase. */ SCR_JUMP ^ IFTRUE (WHEN (SCR_MSG_IN)), PADDR (msg_in), }/*-------------------------< DISP_STATUS >----------------------*/,{ /* * Anticipate STATUS phase. * * Does spare 3 SCRIPTS instructions when we have * completed the INPUT of the data. */ SCR_JUMP ^ IFTRUE (WHEN (SCR_STATUS)), PADDR (status), SCR_JUMP, PADDR (dispatch), }/*-------------------------< DATAI_DONE >-------------------*/,{ /* * If the SWIDE is not full, jump to dispatcher. * We anticipate a STATUS phase. * If we get later an IGNORE WIDE RESIDUE, we * will alias it as a MODIFY DP (-1). */ SCR_FROM_REG (scntl2), 0, SCR_JUMP ^ IFFALSE (MASK (WSR, WSR)), PADDR (disp_status), /* * The SWIDE is full. * Clear this condition. */ SCR_REG_REG (scntl2, SCR_OR, WSR), 0, /* * Since the device is required to send any * IGNORE WIDE RESIDUE message prior to any * other information, we just snoop the SCSI * BUS to check for such a message. */ SCR_JUMPR ^ IFFALSE (WHEN (SCR_MSG_IN)), 16, SCR_FROM_REG (sbdl), 0, SCR_JUMP ^ IFTRUE (DATA (M_IGN_RESIDUE)), PADDR (disp_msg_in), /* * We have been ODD at the end of the transfer, * but the device hasn't be so. * Signal a DATA OVERRUN condition to the C code. */ SCR_INT, SIR_SWIDE_OVERRUN, SCR_JUMP, PADDR (dispatch), }/*-------------------------< DATAO_DONE >-------------------*/,{ /* * If the SODL is not full jump to dispatcher. * We anticipate a MSG IN phase or a STATUS phase. */ SCR_FROM_REG (scntl2), 0, SCR_JUMP ^ IFFALSE (MASK (WSS, WSS)), PADDR (disp_status), /* * The SODL is full, clear this condition. */ SCR_REG_REG (scntl2, SCR_OR, WSS), 0, /* * And signal a DATA UNDERRUN condition * to the C code. */ SCR_INT, SIR_SODL_UNDERRUN, SCR_JUMP, PADDR (dispatch), }/*-------------------------< IGN_I_W_R_MSG >--------------*/,{ /* * We jump here from the phase mismatch interrupt, * When we have a SWIDE and the device has presented * a IGNORE WIDE RESIDUE message on the BUS. * We just have to throw away this message and then * to jump to dispatcher. */ SCR_MOVE_ABS (2) ^ SCR_MSG_IN, NADDR (scratch), /* * Clear ACK and jump to dispatcher. */ SCR_JUMP, PADDR (clrack), }/*-------------------------< DATAPHASE >------------------*/,{ SCR_RETURN, 0, }/*-------------------------< MSG_IN >--------------------*/,{ /* * Get the first byte of the message. * * The script processor doesn't negate the * ACK signal after this transfer. */ SCR_MOVE_ABS (1) ^ SCR_MSG_IN, NADDR (msgin[0]), }/*-------------------------< MSG_IN2 >--------------------*/,{ /* * Check first against 1 byte messages * that we handle from SCRIPTS. */ SCR_JUMP ^ IFTRUE (DATA (M_COMPLETE)), PADDR (complete), SCR_JUMP ^ IFTRUE (DATA (M_DISCONNECT)), PADDR (disconnect), SCR_JUMP ^ IFTRUE (DATA (M_SAVE_DP)), PADDR (save_dp), SCR_JUMP ^ IFTRUE (DATA (M_RESTORE_DP)), PADDR (restore_dp), /* * We handle all other messages from the * C code, so no need to waste on-chip RAM * for those ones. */ SCR_JUMP, PADDRH (msg_in_etc), }/*-------------------------< STATUS >--------------------*/,{ /* * get the status */ SCR_MOVE_ABS (1) ^ SCR_STATUS, NADDR (scratch), #ifdef SYM_CONF_IARB_SUPPORT /* * If STATUS is not GOOD, clear IMMEDIATE ARBITRATION, * since we may have to tamper the start queue from * the C code. */ SCR_JUMPR ^ IFTRUE (DATA (S_GOOD)), 8, SCR_REG_REG (scntl1, SCR_AND, ~IARB), 0, #endif /* * save status to scsi_status. * mark as complete. */ SCR_TO_REG (SS_REG), 0, SCR_LOAD_REG (HS_REG, HS_COMPLETE), 0, /* * Anticipate the MESSAGE PHASE for * the TASK COMPLETE message. */ SCR_JUMP ^ IFTRUE (WHEN (SCR_MSG_IN)), PADDR (msg_in), SCR_JUMP, PADDR (dispatch), }/*-------------------------< COMPLETE >-----------------*/,{ /* * Complete message. * * Copy the data pointer to LASTP. */ SCR_STORE_REL (temp, 4), offsetof (struct sym_ccb, phys.lastp), /* * When we terminate the cycle by clearing ACK, * the target may disconnect immediately. * * We don't want to be told of an "unexpected disconnect", * so we disable this feature. */ SCR_REG_REG (scntl2, SCR_AND, 0x7f), 0, /* * Terminate cycle ... */ SCR_CLR (SCR_ACK|SCR_ATN), 0, /* * ... and wait for the disconnect. */ SCR_WAIT_DISC, 0, }/*-------------------------< COMPLETE2 >-----------------*/,{ /* * Save host status. */ SCR_STORE_REL (scr0, 4), offsetof (struct sym_ccb, phys.status), /* * Some bridges may reorder DMA writes to memory. * We donnot want the CPU to deal with completions * without all the posted write having been flushed * to memory. This DUMMY READ should flush posted * buffers prior to the CPU having to deal with * completions. */ SCR_LOAD_REL (scr0, 4), /* DUMMY READ */ offsetof (struct sym_ccb, phys.status), /* * If command resulted in not GOOD status, * call the C code if needed. */ SCR_FROM_REG (SS_REG), 0, SCR_CALL ^ IFFALSE (DATA (S_GOOD)), PADDRH (bad_status), /* * If we performed an auto-sense, call * the C code to synchronyze task aborts * with UNIT ATTENTION conditions. */ SCR_FROM_REG (HF_REG), 0, SCR_JUMPR ^ IFTRUE (MASK (0 ,(HF_SENSE|HF_EXT_ERR))), 16, }/*-------------------------< COMPLETE_ERROR >-----------------*/,{ SCR_LOAD_ABS (scratcha, 4), PADDRH (startpos), SCR_INT, SIR_COMPLETE_ERROR, }/*------------------------< DONE >-----------------*/,{ /* * Copy the DSA to the DONE QUEUE and * signal completion to the host. * If we are interrupted between DONE * and DONE_END, we must reset, otherwise * the completed CCB may be lost. */ SCR_STORE_ABS (dsa, 4), PADDRH (saved_dsa), SCR_LOAD_ABS (dsa, 4), PADDRH (done_pos), SCR_LOAD_ABS (scratcha, 4), PADDRH (saved_dsa), SCR_STORE_REL (scratcha, 4), 0, /* * The instruction below reads the DONE QUEUE next * free position from memory. * In addition it ensures that all PCI posted writes * are flushed and so the DSA value of the done * CCB is visible by the CPU before INTFLY is raised. */ SCR_LOAD_REL (temp, 4), 4, SCR_INT_FLY, 0, SCR_STORE_ABS (temp, 4), PADDRH (done_pos), }/*------------------------< DONE_END >-----------------*/,{ SCR_JUMP, PADDR (start), }/*-------------------------< SAVE_DP >------------------*/,{ /* * Clear ACK immediately. * No need to delay it. */ SCR_CLR (SCR_ACK), 0, /* * Keep track we received a SAVE DP, so * we will switch to the other PM context * on the next PM since the DP may point * to the current PM context. */ SCR_REG_REG (HF_REG, SCR_OR, HF_DP_SAVED), 0, /* * SAVE_DP message: * Copy the data pointer to SAVEP. */ SCR_STORE_REL (temp, 4), offsetof (struct sym_ccb, phys.savep), SCR_JUMP, PADDR (dispatch), }/*-------------------------< RESTORE_DP >---------------*/,{ /* * RESTORE_DP message: * Copy SAVEP to actual data pointer. */ SCR_LOAD_REL (temp, 4), offsetof (struct sym_ccb, phys.savep), SCR_JUMP, PADDR (clrack), }/*-------------------------< DISCONNECT >---------------*/,{ /* * DISCONNECTing ... * * disable the "unexpected disconnect" feature, * and remove the ACK signal. */ SCR_REG_REG (scntl2, SCR_AND, 0x7f), 0, SCR_CLR (SCR_ACK|SCR_ATN), 0, /* * Wait for the disconnect. */ SCR_WAIT_DISC, 0, /* * Status is: DISCONNECTED. */ SCR_LOAD_REG (HS_REG, HS_DISCONNECT), 0, /* * Save host status. */ SCR_STORE_REL (scr0, 4), offsetof (struct sym_ccb, phys.status), /* * If QUIRK_AUTOSAVE is set, * do an "save pointer" operation. */ SCR_FROM_REG (QU_REG), 0, SCR_JUMP ^ IFFALSE (MASK (SYM_QUIRK_AUTOSAVE, SYM_QUIRK_AUTOSAVE)), PADDR (start), /* * like SAVE_DP message: * Remember we saved the data pointer. * Copy data pointer to SAVEP. */ SCR_REG_REG (HF_REG, SCR_OR, HF_DP_SAVED), 0, SCR_STORE_REL (temp, 4), offsetof (struct sym_ccb, phys.savep), SCR_JUMP, PADDR (start), }/*-------------------------< IDLE >------------------------*/,{ /* * Nothing to do? * Wait for reselect. * This NOP will be patched with LED OFF * SCR_REG_REG (gpreg, SCR_OR, 0x01) */ SCR_NO_OP, 0, #ifdef SYM_CONF_IARB_SUPPORT SCR_JUMPR, 8, #endif }/*-------------------------< UNGETJOB >-----------------*/,{ #ifdef SYM_CONF_IARB_SUPPORT /* * Set IMMEDIATE ARBITRATION, for the next time. * This will give us better chance to win arbitration * for the job we just wanted to do. */ SCR_REG_REG (scntl1, SCR_OR, IARB), 0, #endif /* * We are not able to restart the SCRIPTS if we are * interrupted and these instruction haven't been * all executed. BTW, this is very unlikely to * happen, but we check that from the C code. */ SCR_LOAD_REG (dsa, 0xff), 0, SCR_STORE_ABS (scratcha, 4), PADDRH (startpos), }/*-------------------------< RESELECT >--------------------*/,{ /* * Make sure we are in initiator mode. */ SCR_CLR (SCR_TRG), 0, /* * Sleep waiting for a reselection. */ SCR_WAIT_RESEL, PADDR(start), }/*-------------------------< RESELECTED >------------------*/,{ /* * This NOP will be patched with LED ON * SCR_REG_REG (gpreg, SCR_AND, 0xfe) */ SCR_NO_OP, 0, /* * load the target id into the sdid */ SCR_REG_SFBR (ssid, SCR_AND, 0x8F), 0, SCR_TO_REG (sdid), 0, /* * Load the target control block address */ SCR_LOAD_ABS (dsa, 4), PADDRH (targtbl), SCR_SFBR_REG (dsa, SCR_SHL, 0), 0, SCR_REG_REG (dsa, SCR_SHL, 0), 0, SCR_REG_REG (dsa, SCR_AND, 0x3c), 0, SCR_LOAD_REL (dsa, 4), 0, /* * Load the legacy synchronous transfer registers. */ SCR_LOAD_REL (scntl3, 1), offsetof(struct sym_tcb, wval), SCR_LOAD_REL (sxfer, 1), offsetof(struct sym_tcb, sval), }/*-------------------------< RESEL_SCNTL4 >------------------*/,{ /* * If C1010, patched with the load of SCNTL4 that * allows a new synchronous timing scheme. * * SCR_LOAD_REL (scntl4, 1), * offsetof(struct tcb, uval), */ SCR_NO_OP, 0, /* * If MESSAGE IN phase as expected, * Read the data directly from the BUS DATA lines. * This helps to support very old SCSI devices that * may reselect without sending an IDENTIFY. */ SCR_INT ^ IFFALSE (WHEN (SCR_MSG_IN)), SIR_RESEL_NO_MSG_IN, SCR_FROM_REG (sbdl), 0, /* * If message phase but not an IDENTIFY, * get some help from the C code. * Old SCSI device may behave so. */ SCR_INT ^ IFFALSE (MASK (0x80, 0x80)), SIR_RESEL_NO_IDENTIFY, /* * It is an IDENTIFY message, * Load the LUN control block address. * If LUN 0, avoid a PCI BUS ownership by loading * directly 'lun0_sa' from the TCB. */ SCR_JUMPR ^ IFTRUE (MASK (0x0, 0x3f)), 48, SCR_LOAD_REL (dsa, 4), offsetof(struct sym_tcb, luntbl_sa), SCR_SFBR_REG (dsa, SCR_SHL, 0), 0, SCR_REG_REG (dsa, SCR_SHL, 0), 0, SCR_REG_REG (dsa, SCR_AND, 0xfc), 0, SCR_LOAD_REL (dsa, 4), 0, SCR_JUMPR, 8, /* * LUN 0 special case (but usual one :)) */ SCR_LOAD_REL (dsa, 4), offsetof(struct sym_tcb, lun0_sa), /* * Jump indirectly to the reselect action for this LUN. */ SCR_LOAD_REL (temp, 4), offsetof(struct sym_lcb, resel_sa), SCR_RETURN, 0, /* In normal situations, we jump to RESEL_TAG or RESEL_NO_TAG */ }/*-------------------------< RESEL_TAG >-------------------*/,{ /* * It shall be a tagged command. * Read IDENTIFY+SIMPLE+TAG. * The C code will deal with errors. * Agressive optimization, is'nt it? :) */ SCR_MOVE_ABS (3) ^ SCR_MSG_IN, NADDR (msgin), /* * Load the pointer to the tagged task * table for this LUN. */ SCR_LOAD_REL (dsa, 4), offsetof(struct sym_lcb, itlq_tbl_sa), /* * The SIDL still contains the TAG value. * Agressive optimization, isn't it? :):) */ SCR_REG_SFBR (sidl, SCR_SHL, 0), 0, #if SYM_CONF_MAX_TASK*4 > 512 SCR_JUMPR ^ IFFALSE (CARRYSET), 8, SCR_REG_REG (dsa1, SCR_OR, 2), 0, SCR_REG_REG (sfbr, SCR_SHL, 0), 0, SCR_JUMPR ^ IFFALSE (CARRYSET), 8, SCR_REG_REG (dsa1, SCR_OR, 1), 0, #elif SYM_CONF_MAX_TASK*4 > 256 SCR_JUMPR ^ IFFALSE (CARRYSET), 8, SCR_REG_REG (dsa1, SCR_OR, 1), 0, #endif /* * Retrieve the DSA of this task. * JUMP indirectly to the restart point of the CCB. */ SCR_SFBR_REG (dsa, SCR_AND, 0xfc), 0, SCR_LOAD_REL (dsa, 4), 0, SCR_LOAD_REL (temp, 4), offsetof(struct sym_ccb, phys.go.restart), SCR_RETURN, 0, /* In normal situations we branch to RESEL_DSA */ }/*-------------------------< RESEL_DSA >-------------------*/,{ /* * ACK the IDENTIFY or TAG previously received. */ SCR_CLR (SCR_ACK), 0, }/*-------------------------< RESEL_DSA1 >------------------*/,{ /* * load the savep (saved pointer) into * the actual data pointer. */ SCR_LOAD_REL (temp, 4), offsetof (struct sym_ccb, phys.savep), /* * Initialize the status registers */ SCR_LOAD_REL (scr0, 4), offsetof (struct sym_ccb, phys.status), /* * Jump to dispatcher. */ SCR_JUMP, PADDR (dispatch), }/*-------------------------< RESEL_NO_TAG >-------------------*/,{ /* * Throw away the IDENTIFY. */ SCR_MOVE_ABS (1) ^ SCR_MSG_IN, NADDR (msgin), /* * Load the DSA with the unique ITL task. */ SCR_LOAD_REL (dsa, 4), offsetof(struct sym_lcb, itl_task_sa), /* * JUMP indirectly to the restart point of the CCB. */ SCR_LOAD_REL (temp, 4), offsetof(struct sym_ccb, phys.go.restart), SCR_RETURN, 0, /* In normal situations we branch to RESEL_DSA */ }/*-------------------------< DATA_IN >--------------------*/,{ /* * Because the size depends on the * #define SYM_CONF_MAX_SG parameter, * it is filled in at runtime. * * ##===========< i=0; i========= * || SCR_CHMOV_TBL ^ SCR_DATA_IN, * || offsetof (struct dsb, data[ i]), * ##========================================== */ 0 }/*-------------------------< DATA_IN2 >-------------------*/,{ SCR_CALL, PADDR (datai_done), SCR_JUMP, PADDRH (no_data), }/*-------------------------< DATA_OUT >--------------------*/,{ /* * Because the size depends on the * #define SYM_CONF_MAX_SG parameter, * it is filled in at runtime. * * ##===========< i=0; i========= * || SCR_CHMOV_TBL ^ SCR_DATA_OUT, * || offsetof (struct dsb, data[ i]), * ##========================================== */ 0 }/*-------------------------< DATA_OUT2 >-------------------*/,{ SCR_CALL, PADDR (datao_done), SCR_JUMP, PADDRH (no_data), }/*-------------------------< PM0_DATA >--------------------*/,{ /* * Keep track we are executing the PM0 DATA * mini-script. */ SCR_REG_REG (HF_REG, SCR_OR, HF_IN_PM0), 0, /* * MOVE the data according to the actual * DATA direction. */ #ifdef SYM_CONF_BROKEN_U3EN_SUPPORT SCR_JUMPR ^ IFFALSE (WHEN (SCR_DATA_IN)), 16, SCR_CHMOV_TBL ^ SCR_DATA_IN, offsetof (struct sym_ccb, phys.pm0.sg), SCR_JUMPR, 56, SCR_JUMPR ^ IFFALSE (WHEN (SCR_DATA_OUT)), 16, SCR_CHMOV_TBL ^ SCR_DATA_OUT, offsetof (struct sym_ccb, phys.pm0.sg), SCR_JUMPR, 32, SCR_JUMPR ^ IFFALSE (WHEN (SCR_DT_DATA_IN)), 16, SCR_CHMOV_TBL ^ SCR_DT_DATA_IN, offsetof (struct sym_ccb, phys.pm0.sg), SCR_JUMPR, 8, SCR_CHMOV_TBL ^ SCR_DT_DATA_OUT, offsetof (struct sym_ccb, phys.pm0.sg), #else SCR_JUMPR ^ IFFALSE (WHEN (SCR_DATA_IN)), 16, SCR_CHMOV_TBL ^ SCR_DATA_IN, offsetof (struct sym_ccb, phys.pm0.sg), SCR_JUMPR, 8, SCR_CHMOV_TBL ^ SCR_DATA_OUT, offsetof (struct sym_ccb, phys.pm0.sg), #endif /* * Clear the flag that told we were in * the PM0 DATA mini-script. */ SCR_REG_REG (HF_REG, SCR_AND, (~HF_IN_PM0)), 0, /* * Return to the previous DATA script which * is guaranteed by design (if no bug) to be * the main DATA script for this transfer. */ SCR_LOAD_REL (temp, 4), offsetof (struct sym_ccb, phys.pm0.ret), SCR_RETURN, 0, }/*-------------------------< PM1_DATA >--------------------*/,{ /* * Keep track we are executing the PM1 DATA * mini-script. */ SCR_REG_REG (HF_REG, SCR_OR, HF_IN_PM1), 0, /* * MOVE the data according to the actual * DATA direction. */ #ifdef SYM_CONF_BROKEN_U3EN_SUPPORT SCR_JUMPR ^ IFFALSE (WHEN (SCR_DATA_IN)), 16, SCR_CHMOV_TBL ^ SCR_DATA_IN, offsetof (struct sym_ccb, phys.pm1.sg), SCR_JUMPR, 56, SCR_JUMPR ^ IFFALSE (WHEN (SCR_DATA_OUT)), 16, SCR_CHMOV_TBL ^ SCR_DATA_OUT, offsetof (struct sym_ccb, phys.pm1.sg), SCR_JUMPR, 32, SCR_JUMPR ^ IFFALSE (WHEN (SCR_DT_DATA_IN)), 16, SCR_CHMOV_TBL ^ SCR_DT_DATA_IN, offsetof (struct sym_ccb, phys.pm1.sg), SCR_JUMPR, 8, SCR_CHMOV_TBL ^ SCR_DT_DATA_OUT, offsetof (struct sym_ccb, phys.pm1.sg), #else SCR_JUMPR ^ IFFALSE (WHEN (SCR_DATA_IN)), 16, SCR_CHMOV_TBL ^ SCR_DATA_IN, offsetof (struct sym_ccb, phys.pm1.sg), SCR_JUMPR, 8, SCR_CHMOV_TBL ^ SCR_DATA_OUT, offsetof (struct sym_ccb, phys.pm1.sg), #endif /* * Clear the flag that told we were in * the PM1 DATA mini-script. */ SCR_REG_REG (HF_REG, SCR_AND, (~HF_IN_PM1)), 0, /* * Return to the previous DATA script which * is guaranteed by design (if no bug) to be * the main DATA script for this transfer. */ SCR_LOAD_REL (temp, 4), offsetof (struct sym_ccb, phys.pm1.ret), SCR_RETURN, 0, }/*---------------------------------------------------------*/ }; static struct sym_scrh scripth0 = { /*------------------------< START64 >-----------------------*/{ /* * SCRIPT entry point for the 895A, 896 and 1010. * For now, there is no specific stuff for those * chips at this point, but this may come. */ SCR_JUMP, PADDR (init), }/*-----------------------< SEL_FOR_ABORT >------------------*/,{ /* * We are jumped here by the C code, if we have * some target to reset or some disconnected * job to abort. Since error recovery is a serious * busyness, we will really reset the SCSI BUS, if * case of a SCSI interrupt occuring in this path. */ /* * Set initiator mode. */ SCR_CLR (SCR_TRG), 0, /* * And try to select this target. */ SCR_SEL_TBL_ATN ^ offsetof (struct sym_hcb, abrt_sel), PADDR (reselect), /* * Wait for the selection to complete or * the selection to time out. */ SCR_JUMPR ^ IFFALSE (WHEN (SCR_MSG_OUT)), -8, /* * Call the C code. */ SCR_INT, SIR_TARGET_SELECTED, /* * The C code should let us continue here. * Send the 'kiss of death' message. * We expect an immediate disconnect once * the target has eaten the message. */ SCR_REG_REG (scntl2, SCR_AND, 0x7f), 0, SCR_MOVE_TBL ^ SCR_MSG_OUT, offsetof (struct sym_hcb, abrt_tbl), SCR_CLR (SCR_ACK|SCR_ATN), 0, SCR_WAIT_DISC, 0, /* * Tell the C code that we are done. */ SCR_INT, SIR_ABORT_SENT, }/*-----------------------< SEL_FOR_ABORT_1 >--------------*/,{ /* * Jump at scheduler. */ SCR_JUMP, PADDR (start), }/*------------------------< SELECT_NO_ATN >-----------------*/,{ /* * Set Initiator mode. * And try to select this target without ATN. */ SCR_CLR (SCR_TRG), 0, SCR_SEL_TBL ^ offsetof (struct dsb, select), PADDR (ungetjob), /* * load the savep (saved pointer) into * the actual data pointer. */ SCR_LOAD_REL (temp, 4), offsetof (struct sym_ccb, phys.savep), /* * Initialize the status registers */ SCR_LOAD_REL (scr0, 4), offsetof (struct sym_ccb, phys.status), }/*------------------------< WF_SEL_DONE_NO_ATN >-----------------*/,{ /* * Wait immediately for the next phase or * the selection to complete or time-out. */ SCR_JUMPR ^ IFFALSE (WHEN (SCR_MSG_OUT)), 0, SCR_JUMP, PADDR (select2), }/*-------------------------< MSG_IN_ETC >--------------------*/,{ /* * If it is an EXTENDED (variable size message) * Handle it. */ SCR_JUMP ^ IFTRUE (DATA (M_EXTENDED)), PADDRH (msg_extended), /* * Let the C code handle any other * 1 byte message. */ SCR_INT ^ IFTRUE (MASK (0x00, 0xf0)), SIR_MSG_RECEIVED, SCR_INT ^ IFTRUE (MASK (0x10, 0xf0)), SIR_MSG_RECEIVED, /* * We donnot handle 2 bytes messages from SCRIPTS. * So, let the C code deal with these ones too. */ SCR_INT ^ IFFALSE (MASK (0x20, 0xf0)), SIR_MSG_WEIRD, SCR_CLR (SCR_ACK), 0, SCR_MOVE_ABS (1) ^ SCR_MSG_IN, NADDR (msgin[1]), SCR_INT, SIR_MSG_RECEIVED, }/*-------------------------< MSG_RECEIVED >--------------------*/,{ SCR_LOAD_REL (scratcha, 4), /* DUMMY READ */ 0, SCR_INT, SIR_MSG_RECEIVED, }/*-------------------------< MSG_WEIRD_SEEN >------------------*/,{ SCR_LOAD_REL (scratcha, 4), /* DUMMY READ */ 0, SCR_INT, SIR_MSG_WEIRD, }/*-------------------------< MSG_EXTENDED >--------------------*/,{ /* * Clear ACK and get the next byte * assumed to be the message length. */ SCR_CLR (SCR_ACK), 0, SCR_MOVE_ABS (1) ^ SCR_MSG_IN, NADDR (msgin[1]), /* * Try to catch some unlikely situations as 0 length * or too large the length. */ SCR_JUMP ^ IFTRUE (DATA (0)), PADDRH (msg_weird_seen), SCR_TO_REG (scratcha), 0, SCR_REG_REG (sfbr, SCR_ADD, (256-8)), 0, SCR_JUMP ^ IFTRUE (CARRYSET), PADDRH (msg_weird_seen), /* * We donnot handle extended messages from SCRIPTS. * Read the amount of data correponding to the * message length and call the C code. */ SCR_STORE_REL (scratcha, 1), offsetof (struct dsb, smsg_ext.size), SCR_CLR (SCR_ACK), 0, SCR_MOVE_TBL ^ SCR_MSG_IN, offsetof (struct dsb, smsg_ext), SCR_JUMP, PADDRH (msg_received), }/*-------------------------< MSG_BAD >------------------*/,{ /* * unimplemented message - reject it. */ SCR_INT, SIR_REJECT_TO_SEND, SCR_SET (SCR_ATN), 0, SCR_JUMP, PADDR (clrack), }/*-------------------------< MSG_WEIRD >--------------------*/,{ /* * weird message received * ignore all MSG IN phases and reject it. */ SCR_INT, SIR_REJECT_TO_SEND, SCR_SET (SCR_ATN), 0, }/*-------------------------< MSG_WEIRD1 >--------------------*/,{ SCR_CLR (SCR_ACK), 0, SCR_JUMP ^ IFFALSE (WHEN (SCR_MSG_IN)), PADDR (dispatch), SCR_MOVE_ABS (1) ^ SCR_MSG_IN, NADDR (scratch), SCR_JUMP, PADDRH (msg_weird1), }/*-------------------------< WDTR_RESP >----------------*/,{ /* * let the target fetch our answer. */ SCR_SET (SCR_ATN), 0, SCR_CLR (SCR_ACK), 0, SCR_JUMP ^ IFFALSE (WHEN (SCR_MSG_OUT)), PADDRH (nego_bad_phase), }/*-------------------------< SEND_WDTR >----------------*/,{ /* * Send the M_X_WIDE_REQ */ SCR_MOVE_ABS (4) ^ SCR_MSG_OUT, NADDR (msgout), SCR_JUMP, PADDRH (msg_out_done), }/*-------------------------< SDTR_RESP >-------------*/,{ /* * let the target fetch our answer. */ SCR_SET (SCR_ATN), 0, SCR_CLR (SCR_ACK), 0, SCR_JUMP ^ IFFALSE (WHEN (SCR_MSG_OUT)), PADDRH (nego_bad_phase), }/*-------------------------< SEND_SDTR >-------------*/,{ /* * Send the M_X_SYNC_REQ */ SCR_MOVE_ABS (5) ^ SCR_MSG_OUT, NADDR (msgout), SCR_JUMP, PADDRH (msg_out_done), }/*-------------------------< PPR_RESP >-------------*/,{ /* * let the target fetch our answer. */ SCR_SET (SCR_ATN), 0, SCR_CLR (SCR_ACK), 0, SCR_JUMP ^ IFFALSE (WHEN (SCR_MSG_OUT)), PADDRH (nego_bad_phase), }/*-------------------------< SEND_PPR >-------------*/,{ /* * Send the M_X_PPR_REQ */ SCR_MOVE_ABS (8) ^ SCR_MSG_OUT, NADDR (msgout), SCR_JUMP, PADDRH (msg_out_done), }/*-------------------------< NEGO_BAD_PHASE >------------*/,{ SCR_INT, SIR_NEGO_PROTO, SCR_JUMP, PADDR (dispatch), }/*-------------------------< MSG_OUT >-------------------*/,{ /* * The target requests a message. * We donnot send messages that may * require the device to go to bus free. */ SCR_MOVE_ABS (1) ^ SCR_MSG_OUT, NADDR (msgout), /* * ... wait for the next phase * if it's a message out, send it again, ... */ SCR_JUMP ^ IFTRUE (WHEN (SCR_MSG_OUT)), PADDRH (msg_out), }/*-------------------------< MSG_OUT_DONE >--------------*/,{ /* * Let the C code be aware of the * sent message and clear the message. */ SCR_INT, SIR_MSG_OUT_DONE, /* * ... and process the next phase */ SCR_JUMP, PADDR (dispatch), }/*-------------------------< NO_DATA >--------------------*/,{ /* * The target wants to tranfer too much data * or in the wrong direction. * Discard one data byte, if required. * Count all discarded bytes. */ SCR_JUMPR ^ IFFALSE (WHEN (SCR_DATA_OUT)), 8, SCR_MOVE_ABS (1) ^ SCR_DATA_OUT, NADDR (scratch), SCR_JUMPR ^ IFFALSE (IF (SCR_DATA_IN)), 8, SCR_MOVE_ABS (1) ^ SCR_DATA_IN, NADDR (scratch), #ifdef SYM_CONF_BROKEN_U3EN_SUPPORT SCR_JUMPR ^ IFFALSE (IF (SCR_DT_DATA_OUT)), 8, SCR_MOVE_ABS (1) ^ SCR_DT_DATA_OUT, NADDR (scratch), SCR_JUMPR ^ IFFALSE (IF (SCR_DT_DATA_IN)), 8, SCR_MOVE_ABS (1) ^ SCR_DT_DATA_IN, NADDR (scratch), #endif /* * Set the extended error flag. */ SCR_REG_REG (HF_REG, SCR_OR, HF_EXT_ERR), 0, SCR_LOAD_REL (scratcha, 1), offsetof (struct sym_ccb, xerr_status), SCR_REG_REG (scratcha, SCR_OR, XE_EXTRA_DATA), 0, /* * Count this byte. * This will allow to return a positive * residual to user. */ SCR_LOAD_REL (scratcha, 4), offsetof (struct sym_ccb, phys.extra_bytes), SCR_REG_REG (scratcha, SCR_ADD, 0x01), 0, SCR_REG_REG (scratcha1, SCR_ADDC, 0), 0, SCR_REG_REG (scratcha2, SCR_ADDC, 0), 0, SCR_STORE_REL (scratcha, 4), offsetof (struct sym_ccb, phys.extra_bytes), /* * .. and repeat as required. */ SCR_CALL, PADDR (dispatch), SCR_JUMP, PADDRH (no_data), }/*-------------------------< ABORT_RESEL >----------------*/,{ SCR_SET (SCR_ATN), 0, SCR_CLR (SCR_ACK), 0, /* * send the abort/abortag/reset message * we expect an immediate disconnect */ SCR_REG_REG (scntl2, SCR_AND, 0x7f), 0, SCR_MOVE_ABS (1) ^ SCR_MSG_OUT, NADDR (msgout), SCR_CLR (SCR_ACK|SCR_ATN), 0, SCR_WAIT_DISC, 0, SCR_INT, SIR_RESEL_ABORTED, SCR_JUMP, PADDR (start), }/*-------------------------< RESEND_IDENT >-------------------*/,{ /* * The target stays in MSG OUT phase after having acked * Identify [+ Tag [+ Extended message ]]. Targets shall * behave this way on parity error. * We must send it again all the messages. */ SCR_SET (SCR_ATN), /* Shall be asserted 2 deskew delays before the */ 0, /* 1rst ACK = 90 ns. Hope the chip isn't too fast */ SCR_JUMP, PADDR (send_ident), }/*-------------------------< IDENT_BREAK >-------------------*/,{ SCR_CLR (SCR_ATN), 0, SCR_JUMP, PADDR (select2), }/*-------------------------< IDENT_BREAK_ATN >----------------*/,{ SCR_SET (SCR_ATN), 0, SCR_JUMP, PADDR (select2), }/*-------------------------< SDATA_IN >-------------------*/,{ #ifdef SYM_CONF_BROKEN_U3EN_SUPPORT SCR_JUMPR ^ IFFALSE (WHEN (SCR_DATA_IN)), 16, SCR_CHMOV_TBL ^ SCR_DATA_IN, offsetof (struct dsb, sense), SCR_JUMPR, 8, SCR_CHMOV_TBL ^ SCR_DT_DATA_IN, offsetof (struct dsb, sense), #else SCR_CHMOV_TBL ^ SCR_DATA_IN, offsetof (struct dsb, sense), #endif SCR_CALL, PADDR (dispatch), SCR_JUMP, PADDRH (no_data), }/*-------------------------< RESEL_BAD_LUN >---------------*/,{ /* * Message is an IDENTIFY, but lun is unknown. * Signal problem to C code for logging the event. * Send a M_ABORT to clear all pending tasks. */ SCR_INT, SIR_RESEL_BAD_LUN, SCR_JUMP, PADDRH (abort_resel), }/*-------------------------< BAD_I_T_L >------------------*/,{ /* * We donnot have a task for that I_T_L. * Signal problem to C code for logging the event. * Send a M_ABORT message. */ SCR_INT, SIR_RESEL_BAD_I_T_L, SCR_JUMP, PADDRH (abort_resel), }/*-------------------------< BAD_I_T_L_Q >----------------*/,{ /* * We donnot have a task that matches the tag. * Signal problem to C code for logging the event. * Send a M_ABORTTAG message. */ SCR_INT, SIR_RESEL_BAD_I_T_L_Q, SCR_JUMP, PADDRH (abort_resel), }/*-------------------------< BAD_STATUS >-----------------*/,{ /* * Anything different from INTERMEDIATE * CONDITION MET should be a bad SCSI status, * given that GOOD status has already been tested. * Call the C code. */ SCR_LOAD_ABS (scratcha, 4), PADDRH (startpos), SCR_INT ^ IFFALSE (DATA (S_COND_MET)), SIR_BAD_SCSI_STATUS, SCR_RETURN, 0, }/*-------------------------< PM_HANDLE >------------------*/,{ /* * Phase mismatch handling. * * Since we have to deal with 2 SCSI data pointers * (current and saved), we need at least 2 contexts. * Each context (pm0 and pm1) has a saved area, a * SAVE mini-script and a DATA phase mini-script. */ /* * Get the PM handling flags. */ SCR_FROM_REG (HF_REG), 0, /* * If no flags (1rst PM for example), avoid * all the below heavy flags testing. * This makes the normal case a bit faster. */ SCR_JUMP ^ IFTRUE (MASK (0, (HF_IN_PM0 | HF_IN_PM1 | HF_DP_SAVED))), PADDRH (pm_handle1), /* * If we received a SAVE DP, switch to the * other PM context since the savep may point * to the current PM context. */ SCR_JUMPR ^ IFFALSE (MASK (HF_DP_SAVED, HF_DP_SAVED)), 8, SCR_REG_REG (sfbr, SCR_XOR, HF_ACT_PM), 0, /* * If we have been interrupt in a PM DATA mini-script, * we take the return address from the corresponding * saved area. * This ensure the return address always points to the * main DATA script for this transfer. */ SCR_JUMP ^ IFTRUE (MASK (0, (HF_IN_PM0 | HF_IN_PM1))), PADDRH (pm_handle1), SCR_JUMPR ^ IFFALSE (MASK (HF_IN_PM0, HF_IN_PM0)), 16, SCR_LOAD_REL (ia, 4), offsetof(struct sym_ccb, phys.pm0.ret), SCR_JUMP, PADDRH (pm_save), SCR_LOAD_REL (ia, 4), offsetof(struct sym_ccb, phys.pm1.ret), SCR_JUMP, PADDRH (pm_save), }/*-------------------------< PM_HANDLE1 >-----------------*/,{ /* * Normal case. * Update the return address so that it * will point after the interrupted MOVE. */ SCR_REG_REG (ia, SCR_ADD, 8), 0, SCR_REG_REG (ia1, SCR_ADDC, 0), 0, }/*-------------------------< PM_SAVE >--------------------*/,{ /* * Clear all the flags that told us if we were * interrupted in a PM DATA mini-script and/or * we received a SAVE DP. */ SCR_SFBR_REG (HF_REG, SCR_AND, (~(HF_IN_PM0|HF_IN_PM1|HF_DP_SAVED))), 0, /* * Choose the current PM context. */ SCR_JUMP ^ IFTRUE (MASK (HF_ACT_PM, HF_ACT_PM)), PADDRH (pm1_save), }/*-------------------------< PM0_SAVE >-------------------*/,{ SCR_STORE_REL (ia, 4), offsetof(struct sym_ccb, phys.pm0.ret), /* * If WSR bit is set, either UA and RBC may * have to be changed whether the device wants * to ignore this residue ot not. */ SCR_FROM_REG (scntl2), 0, SCR_CALL ^ IFTRUE (MASK (WSR, WSR)), PADDRH (swide_scr_64), /* * Save the remaining byte count, the updated * address and the return address. */ SCR_STORE_REL (rbc, 4), offsetof(struct sym_ccb, phys.pm0.sg.size), SCR_STORE_REL (ua, 4), offsetof(struct sym_ccb, phys.pm0.sg.addr), /* * Set the current pointer at the PM0 DATA mini-script. */ SCR_LOAD_ABS (temp, 4), PADDRH (pm0_data_addr), SCR_JUMP, PADDR (dispatch), }/*-------------------------< PM1_SAVE >-------------------*/,{ SCR_STORE_REL (ia, 4), offsetof(struct sym_ccb, phys.pm1.ret), /* * If WSR bit is set, either UA and RBC may * have been changed whether the device wants * to ignore this residue or not. */ SCR_FROM_REG (scntl2), 0, SCR_CALL ^ IFTRUE (MASK (WSR, WSR)), PADDRH (swide_scr_64), /* * Save the remaining byte count, the updated * address and the return address. */ SCR_STORE_REL (rbc, 4), offsetof(struct sym_ccb, phys.pm1.sg.size), SCR_STORE_REL (ua, 4), offsetof(struct sym_ccb, phys.pm1.sg.addr), /* * Set the current pointer at the PM1 DATA mini-script. */ SCR_LOAD_ABS (temp, 4), PADDRH (pm1_data_addr), SCR_JUMP, PADDR (dispatch), }/*--------------------------< SWIDE_MA_32 >-----------------------*/,{ /* * Handling of the SWIDE for 32 bit chips. * * We jump here from the C code with SCRATCHA * containing the address to write the SWIDE. * - Save 32 bit address in . */ SCR_STORE_ABS (scratcha, 4), PADDRH (scratch), SCR_JUMP, PADDRH (swide_common), }/*--------------------------< SWIDE_MA_64 >-----------------------*/,{ /* * Handling of the SWIDE for 64 bit chips when the * hardware handling of phase mismatch is disabled. * * We jump here from the C code with SCRATCHA * containing the address to write the SWIDE and * SBR containing bit 32..39 of this address. * - Save 32 bit address in . * - Move address bit 32..39 to SFBR. */ SCR_STORE_ABS (scratcha, 4), PADDRH (scratch), SCR_FROM_REG (sbr), 0, SCR_JUMP, PADDRH (swide_com_64), }/*--------------------------< SWIDE_SCR_64 >-----------------------*/,{ /* * Handling of the SWIDE for 64 bit chips when * hardware phase mismatch is enabled. * We are entered with a SCR_CALL from PMO_SAVE * and PM1_SAVE sub-scripts. * * Snoop the SCSI BUS in case of the device * willing to ignore this residue. * If it does, we must only increment the RBC, * since this register does reflect all bytes * received from the SCSI BUS including the SWIDE. */ SCR_JUMP ^ IFFALSE (WHEN (SCR_MSG_IN)), PADDRH (swide_scr_64_1), SCR_FROM_REG (sbdl), 0, SCR_JUMP ^ IFFALSE (DATA (M_IGN_RESIDUE)), PADDRH (swide_scr_64_1), SCR_REG_REG (rbc, SCR_ADD, 1), 0, SCR_REG_REG (rbc1, SCR_ADDC, 0), 0, SCR_REG_REG (rbc2, SCR_ADDC, 0), 0, /* * Save UA and RBC, since the PM0/1_SAVE * sub-scripts haven't moved them to the * context yet and the below MOV may just * change their value. */ SCR_STORE_ABS (ua, 4), PADDRH (scratch), SCR_STORE_ABS (rbc, 4), PADDRH (scratch1), /* * Throw away the IGNORE WIDE RESIDUE message. * since we just did take care of it. */ SCR_MOVE_ABS (2) ^ SCR_MSG_IN, NADDR (scratch), SCR_CLR (SCR_ACK), 0, /* * Restore UA and RBC registers and return. */ SCR_LOAD_ABS (ua, 4), PADDRH (scratch), SCR_LOAD_ABS (rbc, 4), PADDRH (scratch1), SCR_RETURN, 0, }/*--------------------------< SWIDE_SCR_64_1 >---------------------*/,{ /* * We must grab the SWIDE and move it to * memory. * * - Save UA (32 bit address) in . * - Move address bit 32..39 to SFBR. * - Increment UA (updated address). */ SCR_STORE_ABS (ua, 4), PADDRH (scratch), SCR_FROM_REG (rbc3), 0, SCR_REG_REG (ua, SCR_ADD, 1), 0, SCR_REG_REG (ua1, SCR_ADDC, 0), 0, SCR_REG_REG (ua2, SCR_ADDC, 0), 0, SCR_REG_REG (ua3, SCR_ADDC, 0), 0, }/*--------------------------< SWIDE_COM_64 >-----------------------*/,{ /* * - Save DRS. * - Load DRS with address bit 32..39 of the * location to write the SWIDE. * SFBR has been loaded with these bits. * (Look above). */ SCR_STORE_ABS (drs, 4), PADDRH (saved_drs), SCR_LOAD_ABS (drs, 4), PADDRH (zero), SCR_TO_REG (drs), 0, }/*--------------------------< SWIDE_COMMON >-----------------------*/,{ /* * - Save current DSA * - Load DSA with bit 0..31 of the memory * location to write the SWIDE. */ SCR_STORE_ABS (dsa, 4), PADDRH (saved_dsa), SCR_LOAD_ABS (dsa, 4), PADDRH (scratch), /* * Move the SWIDE to memory. * Clear the WSR bit. */ SCR_STORE_REL (swide, 1), 0, SCR_REG_REG (scntl2, SCR_OR, WSR), 0, /* * Restore the original DSA. */ SCR_LOAD_ABS (dsa, 4), PADDRH (saved_dsa), }/*--------------------------< SWIDE_FIN_32 >-----------------------*/,{ /* * For 32 bit chip, the following SCRIPTS * instruction is patched with a JUMP to dispatcher. * (Look into the C code). */ SCR_LOAD_ABS (drs, 4), PADDRH (saved_drs), /* * 64 bit chip only. * If PM handling from SCRIPTS, we are just * a helper for the C code, so jump to * dispatcher now. */ SCR_FROM_REG (ccntl0), 0, SCR_JUMP ^ IFFALSE (MASK (ENPMJ, ENPMJ)), PADDR (dispatch), /* * 64 bit chip with hardware PM handling enabled. * * Since we are paranoid:), we donnot want * a SWIDE followed by a CHMOV(1) to lead to * a CHMOV(0) in our PM context. * We check against such a condition. * Also does the C code. */ SCR_FROM_REG (rbc), 0, SCR_RETURN ^ IFFALSE (DATA (0)), 0, SCR_FROM_REG (rbc1), 0, SCR_RETURN ^ IFFALSE (DATA (0)), 0, SCR_FROM_REG (rbc2), 0, SCR_RETURN ^ IFFALSE (DATA (0)), 0, /* * If we are there, RBC(0..23) is zero, * and we just have to load the current * DATA SCRIPTS address (register TEMP) * with the IA and go to dispatch. * No PM context is needed. */ SCR_STORE_ABS (ia, 4), PADDRH (scratch), SCR_LOAD_ABS (temp, 4), PADDRH (scratch), SCR_JUMP, PADDR (dispatch), #ifdef SYM_CONF_BROKEN_U3EN_SUPPORT }/*-------------------------< DT_DATA_IN >--------------------*/,{ /* * Because the size depends on the * #define SYM_CONF_MAX_SG parameter, * it is filled in at runtime. * * ##===========< i=0; i========= * || SCR_CHMOV_TBL ^ SCR_DT_DATA_IN, * || offsetof (struct dsb, data[ i]), * ##========================================== */ 0 }/*-------------------------< DT_DATA_IN2 >-------------------*/,{ SCR_CALL, PADDR (datai_done), SCR_JUMP, PADDRH (no_data), }/*-------------------------< DT_DATA_OUT >--------------------*/,{ /* * Because the size depends on the * #define SYM_CONF_MAX_SG parameter, * it is filled in at runtime. * * ##===========< i=0; i========= * || SCR_CHMOV_TBL ^ SCR_DT_DATA_OUT, * || offsetof (struct dsb, data[ i]), * ##========================================== */ 0 }/*-------------------------< DT_DATA_OUT2 >-------------------*/,{ SCR_CALL, PADDR (datao_done), SCR_JUMP, PADDRH (no_data), #endif /* SYM_CONF_BROKEN_U3EN_SUPPORT */ }/*-------------------------< ZERO >------------------------*/,{ SCR_DATA_ZERO, }/*-------------------------< SCRATCH >---------------------*/,{ SCR_DATA_ZERO, }/*-------------------------< SCRATCH1 >--------------------*/,{ SCR_DATA_ZERO, }/*-------------------------< PM0_DATA_ADDR >---------------*/,{ SCR_DATA_ZERO, }/*-------------------------< PM1_DATA_ADDR >---------------*/,{ SCR_DATA_ZERO, }/*-------------------------< SAVED_DSA >-------------------*/,{ SCR_DATA_ZERO, }/*-------------------------< SAVED_DRS >-------------------*/,{ SCR_DATA_ZERO, }/*-------------------------< DONE_POS >--------------------*/,{ SCR_DATA_ZERO, }/*-------------------------< STARTPOS >--------------------*/,{ SCR_DATA_ZERO, }/*-------------------------< TARGTBL >---------------------*/,{ SCR_DATA_ZERO, }/*-------------------------< SNOOPTEST >-------------------*/,{ /* * Read the variable. */ SCR_LOAD_REL (scratcha, 4), offsetof(struct sym_hcb, cache), SCR_STORE_REL (temp, 4), offsetof(struct sym_hcb, cache), SCR_LOAD_REL (temp, 4), offsetof(struct sym_hcb, cache), }/*-------------------------< SNOOPEND >-------------------*/,{ /* * And stop. */ SCR_INT, 99, }/*--------------------------------------------------------*/ }; /* * Fill in #define dependent parts of the scripts */ static void sym_fill_scripts (script_p scr, scripth_p scrh) { int i; u32 *p; p = scr->data_in; for (i=0; idata_in + sizeof (scr->data_in)); p = scr->data_out; for (i=0; idata_out + sizeof (scr->data_out)); #ifdef SYM_CONF_BROKEN_U3EN_SUPPORT p = scrh->dt_data_in; for (i=0; idt_data_in + sizeof (scrh->dt_data_in)); p = scrh->dt_data_out; for (i=0; idt_data_out + sizeof (scrh->dt_data_out)); #endif } /* * Copy and bind a script. */ static void sym_bind_script (hcb_p np, u32 *src, u32 *dst, int len) { u32 opcode, new, old, tmp1, tmp2; u32 *start, *end; int relocs; int opchanged = 0; start = src; end = src + len/4; while (src < end) { opcode = *src++; *dst++ = cpu_to_scr(opcode); /* * If we forget to change the length * in scripts, a field will be * padded with 0. This is an illegal * command. */ if (opcode == 0) { printf ("%s: ERROR0 IN SCRIPT at %d.\n", sym_name(np), (int) (src-start-1)); MDELAY (10000); continue; }; /* * We use the bogus value 0xf00ff00f ;-) * to reserve data area in SCRIPTS. */ if (opcode == SCR_DATA_ZERO) { dst[-1] = 0; continue; } if (DEBUG_FLAGS & DEBUG_SCRIPT) printf ("%p: <%x>\n", (src-1), (unsigned)opcode); /* * We don't have to decode ALL commands */ switch (opcode >> 28) { case 0xf: /* * LOAD / STORE DSA relative, don't relocate. */ relocs = 0; break; case 0xe: /* * LOAD / STORE absolute. */ relocs = 1; break; case 0xc: /* * COPY has TWO arguments. */ relocs = 2; tmp1 = src[0]; tmp2 = src[1]; #ifdef RELOC_KVAR if ((tmp1 & RELOC_MASK) == RELOC_KVAR) tmp1 = 0; if ((tmp2 & RELOC_MASK) == RELOC_KVAR) tmp2 = 0; #endif if ((tmp1 ^ tmp2) & 3) { printf ("%s: ERROR1 IN SCRIPT at %d.\n", sym_name(np), (int) (src-start-1)); MDELAY (1000); } /* * If PREFETCH feature not enabled, remove * the NO FLUSH bit if present. */ if ((opcode & SCR_NO_FLUSH) && !(np->features & FE_PFEN)) { dst[-1] = cpu_to_scr(opcode & ~SCR_NO_FLUSH); ++opchanged; } break; case 0x0: /* * MOVE/CHMOV (absolute address) */ if (!(np->features & FE_WIDE)) dst[-1] = cpu_to_scr(opcode | OPC_MOVE); relocs = 1; break; case 0x1: /* * MOVE/CHMOV (table indirect) */ if (!(np->features & FE_WIDE)) dst[-1] = cpu_to_scr(opcode | OPC_MOVE); relocs = 0; break; case 0x8: /* * JUMP / CALL * dont't relocate if relative :-) */ if (opcode & 0x00800000) relocs = 0; else if ((opcode & 0xf8400000) == 0x80400000)/*JUMP64*/ relocs = 2; else relocs = 1; break; case 0x4: case 0x5: case 0x6: case 0x7: relocs = 1; break; default: relocs = 0; break; }; if (!relocs) { *dst++ = cpu_to_scr(*src++); continue; } while (relocs--) { old = *src++; switch (old & RELOC_MASK) { case RELOC_REGISTER: new = (old & ~RELOC_MASK) + np->mmio_ba; break; case RELOC_LABEL: new = (old & ~RELOC_MASK) + np->script_ba; break; case RELOC_LABELH: new = (old & ~RELOC_MASK) + np->scripth_ba; break; case RELOC_SOFTC: new = (old & ~RELOC_MASK) + vtobus(np); break; #ifdef RELOC_KVAR case RELOC_KVAR: if (((old & ~RELOC_MASK) < SCRIPT_KVAR_FIRST) || ((old & ~RELOC_MASK) > SCRIPT_KVAR_LAST)) panic("KVAR out of range"); new = vtobus(script_kvars[old & ~RELOC_MASK]); #endif break; case 0: /* Don't relocate a 0 address. */ if (old == 0) { new = old; break; } /* fall through */ default: new = 0; /* For 'cc' not to complain */ panic("sym_bind_script: " "weird relocation %x\n", old); break; } *dst++ = cpu_to_scr(new); } }; } /* * Print something which allows to retrieve the controler type, * unit, target, lun concerned by a kernel message. */ static void PRINT_TARGET (hcb_p np, int target) { printf ("%s:%d:", sym_name(np), target); } static void PRINT_LUN(hcb_p np, int target, int lun) { printf ("%s:%d:%d:", sym_name(np), target, lun); } static void PRINT_ADDR (ccb_p cp) { if (cp && cp->cam_ccb) xpt_print_path(cp->cam_ccb->ccb_h.path); } /* * Take into account this ccb in the freeze count. * The flag that tells user about avoids doing that * more than once for a ccb. */ static void sym_freeze_cam_ccb(union ccb *ccb) { if (!(ccb->ccb_h.flags & CAM_DEV_QFRZDIS)) { if (!(ccb->ccb_h.status & CAM_DEV_QFRZN)) { ccb->ccb_h.status |= CAM_DEV_QFRZN; xpt_freeze_devq(ccb->ccb_h.path, 1); } } } /* * Set the status field of a CAM CCB. */ static __inline void sym_set_cam_status(union ccb *ccb, cam_status status) { ccb->ccb_h.status &= ~CAM_STATUS_MASK; ccb->ccb_h.status |= status; } /* * Get the status field of a CAM CCB. */ static __inline int sym_get_cam_status(union ccb *ccb) { return ccb->ccb_h.status & CAM_STATUS_MASK; } /* * Enqueue a CAM CCB. */ static void sym_enqueue_cam_ccb(hcb_p np, union ccb *ccb) { assert(!(ccb->ccb_h.status & CAM_SIM_QUEUED)); ccb->ccb_h.status = CAM_REQ_INPROG; ccb->ccb_h.timeout_ch = timeout(sym_timeout, (caddr_t) ccb, ccb->ccb_h.timeout*hz/1000); ccb->ccb_h.status |= CAM_SIM_QUEUED; ccb->ccb_h.sym_hcb_ptr = np; sym_insque_tail(sym_qptr(&ccb->ccb_h.sim_links), &np->cam_ccbq); } /* * Complete a pending CAM CCB. */ static void sym_xpt_done(hcb_p np, union ccb *ccb) { if (ccb->ccb_h.status & CAM_SIM_QUEUED) { untimeout(sym_timeout, (caddr_t) ccb, ccb->ccb_h.timeout_ch); sym_remque(sym_qptr(&ccb->ccb_h.sim_links)); ccb->ccb_h.status &= ~CAM_SIM_QUEUED; ccb->ccb_h.sym_hcb_ptr = 0; } if (ccb->ccb_h.flags & CAM_DEV_QFREEZE) sym_freeze_cam_ccb(ccb); xpt_done(ccb); } static void sym_xpt_done2(hcb_p np, union ccb *ccb, int cam_status) { sym_set_cam_status(ccb, cam_status); sym_xpt_done(np, ccb); } /* * SYMBIOS chip clock divisor table. * * Divisors are multiplied by 10,000,000 in order to make * calculations more simple. */ #define _5M 5000000 static u_long div_10M[] = {2*_5M, 3*_5M, 4*_5M, 6*_5M, 8*_5M, 12*_5M, 16*_5M}; /* * SYMBIOS chips allow burst lengths of 2, 4, 8, 16, 32, 64, * 128 transfers. All chips support at least 16 transfers * bursts. The 825A, 875 and 895 chips support bursts of up * to 128 transfers and the 895A and 896 support bursts of up * to 64 transfers. All other chips support up to 16 * transfers bursts. * * For PCI 32 bit data transfers each transfer is a DWORD. * It is a QUADWORD (8 bytes) for PCI 64 bit data transfers. * Only the 896 is able to perform 64 bit data transfers. * * We use log base 2 (burst length) as internal code, with * value 0 meaning "burst disabled". */ /* * Burst length from burst code. */ #define burst_length(bc) (!(bc))? 0 : 1 << (bc) /* * Burst code from io register bits. */ #define burst_code(dmode, ctest4, ctest5) \ (ctest4) & 0x80? 0 : (((dmode) & 0xc0) >> 6) + ((ctest5) & 0x04) + 1 /* * Set initial io register bits from burst code. */ static __inline void sym_init_burst(hcb_p np, u_char bc) { np->rv_ctest4 &= ~0x80; np->rv_dmode &= ~(0x3 << 6); np->rv_ctest5 &= ~0x4; if (!bc) { np->rv_ctest4 |= 0x80; } else { --bc; np->rv_dmode |= ((bc & 0x3) << 6); np->rv_ctest5 |= (bc & 0x4); } } /* * Print out the list of targets that have some flag disabled by user. */ static void sym_print_targets_flag(hcb_p np, int mask, char *msg) { int cnt; int i; for (cnt = 0, i = 0 ; i < SYM_CONF_MAX_TARGET ; i++) { if (i == np->myaddr) continue; if (np->target[i].usrflags & mask) { if (!cnt++) printf("%s: %s disabled for targets", sym_name(np), msg); printf(" %d", i); } } if (cnt) printf(".\n"); } /* * Save initial settings of some IO registers. * Assumed to have been set by BIOS. * We cannot reset the chip prior to reading the * IO registers, since informations will be lost. * Since the SCRIPTS processor may be running, this * is not safe on paper, but it seems to work quite * well. :) */ static void sym_save_initial_setting (hcb_p np) { np->sv_scntl0 = INB(nc_scntl0) & 0x0a; np->sv_scntl3 = INB(nc_scntl3) & 0x07; np->sv_dmode = INB(nc_dmode) & 0xce; np->sv_dcntl = INB(nc_dcntl) & 0xa8; np->sv_ctest3 = INB(nc_ctest3) & 0x01; np->sv_ctest4 = INB(nc_ctest4) & 0x80; np->sv_gpcntl = INB(nc_gpcntl); np->sv_stest1 = INB(nc_stest1); np->sv_stest2 = INB(nc_stest2) & 0x20; np->sv_stest4 = INB(nc_stest4); if (np->features & FE_C10) { /* Always large DMA fifo + ultra3 */ np->sv_scntl4 = INB(nc_scntl4); np->sv_ctest5 = INB(nc_ctest5) & 0x04; } else np->sv_ctest5 = INB(nc_ctest5) & 0x24; } /* * Prepare io register values used by sym_init() according * to selected and supported features. */ static int sym_prepare_setting(hcb_p np, struct sym_nvram *nvram) { u_char burst_max; u_long period; int i; /* * Wide ? */ np->maxwide = (np->features & FE_WIDE)? 1 : 0; /* * Get the frequency of the chip's clock. */ if (np->features & FE_QUAD) np->multiplier = 4; else if (np->features & FE_DBLR) np->multiplier = 2; else np->multiplier = 1; np->clock_khz = (np->features & FE_CLK80)? 80000 : 40000; np->clock_khz *= np->multiplier; if (np->clock_khz != 40000) sym_getclock(np, np->multiplier); /* * Divisor to be used for async (timer pre-scaler). */ i = np->clock_divn - 1; while (--i >= 0) { if (10ul * SYM_CONF_MIN_ASYNC * np->clock_khz > div_10M[i]) { ++i; break; } } np->rv_scntl3 = i+1; /* * The C1010 uses hardwired divisors for async. * So, we just throw away, the async. divisor.:-) */ if (np->features & FE_C10) np->rv_scntl3 = 0; /* * Minimum synchronous period factor supported by the chip. * Btw, 'period' is in tenths of nanoseconds. */ period = (4 * div_10M[0] + np->clock_khz - 1) / np->clock_khz; if (period <= 250) np->minsync = 10; else if (period <= 303) np->minsync = 11; else if (period <= 500) np->minsync = 12; else np->minsync = (period + 40 - 1) / 40; /* * Check against chip SCSI standard support (SCSI-2,ULTRA,ULTRA2). */ if (np->minsync < 25 && !(np->features & (FE_ULTRA|FE_ULTRA2|FE_ULTRA3))) np->minsync = 25; else if (np->minsync < 12 && !(np->features & (FE_ULTRA2|FE_ULTRA3))) np->minsync = 12; /* * Maximum synchronous period factor supported by the chip. */ period = (11 * div_10M[np->clock_divn - 1]) / (4 * np->clock_khz); np->maxsync = period > 2540 ? 254 : period / 10; /* * If chip is a C1010, guess the sync limits in DT mode. */ if ((np->features & (FE_C10|FE_ULTRA3)) == (FE_C10|FE_ULTRA3)) { if (np->clock_khz == 160000) { np->minsync_dt = 9; np->maxsync_dt = 50; } } /* * 64 bit (53C895A or 53C896) ? */ if (np->features & FE_64BIT) #if BITS_PER_LONG > 32 np->rv_ccntl1 |= (XTIMOD | EXTIBMV); #else np->rv_ccntl1 |= (DDAC); #endif /* * Phase mismatch handled by SCRIPTS (895A/896/1010) ? */ if (np->features & FE_NOPM) np->rv_ccntl0 |= (ENPMJ); /* * C1010 Errata. * In dual channel mode, contention occurs if internal cycles * are used. Disable internal cycles. */ if (np->device_id == PCI_ID_LSI53C1010 && np->revision_id < 0x45) np->rv_ccntl0 |= DILS; /* * Select burst length (dwords) */ burst_max = SYM_SETUP_BURST_ORDER; if (burst_max == 255) burst_max = burst_code(np->sv_dmode, np->sv_ctest4, np->sv_ctest5); if (burst_max > 7) burst_max = 7; if (burst_max > np->maxburst) burst_max = np->maxburst; /* * DEL 352 - 53C810 Rev x11 - Part Number 609-0392140 - ITEM 2. * This chip and the 860 Rev 1 may wrongly use PCI cache line * based transactions on LOAD/STORE instructions. So we have * to prevent these chips from using such PCI transactions in * this driver. The generic ncr driver that does not use * LOAD/STORE instructions does not need this work-around. */ if ((np->device_id == PCI_ID_SYM53C810 && np->revision_id >= 0x10 && np->revision_id <= 0x11) || (np->device_id == PCI_ID_SYM53C860 && np->revision_id <= 0x1)) np->features &= ~(FE_WRIE|FE_ERL|FE_ERMP); /* * Select all supported special features. * If we are using on-board RAM for scripts, prefetch (PFEN) * does not help, but burst op fetch (BOF) does. * Disabling PFEN makes sure BOF will be used. */ if (np->features & FE_ERL) np->rv_dmode |= ERL; /* Enable Read Line */ if (np->features & FE_BOF) np->rv_dmode |= BOF; /* Burst Opcode Fetch */ if (np->features & FE_ERMP) np->rv_dmode |= ERMP; /* Enable Read Multiple */ #if 1 if ((np->features & FE_PFEN) && !np->ram_ba) #else if (np->features & FE_PFEN) #endif np->rv_dcntl |= PFEN; /* Prefetch Enable */ if (np->features & FE_CLSE) np->rv_dcntl |= CLSE; /* Cache Line Size Enable */ if (np->features & FE_WRIE) np->rv_ctest3 |= WRIE; /* Write and Invalidate */ if (np->features & FE_DFS) np->rv_ctest5 |= DFS; /* Dma Fifo Size */ /* * Select some other */ if (SYM_SETUP_PCI_PARITY) np->rv_ctest4 |= MPEE; /* Master parity checking */ if (SYM_SETUP_SCSI_PARITY) np->rv_scntl0 |= 0x0a; /* full arb., ena parity, par->ATN */ /* * Get parity checking, host ID and verbose mode from NVRAM */ np->myaddr = 255; sym_nvram_setup_host (np, nvram); /* * Get SCSI addr of host adapter (set by bios?). */ if (np->myaddr == 255) { np->myaddr = INB(nc_scid) & 0x07; if (!np->myaddr) np->myaddr = SYM_SETUP_HOST_ID; } /* * Prepare initial io register bits for burst length */ sym_init_burst(np, burst_max); /* * Set SCSI BUS mode. * - LVD capable chips (895/895A/896/1010) report the * current BUS mode through the STEST4 IO register. * - For previous generation chips (825/825A/875), * user has to tell us how to check against HVD, * since a 100% safe algorithm is not possible. */ np->scsi_mode = SMODE_SE; if (np->features & (FE_ULTRA2|FE_ULTRA3)) np->scsi_mode = (np->sv_stest4 & SMODE); else if (np->features & FE_DIFF) { if (SYM_SETUP_SCSI_DIFF == 1) { if (np->sv_scntl3) { if (np->sv_stest2 & 0x20) np->scsi_mode = SMODE_HVD; } else if (nvram->type == SYM_SYMBIOS_NVRAM) { if (INB(nc_gpreg) & 0x08) np->scsi_mode = SMODE_HVD; } } else if (SYM_SETUP_SCSI_DIFF == 2) np->scsi_mode = SMODE_HVD; } if (np->scsi_mode == SMODE_HVD) np->rv_stest2 |= 0x20; /* * Set LED support from SCRIPTS. * Ignore this feature for boards known to use a * specific GPIO wiring and for the 895A or 896 * that drive the LED directly. */ if ((SYM_SETUP_SCSI_LED || nvram->type == SYM_SYMBIOS_NVRAM) && !(np->features & FE_LEDC) && !(np->sv_gpcntl & 0x01)) np->features |= FE_LED0; /* * Set irq mode. */ switch(SYM_SETUP_IRQ_MODE & 3) { case 2: np->rv_dcntl |= IRQM; break; case 1: np->rv_dcntl |= (np->sv_dcntl & IRQM); break; default: break; } /* * Configure targets according to driver setup. * If NVRAM present get targets setup from NVRAM. */ for (i = 0 ; i < SYM_CONF_MAX_TARGET ; i++) { tcb_p tp = &np->target[i]; tp->tinfo.user.period = np->minsync; tp->tinfo.user.offset = np->maxoffs; tp->tinfo.user.width = np->maxwide ? BUS_16_BIT : BUS_8_BIT; tp->usrflags |= (SYM_DISC_ENABLED | SYM_TAGS_ENABLED); tp->usrtags = SYM_SETUP_MAX_TAG; sym_nvram_setup_target (np, i, nvram); if (!tp->usrtags) tp->usrflags &= ~SYM_TAGS_ENABLED; } /* * Let user know about the settings. */ i = nvram->type; printf("%s: %s NVRAM, ID %d, Fast-%d, %s%s\n", sym_name(np), i == SYM_SYMBIOS_NVRAM ? "Symbios" : (i == SYM_TEKRAM_NVRAM ? "Tekram" : "No"), np->myaddr, np->minsync < 10 ? 80 : (np->minsync < 12 ? 40 : (np->minsync < 25 ? 20 : 10)), (np->rv_scntl0 & 0xa) ? "parity checking" : "NO parity", np->scsi_mode == SMODE_HVD ? ", HVD" : ""); /* * Tell him more on demand. */ if (sym_verbose) printf("%s: %s IRQ line driver%s\n", sym_name(np), np->rv_dcntl & IRQM ? "totem pole" : "open drain", np->ram_ba ? ", using on-chip SRAM" : ""); /* * And still more. */ if (sym_verbose > 1) { printf ("%s: initial SCNTL3/DMODE/DCNTL/CTEST3/4/5 = " "(hex) %02x/%02x/%02x/%02x/%02x/%02x\n", sym_name(np), np->sv_scntl3, np->sv_dmode, np->sv_dcntl, np->sv_ctest3, np->sv_ctest4, np->sv_ctest5); printf ("%s: final SCNTL3/DMODE/DCNTL/CTEST3/4/5 = " "(hex) %02x/%02x/%02x/%02x/%02x/%02x\n", sym_name(np), np->rv_scntl3, np->rv_dmode, np->rv_dcntl, np->rv_ctest3, np->rv_ctest4, np->rv_ctest5); } /* * Let user be aware of targets that have some disable flags set. */ sym_print_targets_flag(np, SYM_SCAN_BOOT_DISABLED, "SCAN AT BOOT"); if (sym_verbose) sym_print_targets_flag(np, SYM_SCAN_LUNS_DISABLED, "SCAN FOR LUNS"); return 0; } /* * Prepare the next negotiation message if needed. * * Fill in the part of message buffer that contains the * negotiation and the nego_status field of the CCB. * Returns the size of the message in bytes. */ static int sym_prepare_nego(hcb_p np, ccb_p cp, int nego, u_char *msgptr) { tcb_p tp = &np->target[cp->target]; int msglen = 0; #if 1 /* * For now, only use PPR with DT option if period factor = 9. */ if (tp->tinfo.goal.period == 9) { tp->tinfo.goal.width = BUS_16_BIT; tp->tinfo.goal.options |= PPR_OPT_DT; } else tp->tinfo.goal.options &= ~PPR_OPT_DT; #endif /* * Early C1010 chips need a work-around for DT * data transfer to work. */ #ifndef SYM_CONF_BROKEN_U3EN_SUPPORT if (!(np->features & FE_U3EN)) tp->tinfo.goal.options = 0; #endif /* * negotiate using PPR ? */ if (tp->tinfo.goal.options & PPR_OPT_MASK) nego = NS_PPR; /* * negotiate wide transfers ? */ else if (tp->tinfo.current.width != tp->tinfo.goal.width) nego = NS_WIDE; /* * negotiate synchronous transfers? */ else if (tp->tinfo.current.period != tp->tinfo.goal.period || tp->tinfo.current.offset != tp->tinfo.goal.offset) nego = NS_SYNC; switch (nego) { case NS_SYNC: msgptr[msglen++] = M_EXTENDED; msgptr[msglen++] = 3; msgptr[msglen++] = M_X_SYNC_REQ; msgptr[msglen++] = tp->tinfo.goal.period; msgptr[msglen++] = tp->tinfo.goal.offset; break; case NS_WIDE: msgptr[msglen++] = M_EXTENDED; msgptr[msglen++] = 2; msgptr[msglen++] = M_X_WIDE_REQ; msgptr[msglen++] = tp->tinfo.goal.width; break; case NS_PPR: msgptr[msglen++] = M_EXTENDED; msgptr[msglen++] = 6; msgptr[msglen++] = M_X_PPR_REQ; msgptr[msglen++] = tp->tinfo.goal.period; msgptr[msglen++] = 0; msgptr[msglen++] = tp->tinfo.goal.offset; msgptr[msglen++] = tp->tinfo.goal.width; msgptr[msglen++] = tp->tinfo.goal.options & PPR_OPT_DT; break; }; cp->nego_status = nego; if (nego) { tp->nego_cp = cp; /* Keep track a nego will be performed */ if (DEBUG_FLAGS & DEBUG_NEGO) { sym_print_msg(cp, nego == NS_SYNC ? "sync msgout" : nego == NS_WIDE ? "wide msgout" : "ppr msgout", msgptr); }; }; return msglen; } /* * Insert a job into the start queue. */ static void sym_put_start_queue(hcb_p np, ccb_p cp) { u_short qidx; #ifdef SYM_CONF_IARB_SUPPORT /* * If the previously queued CCB is not yet done, * set the IARB hint. The SCRIPTS will go with IARB * for this job when starting the previous one. * We leave devices a chance to win arbitration by * not using more than 'iarb_max' consecutive * immediate arbitrations. */ if (np->last_cp && np->iarb_count < np->iarb_max) { np->last_cp->host_flags |= HF_HINT_IARB; ++np->iarb_count; } else np->iarb_count = 0; np->last_cp = cp; #endif /* * Insert first the idle task and then our job. * The MB should ensure proper ordering. */ qidx = np->squeueput + 2; if (qidx >= MAX_QUEUE*2) qidx = 0; np->squeue [qidx] = cpu_to_scr(np->idletask_ba); MEMORY_BARRIER(); np->squeue [np->squeueput] = cpu_to_scr(cp->ccb_ba); np->squeueput = qidx; if (DEBUG_FLAGS & DEBUG_QUEUE) printf ("%s: queuepos=%d.\n", sym_name (np), np->squeueput); /* * Script processor may be waiting for reselect. * Wake it up. */ MEMORY_BARRIER(); OUTB (nc_istat, SIGP|np->istat_sem); } /* * Soft reset the chip. * * Raising SRST when the chip is running may cause * problems on dual function chips (see below). */ static void sym_chip_reset (hcb_p np) { OUTB (nc_istat, SRST); UDELAY (10); OUTB (nc_istat, 0); } /* * Soft reset the chip. * * Some 896 and 876 chip revisions may hang-up if we set * the SRST (soft reset) bit at the wrong time when SCRIPTS * are running. * So, we need to abort the current operation prior to * soft resetting the chip. */ static void sym_soft_reset (hcb_p np) { u_char istat; int i; OUTB (nc_istat, CABRT); for (i = 1000000 ; i ; --i) { istat = INB (nc_istat); if (istat & SIP) { INW (nc_sist); continue; } if (istat & DIP) { OUTB (nc_istat, 0); INB (nc_dstat); break; } } if (!i) printf("%s: unable to abort current chip operation.\n", sym_name(np)); sym_chip_reset (np); } /* * Start reset process. * * The interrupt handler will reinitialize the chip. */ static void sym_start_reset(hcb_p np) { (void) sym_reset_scsi_bus(np, 1); } static int sym_reset_scsi_bus(hcb_p np, int enab_int) { u32 term; int retv = 0; sym_soft_reset(np); /* Soft reset the chip */ UDELAY (2000); /* The 895/6 need time for the bus mode to settle */ if (enab_int) OUTW (nc_sien, RST); /* * Enable Tolerant, reset IRQD if present and * properly set IRQ mode, prior to resetting the bus. */ OUTB (nc_stest3, TE); OUTB (nc_dcntl, (np->rv_dcntl & IRQM)); OUTB (nc_scntl1, CRST); UDELAY (200); if (!SYM_SETUP_SCSI_BUS_CHECK) goto out; /* * Check for no terminators or SCSI bus shorts to ground. * Read SCSI data bus, data parity bits and control signals. * We are expecting RESET to be TRUE and other signals to be * FALSE. */ term = INB(nc_sstat0); /* rst, sdp0 */ term = ((term & 2) << 7) + ((term & 1) << 16); term |= ((INB(nc_sstat2) & 0x01) << 25) | /* sdp1 */ (INW(nc_sbdl) << 9) | /* d15-0 */ INB(nc_sbcl); /* req, ack, bsy, sel, atn, msg, cd, io */ if (!(np->features & FE_WIDE)) term &= 0x3ffff; if (term != (2<<7)) { printf("%s: suspicious SCSI data while resetting the BUS.\n", sym_name(np)); printf("%s: %sdp0,d7-0,rst,req,ack,bsy,sel,atn,msg,c/d,i/o = " "0x%lx, expecting 0x%lx\n", sym_name(np), (np->features & FE_WIDE) ? "dp1,d15-8," : "", (u_long)term, (u_long)(2<<7)); if (SYM_SETUP_SCSI_BUS_CHECK == 1) retv = 1; } out: OUTB (nc_scntl1, 0); /* MDELAY(100); */ return retv; } /* * The chip may have completed jobs. Look at the DONE QUEUE. */ static int sym_wakeup_done (hcb_p np) { ccb_p cp; int i, n; u_long dsa; n = 0; i = np->dqueueget; while (1) { dsa = scr_to_cpu(np->dqueue[i]); if (!dsa) break; np->dqueue[i] = 0; if ((i = i+2) >= MAX_QUEUE*2) i = 0; cp = sym_ccb_from_dsa(np, dsa); if (cp) { sym_complete_ok (np, cp); ++n; } else printf ("%s: bad DSA (%lx) in done queue.\n", sym_name(np), dsa); } np->dqueueget = i; return n; } /* * Complete all active CCBs with error. * Used on CHIP/SCSI RESET. */ static void sym_flush_busy_queue (hcb_p np, int cam_status) { /* * Move all active CCBs to the COMP queue * and flush this queue. */ sym_que_splice(&np->busy_ccbq, &np->comp_ccbq); sym_que_init(&np->busy_ccbq); sym_flush_comp_queue(np, cam_status); } /* * Start chip. */ static void sym_init (hcb_p np, int reset, char *msg) { int i; u_long phys; /* * Reset chip if asked, otherwise just clear fifos. */ if (reset) sym_soft_reset(np); else { OUTB (nc_stest3, TE|CSF); OUTONB (nc_ctest3, CLF); } /* * Message. */ if (msg) printf ("%s: restart (%s).\n", sym_name (np), msg); /* * Clear Start Queue */ phys = vtobus(np->squeue); for (i = 0; i < MAX_QUEUE*2; i += 2) { np->squeue[i] = cpu_to_scr(np->idletask_ba); np->squeue[i+1] = cpu_to_scr(phys + (i+2)*4); } np->squeue[MAX_QUEUE*2-1] = cpu_to_scr(phys); /* * Start at first entry. */ np->squeueput = 0; np->scripth0->startpos[0] = cpu_to_scr(phys); /* * Clear Done Queue */ phys = vtobus(np->dqueue); for (i = 0; i < MAX_QUEUE*2; i += 2) { np->dqueue[i] = 0; np->dqueue[i+1] = cpu_to_scr(phys + (i+2)*4); } np->dqueue[MAX_QUEUE*2-1] = cpu_to_scr(phys); /* * Start at first entry. */ np->scripth0->done_pos[0] = cpu_to_scr(phys); np->dqueueget = 0; /* * Wakeup all pending jobs. */ sym_flush_busy_queue(np, CAM_SCSI_BUS_RESET); /* * Init chip. */ OUTB (nc_istat, 0x00 ); /* Remove Reset, abort */ UDELAY (2000); /* The 895 needs time for the bus mode to settle */ OUTB (nc_scntl0, np->rv_scntl0 | 0xc0); /* full arb., ena parity, par->ATN */ OUTB (nc_scntl1, 0x00); /* odd parity, and remove CRST!! */ sym_selectclock(np, np->rv_scntl3); /* Select SCSI clock */ OUTB (nc_scid , RRE|np->myaddr); /* Adapter SCSI address */ OUTW (nc_respid, 1ul<myaddr); /* Id to respond to */ OUTB (nc_istat , SIGP ); /* Signal Process */ OUTB (nc_dmode , np->rv_dmode); /* Burst length, dma mode */ OUTB (nc_ctest5, np->rv_ctest5); /* Large fifo + large burst */ OUTB (nc_dcntl , NOCOM|np->rv_dcntl); /* Protect SFBR */ OUTB (nc_ctest3, np->rv_ctest3); /* Write and invalidate */ OUTB (nc_ctest4, np->rv_ctest4); /* Master parity checking */ /* Extended Sreq/Sack filtering not supported on the C10 */ if (np->features & FE_C10) OUTB (nc_stest2, np->rv_stest2); else OUTB (nc_stest2, EXT|np->rv_stest2); OUTB (nc_stest3, TE); /* TolerANT enable */ OUTB (nc_stime0, 0x0c); /* HTH disabled STO 0.25 sec */ /* * C10101 Errata. * Errant SGE's when in narrow. Write bits 4 & 5 of * STEST1 register to disable SGE. We probably should do * that from SCRIPTS for each selection/reselection, but * I just don't want. :) */ if (np->device_id == PCI_ID_LSI53C1010 && np->revision_id < 0x45) OUTB (nc_stest1, INB(nc_stest1) | 0x30); /* * DEL 441 - 53C876 Rev 5 - Part Number 609-0392787/2788 - ITEM 2. * Disable overlapped arbitration for some dual function devices, * regardless revision id (kind of post-chip-design feature. ;-)) */ if (np->device_id == PCI_ID_SYM53C875) OUTB (nc_ctest0, (1<<5)); else if (np->device_id == PCI_ID_SYM53C896) np->rv_ccntl0 |= DPR; /* * If 64 bit (895A/896/1010) write CCNTL1 to enable 40 bit * address table indirect addressing for MOVE. * Also write CCNTL0 if 64 bit chip, since this register seems * to only be used by 64 bit cores. */ if (np->features & FE_64BIT) { OUTB (nc_ccntl0, np->rv_ccntl0); OUTB (nc_ccntl1, np->rv_ccntl1); } /* * If phase mismatch handled by scripts (895A/896/1010), * set PM jump addresses. */ if (np->features & FE_NOPM) { if (sym_verbose) printf("%s: handling phase mismatch from SCRIPTS.\n", sym_name(np)); OUTL (nc_pmjad1, SCRIPTH_BA (np, pm_handle)); OUTL (nc_pmjad2, SCRIPTH_BA (np, pm_handle)); } /* * Enable GPIO0 pin for writing if LED support from SCRIPTS. * Also set GPIO5 and clear GPIO6 if hardware LED control. */ if (np->features & FE_LED0) OUTB(nc_gpcntl, INB(nc_gpcntl) & ~0x01); else if (np->features & FE_LEDC) OUTB(nc_gpcntl, (INB(nc_gpcntl) & ~0x41) | 0x20); /* * enable ints */ OUTW (nc_sien , STO|HTH|MA|SGE|UDC|RST|PAR); OUTB (nc_dien , MDPE|BF|SSI|SIR|IID); /* * For 895/6 enable SBMC interrupt and save current SCSI bus mode. */ if (np->features & (FE_ULTRA2|FE_ULTRA3)) { OUTONW (nc_sien, SBMC); np->scsi_mode = INB (nc_stest4) & SMODE; } /* * Fill in target structure. * Reinitialize usrsync. * Reinitialize usrwide. * Prepare sync negotiation according to actual SCSI bus mode. */ for (i=0;itarget[i]; tp->to_reset = 0; tp->sval = 0; tp->wval = np->rv_scntl3; tp->uval = 0; tp->tinfo.current.period = 0; tp->tinfo.current.offset = 0; tp->tinfo.current.width = BUS_8_BIT; tp->tinfo.current.options = 0; } /* * Download SCSI SCRIPTS to on-chip RAM if present, * and start script processor. */ if (np->ram_ba) { if (sym_verbose) printf ("%s: Downloading SCSI SCRIPTS.\n", sym_name(np)); if (np->ram_ws == 8192) { memcpy_to_pci(np->ram_va + 4096, np->scripth0, sizeof(struct sym_scrh)); OUTL (nc_mmws, np->scr_ram_seg); OUTL (nc_mmrs, np->scr_ram_seg); OUTL (nc_sfs, np->scr_ram_seg); phys = SCRIPTH_BA (np, start64); } else phys = SCRIPT_BA (np, init); memcpy_to_pci(np->ram_va,np->script0,sizeof(struct sym_scr)); } else phys = SCRIPT_BA (np, init); np->istat_sem = 0; MEMORY_BARRIER(); OUTL (nc_dsa, vtobus(np)); OUTL (nc_dsp, phys); /* * Notify the XPT of the event. */ xpt_async(AC_BUS_RESET, np->path, NULL); } /* * Get clock factor and sync divisor for a given * synchronous factor period. */ static int sym_getsync(hcb_p np, u_char dt, u_char sfac, u_char *divp, u_char *fakp) { u32 clk = np->clock_khz; /* SCSI clock frequency in kHz */ int div = np->clock_divn; /* Number of divisors supported */ u32 fak; /* Sync factor in sxfer */ u32 per; /* Period in tenths of ns */ u32 kpc; /* (per * clk) */ int ret; /* * Compute the synchronous period in tenths of nano-seconds */ if (dt && sfac <= 9) per = 125; else if (sfac <= 10) per = 250; else if (sfac == 11) per = 303; else if (sfac == 12) per = 500; else per = 40 * sfac; ret = per; kpc = per * clk; if (dt) kpc <<= 1; /* * For earliest C10, the extra clocks does not apply * to CRC cycles, so it may be safe not to use them. * Note that this limits the lowest sync data transfer * to 5 Mega-transfers per second and may result in * using higher clock divisors. */ #if 1 if ((np->features & (FE_C10|FE_U3EN)) == FE_C10) { /* * Look for the lowest clock divisor that allows an * output speed not faster than the period. */ while (div > 0) { --div; if (kpc > (div_10M[div] << 2)) { ++div; break; } } fak = 0; /* No extra clocks */ if (div == np->clock_divn) { /* Are we too fast ? */ ret = -1; } *divp = div; *fakp = fak; return ret; } #endif /* * Look for the greatest clock divisor that allows an * input speed faster than the period. */ while (div-- > 0) if (kpc >= (div_10M[div] << 2)) break; /* * Calculate the lowest clock factor that allows an output * speed not faster than the period, and the max output speed. * If fak >= 1 we will set both XCLKH_ST and XCLKH_DT. * If fak >= 2 we will also set XCLKS_ST and XCLKS_DT. */ if (dt) { fak = (kpc - 1) / (div_10M[div] << 1) + 1 - 2; /* ret = ((2+fak)*div_10M[div])/np->clock_khz; */ } else { fak = (kpc - 1) / div_10M[div] + 1 - 4; /* ret = ((4+fak)*div_10M[div])/np->clock_khz; */ } /* * Check against our hardware limits, or bugs :). */ if (fak < 0) {fak = 0; ret = -1;} if (fak > 2) {fak = 2; ret = -1;} /* * Compute and return sync parameters. */ *divp = div; *fakp = fak; return ret; } /* * We received a WDTR. * Let everything be aware of the changes. */ static void sym_setwide(hcb_p np, ccb_p cp, u_char wide) { struct ccb_trans_settings neg; union ccb *ccb = cp->cam_ccb; tcb_p tp = &np->target[cp->target]; sym_settrans(np, cp, 0, 0, 0, wide, 0, 0); /* * Tell the SCSI layer about the new transfer parameters. */ tp->tinfo.goal.width = tp->tinfo.current.width = wide; tp->tinfo.current.offset = 0; tp->tinfo.current.period = 0; tp->tinfo.current.options = 0; neg.bus_width = wide ? BUS_16_BIT : BUS_8_BIT; neg.sync_period = tp->tinfo.current.period; neg.sync_offset = tp->tinfo.current.offset; neg.valid = CCB_TRANS_BUS_WIDTH_VALID | CCB_TRANS_SYNC_RATE_VALID | CCB_TRANS_SYNC_OFFSET_VALID; xpt_setup_ccb(&neg.ccb_h, ccb->ccb_h.path, /*priority*/1); xpt_async(AC_TRANSFER_NEG, ccb->ccb_h.path, &neg); } /* * We received a SDTR. * Let everything be aware of the changes. */ static void sym_setsync(hcb_p np, ccb_p cp, u_char ofs, u_char per, u_char div, u_char fak) { struct ccb_trans_settings neg; union ccb *ccb = cp->cam_ccb; tcb_p tp = &np->target[cp->target]; u_char wide = (cp->phys.select.sel_scntl3 & EWS) ? 1 : 0; sym_settrans(np, cp, 0, ofs, per, wide, div, fak); /* * Tell the SCSI layer about the new transfer parameters. */ tp->tinfo.goal.period = tp->tinfo.current.period = per; tp->tinfo.goal.offset = tp->tinfo.current.offset = ofs; tp->tinfo.goal.options = tp->tinfo.current.options = 0; neg.sync_period = tp->tinfo.current.period; neg.sync_offset = tp->tinfo.current.offset; neg.valid = CCB_TRANS_SYNC_RATE_VALID | CCB_TRANS_SYNC_OFFSET_VALID; xpt_setup_ccb(&neg.ccb_h, ccb->ccb_h.path, /*priority*/1); xpt_async(AC_TRANSFER_NEG, ccb->ccb_h.path, &neg); } /* * We received a PPR. * Let everything be aware of the changes. */ static void sym_setpprot(hcb_p np, ccb_p cp, u_char dt, u_char ofs, u_char per, u_char wide, u_char div, u_char fak) { struct ccb_trans_settings neg; union ccb *ccb = cp->cam_ccb; tcb_p tp = &np->target[cp->target]; sym_settrans(np, cp, dt, ofs, per, wide, div, fak); /* * Tell the SCSI layer about the new transfer parameters. */ tp->tinfo.goal.width = tp->tinfo.current.width = wide; tp->tinfo.goal.period = tp->tinfo.current.period = per; tp->tinfo.goal.offset = tp->tinfo.current.offset = ofs; tp->tinfo.goal.options = tp->tinfo.current.options = dt; neg.sync_period = tp->tinfo.current.period; neg.sync_offset = tp->tinfo.current.offset; neg.bus_width = wide ? BUS_16_BIT : BUS_8_BIT; neg.valid = CCB_TRANS_BUS_WIDTH_VALID | CCB_TRANS_SYNC_RATE_VALID | CCB_TRANS_SYNC_OFFSET_VALID; xpt_setup_ccb(&neg.ccb_h, ccb->ccb_h.path, /*priority*/1); xpt_async(AC_TRANSFER_NEG, ccb->ccb_h.path, &neg); } #ifdef SYM_CONF_BROKEN_U3EN_SUPPORT /* * Patch a script address if it points to a data script to * the same position within another data script. * Accept up to endp + 8, due to the SCR_CALL * after end data script that moves to goalp. */ static u32 sym_chgp(u32 scrp, u32 old_endp, u32 new_endp) { scrp = scr_to_cpu(scrp); if (old_endp != new_endp && old_endp + 8 - scrp <= SYM_CONF_MAX_SG*8 + 8) scrp = new_endp + 8 - (old_endp + 8 - scrp); return cpu_to_scr(scrp); } /* * Called on negotiation, since the device may have * changed mind about DT versus ST data transfers. * Patches all data scripts address for a CCB, to fit * the new data script, if needed. */ static u32 sym_chg_ccb_scrp(hcb_p np, u_char dt, ccb_p cp, u32 scrp) { u32 old_endp = scr_to_cpu(cp->phys.goalp) - 8; u32 new_endp = 0; /* * Locate the data script we have to move to: * Given the end data script pointer value (old) * and the new type of transfert (DT/ST) deduce * the new end data script pointer(s). */ if (dt) { if (old_endp == SCRIPT_BA(np, data_in2)) new_endp = SCRIPTH_BA(np, dt_data_in2); else if (old_endp == SCRIPT_BA(np, data_out2)) new_endp = SCRIPTH_BA(np, dt_data_out2); } else { if (old_endp == SCRIPTH_BA(np, dt_data_in2)) new_endp = SCRIPT_BA(np, data_in2); else if (old_endp == SCRIPTH_BA(np, dt_data_out2)) new_endp = SCRIPT_BA(np, data_out2); } /* * If the end data script pointer was not * inside a data script or if we must stay * in the same data script, we are done. */ if (!new_endp || new_endp == old_endp) goto out; /* * Move to new data script all data script pointers * that point inside the previous data script. */ cp->phys.savep = sym_chgp(cp->phys.savep, old_endp, new_endp); cp->phys.lastp = sym_chgp(cp->phys.lastp, old_endp, new_endp); cp->phys.goalp = sym_chgp(cp->phys.goalp, old_endp, new_endp); cp->phys.pm0.ret = sym_chgp(cp->phys.pm0.ret, old_endp, new_endp); cp->phys.pm1.ret = sym_chgp(cp->phys.pm1.ret, old_endp, new_endp); cp->startp = sym_chgp(cp->startp, old_endp, new_endp); /* * Also move an additionnal script pointer * if passed by user. For the current CCB, * this is useful to know the new value for * TEMP register (current data script address). */ if (scrp) scrp = scr_to_cpu(sym_chgp(scrp, old_endp, new_endp)); out: return scrp; } #endif /* SYM_CONF_BROKEN_U3EN_SUPPORT */ /* * Switch trans mode for current job and it's target. */ static void sym_settrans(hcb_p np, ccb_p cp, u_char dt, u_char ofs, u_char per, u_char wide, u_char div, u_char fak) { union ccb *ccb; tcb_p tp; u_char target = INB (nc_sdid) & 0x0f; u_char sval, wval, uval; assert (cp); if (!cp) return; ccb = cp->cam_ccb; assert (ccb); if (!ccb) return; assert (target == (cp->target & 0xf)); tp = &np->target[target]; sval = tp->sval; wval = tp->wval; uval = tp->uval; #if 0 printf("XXXXX sval=%x wval=%x uval=%x (%x)\n", sval, wval, uval, np->rv_scntl3); #endif /* * Set the offset. */ if (!(np->features & FE_C10)) sval = (sval & ~0x1f) | ofs; else sval = (sval & ~0x3f) | ofs; /* * Set the sync divisor and extra clock factor. */ if (ofs != 0) { wval = (wval & ~0x70) | ((div+1) << 4); if (!(np->features & FE_C10)) sval = (sval & ~0xe0) | (fak << 5); else { uval = uval & ~(XCLKH_ST|XCLKH_DT|XCLKS_ST|XCLKS_DT); if (fak >= 1) uval |= (XCLKH_ST|XCLKH_DT); if (fak >= 2) uval |= (XCLKS_ST|XCLKS_DT); } } /* * Set the bus width. */ wval = wval & ~EWS; if (wide != 0) wval |= EWS; /* * Set misc. ultra enable bits. */ if (np->features & FE_C10) { uval = uval & ~U3EN; #ifndef SYM_CONF_BROKEN_U3EN_SUPPORT if (dt) { assert(np->features & FE_U3EN); uval |= U3EN; } #endif } else { wval = wval & ~ULTRA; if (per <= 12) wval |= ULTRA; } /* * Stop there if sync parameters are unchanged. */ if (tp->sval == sval && tp->wval == wval && tp->uval == uval) return; tp->sval = sval; tp->wval = wval; tp->uval = uval; /* * Disable extended Sreq/Sack filtering if per < 50. * Not supported on the C1010. */ if (per < 50 && !(np->features & FE_C10)) OUTOFFB (nc_stest2, EXT); /* * set actual value and sync_status */ OUTB (nc_sxfer, tp->sval); OUTB (nc_scntl3, tp->wval); if (np->features & FE_C10) { #ifdef SYM_CONF_BROKEN_U3EN_SUPPORT if (!(np->features & FE_U3EN)) { u32 temp = INL (nc_temp); temp = sym_chg_ccb_scrp(np, dt, cp, temp); OUTL (nc_temp, temp); } #endif OUTB (nc_scntl4, tp->uval); } /* * patch ALL ccbs of this target. */ for (cp = np->ccbc; cp; cp = cp->link_ccb) { if (cp->host_status == HS_IDLE) continue; if (cp->target != target) continue; cp->phys.select.sel_scntl3 = tp->wval; cp->phys.select.sel_sxfer = tp->sval; if (np->features & FE_C10) { cp->phys.select.sel_scntl4 = tp->uval; #ifdef SYM_CONF_BROKEN_U3EN_SUPPORT if (!(np->features & FE_U3EN)) (void) sym_chg_ccb_scrp(np, dt, cp, 0); #endif } } } /* * log message for real hard errors * * sym0 targ 0?: ERROR (ds:si) (so-si-sd) (sxfer/scntl3) @ name (dsp:dbc). * reg: r0 r1 r2 r3 r4 r5 r6 ..... rf. * * exception register: * ds: dstat * si: sist * * SCSI bus lines: * so: control lines as driven by chip. * si: control lines as seen by chip. * sd: scsi data lines as seen by chip. * * wide/fastmode: * sxfer: (see the manual) * scntl3: (see the manual) * * current script command: * dsp: script adress (relative to start of script). * dbc: first word of script command. * * First 24 register of the chip: * r0..rf */ static void sym_log_hard_error(hcb_p np, u_short sist, u_char dstat) { u32 dsp; int script_ofs; int script_size; char *script_name; u_char *script_base; int i; dsp = INL (nc_dsp); if (dsp > np->script_ba && dsp <= np->script_ba + sizeof(struct sym_scr)) { script_ofs = dsp - np->script_ba; script_size = sizeof(struct sym_scr); script_base = (u_char *) np->script0; script_name = "script"; } else if (np->scripth_ba < dsp && dsp <= np->scripth_ba + sizeof(struct sym_scrh)) { script_ofs = dsp - np->scripth_ba; script_size = sizeof(struct sym_scrh); script_base = (u_char *) np->scripth0; script_name = "scripth"; } else { script_ofs = dsp; script_size = 0; script_base = 0; script_name = "mem"; } printf ("%s:%d: ERROR (%x:%x) (%x-%x-%x) (%x/%x) @ (%s %x:%08x).\n", sym_name (np), (unsigned)INB (nc_sdid)&0x0f, dstat, sist, (unsigned)INB (nc_socl), (unsigned)INB (nc_sbcl), (unsigned)INB (nc_sbdl), (unsigned)INB (nc_sxfer), (unsigned)INB (nc_scntl3), script_name, script_ofs, (unsigned)INL (nc_dbc)); if (((script_ofs & 3) == 0) && (unsigned)script_ofs < script_size) { printf ("%s: script cmd = %08x\n", sym_name(np), scr_to_cpu((int) *(u32 *)(script_base + script_ofs))); } printf ("%s: regdump:", sym_name(np)); for (i=0; i<24;i++) printf (" %02x", (unsigned)INB_OFF(i)); printf (".\n"); /* * PCI BUS error, read the PCI ststus register. */ if (dstat & (MDPE|BF)) { u_short pci_sts; #ifdef FreeBSD_4_Bus pci_sts = pci_read_config(np->device, PCIR_STATUS, 2); #else pci_sts = pci_cfgread(np->pci_tag, PCIR_STATUS, 2); #endif if (pci_sts & 0xf900) { #ifdef FreeBSD_4_Bus pci_write_config(np->device, PCIR_STATUS, pci_sts, 2); #else pci_cfgwrite(np->pci_tag, PCIR_STATUS, pci_sts, 2); #endif printf("%s: PCI STATUS = 0x%04x\n", sym_name(np), pci_sts & 0xf900); } } } /* * chip interrupt handler * * In normal situations, interrupt conditions occur one at * a time. But when something bad happens on the SCSI BUS, * the chip may raise several interrupt flags before * stopping and interrupting the CPU. The additionnal * interrupt flags are stacked in some extra registers * after the SIP and/or DIP flag has been raised in the * ISTAT. After the CPU has read the interrupt condition * flag from SIST or DSTAT, the chip unstacks the other * interrupt flags and sets the corresponding bits in * SIST or DSTAT. Since the chip starts stacking once the * SIP or DIP flag is set, there is a small window of time * where the stacking does not occur. * * Typically, multiple interrupt conditions may happen in * the following situations: * * - SCSI parity error + Phase mismatch (PAR|MA) * When an parity error is detected in input phase * and the device switches to msg-in phase inside a * block MOV. * - SCSI parity error + Unexpected disconnect (PAR|UDC) * When a stupid device does not want to handle the * recovery of an SCSI parity error. * - Some combinations of STO, PAR, UDC, ... * When using non compliant SCSI stuff, when user is * doing non compliant hot tampering on the BUS, when * something really bad happens to a device, etc ... * * The heuristic suggested by SYMBIOS to handle * multiple interrupts is to try unstacking all * interrupts conditions and to handle them on some * priority based on error severity. * This will work when the unstacking has been * successful, but we cannot be 100 % sure of that, * since the CPU may have been faster to unstack than * the chip is able to stack. Hmmm ... But it seems that * such a situation is very unlikely to happen. * * If this happen, for example STO caught by the CPU * then UDC happenning before the CPU have restarted * the SCRIPTS, the driver may wrongly complete the * same command on UDC, since the SCRIPTS didn't restart * and the DSA still points to the same command. * We avoid this situation by setting the DSA to an * invalid value when the CCB is completed and before * restarting the SCRIPTS. * * Another issue is that we need some section of our * recovery procedures to be somehow uninterruptible but * the SCRIPTS processor does not provides such a * feature. For this reason, we handle recovery preferently * from the C code and check against some SCRIPTS critical * sections from the C code. * * Hopefully, the interrupt handling of the driver is now * able to resist to weird BUS error conditions, but donnot * ask me for any guarantee that it will never fail. :-) * Use at your own decision and risk. */ static void sym_intr1 (hcb_p np) { u_char istat, istatc; u_char dstat; u_short sist; /* * interrupt on the fly ? */ istat = INB (nc_istat); if (istat & INTF) { OUTB (nc_istat, (istat & SIGP) | INTF | np->istat_sem); #if 1 istat = INB (nc_istat); /* DUMMY READ */ #endif if (DEBUG_FLAGS & DEBUG_TINY) printf ("F "); (void)sym_wakeup_done (np); }; if (!(istat & (SIP|DIP))) return; #if 0 /* We should never get this one */ if (istat & CABRT) OUTB (nc_istat, CABRT); #endif /* * PAR and MA interrupts may occur at the same time, * and we need to know of both in order to handle * this situation properly. We try to unstack SCSI * interrupts for that reason. BTW, I dislike a LOT * such a loop inside the interrupt routine. * Even if DMA interrupt stacking is very unlikely to * happen, we also try unstacking these ones, since * this has no performance impact. */ sist = 0; dstat = 0; istatc = istat; do { if (istatc & SIP) sist |= INW (nc_sist); if (istatc & DIP) dstat |= INB (nc_dstat); istatc = INB (nc_istat); istat |= istatc; } while (istatc & (SIP|DIP)); if (DEBUG_FLAGS & DEBUG_TINY) printf ("<%d|%x:%x|%x:%x>", (int)INB(nc_scr0), dstat,sist, (unsigned)INL(nc_dsp), (unsigned)INL(nc_dbc)); /* * First, interrupts we want to service cleanly. * * Phase mismatch (MA) is the most frequent interrupt * for chip earlier than the 896 and so we have to service * it as quickly as possible. * A SCSI parity error (PAR) may be combined with a phase * mismatch condition (MA). * Programmed interrupts (SIR) are used to call the C code * from SCRIPTS. * The single step interrupt (SSI) is not used in this * driver. */ if (!(sist & (STO|GEN|HTH|SGE|UDC|SBMC|RST)) && !(dstat & (MDPE|BF|ABRT|IID))) { if (sist & PAR) sym_int_par (np, sist); else if (sist & MA) sym_int_ma (np); else if (dstat & SIR) sym_int_sir (np); else if (dstat & SSI) OUTONB (nc_dcntl, (STD|NOCOM)); else goto unknown_int; return; }; /* * Now, interrupts that donnot happen in normal * situations and that we may need to recover from. * * On SCSI RESET (RST), we reset everything. * On SCSI BUS MODE CHANGE (SBMC), we complete all * active CCBs with RESET status, prepare all devices * for negotiating again and restart the SCRIPTS. * On STO and UDC, we complete the CCB with the corres- * ponding status and restart the SCRIPTS. */ if (sist & RST) { sym_init (np, 1, sym_verbose ? "scsi reset" : NULL); return; }; OUTB (nc_ctest3, np->rv_ctest3 | CLF); /* clear dma fifo */ OUTB (nc_stest3, TE|CSF); /* clear scsi fifo */ if (!(sist & (GEN|HTH|SGE)) && !(dstat & (MDPE|BF|ABRT|IID))) { if (sist & SBMC) sym_int_sbmc (np); else if (sist & STO) sym_int_sto (np); else if (sist & UDC) sym_int_udc (np); else goto unknown_int; return; }; /* * Now, interrupts we are not able to recover cleanly. * * Log message for hard errors. * Reset everything. */ sym_log_hard_error(np, sist, dstat); if ((sist & (GEN|HTH|SGE)) || (dstat & (MDPE|BF|ABRT|IID))) { sym_start_reset(np); return; }; unknown_int: /* * We just miss the cause of the interrupt. :( * Print a message. The timeout will do the real work. */ printf( "%s: unknown interrupt(s) ignored, " "ISTAT=0x%x DSTAT=0x%x SIST=0x%x\n", sym_name(np), istat, dstat, sist); } static void sym_intr(void *arg) { if (DEBUG_FLAGS & DEBUG_TINY) printf ("["); sym_intr1((hcb_p) arg); if (DEBUG_FLAGS & DEBUG_TINY) printf ("]"); return; } static void sym_poll(struct cam_sim *sim) { int s = splcam(); sym_intr(cam_sim_softc(sim)); splx(s); } /* * generic recovery from scsi interrupt * * The doc says that when the chip gets an SCSI interrupt, * it tries to stop in an orderly fashion, by completing * an instruction fetch that had started or by flushing * the DMA fifo for a write to memory that was executing. * Such a fashion is not enough to know if the instruction * that was just before the current DSP value has been * executed or not. * * There are some small SCRIPTS sections that deal with * the start queue and the done queue that may break any * assomption from the C code if we are interrupted * inside, so we reset if this happens. Btw, since these * SCRIPTS sections are executed while the SCRIPTS hasn't * started SCSI operations, it is very unlikely to happen. * * All the driver data structures are supposed to be * allocated from the same 4 GB memory window, so there * is a 1 to 1 relationship between DSA and driver data * structures. Since we are careful :) to invalidate the * DSA when we complete a command or when the SCRIPTS * pushes a DSA into a queue, we can trust it when it * points to a CCB. */ static void sym_recover_scsi_int (hcb_p np, u_char hsts) { u32 dsp = INL (nc_dsp); u32 dsa = INL (nc_dsa); ccb_p cp = sym_ccb_from_dsa(np, dsa); /* * If we haven't been interrupted inside the SCRIPTS * critical pathes, we can safely restart the SCRIPTS * and trust the DSA value if it matches a CCB. */ if ((!(dsp > SCRIPT_BA (np, getjob_begin) && dsp < SCRIPT_BA (np, getjob_end) + 1)) && (!(dsp > SCRIPT_BA (np, ungetjob) && dsp < SCRIPT_BA (np, reselect) + 1)) && (!(dsp > SCRIPTH_BA (np, sel_for_abort) && dsp < SCRIPTH_BA (np, sel_for_abort_1) + 1)) && (!(dsp > SCRIPT_BA (np, done) && dsp < SCRIPT_BA (np, done_end) + 1))) { OUTB (nc_ctest3, np->rv_ctest3 | CLF); /* clear dma fifo */ OUTB (nc_stest3, TE|CSF); /* clear scsi fifo */ /* * If we have a CCB, let the SCRIPTS call us back for * the handling of the error with SCRATCHA filled with * STARTPOS. This way, we will be able to freeze the * device queue and requeue awaiting IOs. */ if (cp) { cp->host_status = hsts; OUTL (nc_dsp, SCRIPT_BA (np, complete_error)); } /* * Otherwise just restart the SCRIPTS. */ else { OUTL (nc_dsa, 0xffffff); OUTL (nc_dsp, SCRIPT_BA (np, start)); } } else goto reset_all; return; reset_all: sym_start_reset(np); } /* * chip exception handler for selection timeout */ void sym_int_sto (hcb_p np) { u32 dsp = INL (nc_dsp); if (DEBUG_FLAGS & DEBUG_TINY) printf ("T"); if (dsp == SCRIPT_BA (np, wf_sel_done) + 8) sym_recover_scsi_int(np, HS_SEL_TIMEOUT); else sym_start_reset(np); } /* * chip exception handler for unexpected disconnect */ void sym_int_udc (hcb_p np) { printf ("%s: unexpected disconnect\n", sym_name(np)); sym_recover_scsi_int(np, HS_UNEXPECTED); } /* * chip exception handler for SCSI bus mode change * * spi2-r12 11.2.3 says a transceiver mode change must * generate a reset event and a device that detects a reset * event shall initiate a hard reset. It says also that a * device that detects a mode change shall set data transfer * mode to eight bit asynchronous, etc... * So, just reinitializing all except chip should be enough. */ static void sym_int_sbmc (hcb_p np) { u_char scsi_mode = INB (nc_stest4) & SMODE; printf("%s: SCSI bus mode change from %x to %x.\n", sym_name(np), np->scsi_mode, scsi_mode); np->scsi_mode = scsi_mode; /* * Should suspend command processing for 1 second and * reinitialize all except the chip. */ sym_init (np, 0, sym_verbose ? "scsi mode change" : NULL); } /* * chip exception handler for SCSI parity error. * * When the chip detects a SCSI parity error and is * currently executing a (CH)MOV instruction, it does * not interrupt immediately, but tries to finish the * transfer of the current scatter entry before * interrupting. The following situations may occur: * * - The complete scatter entry has been transferred * without the device having changed phase. * The chip will then interrupt with the DSP pointing * to the instruction that follows the MOV. * * - A phase mismatch occurs before the MOV finished * and phase errors are to be handled by the C code. * The chip will then interrupt with both PAR and MA * conditions set. * * - A phase mismatch occurs before the MOV finished and * phase errors are to be handled by SCRIPTS. * The chip will load the DSP with the phase mismatch * JUMP address and interrupt the host processor. */ static void sym_int_par (hcb_p np, u_short sist) { u_char hsts = INB (HS_PRT); u32 dsp = INL (nc_dsp); u32 dbc = INL (nc_dbc); u32 dsa = INL (nc_dsa); u_char sbcl = INB (nc_sbcl); u_char cmd = dbc >> 24; int phase = cmd & 7; ccb_p cp = sym_ccb_from_dsa(np, dsa); printf("%s: SCSI parity error detected: SCR1=%d DBC=%x SBCL=%x\n", sym_name(np), hsts, dbc, sbcl); /* * Check that the chip is connected to the SCSI BUS. */ if (!(INB (nc_scntl1) & ISCON)) { sym_recover_scsi_int(np, HS_UNEXPECTED); return; } /* * If the nexus is not clearly identified, reset the bus. * We will try to do better later. */ if (!cp) goto reset_all; /* * Check instruction was a MOV, direction was INPUT and * ATN is asserted. */ if ((cmd & 0xc0) || !(phase & 1) || !(sbcl & 0x8)) goto reset_all; /* * Keep track of the parity error. */ OUTONB (HF_PRT, HF_EXT_ERR); cp->xerr_status |= XE_PARITY_ERR; /* * Prepare the message to send to the device. */ np->msgout[0] = (phase == 7) ? M_PARITY : M_ID_ERROR; /* * If the old phase was DATA IN phase, we have to deal with * the 3 situations described above. * For other input phases (MSG IN and STATUS), the device * must resend the whole thing that failed parity checking * or signal error. So, jumping to dispatcher should be OK. */ if (phase == 1) { /* Phase mismatch handled by SCRIPTS */ if (dsp == SCRIPTH_BA (np, pm_handle)) OUTL (nc_dsp, dsp); /* Phase mismatch handled by the C code */ else if (sist & MA) sym_int_ma (np); /* No phase mismatch occurred */ else { OUTL (nc_temp, dsp); OUTL (nc_dsp, SCRIPT_BA (np, dispatch)); } } else OUTL (nc_dsp, SCRIPT_BA (np, clrack)); return; reset_all: sym_start_reset(np); return; } /* * chip exception handler for phase errors. * * We have to construct a new transfer descriptor, * to transfer the rest of the current block. */ static void sym_int_ma (hcb_p np) { u32 dbc; u32 rest; u32 dsp; u32 dsa; u32 nxtdsp; u32 *vdsp; u32 oadr, olen; u32 *tblp; u32 newcmd; u_int delta; u_char cmd; u_char hflags, hflags0; struct sym_pmc *pm; ccb_p cp; dsp = INL (nc_dsp); dbc = INL (nc_dbc); dsa = INL (nc_dsa); cmd = dbc >> 24; rest = dbc & 0xffffff; delta = 0; /* * locate matching cp if any. */ cp = sym_ccb_from_dsa(np, dsa); /* * Donnot take into account dma fifo and various buffers in * INPUT phase since the chip flushes everything before * raising the MA interrupt for interrupted INPUT phases. * For DATA IN phase, we will check for the SWIDE later. */ if ((cmd & 7) != 1) { u_char ss0, ss2; if (np->features & FE_DFBC) delta = INW (nc_dfbc); else { u32 dfifo; /* * Read DFIFO, CTEST[4-6] using 1 PCI bus ownership. */ dfifo = INL(nc_dfifo); /* * Calculate remaining bytes in DMA fifo. * (CTEST5 = dfifo >> 16) */ if (dfifo & (DFS << 16)) delta = ((((dfifo >> 8) & 0x300) | (dfifo & 0xff)) - rest) & 0x3ff; else delta = ((dfifo & 0xff) - rest) & 0x7f; } /* * The data in the dma fifo has not been transfered to * the target -> add the amount to the rest * and clear the data. * Check the sstat2 register in case of wide transfer. */ rest += delta; ss0 = INB (nc_sstat0); if (ss0 & OLF) rest++; if (!(np->features & FE_C10)) if (ss0 & ORF) rest++; if (cp && (cp->phys.select.sel_scntl3 & EWS)) { ss2 = INB (nc_sstat2); if (ss2 & OLF1) rest++; if (!(np->features & FE_C10)) if (ss2 & ORF1) rest++; }; /* * Clear fifos. */ OUTB (nc_ctest3, np->rv_ctest3 | CLF); /* dma fifo */ OUTB (nc_stest3, TE|CSF); /* scsi fifo */ } /* * log the information */ if (DEBUG_FLAGS & (DEBUG_TINY|DEBUG_PHASE)) printf ("P%x%x RL=%d D=%d ", cmd&7, INB(nc_sbcl)&7, (unsigned) rest, (unsigned) delta); /* * try to find the interrupted script command, * and the address at which to continue. */ vdsp = 0; nxtdsp = 0; if (dsp > np->script_ba && dsp <= np->script_ba + sizeof(struct sym_scr)) { vdsp = (u32 *)((char*)np->script0 + (dsp-np->script_ba-8)); nxtdsp = dsp; } else if (dsp > np->scripth_ba && dsp <= np->scripth_ba + sizeof(struct sym_scrh)) { vdsp = (u32 *)((char*)np->scripth0 + (dsp-np->scripth_ba-8)); nxtdsp = dsp; } /* * log the information */ if (DEBUG_FLAGS & DEBUG_PHASE) { printf ("\nCP=%p DSP=%x NXT=%x VDSP=%p CMD=%x ", cp, (unsigned)dsp, (unsigned)nxtdsp, vdsp, cmd); }; if (!vdsp) { printf ("%s: interrupted SCRIPT address not found.\n", sym_name (np)); goto reset_all; } if (!cp) { printf ("%s: SCSI phase error fixup: CCB already dequeued.\n", sym_name (np)); goto reset_all; } /* * get old startaddress and old length. */ oadr = scr_to_cpu(vdsp[1]); if (cmd & 0x10) { /* Table indirect */ tblp = (u32 *) ((char*) &cp->phys + oadr); olen = scr_to_cpu(tblp[0]); oadr = scr_to_cpu(tblp[1]); } else { tblp = (u32 *) 0; olen = scr_to_cpu(vdsp[0]) & 0xffffff; }; if (DEBUG_FLAGS & DEBUG_PHASE) { printf ("OCMD=%x\nTBLP=%p OLEN=%x OADR=%x\n", (unsigned) (scr_to_cpu(vdsp[0]) >> 24), tblp, (unsigned) olen, (unsigned) oadr); }; /* * check cmd against assumed interrupted script command. */ if (cmd != (scr_to_cpu(vdsp[0]) >> 24)) { PRINT_ADDR(cp); printf ("internal error: cmd=%02x != %02x=(vdsp[0] >> 24)\n", (unsigned)cmd, (unsigned)scr_to_cpu(vdsp[0]) >> 24); goto reset_all; }; /* * if old phase not dataphase, leave here. */ if ((cmd & 5) != (cmd & 7)) { PRINT_ADDR(cp); printf ("phase change %x-%x %d@%08x resid=%d.\n", cmd&7, INB(nc_sbcl)&7, (unsigned)olen, (unsigned)oadr, (unsigned)rest); goto unexpected_phase; }; /* * Choose the correct PM save area. * * Look at the PM_SAVE SCRIPT if you want to understand * this stuff. The equivalent code is implemented in * SCRIPTS for the 895A and 896 that are able to handle * PM from the SCRIPTS processor. */ hflags0 = INB (HF_PRT); hflags = hflags0; if (hflags & (HF_IN_PM0 | HF_IN_PM1 | HF_DP_SAVED)) { if (hflags & HF_IN_PM0) nxtdsp = scr_to_cpu(cp->phys.pm0.ret); else if (hflags & HF_IN_PM1) nxtdsp = scr_to_cpu(cp->phys.pm1.ret); if (hflags & HF_DP_SAVED) hflags ^= HF_ACT_PM; } if (!(hflags & HF_ACT_PM)) { pm = &cp->phys.pm0; newcmd = SCRIPT_BA(np, pm0_data); } else { pm = &cp->phys.pm1; newcmd = SCRIPT_BA(np, pm1_data); } hflags &= ~(HF_IN_PM0 | HF_IN_PM1 | HF_DP_SAVED); if (hflags != hflags0) OUTB (HF_PRT, hflags); /* * fillin the phase mismatch context */ pm->sg.addr = cpu_to_scr(oadr + olen - rest); pm->sg.size = cpu_to_scr(rest); pm->ret = cpu_to_scr(nxtdsp); /* * If we have a SWIDE, * - prepare the address to write the SWIDE from SCRIPTS, * - compute the SCRIPTS address to restart from, * - move current data pointer context by one byte. */ nxtdsp = SCRIPT_BA (np, dispatch); if ((cmd & 7) == 1 && cp && (cp->phys.select.sel_scntl3 & EWS) && (INB (nc_scntl2) & WSR)) { /* * Hmmm... The device may want to also ignore * this residue but it must send immediately the * appropriate message. We snoop the SCSI BUS * and will just throw away this message from * SCRIPTS if the SWIDE is to be ignored. */ if ((INB (nc_sbcl) & 7) == 7 && INB (nc_sbdl) == M_IGN_RESIDUE) { nxtdsp = SCRIPT_BA (np, ign_i_w_r_msg); } /* * We must grab the SWIDE. * We will use some complex SCRIPTS for that. */ else { OUTL (nc_scratcha, pm->sg.addr); nxtdsp = SCRIPTH_BA (np, swide_ma_32); if (np->features & FE_64BIT) { OUTB (nc_sbr, (pm->sg.size >> 24)); nxtdsp = SCRIPTH_BA (np, swide_ma_64); } /* * Adjust our data pointer context. */ ++pm->sg.addr; --pm->sg.size; /* * Hmmm... Could it be possible that a SWIDE that * is followed by a 1 byte CHMOV would lead to * a CHMOV(0). Anyway, we handle it by just * skipping context that would attempt a CHMOV(0). */ if (!pm->sg.size) newcmd = pm->ret; } } if (DEBUG_FLAGS & DEBUG_PHASE) { PRINT_ADDR(cp); printf ("PM %x %x %x / %x %x %x.\n", hflags0, hflags, newcmd, (unsigned)scr_to_cpu(pm->sg.addr), (unsigned)scr_to_cpu(pm->sg.size), (unsigned)scr_to_cpu(pm->ret)); } /* * Restart the SCRIPTS processor. */ OUTL (nc_temp, newcmd); OUTL (nc_dsp, nxtdsp); return; /* * Unexpected phase changes that occurs when the current phase * is not a DATA IN or DATA OUT phase are due to error conditions. * Such event may only happen when the SCRIPTS is using a * multibyte SCSI MOVE. * * Phase change Some possible cause * * COMMAND --> MSG IN SCSI parity error detected by target. * COMMAND --> STATUS Bad command or refused by target. * MSG OUT --> MSG IN Message rejected by target. * MSG OUT --> COMMAND Bogus target that discards extended * negotiation messages. * * The code below does not care of the new phase and so * trusts the target. Why to annoy it ? * If the interrupted phase is COMMAND phase, we restart at * dispatcher. * If a target does not get all the messages after selection, * the code assumes blindly that the target discards extended * messages and clears the negotiation status. * If the target does not want all our response to negotiation, * we force a SIR_NEGO_PROTO interrupt (it is a hack that avoids * bloat for such a should_not_happen situation). * In all other situation, we reset the BUS. * Are these assumptions reasonnable ? (Wait and see ...) */ unexpected_phase: dsp -= 8; nxtdsp = 0; switch (cmd & 7) { case 2: /* COMMAND phase */ nxtdsp = SCRIPT_BA (np, dispatch); break; #if 0 case 3: /* STATUS phase */ nxtdsp = SCRIPT_BA (np, dispatch); break; #endif case 6: /* MSG OUT phase */ /* * If the device may want to use untagged when we want * tagged, we prepare an IDENTIFY without disc. granted, * since we will not be able to handle reselect. * Otherwise, we just don't care. */ if (dsp == SCRIPT_BA (np, send_ident)) { if (cp->tag != NO_TAG && olen - rest <= 3) { cp->host_status = HS_BUSY; np->msgout[0] = M_IDENTIFY | cp->lun; nxtdsp = SCRIPTH_BA (np, ident_break_atn); } else nxtdsp = SCRIPTH_BA (np, ident_break); } else if (dsp == SCRIPTH_BA (np, send_wdtr) || dsp == SCRIPTH_BA (np, send_sdtr) || dsp == SCRIPTH_BA (np, send_ppr)) { nxtdsp = SCRIPTH_BA (np, nego_bad_phase); } break; #if 0 case 7: /* MSG IN phase */ nxtdsp = SCRIPT_BA (np, clrack); break; #endif } if (nxtdsp) { OUTL (nc_dsp, nxtdsp); return; } reset_all: sym_start_reset(np); } /* * Dequeue from the START queue all CCBs that match * a given target/lun/task condition (-1 means all), * and move them from the BUSY queue to the COMP queue * with CAM_REQUEUE_REQ status condition. * This function is used during error handling/recovery. * It is called with SCRIPTS not running. */ static int sym_dequeue_from_squeue(hcb_p np, int i, int target, int lun, int task) { int j; ccb_p cp; /* * Make sure the starting index is within range. */ assert((i >= 0) && (i < 2*MAX_QUEUE)); /* * Walk until end of START queue and dequeue every job * that matches the target/lun/task condition. */ j = i; while (i != np->squeueput) { cp = sym_ccb_from_dsa(np, scr_to_cpu(np->squeue[i])); assert(cp); #ifdef SYM_CONF_IARB_SUPPORT /* Forget hints for IARB, they may be no longer relevant */ cp->host_flags &= ~HF_HINT_IARB; #endif if ((target == -1 || cp->target == target) && (lun == -1 || cp->lun == lun) && (task == -1 || cp->tag == task)) { sym_set_cam_status(cp->cam_ccb, CAM_REQUEUE_REQ); sym_remque(&cp->link_ccbq); sym_insque_tail(&cp->link_ccbq, &np->comp_ccbq); } else { if (i != j) np->squeue[j] = np->squeue[i]; if ((j += 2) >= MAX_QUEUE*2) j = 0; } if ((i += 2) >= MAX_QUEUE*2) i = 0; } if (i != j) /* Copy back the idle task if needed */ np->squeue[j] = np->squeue[i]; np->squeueput = j; /* Update our current start queue pointer */ return (i - j) / 2; } /* * Complete all CCBs queued to the COMP queue. * * These CCBs are assumed: * - Not to be referenced either by devices or * SCRIPTS-related queues and datas. * - To have to be completed with an error condition * or requeued. * * The device queue freeze count is incremented * for each CCB that does not prevent this. * This function is called when all CCBs involved * in error handling/recovery have been reaped. */ static void sym_flush_comp_queue(hcb_p np, int cam_status) { SYM_QUEHEAD *qp; ccb_p cp; while ((qp = sym_remque_head(&np->comp_ccbq)) != 0) { union ccb *ccb; cp = sym_que_entry(qp, struct sym_ccb, link_ccbq); sym_insque_tail(&cp->link_ccbq, &np->busy_ccbq); ccb = cp->cam_ccb; if (cam_status) sym_set_cam_status(ccb, cam_status); sym_free_ccb(np, cp); sym_freeze_cam_ccb(ccb); sym_xpt_done(np, ccb); } } /* * chip handler for bad SCSI status condition * * In case of bad SCSI status, we unqueue all the tasks * currently queued to the controller but not yet started * and then restart the SCRIPTS processor immediately. * * QUEUE FULL and BUSY conditions are handled the same way. * Basically all the not yet started tasks are requeued in * device queue and the queue is frozen until a completion. * * For CHECK CONDITION and COMMAND TERMINATED status, we use * the CCB of the failed command to prepare a REQUEST SENSE * SCSI command and queue it to the controller queue. * * SCRATCHA is assumed to have been loaded with STARTPOS * before the SCRIPTS called the C code. */ static void sym_sir_bad_scsi_status(hcb_p np, int num, ccb_p cp) { tcb_p tp = &np->target[cp->target]; u32 startp; u_char s_status = cp->ssss_status; u_char h_flags = cp->host_flags; int msglen; int nego; int i; /* * Compute the index of the next job to start from SCRIPTS. */ i = (INL (nc_scratcha) - vtobus(np->squeue)) / 4; /* * The last CCB queued used for IARB hint may be * no longer relevant. Forget it. */ #ifdef SYM_CONF_IARB_SUPPORT if (np->last_cp) np->last_cp = 0; #endif /* * Now deal with the SCSI status. */ switch(s_status) { case S_BUSY: case S_QUEUE_FULL: if (sym_verbose >= 2) { PRINT_ADDR(cp); printf (s_status == S_BUSY ? "BUSY" : "QUEUE FULL\n"); } default: /* S_INT, S_INT_COND_MET, S_CONFLICT */ sym_complete_error (np, cp); break; case S_TERMINATED: case S_CHECK_COND: /* * If we get an SCSI error when requesting sense, give up. */ if (h_flags & HF_SENSE) { sym_complete_error (np, cp); break; } /* * Dequeue all queued CCBs for that device not yet started, * and restart the SCRIPTS processor immediately. */ (void) sym_dequeue_from_squeue(np, i, cp->target, cp->lun, -1); OUTL (nc_dsp, SCRIPT_BA (np, start)); /* * Save some info of the actual IO. * Compute the data residual. */ cp->sv_scsi_status = cp->ssss_status; cp->sv_xerr_status = cp->xerr_status; cp->sv_resid = sym_compute_residual(np, cp); /* * Prepare all needed data structures for * requesting sense data. */ /* * identify message */ cp->scsi_smsg2[0] = M_IDENTIFY | cp->lun; msglen = 1; /* * If we are currently using anything different from * async. 8 bit data transfers with that target, * start a negotiation, since the device may want * to report us a UNIT ATTENTION condition due to * a cause we currently ignore, and we donnot want * to be stuck with WIDE and/or SYNC data transfer. * * cp->nego_status is filled by sym_prepare_nego(). */ cp->nego_status = 0; nego = 0; if (tp->tinfo.current.options & PPR_OPT_MASK) nego = NS_PPR; else if (tp->tinfo.current.width != BUS_8_BIT) nego = NS_WIDE; else if (tp->tinfo.current.offset != 0) nego = NS_SYNC; if (nego) msglen += sym_prepare_nego (np,cp, nego, &cp->scsi_smsg2[msglen]); /* * Message table indirect structure. */ cp->phys.smsg.addr = cpu_to_scr(CCB_PHYS (cp, scsi_smsg2)); cp->phys.smsg.size = cpu_to_scr(msglen); /* * sense command */ cp->phys.cmd.addr = cpu_to_scr(CCB_PHYS (cp, sensecmd)); cp->phys.cmd.size = cpu_to_scr(6); /* * patch requested size into sense command */ cp->sensecmd[0] = 0x03; cp->sensecmd[1] = cp->lun << 5; cp->sensecmd[4] = cp->cam_ccb->csio.sense_len; cp->data_len = cp->cam_ccb->csio.sense_len; /* * sense data */ cp->phys.sense.addr = cpu_to_scr(vtobus(&cp->cam_ccb->csio.sense_data)); cp->phys.sense.size = cpu_to_scr(cp->cam_ccb->csio.sense_len); /* * requeue the command. */ startp = SCRIPTH_BA (np, sdata_in); cp->phys.savep = cpu_to_scr(startp); #ifdef SYM_CONF_BROKEN_U3EN_SUPPORT cp->phys.goalp = cpu_to_scr(startp + 40); #else cp->phys.goalp = cpu_to_scr(startp + 16); #endif cp->phys.lastp = cpu_to_scr(startp); cp->startp = cpu_to_scr(startp); cp->actualquirks = SYM_QUIRK_AUTOSAVE; cp->host_status = cp->nego_status ? HS_NEGOTIATE : HS_BUSY; cp->ssss_status = S_ILLEGAL; cp->host_flags = HF_SENSE; cp->xerr_status = 0; cp->phys.extra_bytes = 0; cp->phys.go.start = cpu_to_scr(SCRIPT_BA (np, select)); /* * Requeue the command. */ sym_put_start_queue(np, cp); /* * Give back to upper layer everything we have dequeued. */ sym_flush_comp_queue(np, 0); break; } } /* * After a device has accepted some management message * as BUS DEVICE RESET, ABORT TASK, etc ..., or when * a device signals a UNIT ATTENTION condition, some * tasks are thrown away by the device. We are required * to reflect that on our tasks list since the device * will never complete these tasks. * * This function move from the BUSY queue to the COMP * queue all disconnected CCBs for a given target that * match the following criteria: * - lun=-1 means any logical UNIT otherwise a given one. * - task=-1 means any task, otherwise a given one. */ static int sym_clear_tasks(hcb_p np, int cam_status, int target, int lun, int task) { SYM_QUEHEAD qtmp, *qp; int i = 0; ccb_p cp; /* * Move the entire BUSY queue to our temporary queue. */ sym_que_init(&qtmp); sym_que_splice(&np->busy_ccbq, &qtmp); sym_que_init(&np->busy_ccbq); /* * Put all CCBs that matches our criteria into * the COMP queue and put back other ones into * the BUSY queue. */ while ((qp = sym_remque_head(&qtmp)) != 0) { union ccb *ccb; cp = sym_que_entry(qp, struct sym_ccb, link_ccbq); ccb = cp->cam_ccb; if (cp->host_status != HS_DISCONNECT || cp->target != target || (lun != -1 && cp->lun != lun) || (task != -1 && (cp->tag != NO_TAG && cp->scsi_smsg[2] != task))) { sym_insque_tail(&cp->link_ccbq, &np->busy_ccbq); continue; } sym_insque_tail(&cp->link_ccbq, &np->comp_ccbq); /* Preserve the software timeout condition */ if (sym_get_cam_status(ccb) != CAM_CMD_TIMEOUT) sym_set_cam_status(ccb, cam_status); ++i; #if 0 printf("XXXXX TASK @%p CLEARED\n", cp); #endif } return i; } /* * chip handler for TASKS recovery * * We cannot safely abort a command, while the SCRIPTS * processor is running, since we just would be in race * with it. * * As long as we have tasks to abort, we keep the SEM * bit set in the ISTAT. When this bit is set, the * SCRIPTS processor interrupts (SIR_SCRIPT_STOPPED) * each time it enters the scheduler. * * If we have to reset a target, clear tasks of a unit, * or to perform the abort of a disconnected job, we * restart the SCRIPTS for selecting the target. Once * selected, the SCRIPTS interrupts (SIR_TARGET_SELECTED). * If it loses arbitration, the SCRIPTS will interrupt again * the next time it will enter its scheduler, and so on ... * * On SIR_TARGET_SELECTED, we scan for the more * appropriate thing to do: * * - If nothing, we just sent a M_ABORT message to the * target to get rid of the useless SCSI bus ownership. * According to the specs, no tasks shall be affected. * - If the target is to be reset, we send it a M_RESET * message. * - If a logical UNIT is to be cleared , we send the * IDENTIFY(lun) + M_ABORT. * - If an untagged task is to be aborted, we send the * IDENTIFY(lun) + M_ABORT. * - If a tagged task is to be aborted, we send the * IDENTIFY(lun) + task attributes + M_ABORT_TAG. * * Once our 'kiss of death' :) message has been accepted * by the target, the SCRIPTS interrupts again * (SIR_ABORT_SENT). On this interrupt, we complete * all the CCBs that should have been aborted by the * target according to our message. */ static void sym_sir_task_recovery(hcb_p np, int num) { SYM_QUEHEAD *qp; ccb_p cp; tcb_p tp; int target=-1, lun=-1, task; int i, k; switch(num) { /* * The SCRIPTS processor stopped before starting * the next command in order to allow us to perform * some task recovery. */ case SIR_SCRIPT_STOPPED: /* * Do we have any target to reset or unit to clear ? */ for (i = 0 ; i < SYM_CONF_MAX_TARGET ; i++) { tp = &np->target[i]; if (tp->to_reset || (tp->lun0p && tp->lun0p->to_clear)) { target = i; break; } if (!tp->lunmp) continue; for (k = 1 ; k < SYM_CONF_MAX_LUN ; k++) { if (tp->lunmp[k] && tp->lunmp[k]->to_clear) { target = i; break; } } if (target != -1) break; } /* * If not, walk the busy queue for any * disconnected CCB to be aborted. */ if (target == -1) { FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) { cp = sym_que_entry(qp,struct sym_ccb,link_ccbq); if (cp->host_status != HS_DISCONNECT) continue; if (cp->to_abort) { target = cp->target; break; } } } /* * If some target is to be selected, * prepare and start the selection. */ if (target != -1) { tp = &np->target[target]; np->abrt_sel.sel_id = target; np->abrt_sel.sel_scntl3 = tp->wval; np->abrt_sel.sel_sxfer = tp->sval; OUTL(nc_dsa, vtobus(np)); OUTL (nc_dsp, SCRIPTH_BA (np, sel_for_abort)); return; } /* * Now look for a CCB to abort that haven't started yet. * Btw, the SCRIPTS processor is still stopped, so * we are not in race. */ i = 0; cp = 0; FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) { cp = sym_que_entry(qp, struct sym_ccb, link_ccbq); if (cp->host_status != HS_BUSY && cp->host_status != HS_NEGOTIATE) continue; if (!cp->to_abort) continue; #ifdef SYM_CONF_IARB_SUPPORT /* * If we are using IMMEDIATE ARBITRATION, we donnot * want to cancel the last queued CCB, since the * SCRIPTS may have anticipated the selection. */ if (cp == np->last_cp) { cp->to_abort = 0; continue; } #endif i = 1; /* Means we have found some */ break; } if (!i) { /* * We are done, so we donnot need * to synchronize with the SCRIPTS anylonger. * Remove the SEM flag from the ISTAT. */ np->istat_sem = 0; OUTB (nc_istat, SIGP); break; } /* * Compute index of next position in the start * queue the SCRIPTS intends to start and dequeue * all CCBs for that device that haven't been started. */ i = (INL (nc_scratcha) - vtobus(np->squeue)) / 4; i = sym_dequeue_from_squeue(np, i, cp->target, cp->lun, -1); /* * Make sure at least our IO to abort has been dequeued. */ assert(i && sym_get_cam_status(cp->cam_ccb) == CAM_REQUEUE_REQ); /* * Keep track in cam status of the reason of the abort. */ if (cp->to_abort == 2) sym_set_cam_status(cp->cam_ccb, CAM_CMD_TIMEOUT); else sym_set_cam_status(cp->cam_ccb, CAM_REQ_ABORTED); /* * Complete with error everything that we have dequeued. */ sym_flush_comp_queue(np, 0); break; /* * The SCRIPTS processor has selected a target * we may have some manual recovery to perform for. */ case SIR_TARGET_SELECTED: target = (INB (nc_sdid) & 0xf); tp = &np->target[target]; np->abrt_tbl.addr = vtobus(np->abrt_msg); /* * If the target is to be reset, prepare a * M_RESET message and clear the to_reset flag * since we donnot expect this operation to fail. */ if (tp->to_reset) { np->abrt_msg[0] = M_RESET; np->abrt_tbl.size = 1; tp->to_reset = 0; break; } /* * Otherwise, look for some logical unit to be cleared. */ if (tp->lun0p && tp->lun0p->to_clear) lun = 0; else if (tp->lunmp) { for (k = 1 ; k < SYM_CONF_MAX_LUN ; k++) { if (tp->lunmp[k] && tp->lunmp[k]->to_clear) { lun = k; break; } } } /* * If a logical unit is to be cleared, prepare * an IDENTIFY(lun) + ABORT MESSAGE. */ if (lun != -1) { lcb_p lp = sym_lp(np, tp, lun); lp->to_clear = 0; /* We donnot expect to fail here */ np->abrt_msg[0] = M_IDENTIFY | lun; np->abrt_msg[1] = M_ABORT; np->abrt_tbl.size = 2; break; } /* * Otherwise, look for some disconnected job to * abort for this target. */ i = 0; cp = 0; FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) { cp = sym_que_entry(qp, struct sym_ccb, link_ccbq); if (cp->host_status != HS_DISCONNECT) continue; if (cp->target != target) continue; if (!cp->to_abort) continue; i = 1; /* Means we have some */ break; } /* * If we have none, probably since the device has * completed the command before we won abitration, * send a M_ABORT message without IDENTIFY. * According to the specs, the device must just * disconnect the BUS and not abort any task. */ if (!i) { np->abrt_msg[0] = M_ABORT; np->abrt_tbl.size = 1; break; } /* * We have some task to abort. * Set the IDENTIFY(lun) */ np->abrt_msg[0] = M_IDENTIFY | cp->lun; /* * If we want to abort an untagged command, we * will send a IDENTIFY + M_ABORT. * Otherwise (tagged command), we will send * a IDENTITFY + task attributes + ABORT TAG. */ if (cp->tag == NO_TAG) { np->abrt_msg[1] = M_ABORT; np->abrt_tbl.size = 2; } else { np->abrt_msg[1] = cp->scsi_smsg[1]; np->abrt_msg[2] = cp->scsi_smsg[2]; np->abrt_msg[3] = M_ABORT_TAG; np->abrt_tbl.size = 4; } /* * Keep track of software timeout condition, since the * peripheral driver may not count retries on abort * conditions not due to timeout. */ if (cp->to_abort == 2) sym_set_cam_status(cp->cam_ccb, CAM_CMD_TIMEOUT); cp->to_abort = 0; /* We donnot expect to fail here */ break; /* * The target has accepted our message and switched * to BUS FREE phase as we expected. */ case SIR_ABORT_SENT: target = (INB (nc_sdid) & 0xf); tp = &np->target[target]; /* ** If we didn't abort anything, leave here. */ if (np->abrt_msg[0] == M_ABORT) break; /* * If we sent a M_RESET, then a hardware reset has * been performed by the target. * - Reset everything to async 8 bit * - Tell ourself to negotiate next time :-) * - Prepare to clear all disconnected CCBs for * this target from our task list (lun=task=-1) */ lun = -1; task = -1; if (np->abrt_msg[0] == M_RESET) { tp->sval = 0; tp->wval = np->rv_scntl3; tp->uval = 0; tp->tinfo.current.period = 0; tp->tinfo.current.offset = 0; tp->tinfo.current.width = BUS_8_BIT; tp->tinfo.current.options = 0; } /* * Otherwise, check for the LUN and TASK(s) * concerned by the cancelation. * If it is not ABORT_TAG then it is CLEAR_QUEUE * or an ABORT message :-) */ else { lun = np->abrt_msg[0] & 0x3f; if (np->abrt_msg[1] == M_ABORT_TAG) task = np->abrt_msg[2]; } /* * Complete all the CCBs the device should have * aborted due to our 'kiss of death' message. */ i = (INL (nc_scratcha) - vtobus(np->squeue)) / 4; (void) sym_dequeue_from_squeue(np, i, target, lun, -1); (void) sym_clear_tasks(np, CAM_REQ_ABORTED, target, lun, task); sym_flush_comp_queue(np, 0); /* * If we sent a BDR, make uper layer aware of that. */ if (np->abrt_msg[0] == M_RESET) xpt_async(AC_SENT_BDR, np->path, NULL); break; } /* * Print to the log the message we intend to send. */ if (num == SIR_TARGET_SELECTED) { PRINT_TARGET(np, target); sym_printl_hex("control msgout:", np->abrt_msg, np->abrt_tbl.size); np->abrt_tbl.size = cpu_to_scr(np->abrt_tbl.size); } /* * Let the SCRIPTS processor continue. */ OUTONB (nc_dcntl, (STD|NOCOM)); } /* * Gerard's alchemy:) that deals with with the data * pointer for both MDP and the residual calculation. * * I didn't want to bloat the code by more than 200 * lignes for the handling of both MDP and the residual. * This has been achieved by using a data pointer * representation consisting in an index in the data * array (dp_sg) and a negative offset (dp_ofs) that * have the following meaning: * * - dp_sg = SYM_CONF_MAX_SG * we are at the end of the data script. * - dp_sg < SYM_CONF_MAX_SG * dp_sg points to the next entry of the scatter array * we want to transfer. * - dp_ofs < 0 * dp_ofs represents the residual of bytes of the * previous entry scatter entry we will send first. * - dp_ofs = 0 * no residual to send first. * * The function sym_evaluate_dp() accepts an arbitray * offset (basically from the MDP message) and returns * the corresponding values of dp_sg and dp_ofs. */ static int sym_evaluate_dp(hcb_p np, ccb_p cp, u32 scr, int *ofs) { u32 dp_scr; int dp_ofs, dp_sg, dp_sgmin; int tmp; struct sym_pmc *pm; /* * Compute the resulted data pointer in term of a script * address within some DATA script and a signed byte offset. */ dp_scr = scr; dp_ofs = *ofs; if (dp_scr == SCRIPT_BA (np, pm0_data)) pm = &cp->phys.pm0; else if (dp_scr == SCRIPT_BA (np, pm1_data)) pm = &cp->phys.pm1; else pm = 0; if (pm) { dp_scr = scr_to_cpu(pm->ret); dp_ofs -= scr_to_cpu(pm->sg.size); } /* * If we are auto-sensing, then we are done. */ if (cp->host_flags & HF_SENSE) { *ofs = dp_ofs; return 0; } /* * Deduce the index of the sg entry. * Keep track of the index of the first valid entry. * If result is dp_sg = SYM_CONF_MAX_SG, then we are at the * end of the data. */ tmp = scr_to_cpu(cp->phys.goalp); dp_sg = SYM_CONF_MAX_SG; if (dp_sg != tmp) dp_sg -= (tmp - 8 - (int)dp_scr) / (2*4); dp_sgmin = SYM_CONF_MAX_SG - cp->segments; /* * Move to the sg entry the data pointer belongs to. * * If we are inside the data area, we expect result to be: * * Either, * dp_ofs = 0 and dp_sg is the index of the sg entry * the data pointer belongs to (or the end of the data) * Or, * dp_ofs < 0 and dp_sg is the index of the sg entry * the data pointer belongs to + 1. */ if (dp_ofs < 0) { int n; while (dp_sg > dp_sgmin) { --dp_sg; tmp = scr_to_cpu(cp->phys.data[dp_sg].size); n = dp_ofs + (tmp & 0xffffff); if (n > 0) { ++dp_sg; break; } dp_ofs = n; } } else if (dp_ofs > 0) { while (dp_sg < SYM_CONF_MAX_SG) { tmp = scr_to_cpu(cp->phys.data[dp_sg].size); dp_ofs -= (tmp & 0xffffff); ++dp_sg; if (dp_ofs <= 0) break; } } /* * Make sure the data pointer is inside the data area. * If not, return some error. */ if (dp_sg < dp_sgmin || (dp_sg == dp_sgmin && dp_ofs < 0)) goto out_err; else if (dp_sg > SYM_CONF_MAX_SG || (dp_sg == SYM_CONF_MAX_SG && dp_ofs > 0)) goto out_err; /* * Save the extreme pointer if needed. */ if (dp_sg > cp->ext_sg || (dp_sg == cp->ext_sg && dp_ofs > cp->ext_ofs)) { cp->ext_sg = dp_sg; cp->ext_ofs = dp_ofs; } /* * Return data. */ *ofs = dp_ofs; return dp_sg; out_err: return -1; } /* * chip handler for MODIFY DATA POINTER MESSAGE * * We also call this function on IGNORE WIDE RESIDUE * messages that do not match a SWIDE full condition. * Btw, we assume in that situation that such a message * is equivalent to a MODIFY DATA POINTER (offset=-1). */ static void sym_modify_dp(hcb_p np, tcb_p tp, ccb_p cp, int ofs) { int dp_ofs = ofs; u32 dp_scr = INL (nc_temp); u32 dp_ret; u32 tmp; u_char hflags; int dp_sg; struct sym_pmc *pm; /* * Not supported for auto-sense. */ if (cp->host_flags & HF_SENSE) goto out_reject; /* * Apply our alchemy:) (see comments in sym_evaluate_dp()), * to the resulted data pointer. */ dp_sg = sym_evaluate_dp(np, cp, dp_scr, &dp_ofs); if (dp_sg < 0) goto out_reject; /* * And our alchemy:) allows to easily calculate the data * script address we want to return for the next data phase. */ dp_ret = cpu_to_scr(cp->phys.goalp); dp_ret = dp_ret - 8 - (SYM_CONF_MAX_SG - dp_sg) * (2*4); /* * If offset / scatter entry is zero we donnot need * a context for the new current data pointer. */ if (dp_ofs == 0) { dp_scr = dp_ret; goto out_ok; } /* * Get a context for the new current data pointer. */ hflags = INB (HF_PRT); if (hflags & HF_DP_SAVED) hflags ^= HF_ACT_PM; if (!(hflags & HF_ACT_PM)) { pm = &cp->phys.pm0; dp_scr = SCRIPT_BA (np, pm0_data); } else { pm = &cp->phys.pm1; dp_scr = SCRIPT_BA (np, pm1_data); } hflags &= ~(HF_DP_SAVED); OUTB (HF_PRT, hflags); /* * Set up the new current data pointer. * ofs < 0 there, and for the next data phase, we * want to transfer part of the data of the sg entry * corresponding to index dp_sg-1 prior to returning * to the main data script. */ pm->ret = cpu_to_scr(dp_ret); tmp = scr_to_cpu(cp->phys.data[dp_sg-1].addr); tmp += scr_to_cpu(cp->phys.data[dp_sg-1].size) + dp_ofs; pm->sg.addr = cpu_to_scr(tmp); pm->sg.size = cpu_to_scr(-dp_ofs); out_ok: OUTL (nc_temp, dp_scr); OUTL (nc_dsp, SCRIPT_BA (np, clrack)); return; out_reject: OUTL (nc_dsp, SCRIPTH_BA (np, msg_bad)); } /* * chip calculation of the data residual. * * As I used to say, the requirement of data residual * in SCSI is broken, useless and cannot be achieved * without huge complexity. * But most OSes and even the official CAM require it. * When stupidity happens to be so widely spread inside * a community, it gets hard to convince. * * Anyway, I don't care, since I am not going to use * any software that considers this data residual as * a relevant information. :) */ static int sym_compute_residual(hcb_p np, ccb_p cp) { int dp_sg, dp_sgmin, resid; int dp_ofs = 0; /* * Check for some data lost or just thrown away. * We are not required to be quite accurate in this * situation. Btw, if we are odd for output and the * device claims some more data, it may well happen * than our residual be zero. :-) */ if (cp->xerr_status & (XE_EXTRA_DATA|XE_SODL_UNRUN|XE_SWIDE_OVRUN)) { resid = 0; if (cp->xerr_status & XE_EXTRA_DATA) resid -= scr_to_cpu(cp->phys.extra_bytes); if (cp->xerr_status & XE_SODL_UNRUN) ++resid; if (cp->xerr_status & XE_SWIDE_OVRUN) --resid; } /* * If all data has been transferred, * there is no residual. */ if (cp->phys.lastp == cp->phys.goalp) return 0; /* * If no data transfer occurs, or if the data * pointer is weird, return full residual. */ if (cp->startp == cp->phys.lastp || sym_evaluate_dp(np, cp, scr_to_cpu(cp->phys.lastp), &dp_ofs) < 0) { return cp->data_len; } /* * If we were auto-sensing, then we are done. */ if (cp->host_flags & HF_SENSE) { return -dp_ofs; } /* * We are now full comfortable in the computation * of the data residual (2's complement). */ dp_sgmin = SYM_CONF_MAX_SG - cp->segments; resid = -cp->ext_ofs; for (dp_sg = cp->ext_sg; dp_sg < SYM_CONF_MAX_SG; ++dp_sg) { u_long tmp = scr_to_cpu(cp->phys.data[dp_sg].size); resid += (tmp & 0xffffff); } /* * Hopefully, the result is not too wrong. */ return resid; } /* * Print out the containt of a SCSI message. */ static int sym_show_msg (u_char * msg) { u_char i; printf ("%x",*msg); if (*msg==M_EXTENDED) { for (i=1;i<8;i++) { if (i-1>msg[1]) break; printf ("-%x",msg[i]); }; return (i+1); } else if ((*msg & 0xf0) == 0x20) { printf ("-%x",msg[1]); return (2); }; return (1); } static void sym_print_msg (ccb_p cp, char *label, u_char *msg) { PRINT_ADDR(cp); if (label) printf ("%s: ", label); (void) sym_show_msg (msg); printf (".\n"); } /* * Negotiation for WIDE and SYNCHRONOUS DATA TRANSFER. * * We try to negotiate sync and wide transfer only after * a successfull inquire command. We look at byte 7 of the * inquire data to determine the capabilities of the target. * * When we try to negotiate, we append the negotiation message * to the identify and (maybe) simple tag message. * The host status field is set to HS_NEGOTIATE to mark this * situation. * * If the target doesn't answer this message immediately * (as required by the standard), the SIR_NEGO_FAILED interrupt * will be raised eventually. * The handler removes the HS_NEGOTIATE status, and sets the * negotiated value to the default (async / nowide). * * If we receive a matching answer immediately, we check it * for validity, and set the values. * * If we receive a Reject message immediately, we assume the * negotiation has failed, and fall back to standard values. * * If we receive a negotiation message while not in HS_NEGOTIATE * state, it's a target initiated negotiation. We prepare a * (hopefully) valid answer, set our parameters, and send back * this answer to the target. * * If the target doesn't fetch the answer (no message out phase), * we assume the negotiation has failed, and fall back to default * settings (SIR_NEGO_PROTO interrupt). * * When we set the values, we adjust them in all ccbs belonging * to this target, in the controller's register, and in the "phys" * field of the controller's struct sym_hcb. */ /* * chip handler for SYNCHRONOUS DATA TRANSFER REQUEST (SDTR) message. */ static void sym_sync_nego(hcb_p np, tcb_p tp, ccb_p cp) { u_char chg, ofs, per, fak, div; int req = 1; /* * Synchronous request message received. */ if (DEBUG_FLAGS & DEBUG_NEGO) { sym_print_msg(cp, "sync msgin", np->msgin); }; /* * request or answer ? */ if (INB (HS_PRT) == HS_NEGOTIATE) { OUTB (HS_PRT, HS_BUSY); if (cp->nego_status && cp->nego_status != NS_SYNC) goto reject_it; req = 0; } /* * get requested values. */ chg = 0; per = np->msgin[3]; ofs = np->msgin[4]; /* * check values against our limits. */ if (ofs) { if (ofs > np->maxoffs) {chg = 1; ofs = np->maxoffs;} if (req) { if (ofs > tp->tinfo.user.offset) {chg = 1; ofs = tp->tinfo.user.offset;} } } if (ofs) { if (per < np->minsync) {chg = 1; per = np->minsync;} if (req) { if (per < tp->tinfo.user.period) {chg = 1; per = tp->tinfo.user.period;} } } div = fak = 0; if (ofs && sym_getsync(np, 0, per, &div, &fak) < 0) goto reject_it; if (DEBUG_FLAGS & DEBUG_NEGO) { PRINT_ADDR(cp); printf ("sdtr: ofs=%d per=%d div=%d fak=%d chg=%d.\n", ofs, per, div, fak, chg); } /* * This was an answer message */ if (req == 0) { if (chg) /* Answer wasn't acceptable. */ goto reject_it; sym_setsync (np, cp, ofs, per, div, fak); OUTL (nc_dsp, SCRIPT_BA (np, clrack)); return; } /* * It was a request. Set value and * prepare an answer message */ sym_setsync (np, cp, ofs, per, div, fak); np->msgout[0] = M_EXTENDED; np->msgout[1] = 3; np->msgout[2] = M_X_SYNC_REQ; np->msgout[3] = per; np->msgout[4] = ofs; cp->nego_status = NS_SYNC; if (DEBUG_FLAGS & DEBUG_NEGO) { sym_print_msg(cp, "sync msgout", np->msgout); } np->msgin [0] = M_NOOP; OUTL (nc_dsp, SCRIPTH_BA (np, sdtr_resp)); return; reject_it: sym_setsync (np, cp, 0, 0, 0, 0); OUTL (nc_dsp, SCRIPTH_BA (np, msg_bad)); } /* * chip handler for PARALLEL PROTOCOL REQUEST (PPR) message. */ static void sym_ppr_nego(hcb_p np, tcb_p tp, ccb_p cp) { u_char chg, ofs, per, fak, dt, div, wide; int req = 1; /* * Synchronous request message received. */ if (DEBUG_FLAGS & DEBUG_NEGO) { sym_print_msg(cp, "ppr msgin", np->msgin); }; /* * request or answer ? */ if (INB (HS_PRT) == HS_NEGOTIATE) { OUTB (HS_PRT, HS_BUSY); if (cp->nego_status && cp->nego_status != NS_PPR) goto reject_it; req = 0; } /* * get requested values. */ chg = 0; per = np->msgin[3]; ofs = np->msgin[5]; wide = np->msgin[6]; dt = np->msgin[7] & PPR_OPT_DT; /* * check values against our limits. */ if (wide > np->maxwide) {chg = 1; wide = np->maxwide;} if (!wide || !(np->features & FE_ULTRA3)) dt &= ~PPR_OPT_DT; if (req) { if (wide > tp->tinfo.user.width) {chg = 1; wide = tp->tinfo.user.width;} } #ifndef SYM_CONF_BROKEN_U3EN_SUPPORT if (!(np->features & FE_U3EN)) /* Broken U3EN bit not supported */ dt &= ~PPR_OPT_DT; #endif if (dt != (np->msgin[7] & PPR_OPT_MASK)) chg = 1; if (ofs) { if (ofs > np->maxoffs) {chg = 1; ofs = np->maxoffs;} if (req) { if (ofs > tp->tinfo.user.offset) {chg = 1; ofs = tp->tinfo.user.offset;} } } if (ofs) { if (dt) { if (per < np->minsync_dt) {chg = 1; per = np->minsync_dt;} } else if (per < np->minsync) {chg = 1; per = np->minsync;} if (req) { if (per < tp->tinfo.user.period) {chg = 1; per = tp->tinfo.user.period;} } } div = fak = 0; if (ofs && sym_getsync(np, dt, per, &div, &fak) < 0) goto reject_it; if (DEBUG_FLAGS & DEBUG_NEGO) { PRINT_ADDR(cp); printf ("ppr: " "dt=%x ofs=%d per=%d wide=%d div=%d fak=%d chg=%d.\n", dt, ofs, per, wide, div, fak, chg); } /* * It was an answer. */ if (req == 0) { if (chg) /* Answer wasn't acceptable */ goto reject_it; sym_setpprot (np, cp, dt, ofs, per, wide, div, fak); OUTL (nc_dsp, SCRIPT_BA (np, clrack)); return; } /* * It was a request. Set value and * prepare an answer message */ sym_setpprot (np, cp, dt, ofs, per, wide, div, fak); np->msgout[0] = M_EXTENDED; np->msgout[1] = 6; np->msgout[2] = M_X_PPR_REQ; np->msgout[3] = per; np->msgout[4] = 0; np->msgout[5] = ofs; np->msgout[6] = wide; np->msgout[7] = dt; cp->nego_status = NS_PPR; if (DEBUG_FLAGS & DEBUG_NEGO) { sym_print_msg(cp, "ppr msgout", np->msgout); } np->msgin [0] = M_NOOP; OUTL (nc_dsp, SCRIPTH_BA (np, ppr_resp)); return; reject_it: sym_setpprot (np, cp, 0, 0, 0, 0, 0, 0); OUTL (nc_dsp, SCRIPTH_BA (np, msg_bad)); } /* * chip handler for WIDE DATA TRANSFER REQUEST (WDTR) message. */ static void sym_wide_nego(hcb_p np, tcb_p tp, ccb_p cp) { u_char chg, wide; int req = 1; /* * Wide request message received. */ if (DEBUG_FLAGS & DEBUG_NEGO) { sym_print_msg(cp, "wide msgin", np->msgin); }; /* * Is it an request from the device? */ if (INB (HS_PRT) == HS_NEGOTIATE) { OUTB (HS_PRT, HS_BUSY); if (cp->nego_status && cp->nego_status != NS_WIDE) goto reject_it; req = 0; } /* * get requested values. */ chg = 0; wide = np->msgin[3]; /* * check values against driver limits. */ if (wide > np->maxoffs) {chg = 1; wide = np->maxoffs;} if (req) { if (wide > tp->tinfo.user.width) {chg = 1; wide = tp->tinfo.user.width;} } if (DEBUG_FLAGS & DEBUG_NEGO) { PRINT_ADDR(cp); printf ("wdtr: wide=%d chg=%d.\n", wide, chg); } /* * This was an answer message */ if (req == 0) { if (chg) /* Answer wasn't acceptable. */ goto reject_it; sym_setwide (np, cp, wide); OUTL (nc_dsp, SCRIPT_BA (np, clrack)); return; }; /* * It was a request, set value and * prepare an answer message */ sym_setwide (np, cp, wide); np->msgout[0] = M_EXTENDED; np->msgout[1] = 2; np->msgout[2] = M_X_WIDE_REQ; np->msgout[3] = wide; np->msgin [0] = M_NOOP; cp->nego_status = NS_WIDE; if (DEBUG_FLAGS & DEBUG_NEGO) { sym_print_msg(cp, "wide msgout", np->msgout); } OUTL (nc_dsp, SCRIPTH_BA (np, wdtr_resp)); return; reject_it: OUTL (nc_dsp, SCRIPTH_BA (np, msg_bad)); } /* * Reset SYNC or WIDE to default settings. * * Called when a negotiation does not succeed either * on rejection or on protocol error. */ static void sym_nego_default(hcb_p np, tcb_p tp, ccb_p cp) { /* * any error in negotiation: * fall back to default mode. */ switch (cp->nego_status) { case NS_PPR: sym_setpprot (np, cp, 0, 0, 0, 0, 0, 0); break; case NS_SYNC: sym_setsync (np, cp, 0, 0, 0, 0); break; case NS_WIDE: sym_setwide (np, cp, 0); break; }; np->msgin [0] = M_NOOP; np->msgout[0] = M_NOOP; cp->nego_status = 0; } /* * chip handler for MESSAGE REJECT received in response to * a WIDE or SYNCHRONOUS negotiation. */ static void sym_nego_rejected(hcb_p np, tcb_p tp, ccb_p cp) { sym_nego_default(np, tp, cp); OUTB (HS_PRT, HS_BUSY); } /* * chip exception handler for programmed interrupts. */ void sym_int_sir (hcb_p np) { u_char num = INB (nc_dsps); u_long dsa = INL (nc_dsa); ccb_p cp = sym_ccb_from_dsa(np, dsa); u_char target = INB (nc_sdid) & 0x0f; tcb_p tp = &np->target[target]; int tmp; if (DEBUG_FLAGS & DEBUG_TINY) printf ("I#%d", num); switch (num) { /* * Command has been completed with error condition * or has been auto-sensed. */ case SIR_COMPLETE_ERROR: sym_complete_error(np, cp); return; /* * The C code is currently trying to recover from something. * Typically, user want to abort some command. */ case SIR_SCRIPT_STOPPED: case SIR_TARGET_SELECTED: case SIR_ABORT_SENT: sym_sir_task_recovery(np, num); return; /* * The device didn't go to MSG OUT phase after having * been selected with ATN. We donnot want to handle * that. */ case SIR_SEL_ATN_NO_MSG_OUT: printf ("%s:%d: No MSG OUT phase after selection with ATN.\n", sym_name (np), target); goto out_stuck; /* * The device didn't switch to MSG IN phase after * having reseleted the initiator. */ case SIR_RESEL_NO_MSG_IN: /* * After reselection, the device sent a message that wasn't * an IDENTIFY. */ case SIR_RESEL_NO_IDENTIFY: /* * If devices reselecting without sending an IDENTIFY * message still exist, this should help. * We just assume lun=0, 1 CCB, no tag. */ if (tp->lun0p) { OUTL (nc_dsa, scr_to_cpu(tp->lun0p->itl_task_sa)); OUTL (nc_dsp, SCRIPT_BA (np, resel_dsa1)); return; } /* * The device reselected a LUN we donnot know about. */ case SIR_RESEL_BAD_LUN: np->msgout[0] = M_RESET; goto out; /* * The device reselected for an untagged nexus and we * haven't any. */ case SIR_RESEL_BAD_I_T_L: np->msgout[0] = M_ABORT; goto out; /* * The device reselected for a tagged nexus that we donnot * have. */ case SIR_RESEL_BAD_I_T_L_Q: np->msgout[0] = M_ABORT_TAG; goto out; /* * The SCRIPTS let us know that the device has grabbed * our message and will abort the job. */ case SIR_RESEL_ABORTED: np->lastmsg = np->msgout[0]; np->msgout[0] = M_NOOP; printf ("%s:%d: message %x sent on bad reselection.\n", sym_name (np), target, np->lastmsg); goto out; /* * The SCRIPTS let us know that a message has been * successfully sent to the device. */ case SIR_MSG_OUT_DONE: np->lastmsg = np->msgout[0]; np->msgout[0] = M_NOOP; /* Should we really care of that */ if (np->lastmsg == M_PARITY || np->lastmsg == M_ID_ERROR) { if (cp) { cp->xerr_status &= ~XE_PARITY_ERR; if (!cp->xerr_status) OUTOFFB (HF_PRT, HF_EXT_ERR); } } goto out; /* * The device didn't send a GOOD SCSI status. * We may have some work to do prior to allow * the SCRIPTS processor to continue. */ case SIR_BAD_SCSI_STATUS: if (!cp) goto out; sym_sir_bad_scsi_status(np, num, cp); return; /* * We are asked by the SCRIPTS to prepare a * REJECT message. */ case SIR_REJECT_TO_SEND: sym_print_msg(cp, "M_REJECT to send for ", np->msgin); np->msgout[0] = M_REJECT; goto out; /* * We have been ODD at the end of a DATA IN * transfer and the device didn't send a * IGNORE WIDE RESIDUE message. * It is a data overrun condition. */ case SIR_SWIDE_OVERRUN: if (cp) { OUTONB (HF_PRT, HF_EXT_ERR); cp->xerr_status |= XE_SWIDE_OVRUN; } goto out; /* * We have been ODD at the end of a DATA OUT * transfer. * It is a data underrun condition. */ case SIR_SODL_UNDERRUN: if (cp) { OUTONB (HF_PRT, HF_EXT_ERR); cp->xerr_status |= XE_SODL_UNRUN; } goto out; /* * We received a message. */ case SIR_MSG_RECEIVED: if (!cp) goto out_stuck; switch (np->msgin [0]) { /* * We received an extended message. * We handle MODIFY DATA POINTER, SDTR, WDTR * and reject all other extended messages. */ case M_EXTENDED: switch (np->msgin [2]) { case M_X_MODIFY_DP: if (DEBUG_FLAGS & DEBUG_POINTER) sym_print_msg(cp,"modify DP",np->msgin); tmp = (np->msgin[3]<<24) + (np->msgin[4]<<16) + (np->msgin[5]<<8) + (np->msgin[6]); sym_modify_dp(np, tp, cp, tmp); return; case M_X_SYNC_REQ: sym_sync_nego(np, tp, cp); return; case M_X_PPR_REQ: sym_ppr_nego(np, tp, cp); return; case M_X_WIDE_REQ: sym_wide_nego(np, tp, cp); return; default: goto out_reject; } break; /* * We received a 1/2 byte message not handled from SCRIPTS. * We are only expecting MESSAGE REJECT and IGNORE WIDE * RESIDUE messages that haven't been anticipated by * SCRIPTS on SWIDE full condition. Unanticipated IGNORE * WIDE RESIDUE messages are aliased as MODIFY DP (-1). */ case M_IGN_RESIDUE: if (DEBUG_FLAGS & DEBUG_POINTER) sym_print_msg(cp,"ign wide residue", np->msgin); sym_modify_dp(np, tp, cp, -1); return; case M_REJECT: if (INB (HS_PRT) == HS_NEGOTIATE) sym_nego_rejected(np, tp, cp); else { PRINT_ADDR(cp); printf ("M_REJECT received (%x:%x).\n", scr_to_cpu(np->lastmsg), np->msgout[0]); } goto out_clrack; break; default: goto out_reject; } break; /* * We received an unknown message. * Ignore all MSG IN phases and reject it. */ case SIR_MSG_WEIRD: sym_print_msg(cp, "WEIRD message received", np->msgin); OUTL (nc_dsp, SCRIPTH_BA (np, msg_weird)); return; /* * Negotiation failed. * Target does not send us the reply. * Remove the HS_NEGOTIATE status. */ case SIR_NEGO_FAILED: OUTB (HS_PRT, HS_BUSY); /* * Negotiation failed. * Target does not want answer message. */ case SIR_NEGO_PROTO: sym_nego_default(np, tp, cp); goto out; }; out: OUTONB (nc_dcntl, (STD|NOCOM)); return; out_reject: OUTL (nc_dsp, SCRIPTH_BA (np, msg_bad)); return; out_clrack: OUTL (nc_dsp, SCRIPT_BA (np, clrack)); return; out_stuck: } /* * Acquire a control block */ static ccb_p sym_get_ccb (hcb_p np, u_char tn, u_char ln, u_char tag_order) { tcb_p tp = &np->target[tn]; lcb_p lp = sym_lp(np, tp, ln); u_short tag = NO_TAG; SYM_QUEHEAD *qp; ccb_p cp = (ccb_p) 0; /* * Look for a free CCB */ if (sym_que_empty(&np->free_ccbq)) (void) sym_alloc_ccb(np); qp = sym_remque_head(&np->free_ccbq); if (!qp) goto out; cp = sym_que_entry(qp, struct sym_ccb, link_ccbq); /* * If the LCB is not yet available and the LUN * has been probed ok, try to allocate the LCB. */ if (!lp && sym_is_bit(tp->lun_map, ln)) { lp = sym_alloc_lcb(np, tn, ln); if (!lp) goto out_free; } /* * If the LCB is not available here, then the * logical unit is not yet discovered. For those * ones only accept 1 SCSI IO per logical unit, * since we cannot allow disconnections. */ if (!lp) { if (!sym_is_bit(tp->busy0_map, ln)) sym_set_bit(tp->busy0_map, ln); else goto out_free; } else { /* * If we have been asked for a tagged command. */ if (tag_order) { /* * Debugging purpose. */ assert(lp->busy_itl == 0); /* * Allocate resources for tags if not yet. */ if (!lp->cb_tags) { sym_alloc_lcb_tags(np, tn, ln); if (!lp->cb_tags) goto out_free; } /* * Get a tag for this SCSI IO and set up * the CCB bus address for reselection, * and count it for this LUN. * Toggle reselect patch to tagged. */ if (lp->busy_itlq < SYM_CONF_MAX_TASK) { tag = lp->cb_tags[lp->ia_tag]; if (++lp->ia_tag == SYM_CONF_MAX_TASK) lp->ia_tag = 0; lp->itlq_tbl[tag] = cpu_to_scr(cp->ccb_ba); ++lp->busy_itlq; lp->resel_sa = cpu_to_scr(SCRIPT_BA (np, resel_tag)); } else goto out_free; } /* * This command will not be tagged. * If we already have either a tagged or untagged * one, refuse to overlap this untagged one. */ else { /* * Debugging purpose. */ assert(lp->busy_itl == 0 && lp->busy_itlq == 0); /* * Count this nexus for this LUN. * Set up the CCB bus address for reselection. * Toggle reselect path to untagged. */ if (++lp->busy_itl == 1) { lp->itl_task_sa = cpu_to_scr(cp->ccb_ba); lp->resel_sa = cpu_to_scr(SCRIPT_BA (np,resel_no_tag)); } else goto out_free; } } /* * Put the CCB into the busy queue. */ sym_insque_tail(&cp->link_ccbq, &np->busy_ccbq); /* * Remember all informations needed to free this CCB. */ cp->to_abort = 0; cp->tag = tag; cp->target = tn; cp->lun = ln; if (DEBUG_FLAGS & DEBUG_TAGS) { PRINT_LUN(np, tn, ln); printf ("ccb @%p using tag %d.\n", cp, tag); } out: return cp; out_free: sym_insque_head(&cp->link_ccbq, &np->free_ccbq); return (ccb_p) 0; } /* * Release one control block */ static void sym_free_ccb (hcb_p np, ccb_p cp) { tcb_p tp = &np->target[cp->target]; lcb_p lp = sym_lp(np, tp, cp->lun); if (DEBUG_FLAGS & DEBUG_TAGS) { PRINT_LUN(np, cp->target, cp->lun); printf ("ccb @%p freeing tag %d.\n", cp, cp->tag); } /* * If LCB available, */ if (lp) { /* * If tagged, release the tag, set the relect path */ if (cp->tag != NO_TAG) { /* * Free the tag value. */ lp->cb_tags[lp->if_tag] = cp->tag; if (++lp->if_tag == SYM_CONF_MAX_TASK) lp->if_tag = 0; /* * Make the reselect path invalid, * and uncount this CCB. */ lp->itlq_tbl[cp->tag] = cpu_to_scr(np->bad_itlq_ba); --lp->busy_itlq; } else { /* Untagged */ /* * Make the reselect path invalid, * and uncount this CCB. */ lp->itl_task_sa = cpu_to_scr(np->bad_itl_ba); --lp->busy_itl; } /* * If no JOB active, make the LUN reselect path invalid. */ if (lp->busy_itlq == 0 && lp->busy_itl == 0) lp->resel_sa = cpu_to_scr(SCRIPTH_BA(np,resel_bad_lun)); } /* * Otherwise, we only accept 1 IO per LUN. * Clear the bit that keeps track of this IO. */ else sym_clr_bit(tp->busy0_map, cp->lun); /* * We donnot queue more than 1 ccb per target * with negotiation at any time. If this ccb was * used for negotiation, clear this info in the tcb. */ if (cp == tp->nego_cp) tp->nego_cp = 0; #ifdef SYM_CONF_IARB_SUPPORT /* * If we just complete the last queued CCB, * clear this info that is no longer relevant. */ if (cp == np->last_cp) np->last_cp = 0; #endif /* * Make this CCB available. */ cp->cam_ccb = 0; cp->host_status = HS_IDLE; sym_remque(&cp->link_ccbq); sym_insque_head(&cp->link_ccbq, &np->free_ccbq); } /* * Allocate a CCB from memory and initialize its fixed part. */ static ccb_p sym_alloc_ccb(hcb_p np) { ccb_p cp = 0; int hcode; /* * Prevent from allocating more CCBs than we can * queue to the controller. */ if (np->actccbs >= SYM_CONF_MAX_START) return 0; /* * Allocate memory for this CCB. */ cp = sym_calloc(sizeof(struct sym_ccb), "CCB"); if (!cp) return 0; /* * Count it. */ np->actccbs++; /* * Compute the bus address of this ccb. */ cp->ccb_ba = vtobus(cp); /* * Insert this ccb into the hashed list. */ hcode = CCB_HASH_CODE(cp->ccb_ba); cp->link_ccbh = np->ccbh[hcode]; np->ccbh[hcode] = cp; /* * Initialyze the start and restart actions. */ cp->phys.go.start = cpu_to_scr(SCRIPT_BA (np, idle)); cp->phys.go.restart = cpu_to_scr(SCRIPTH_BA(np, bad_i_t_l)); /* * Initilialyze some other fields. */ cp->phys.smsg_ext.addr = cpu_to_scr(vtobus(&np->msgin[2])); /* * Chain into wakeup list and into free ccb queue. */ cp->link_ccb = np->ccbc; np->ccbc = cp; sym_insque_head(&cp->link_ccbq, &np->free_ccbq); return cp; } /* * Look up a CCB from a DSA value. */ static ccb_p sym_ccb_from_dsa(hcb_p np, u_long dsa) { int hcode; ccb_p cp; hcode = CCB_HASH_CODE(dsa); cp = np->ccbh[hcode]; while (cp) { if (cp->ccb_ba == dsa) break; cp = cp->link_ccbh; } return cp; } /* * Target control block initialisation. * Nothing important to do at the moment. */ static void sym_init_tcb (hcb_p np, u_char tn) { /* * Check some alignments required by the chip. */ assert (((offsetof(struct sym_reg, nc_sxfer) ^ offsetof(struct sym_tcb, sval)) &3) == 0); assert (((offsetof(struct sym_reg, nc_scntl3) ^ offsetof(struct sym_tcb, wval)) &3) == 0); } /* * Lun control block allocation and initialization. */ static lcb_p sym_alloc_lcb (hcb_p np, u_char tn, u_char ln) { tcb_p tp = &np->target[tn]; lcb_p lp = sym_lp(np, tp, ln); /* * Already done, just return. */ if (lp) return lp; /* * Check against some race. */ assert(!sym_is_bit(tp->busy0_map, ln)); /* * Initialize the target control block if not yet. */ sym_init_tcb (np, tn); /* * Allocate the LCB bus address array. * Compute the bus address of this table. */ if (ln && !tp->luntbl) { int i; tp->luntbl = sym_calloc(256, "LUNTBL"); if (!tp->luntbl) goto fail; for (i = 0 ; i < 64 ; i++) tp->luntbl[i] = cpu_to_scr(vtobus(&np->badlun_sa)); tp->luntbl_sa = cpu_to_scr(vtobus(tp->luntbl)); } /* * Allocate the table of pointers for LUN(s) > 0, if needed. */ if (ln && !tp->lunmp) { tp->lunmp = sym_calloc(SYM_CONF_MAX_LUN * sizeof(lcb_p), "LUNMP"); if (!tp->lunmp) goto fail; } /* * Allocate the lcb. * Make it available to the chip. */ lp = sym_calloc(sizeof(struct sym_lcb), "LCB"); if (!lp) goto fail; if (ln) { tp->lunmp[ln] = lp; tp->luntbl[ln] = cpu_to_scr(vtobus(lp)); } else { tp->lun0p = lp; tp->lun0_sa = cpu_to_scr(vtobus(lp)); } /* * Let the itl task point to error handling. */ lp->itl_task_sa = cpu_to_scr(np->bad_itl_ba); /* * Set the reselect pattern to our default. :) */ lp->resel_sa = cpu_to_scr(SCRIPTH_BA(np, resel_bad_lun)); /* * Set user capabilities. */ lp->user_flags = tp->usrflags & (SYM_DISC_ENABLED | SYM_TAGS_ENABLED); fail: return lp; } /* * Allocate LCB resources for tagged command queuing. */ static void sym_alloc_lcb_tags (hcb_p np, u_char tn, u_char ln) { tcb_p tp = &np->target[tn]; lcb_p lp = sym_lp(np, tp, ln); int i; /* * If LCB not available, try to allocate it. */ if (!lp && !(lp = sym_alloc_lcb(np, tn, ln))) goto fail; /* * Allocate the task table and and the tag allocation * circular buffer. We want both or none. */ lp->itlq_tbl = sym_calloc(SYM_CONF_MAX_TASK*4, "ITLQ_TBL"); if (!lp->itlq_tbl) goto fail; lp->cb_tags = sym_calloc(SYM_CONF_MAX_TASK, "CB_TAGS"); if (!lp->cb_tags) { sym_mfree(lp->itlq_tbl, SYM_CONF_MAX_TASK*4, "ITLQ_TBL"); lp->itlq_tbl = 0; goto fail; } /* * Initialize the task table with invalid entries. */ for (i = 0 ; i < SYM_CONF_MAX_TASK ; i++) lp->itlq_tbl[i] = cpu_to_scr(np->notask_ba); /* * Fill up the tag buffer with tag numbers. */ for (i = 0 ; i < SYM_CONF_MAX_TASK ; i++) lp->cb_tags[i] = i; /* * Make the task table available to SCRIPTS, * And accept tagged commands now. */ lp->itlq_tbl_sa = cpu_to_scr(vtobus(lp->itlq_tbl)); return; fail: } /* * Test the pci bus snoop logic :-( * * Has to be called with interrupts disabled. */ #ifndef SYM_CONF_IOMAPPED static int sym_regtest (hcb_p np) { register volatile u32 data; /* * chip registers may NOT be cached. * write 0xffffffff to a read only register area, * and try to read it back. */ data = 0xffffffff; OUTL_OFF(offsetof(struct sym_reg, nc_dstat), data); data = INL_OFF(offsetof(struct sym_reg, nc_dstat)); #if 1 if (data == 0xffffffff) { #else if ((data & 0xe2f0fffd) != 0x02000080) { #endif printf ("CACHE TEST FAILED: reg dstat-sstat2 readback %x.\n", (unsigned) data); return (0x10); }; return (0); } #endif static int sym_snooptest (hcb_p np) { u32 sym_rd, sym_wr, sym_bk, host_rd, host_wr, pc; int i, err=0; #ifndef SYM_CONF_IOMAPPED err |= sym_regtest (np); if (err) return (err); #endif /* * init */ pc = SCRIPTH0_BA (np, snooptest); host_wr = 1; sym_wr = 2; /* * Set memory and register. */ np->cache = cpu_to_scr(host_wr); OUTL (nc_temp, sym_wr); /* * Start script (exchange values) */ OUTL (nc_dsa, vtobus(np)); OUTL (nc_dsp, pc); /* * Wait 'til done (with timeout) */ for (i=0; icache); sym_rd = INL (nc_scratcha); sym_bk = INL (nc_temp); /* * check for timeout */ if (i>=SYM_SNOOP_TIMEOUT) { printf ("CACHE TEST FAILED: timeout.\n"); return (0x20); }; /* * Check termination position. */ if (pc != SCRIPTH0_BA (np, snoopend)+8) { printf ("CACHE TEST FAILED: script execution failed.\n"); printf ("start=%08lx, pc=%08lx, end=%08lx\n", (u_long) SCRIPTH0_BA (np, snooptest), (u_long) pc, (u_long) SCRIPTH0_BA (np, snoopend) +8); return (0x40); }; /* * Show results. */ if (host_wr != sym_rd) { printf ("CACHE TEST FAILED: host wrote %d, chip read %d.\n", (int) host_wr, (int) sym_rd); err |= 1; }; if (host_rd != sym_wr) { printf ("CACHE TEST FAILED: chip wrote %d, host read %d.\n", (int) sym_wr, (int) host_rd); err |= 2; }; if (sym_bk != sym_wr) { printf ("CACHE TEST FAILED: chip wrote %d, read back %d.\n", (int) sym_wr, (int) sym_bk); err |= 4; }; return (err); } /* * Determine the chip's clock frequency. * * This is essential for the negotiation of the synchronous * transfer rate. * * Note: we have to return the correct value. * THERE IS NO SAFE DEFAULT VALUE. * * Most NCR/SYMBIOS boards are delivered with a 40 Mhz clock. * 53C860 and 53C875 rev. 1 support fast20 transfers but * do not have a clock doubler and so are provided with a * 80 MHz clock. All other fast20 boards incorporate a doubler * and so should be delivered with a 40 MHz clock. * The recent fast40 chips (895/896/895A/1010) use a 40 Mhz base * clock and provide a clock quadrupler (160 Mhz). */ /* * Select SCSI clock frequency */ static void sym_selectclock(hcb_p np, u_char scntl3) { /* * If multiplier not present or not selected, leave here. */ if (np->multiplier <= 1) { OUTB(nc_scntl3, scntl3); return; } if (sym_verbose >= 2) printf ("%s: enabling clock multiplier\n", sym_name(np)); OUTB(nc_stest1, DBLEN); /* Enable clock multiplier */ /* * Wait for the LCKFRQ bit to be set if supported by the chip. * Otherwise wait 20 micro-seconds. */ if (np->features & FE_LCKFRQ) { int i = 20; while (!(INB(nc_stest4) & LCKFRQ) && --i > 0) UDELAY (20); if (!i) printf("%s: the chip cannot lock the frequency\n", sym_name(np)); } else UDELAY (20); OUTB(nc_stest3, HSC); /* Halt the scsi clock */ OUTB(nc_scntl3, scntl3); OUTB(nc_stest1, (DBLEN|DBLSEL));/* Select clock multiplier */ OUTB(nc_stest3, 0x00); /* Restart scsi clock */ } /* * calculate SCSI clock frequency (in KHz) */ static unsigned getfreq (hcb_p np, int gen) { unsigned int ms = 0; unsigned int f; /* * Measure GEN timer delay in order * to calculate SCSI clock frequency * * This code will never execute too * many loop iterations (if DELAY is * reasonably correct). It could get * too low a delay (too high a freq.) * if the CPU is slow executing the * loop for some reason (an NMI, for * example). For this reason we will * if multiple measurements are to be * performed trust the higher delay * (lower frequency returned). */ OUTW (nc_sien , 0); /* mask all scsi interrupts */ (void) INW (nc_sist); /* clear pending scsi interrupt */ OUTB (nc_dien , 0); /* mask all dma interrupts */ (void) INW (nc_sist); /* another one, just to be sure :) */ OUTB (nc_scntl3, 4); /* set pre-scaler to divide by 3 */ OUTB (nc_stime1, 0); /* disable general purpose timer */ OUTB (nc_stime1, gen); /* set to nominal delay of 1<= 2) printf ("%s: Delay (GEN=%d): %u msec, %u KHz\n", sym_name(np), gen, ms, f); return f; } static unsigned sym_getfreq (hcb_p np) { u_int f1, f2; int gen = 11; (void) getfreq (np, gen); /* throw away first result */ f1 = getfreq (np, gen); f2 = getfreq (np, gen); if (f1 > f2) f1 = f2; /* trust lower result */ return f1; } /* * Get/probe chip SCSI clock frequency */ static void sym_getclock (hcb_p np, int mult) { unsigned char scntl3 = np->sv_scntl3; unsigned char stest1 = np->sv_stest1; unsigned f1; /* * For the C10 core, assume 40 MHz. */ if (np->features & FE_C10) { np->multiplier = mult; np->clock_khz = 40000 * mult; return; } np->multiplier = 1; f1 = 40000; /* * True with 875/895/896/895A with clock multiplier selected */ if (mult > 1 && (stest1 & (DBLEN+DBLSEL)) == DBLEN+DBLSEL) { if (sym_verbose >= 2) printf ("%s: clock multiplier found\n", sym_name(np)); np->multiplier = mult; } /* * If multiplier not found or scntl3 not 7,5,3, * reset chip and get frequency from general purpose timer. * Otherwise trust scntl3 BIOS setting. */ if (np->multiplier != mult || (scntl3 & 7) < 3 || !(scntl3 & 1)) { OUTB (nc_stest1, 0); /* make sure doubler is OFF */ f1 = sym_getfreq (np); if (sym_verbose) printf ("%s: chip clock is %uKHz\n", sym_name(np), f1); if (f1 < 45000) f1 = 40000; else if (f1 < 55000) f1 = 50000; else f1 = 80000; if (f1 < 80000 && mult > 1) { if (sym_verbose >= 2) printf ("%s: clock multiplier assumed\n", sym_name(np)); np->multiplier = mult; } } else { if ((scntl3 & 7) == 3) f1 = 40000; else if ((scntl3 & 7) == 5) f1 = 80000; else f1 = 160000; f1 /= np->multiplier; } /* * Compute controller synchronous parameters. */ f1 *= np->multiplier; np->clock_khz = f1; } /* * Get/probe PCI clock frequency */ static int sym_getpciclock (hcb_p np) { static int f = 0; /* For the C10, this will not work */ if (!f && !(np->features & FE_C10)) { OUTB (nc_stest1, SCLK); /* Use the PCI clock as SCSI clock */ f = (int) sym_getfreq (np); OUTB (nc_stest1, 0); } return f; } /*============= DRIVER ACTION/COMPLETION ====================*/ /* * Print something that tells about extended errors. */ static void sym_print_xerr(ccb_p cp, int x_status) { if (x_status & XE_PARITY_ERR) { PRINT_ADDR(cp); printf ("unrecovered SCSI parity error.\n"); } if (x_status & XE_EXTRA_DATA) { PRINT_ADDR(cp); printf ("extraneous data discarded.\n"); } if (x_status & XE_BAD_PHASE) { PRINT_ADDR(cp); printf ("illegal scsi phase (4/5).\n"); } if (x_status & XE_SODL_UNRUN) { PRINT_ADDR(cp); printf ("ODD transfer in DATA OUT phase.\n"); } if (x_status & XE_SWIDE_OVRUN) { PRINT_ADDR(cp); printf ("ODD transfer in DATA IN phase.\n"); } } /* * Choose the more appropriate CAM status if * the IO encountered an extended error. */ static int sym_xerr_cam_status(int cam_status, int x_status) { if (x_status) { if (x_status & XE_PARITY_ERR) cam_status = CAM_UNCOR_PARITY; else if (x_status &(XE_EXTRA_DATA|XE_SODL_UNRUN|XE_SWIDE_OVRUN)) cam_status = CAM_DATA_RUN_ERR; else if (x_status & XE_BAD_PHASE) cam_status = CAM_REQ_CMP_ERR; else cam_status = CAM_REQ_CMP_ERR; } return cam_status; } /* * Complete execution of a SCSI command with extented * error, SCSI status error, or having been auto-sensed. * * The SCRIPTS processor is not running there, so we * can safely access IO registers and remove JOBs from * the START queue. * SCRATCHA is assumed to have been loaded with STARTPOS * before the SCRIPTS called the C code. */ static void sym_complete_error (hcb_p np, ccb_p cp) { struct ccb_scsiio *csio; u_int cam_status; int i; /* * Paranoid check. :) */ if (!cp || !cp->cam_ccb) return; if (DEBUG_FLAGS & (DEBUG_TINY|DEBUG_RESULT)) { printf ("CCB=%lx STAT=%x/%x/%x DEV=%d/%d\n", (unsigned long)cp, cp->host_status, cp->ssss_status, cp->host_flags, cp->target, cp->lun); MDELAY(100); } /* * Get command, target and lun pointers. */ csio = &cp->cam_ccb->csio; /* * Check for extended errors. */ if (cp->xerr_status) { if (sym_verbose) sym_print_xerr(cp, cp->xerr_status); if (cp->host_status == HS_COMPLETE) cp->host_status = HS_COMP_ERR; } /* * Calculate the residual. */ csio->sense_resid = 0; csio->resid = sym_compute_residual(np, cp); if (!SYM_CONF_RESIDUAL_SUPPORT) {/* If user does not want residuals */ csio->resid = 0; /* throw them away. :) */ cp->sv_resid = 0; } if (cp->host_flags & HF_SENSE) { /* Auto sense */ csio->scsi_status = cp->sv_scsi_status; /* Restore status */ csio->sense_resid = csio->resid; /* Swap residuals */ csio->resid = cp->sv_resid; cp->sv_resid = 0; if (sym_verbose && cp->sv_xerr_status) sym_print_xerr(cp, cp->sv_xerr_status); if (cp->host_status == HS_COMPLETE && cp->ssss_status == S_GOOD && cp->xerr_status == 0) { cam_status = sym_xerr_cam_status(CAM_SCSI_STATUS_ERROR, cp->sv_xerr_status); cam_status |= CAM_AUTOSNS_VALID; #if 0 /* * If the device reports a UNIT ATTENTION condition * due to a RESET condition, we should consider all * disconnect CCBs for this unit as aborted. */ if (1) { u_char *p; p = (u_char *) &cp->cam_ccb->csio.sense_data; if (p[0]==0x70 && p[2]==0x6 && p[12]==0x29) sym_clear_tasks(np, CAM_REQ_ABORTED, cp->target,cp->lun, -1); } #endif } else cam_status = CAM_AUTOSENSE_FAIL; } else if (cp->host_status == HS_COMPLETE) { /* Bad SCSI status */ csio->scsi_status = cp->ssss_status; cam_status = CAM_SCSI_STATUS_ERROR; } else if (cp->host_status == HS_SEL_TIMEOUT) /* Selection timeout */ cam_status = CAM_SEL_TIMEOUT; else if (cp->host_status == HS_UNEXPECTED) /* Unexpected BUS FREE*/ cam_status = CAM_UNEXP_BUSFREE; else { /* Extended error */ if (sym_verbose) { PRINT_ADDR(cp); printf ("COMMAND FAILED (%x %x %x).\n", cp->host_status, cp->ssss_status, cp->xerr_status); } csio->scsi_status = cp->ssss_status; /* * Set the most appropriate value for CAM status. */ cam_status = sym_xerr_cam_status(CAM_REQ_CMP_ERR, cp->xerr_status); } /* * Dequeue all queued CCBs for that device * not yet started by SCRIPTS. */ i = (INL (nc_scratcha) - vtobus(np->squeue)) / 4; (void) sym_dequeue_from_squeue(np, i, cp->target, cp->lun, -1); /* * Restart the SCRIPTS processor. */ OUTL (nc_dsp, SCRIPT_BA (np, start)); /* * Add this one to the COMP queue. * Complete all those commands with either error * or requeue condition. */ sym_set_cam_status((union ccb *) csio, cam_status); sym_remque(&cp->link_ccbq); sym_insque_head(&cp->link_ccbq, &np->comp_ccbq); sym_flush_comp_queue(np, 0); } /* * Complete execution of a successful SCSI command. * * Only successful commands go to the DONE queue, * since we need to have the SCRIPTS processor * stopped on any error condition. * The SCRIPTS processor is running while we are * completing successful commands. */ static void sym_complete_ok (hcb_p np, ccb_p cp) { struct ccb_scsiio *csio; tcb_p tp; lcb_p lp; /* * Paranoid check. :) */ if (!cp || !cp->cam_ccb) return; assert (cp->host_status == HS_COMPLETE); /* * Get command, target and lun pointers. */ csio = &cp->cam_ccb->csio; tp = &np->target[cp->target]; lp = sym_lp(np, tp, cp->lun); /* * Assume device discovered on first success. */ if (!lp) sym_set_bit(tp->lun_map, cp->lun); /* * If all data have been transferred, given than no * extended error did occur, there is no residual. */ csio->resid = 0; if (cp->phys.lastp != cp->phys.goalp) csio->resid = sym_compute_residual(np, cp); /* * Wrong transfer residuals may be worse than just always * returning zero. User can disable this feature from * sym_conf.h. Residual support is enabled by default. */ if (!SYM_CONF_RESIDUAL_SUPPORT) csio->resid = 0; /* * Set status and complete the command. */ csio->scsi_status = cp->ssss_status; sym_set_cam_status((union ccb *) csio, CAM_REQ_CMP); sym_free_ccb (np, cp); sym_xpt_done(np, (union ccb *) csio); } /* * Our timeout handler. */ static void sym_timeout1(void *arg) { union ccb *ccb = (union ccb *) arg; hcb_p np = ccb->ccb_h.sym_hcb_ptr; /* * Check that the CAM CCB is still queued. */ if (!np) return; switch(ccb->ccb_h.func_code) { case XPT_SCSI_IO: (void) sym_abort_scsiio(np, ccb, 1); break; default: break; } } static void sym_timeout(void *arg) { int s = splcam(); sym_timeout1(arg); splx(s); } /* * Abort an SCSI IO. */ static int sym_abort_scsiio(hcb_p np, union ccb *ccb, int timed_out) { ccb_p cp; /* * Look up our CCB control block. */ for (cp=np->ccbc; cp; cp=cp->link_ccb) { if (cp->host_status != HS_IDLE && cp->cam_ccb == ccb) break; } if (!cp) return -1; /* * If a previous abort didn't succeed in time, * perform a BUS reset. */ if (cp->to_abort) { sym_reset_scsi_bus(np, 1); return 0; } /* * Mark the CCB for abort and allow time for. */ cp->to_abort = timed_out ? 2 : 1; ccb->ccb_h.timeout_ch = timeout(sym_timeout, (caddr_t) ccb, 10*hz); /* * Tell the SCRIPTS processor to stop and synchronize with us. */ np->istat_sem = SEM; OUTB (nc_istat, SIGP|SEM); return 0; } /* * Reset a SCSI device (all LUNs of a target). */ static void sym_reset_dev(hcb_p np, union ccb *ccb) { tcb_p tp; struct ccb_hdr *ccb_h = &ccb->ccb_h; if (ccb_h->target_id == np->myaddr || ccb_h->target_id >= SYM_CONF_MAX_TARGET || ccb_h->target_lun >= SYM_CONF_MAX_LUN) { sym_xpt_done2(np, ccb, CAM_DEV_NOT_THERE); return; } tp = &np->target[ccb_h->target_id]; tp->to_reset = 1; sym_xpt_done2(np, ccb, CAM_REQ_CMP); np->istat_sem = SEM; OUTB (nc_istat, SIGP|SEM); return; } /* * SIM action entry point. */ static void sym_action(struct cam_sim *sim, union ccb *ccb) { int s = splcam(); sym_action1(sim, ccb); splx(s); } static void sym_action1(struct cam_sim *sim, union ccb *ccb) { hcb_p np; tcb_p tp; lcb_p lp; ccb_p cp; int tmp; u_char idmsg, *msgptr; u_int msglen; struct ccb_scsiio *csio; struct ccb_hdr *ccb_h; CAM_DEBUG(ccb->ccb_h.path, CAM_DEBUG_TRACE, ("sym_action\n")); /* * Retrieve our controller data structure. */ np = (hcb_p) cam_sim_softc(sim); /* * The common case is SCSI IO. * We deal with other ones elsewhere. */ if (ccb->ccb_h.func_code != XPT_SCSI_IO) { sym_action2(sim, ccb); return; } csio = &ccb->csio; ccb_h = &csio->ccb_h; /* * Work around races. */ if ((ccb_h->status & CAM_STATUS_MASK) != CAM_REQ_INPROG) { xpt_done(ccb); return; } /* * Minimal checkings, so that we will not * go outside our tables. */ if (ccb_h->target_id == np->myaddr || ccb_h->target_id >= SYM_CONF_MAX_TARGET || ccb_h->target_lun >= SYM_CONF_MAX_LUN) { sym_xpt_done2(np, ccb, CAM_DEV_NOT_THERE); return; } /* * Retreive the target and lun descriptors. */ tp = &np->target[ccb_h->target_id]; lp = sym_lp(np, tp, ccb_h->target_lun); /* * Complete the 1st INQUIRY command with error * condition if the device is flagged NOSCAN * at BOOT in the NVRAM. This may speed up * the boot and maintain coherency with BIOS * device numbering. Clearing the flag allows * user to rescan skipped devices later. * We also return error for devices not flagged * for SCAN LUNS in the NVRAM since some mono-lun * devices behave badly when asked for some non * zero LUN. Btw, this is an absolute hack.:-) */ if (!(ccb_h->flags & CAM_CDB_PHYS) && (0x12 == ((ccb_h->flags & CAM_CDB_POINTER) ? csio->cdb_io.cdb_ptr[0] : csio->cdb_io.cdb_bytes[0]))) { if ((tp->usrflags & SYM_SCAN_BOOT_DISABLED) || ((tp->usrflags & SYM_SCAN_LUNS_DISABLED) && ccb_h->target_lun != 0)) { tp->usrflags &= ~SYM_SCAN_BOOT_DISABLED; sym_xpt_done2(np, ccb, CAM_DEV_NOT_THERE); return; } } /* * Get a control block for this IO. */ tmp = ((ccb_h->flags & CAM_TAG_ACTION_VALID) != 0); cp = sym_get_ccb(np, ccb_h->target_id, ccb_h->target_lun, tmp); if (!cp) { sym_xpt_done2(np, ccb, CAM_RESRC_UNAVAIL); return; } /* * Enqueue this IO in our pending queue. */ cp->cam_ccb = ccb; sym_enqueue_cam_ccb(np, ccb); /* * Build the IDENTIFY message. */ idmsg = M_IDENTIFY | cp->lun; if (cp->tag != NO_TAG || (lp && (lp->current_flags & SYM_DISC_ENABLED))) idmsg |= 0x40; msgptr = cp->scsi_smsg; msglen = 0; msgptr[msglen++] = idmsg; /* * Build the tag message if present. */ if (cp->tag != NO_TAG) { u_char order = csio->tag_action; switch(order) { case M_ORDERED_TAG: break; case M_HEAD_TAG: break; default: order = M_SIMPLE_TAG; } msgptr[msglen++] = order; /* * For less than 128 tags, actual tags are numbered * 1,3,5,..2*MAXTAGS+1,since we may have to deal * with devices that have problems with #TAG 0 or too * great #TAG numbers. For more tags (up to 256), * we use directly our tag number. */ #if SYM_CONF_MAX_TASK > (512/4) msgptr[msglen++] = cp->tag; #else msgptr[msglen++] = (cp->tag << 1) + 1; #endif } /* * Build a negotiation message if needed. * (nego_status is filled by sym_prepare_nego()) */ cp->nego_status = 0; if (tp->tinfo.current.width != tp->tinfo.goal.width || tp->tinfo.current.period != tp->tinfo.goal.period || tp->tinfo.current.offset != tp->tinfo.goal.offset || #if 0 /* For now only renegotiate, based on width, period and offset */ tp->tinfo.current.options != tp->tinfo.goal.options) { #else 0) { #endif if (!tp->nego_cp && lp) msglen += sym_prepare_nego(np, cp, 0, msgptr + msglen); } /* * Fill in our ccb */ /* * Startqueue */ cp->phys.go.start = cpu_to_scr(SCRIPT_BA (np, select)); cp->phys.go.restart = cpu_to_scr(SCRIPT_BA (np, resel_dsa)); /* * select */ cp->phys.select.sel_id = cp->target; cp->phys.select.sel_scntl3 = tp->wval; cp->phys.select.sel_sxfer = tp->sval; cp->phys.select.sel_scntl4 = tp->uval; /* * message */ cp->phys.smsg.addr = cpu_to_scr(CCB_PHYS (cp, scsi_smsg)); cp->phys.smsg.size = cpu_to_scr(msglen); /* * command */ if (sym_setup_cdb(np, csio, cp) < 0) { sym_free_ccb(np, cp); sym_xpt_done(np, ccb); return; } /* * status */ #if 0 /* Provision */ cp->actualquirks = tp->quirks; #endif cp->actualquirks = SYM_QUIRK_AUTOSAVE; cp->host_status = cp->nego_status ? HS_NEGOTIATE : HS_BUSY; cp->ssss_status = S_ILLEGAL; cp->xerr_status = 0; cp->host_flags = 0; cp->phys.extra_bytes = 0; /* * extreme data pointer. * shall be positive, so -1 is lower than lowest.:) */ cp->ext_sg = -1; cp->ext_ofs = 0; /* * Build the data descriptor block * and start the IO. */ if (sym_setup_data(np, csio, cp) < 0) { sym_free_ccb(np, cp); sym_xpt_done(np, ccb); return; } } /* * How complex it gets to deal with the CDB in CAM. * I bet, physical CDBs will never be used on the planet. */ static int sym_setup_cdb(hcb_p np, struct ccb_scsiio *csio, ccb_p cp) { struct ccb_hdr *ccb_h; u32 cmd_ba; int cmd_len; ccb_h = &csio->ccb_h; /* * CDB is 16 bytes max. */ if (csio->cdb_len > 16) { sym_set_cam_status(cp->cam_ccb, CAM_REQ_INVALID); return -1; } cmd_len = csio->cdb_len; if (ccb_h->flags & CAM_CDB_POINTER) { /* CDB is a pointer */ if (!(ccb_h->flags & CAM_CDB_PHYS)) { /* CDB pointer is virtual */ cmd_ba = vtobus(csio->cdb_io.cdb_ptr); } else { /* CDB pointer is physical */ #if 0 cmd_ba = ((u32)csio->cdb_io.cdb_ptr) & 0xffffffff; #else sym_set_cam_status(cp->cam_ccb, CAM_REQ_INVALID); return -1; #endif } } else { /* CDB is in the ccb (buffer) */ cmd_ba = vtobus(csio->cdb_io.cdb_bytes); } cp->phys.cmd.addr = cpu_to_scr(cmd_ba); cp->phys.cmd.size = cpu_to_scr(cmd_len); return 0; } /* * How complex it gets to deal with the data in CAM. * I bet physical data will never be used in our galaxy. */ static int sym_setup_data(hcb_p np, struct ccb_scsiio *csio, ccb_p cp) { struct ccb_hdr *ccb_h; int dir, retv; u32 lastp, goalp; ccb_h = &csio->ccb_h; /* * Now deal with the data. */ cp->data_len = 0; cp->segments = 0; /* * No direction means no data. */ dir = (ccb_h->flags & CAM_DIR_MASK); if (dir == CAM_DIR_NONE) goto end_scatter; if (!(ccb_h->flags & CAM_SCATTER_VALID)) { /* Single buffer */ if (!(ccb_h->flags & CAM_DATA_PHYS)) { /* Buffer is virtual */ retv = sym_scatter_virtual(np, cp, (vm_offset_t) csio->data_ptr, (vm_size_t) csio->dxfer_len); } else { /* Buffer is physical */ retv = sym_scatter_physical(np, cp, (vm_offset_t) csio->data_ptr, (vm_size_t) csio->dxfer_len); } if (retv < 0) goto too_big; } else { /* Scatter/gather list */ int i; struct bus_dma_segment *segs; segs = (struct bus_dma_segment *)csio->data_ptr; if ((ccb_h->flags & CAM_SG_LIST_PHYS) != 0) { /* The SG list pointer is physical */ sym_set_cam_status(cp->cam_ccb, CAM_REQ_INVALID); return -1; } retv = 0; if (!(ccb_h->flags & CAM_DATA_PHYS)) { /* SG buffer pointers are virtual */ for (i = csio->sglist_cnt - 1 ; i >= 0 ; --i) { retv = sym_scatter_virtual(np, cp, segs[i].ds_addr, segs[i].ds_len); if (retv < 0) break; } } else { /* SG buffer pointers are physical */ for (i = csio->sglist_cnt - 1 ; i >= 0 ; --i) { retv = sym_scatter_physical(np, cp, segs[i].ds_addr, segs[i].ds_len); if (retv < 0) break; } } if (retv < 0) goto too_big; } end_scatter: /* * No segments means no data. */ if (!cp->segments) dir = CAM_DIR_NONE; /* * Set the data pointer. */ switch(dir) { case CAM_DIR_OUT: goalp = SCRIPT_BA (np, data_out2) + 8; #ifdef SYM_CONF_BROKEN_U3EN_SUPPORT if ((np->features & (FE_C10|FE_U3EN)) == FE_C10) { tcb_p tp = &np->target[cp->target]; if (tp->tinfo.current.options & PPR_OPT_DT) goalp = SCRIPTH_BA (np, dt_data_out2) + 8; } #endif lastp = goalp - 8 - (cp->segments * (2*4)); break; case CAM_DIR_IN: goalp = SCRIPT_BA (np, data_in2) + 8; #ifdef SYM_CONF_BROKEN_U3EN_SUPPORT if ((np->features & (FE_C10|FE_U3EN)) == FE_C10) { tcb_p tp = &np->target[cp->target]; if (tp->tinfo.current.options & PPR_OPT_DT) goalp = SCRIPTH_BA (np, dt_data_in2) + 8; } #endif lastp = goalp - 8 - (cp->segments * (2*4)); break; case CAM_DIR_NONE: default: lastp = goalp = SCRIPTH_BA (np, no_data); break; } cp->phys.lastp = cpu_to_scr(lastp); cp->phys.goalp = cpu_to_scr(goalp); cp->phys.savep = cpu_to_scr(lastp); cp->startp = cp->phys.savep; /* * Activate this job. * If we have awaiting commands for that unit, 2 max * at a time is enough to flush the CCB wait queue. */ sym_put_start_queue(np, cp); /* * Command is successfully queued. */ return 0; too_big: sym_set_cam_status(cp->cam_ccb, CAM_REQ_TOO_BIG); return -1; } /* * Scatter a virtual buffer into bus addressable chunks. */ static int sym_scatter_virtual(hcb_p np, ccb_p cp, vm_offset_t vaddr, vm_size_t len) { u_long pe, pn; u_long n, k; int s; cp->data_len += len; pe = vaddr + len; n = len; s = SYM_CONF_MAX_SG - 1 - cp->segments; while (n && s >= 0) { pn = (pe - 1) & ~PAGE_MASK; k = pe - pn; if (k > n) { k = n; pn = pe - n; } if (DEBUG_FLAGS & DEBUG_SCATTER) { printf ("%s scatter: va=%lx pa=%lx siz=%lx\n", sym_name(np), pn, (u_long) vtobus(pn), k); } cp->phys.data[s].addr = cpu_to_scr(vtobus(pn)); cp->phys.data[s].size = cpu_to_scr(k); pe = pn; n -= k; --s; } cp->segments = SYM_CONF_MAX_SG - 1 - s; return n ? -1 : 0; } /* * Will stay so forever, in my opinion. */ static int sym_scatter_physical(hcb_p np, ccb_p cp, vm_offset_t vaddr, vm_size_t len) { return -1; } /* * SIM action for non performance critical stuff. */ static void sym_action2(struct cam_sim *sim, union ccb *ccb) { hcb_p np; tcb_p tp; lcb_p lp; struct ccb_hdr *ccb_h; /* * Retrieve our controller data structure. */ np = (hcb_p) cam_sim_softc(sim); ccb_h = &ccb->ccb_h; switch (ccb_h->func_code) { case XPT_SET_TRAN_SETTINGS: { struct ccb_trans_settings *cts; cts = &ccb->cts; tp = &np->target[ccb_h->target_id]; /* * Update user transfer settings if asked by user. */ if ((cts->flags & CCB_TRANS_USER_SETTINGS) != 0) sym_update_trans(np, tp, &tp->tinfo.user, cts); /* * Update current wished settings if asked by user. * Force negotiations if something has changed. */ if ((cts->flags & CCB_TRANS_CURRENT_SETTINGS) != 0) sym_update_trans(np, tp, &tp->tinfo.goal, cts); /* * The guys that have implemented this CAM seem to * have made the common mistake about the CmdQue flag. * This feature is a device feature and so must be * handled per logical unit. */ lp = sym_lp(np, tp, ccb_h->target_lun); if (lp) { if ((cts->flags & CCB_TRANS_USER_SETTINGS) != 0) sym_update_dflags(np, &lp->user_flags, cts); if ((cts->flags & CCB_TRANS_CURRENT_SETTINGS) != 0) sym_update_dflags(np, &lp->current_flags, cts); } sym_xpt_done2(np, ccb, CAM_REQ_CMP); break; } case XPT_GET_TRAN_SETTINGS: { struct ccb_trans_settings *cts; struct sym_trans *tip; u_char dflags; cts = &ccb->cts; tp = &np->target[ccb_h->target_id]; lp = sym_lp(np, tp, ccb_h->target_lun); if ((cts->flags & CCB_TRANS_CURRENT_SETTINGS) != 0) { tip = &tp->tinfo.current; dflags = lp ? lp->current_flags : 0; } else { tip = &tp->tinfo.user; dflags = lp ? lp->user_flags : tp->usrflags; } cts->sync_period = tip->period; cts->sync_offset = tip->offset; cts->bus_width = tip->width; cts->valid = CCB_TRANS_SYNC_RATE_VALID | CCB_TRANS_SYNC_OFFSET_VALID | CCB_TRANS_BUS_WIDTH_VALID; if (lp) { cts->flags &= ~(CCB_TRANS_DISC_ENB|CCB_TRANS_TAG_ENB); if (dflags & SYM_DISC_ENABLED) cts->flags |= CCB_TRANS_DISC_ENB; if (dflags & SYM_TAGS_ENABLED) cts->flags |= CCB_TRANS_TAG_ENB; cts->valid |= CCB_TRANS_DISC_VALID; cts->valid |= CCB_TRANS_TQ_VALID; } sym_xpt_done2(np, ccb, CAM_REQ_CMP); break; } case XPT_CALC_GEOMETRY: { struct ccb_calc_geometry *ccg; u32 size_mb; u32 secs_per_cylinder; int extended; /* * Silly DOS geometry. */ ccg = &ccb->ccg; size_mb = ccg->volume_size / ((1024L * 1024L) / ccg->block_size); extended = 1; if (size_mb > 1024 && extended) { ccg->heads = 255; ccg->secs_per_track = 63; } else { ccg->heads = 64; ccg->secs_per_track = 32; } secs_per_cylinder = ccg->heads * ccg->secs_per_track; ccg->cylinders = ccg->volume_size / secs_per_cylinder; sym_xpt_done2(np, ccb, CAM_REQ_CMP); break; } case XPT_PATH_INQ: { struct ccb_pathinq *cpi = &ccb->cpi; cpi->version_num = 1; cpi->hba_inquiry = PI_MDP_ABLE|PI_SDTR_ABLE|PI_TAG_ABLE; if ((np->features & FE_WIDE) != 0) cpi->hba_inquiry |= PI_WIDE_16; cpi->target_sprt = 0; cpi->hba_misc = 0; cpi->hba_eng_cnt = 0; cpi->max_target = (np->features & FE_WIDE) ? 15 : 7; /* Semantic problem:)LUN number max = max number of LUNs - 1 */ cpi->max_lun = SYM_CONF_MAX_LUN-1; if (SYM_SETUP_MAX_LUN < SYM_CONF_MAX_LUN) cpi->max_lun = SYM_SETUP_MAX_LUN-1; cpi->bus_id = cam_sim_bus(sim); cpi->initiator_id = np->myaddr; cpi->base_transfer_speed = 3300; strncpy(cpi->sim_vid, "FreeBSD", SIM_IDLEN); strncpy(cpi->hba_vid, "Symbios", HBA_IDLEN); strncpy(cpi->dev_name, cam_sim_name(sim), DEV_IDLEN); cpi->unit_number = cam_sim_unit(sim); sym_xpt_done2(np, ccb, CAM_REQ_CMP); break; } case XPT_ABORT: { union ccb *abort_ccb = ccb->cab.abort_ccb; switch(abort_ccb->ccb_h.func_code) { case XPT_SCSI_IO: if (sym_abort_scsiio(np, abort_ccb, 0) == 0) { sym_xpt_done2(np, ccb, CAM_REQ_CMP); break; } default: sym_xpt_done2(np, ccb, CAM_UA_ABORT); break; } break; } case XPT_RESET_DEV: { sym_reset_dev(np, ccb); break; } case XPT_RESET_BUS: { sym_reset_scsi_bus(np, 0); sym_init (np, 1, NULL); if (sym_verbose) { xpt_print_path(np->path); printf("SCSI bus reset delivered.\n"); } sym_xpt_done2(np, ccb, CAM_REQ_CMP); break; } case XPT_ACCEPT_TARGET_IO: case XPT_CONT_TARGET_IO: case XPT_EN_LUN: case XPT_NOTIFY_ACK: case XPT_IMMED_NOTIFY: case XPT_TERM_IO: default: sym_xpt_done2(np, ccb, CAM_REQ_INVALID); break; } } /* * Update transfer settings of a target. */ static void sym_update_trans(hcb_p np, tcb_p tp, struct sym_trans *tip, struct ccb_trans_settings *cts) { /* * Update the infos. */ if ((cts->valid & CCB_TRANS_BUS_WIDTH_VALID) != 0) tip->width = cts->bus_width; if ((cts->valid & CCB_TRANS_SYNC_OFFSET_VALID) != 0) tip->offset = cts->sync_offset; if ((cts->valid & CCB_TRANS_SYNC_RATE_VALID) != 0) tip->period = cts->sync_period; /* * Scale against out limits. */ if (tip->width > SYM_SETUP_MAX_WIDE) tip->width = np->maxwide; if (tip->width > np->maxwide) tip->width = np->maxwide; if (tip->offset > SYM_SETUP_MAX_OFFS) tip->offset = np->maxoffs; if (tip->offset > np->maxoffs) tip->offset = np->maxoffs; if (tip->period) { if (tip->period < SYM_SETUP_MIN_SYNC) tip->period = SYM_SETUP_MIN_SYNC; if (np->features & FE_ULTRA3) { if (tip->period < np->minsync_dt) tip->period = np->minsync_dt; } else { if (tip->period < np->minsync) tip->period = np->minsync; } if (tip->period > np->maxsync) tip->period = np->maxsync; } } /* * Update flags for a device (logical unit). */ static void sym_update_dflags(hcb_p np, u_char *flags, struct ccb_trans_settings *cts) { if ((cts->valid & CCB_TRANS_DISC_VALID) != 0) { if ((cts->flags & CCB_TRANS_DISC_ENB) != 0) *flags |= SYM_DISC_ENABLED; else *flags &= ~SYM_DISC_ENABLED; } if ((cts->valid & CCB_TRANS_TQ_VALID) != 0) { if ((cts->flags & CCB_TRANS_TAG_ENB) != 0) *flags |= SYM_TAGS_ENABLED; else *flags &= ~SYM_TAGS_ENABLED; } } /*============= DRIVER INITIALISATION ==================*/ #ifdef FreeBSD_4_Bus static device_method_t sym_pci_methods[] = { DEVMETHOD(device_probe, sym_pci_probe), DEVMETHOD(device_attach, sym_pci_attach), { 0, 0 } }; static driver_t sym_pci_driver = { "sym", sym_pci_methods, sizeof(struct sym_hcb) }; static devclass_t sym_devclass; DRIVER_MODULE(sym, pci, sym_pci_driver, sym_devclass, 0, 0); #else /* Pre-FreeBSD_4_Bus */ static u_long sym_unit; static struct pci_device sym_pci_driver = { "sym", sym_pci_probe, sym_pci_attach, &sym_unit, NULL }; DATA_SET (pcidevice_set, sym_pci_driver); #endif /* FreeBSD_4_Bus */ static struct sym_pci_chip sym_pci_dev_table[] = { {PCI_ID_SYM53C810, 0x0f, "810", 4, 8, 4, 0, FE_ERL} , {PCI_ID_SYM53C810, 0xff, "810a", 4, 8, 4, 1, FE_CACHE_SET|FE_LDSTR|FE_PFEN|FE_BOF} , {PCI_ID_SYM53C825, 0x0f, "825", 6, 8, 4, 0, FE_WIDE|FE_BOF|FE_ERL|FE_DIFF} , {PCI_ID_SYM53C825, 0xff, "825a", 6, 8, 4, 2, FE_WIDE|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|FE_RAM|FE_DIFF} , {PCI_ID_SYM53C860, 0xff, "860", 4, 8, 5, 1, FE_ULTRA|FE_CLK80|FE_CACHE_SET|FE_BOF|FE_LDSTR|FE_PFEN} , {PCI_ID_SYM53C875, 0x01, "875", 6, 16, 5, 2, FE_WIDE|FE_ULTRA|FE_CLK80|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN| FE_RAM|FE_DIFF} , {PCI_ID_SYM53C875, 0xff, "875", 6, 16, 5, 2, FE_WIDE|FE_ULTRA|FE_DBLR|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN| FE_RAM|FE_DIFF} , {PCI_ID_SYM53C875_2, 0xff, "875", 6, 16, 5, 2, FE_WIDE|FE_ULTRA|FE_DBLR|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN| FE_RAM|FE_DIFF} , {PCI_ID_SYM53C885, 0xff, "885", 6, 16, 5, 2, FE_WIDE|FE_ULTRA|FE_DBLR|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN| FE_RAM|FE_DIFF} , {PCI_ID_SYM53C895, 0xff, "895", 6, 31, 7, 2, FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN| FE_RAM|FE_LCKFRQ} , {PCI_ID_SYM53C896, 0xff, "896", 6, 31, 7, 4, FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN| FE_RAM|FE_RAM8K|FE_64BIT|FE_IO256|FE_NOPM|FE_LEDC|FE_LCKFRQ} , {PCI_ID_SYM53C895A, 0xff, "895a", 6, 31, 7, 4, FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN| FE_RAM|FE_RAM8K|FE_64BIT|FE_IO256|FE_NOPM|FE_LEDC|FE_LCKFRQ} , {PCI_ID_LSI53C1010, 0x00, "1010", 6, 62, 7, 8, FE_WIDE|FE_ULTRA3|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFBC|FE_LDSTR|FE_PFEN| FE_RAM|FE_RAM8K|FE_64BIT|FE_IO256|FE_NOPM|FE_LEDC|FE_PCI66|FE_CRC| FE_C10} , {PCI_ID_LSI53C1010, 0xff, "1010", 6, 62, 7, 8, FE_WIDE|FE_ULTRA3|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFBC|FE_LDSTR|FE_PFEN| FE_RAM|FE_RAM8K|FE_64BIT|FE_IO256|FE_NOPM|FE_LEDC|FE_PCI66|FE_CRC| FE_C10|FE_U3EN} , {PCI_ID_LSI53C1510D, 0xff, "1510d", 6, 31, 7, 4, FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN| FE_RAM|FE_IO256|FE_LEDC} }; #define sym_pci_num_devs \ (sizeof(sym_pci_dev_table) / sizeof(sym_pci_dev_table[0])) /* * Look up the chip table. * * Return a pointer to the chip entry if found, * zero otherwise. */ static struct sym_pci_chip * #ifdef FreeBSD_4_Bus sym_find_pci_chip(device_t dev) #else sym_find_pci_chip(pcici_t pci_tag) #endif { struct sym_pci_chip *chip; int i; u_short device_id; u_char revision; #ifdef FreeBSD_4_Bus if (pci_get_vendor(dev) != PCI_VENDOR_NCR) return 0; device_id = pci_get_device(dev); revision = pci_get_revid(dev); #else if (pci_cfgread(pci_tag, PCIR_VENDOR, 2) != PCI_VENDOR_NCR) return 0; device_id = pci_cfgread(pci_tag, PCIR_DEVICE, 2); revision = pci_cfgread(pci_tag, PCIR_REVID, 1); #endif for (i = 0; i < sym_pci_num_devs; i++) { chip = &sym_pci_dev_table[i]; if (device_id != chip->device_id) continue; if (revision > chip->revision_id) continue; if (FE_LDSTR & chip->features) return chip; break; } return 0; } /* * Tell upper layer if the chip is supported. */ #ifdef FreeBSD_4_Bus static int sym_pci_probe(device_t dev) { struct sym_pci_chip *chip; chip = sym_find_pci_chip(dev); if (chip) { device_set_desc(dev, chip->name); return (chip->lp_probe_bit & SYM_SETUP_LP_PROBE_MAP) ? -2000 : 0; } return ENXIO; } #else /* Pre-FreeBSD_4_Bus */ static const char * sym_pci_probe(pcici_t pci_tag, pcidi_t type) { struct sym_pci_chip *chip; chip = sym_find_pci_chip(pci_tag); if (chip) return chip->name; return 0; } #endif /* * Attach a sym53c8xx device. */ #ifdef FreeBSD_4_Bus static int sym_pci_attach(device_t dev) #else static void sym_pci_attach(pcici_t pci_tag, int unit) { int err = sym_pci_attach2(pci_tag, unit); if (err) printf("sym: failed to attach unit %d - err=%d.\n", unit, err); } static int sym_pci_attach2(pcici_t pci_tag, int unit) #endif { struct sym_pci_chip *chip; u_short command; u_char cachelnsz; struct sym_hcb *np = 0; struct sym_nvram nvram; int i; /* * Only probed devices should be attached. * We just enjoy being paranoid. :) */ #ifdef FreeBSD_4_Bus chip = sym_find_pci_chip(dev); #else chip = sym_find_pci_chip(pci_tag); #endif if (chip == NULL) return (ENXIO); /* * Allocate immediately the host control block, * since we are only expecting to succeed. :) * We keep track in the HCB of all the resources that * are to be released on error. */ np = sym_calloc(sizeof(*np), "HCB"); if (!np) goto attach_failed; /* * Copy some useful infos to the HCB. */ np->verbose = bootverbose; #ifdef FreeBSD_4_Bus np->device = dev; np->unit = device_get_unit(dev); np->device_id = pci_get_device(dev); np->revision_id = pci_get_revid(dev); #else np->pci_tag = pci_tag; np->unit = unit; np->device_id = pci_cfgread(pci_tag, PCIR_DEVICE, 2); np->revision_id = pci_cfgread(pci_tag, PCIR_REVID, 1); #endif np->features = chip->features; np->clock_divn = chip->nr_divisor; np->maxoffs = chip->offset_max; np->maxburst = chip->burst_max; /* * Edit its name. */ snprintf(np->inst_name, sizeof(np->inst_name), "sym%d", np->unit); /* * Read and apply some fix-ups to the PCI COMMAND * register. We want the chip to be enabled for: * - BUS mastering * - PCI parity checking (reporting would also be fine) * - Write And Invalidate. */ #ifdef FreeBSD_4_Bus command = pci_read_config(dev, PCIR_COMMAND, 2); #else command = pci_cfgread(pci_tag, PCIR_COMMAND, 2); #endif command |= PCIM_CMD_BUSMASTEREN; command |= PCIM_CMD_PERRESPEN; command |= /* PCIM_CMD_MWIEN */ 0x0010; #ifdef FreeBSD_4_Bus pci_write_config(dev, PCIR_COMMAND, command, 2); #else pci_cfgwrite(pci_tag, PCIR_COMMAND, command, 2); #endif /* * Let the device know about the cache line size, * if it doesn't yet. */ #ifdef FreeBSD_4_Bus cachelnsz = pci_read_config(dev, PCIR_CACHELNSZ, 1); #else cachelnsz = pci_cfgread(pci_tag, PCIR_CACHELNSZ, 1); #endif if (!cachelnsz) { cachelnsz = 8; #ifdef FreeBSD_4_Bus pci_write_config(dev, PCIR_CACHELNSZ, cachelnsz, 1); #else pci_cfgwrite(pci_tag, PCIR_CACHELNSZ, cachelnsz, 1); #endif } /* * Alloc/get/map/retrieve everything that deals with MMIO. */ #ifdef FreeBSD_4_Bus if ((command & PCIM_CMD_MEMEN) != 0) { int regs_id = SYM_PCI_MMIO; np->mmio_res = bus_alloc_resource(dev, SYS_RES_MEMORY, ®s_id, 0, ~0, 1, RF_ACTIVE); } if (!np->mmio_res) { device_printf(dev, "failed to allocate MMIO resources\n"); goto attach_failed; } np->mmio_bsh = rman_get_bushandle(np->mmio_res); np->mmio_tag = rman_get_bustag(np->mmio_res); np->mmio_pa = rman_get_start(np->mmio_res); np->mmio_va = (vm_offset_t) rman_get_virtual(np->mmio_res); np->mmio_ba = np->mmio_pa; #else if ((command & PCIM_CMD_MEMEN) != 0) { vm_offset_t vaddr, paddr; if (!pci_map_mem(pci_tag, SYM_PCI_MMIO, &vaddr, &paddr)) { printf("%s: failed to map MMIO window\n", sym_name(np)); goto attach_failed; } np->mmio_va = vaddr; np->mmio_pa = paddr; np->mmio_ba = paddr; } #endif /* * Allocate the IRQ. */ #ifdef FreeBSD_4_Bus i = 0; np->irq_res = bus_alloc_resource(dev, SYS_RES_IRQ, &i, 0, ~0, 1, RF_ACTIVE | RF_SHAREABLE); if (!np->irq_res) { device_printf(dev, "failed to allocate IRQ resource\n"); goto attach_failed; } #endif #ifdef SYM_CONF_IOMAPPED /* * User want us to use normal IO with PCI. * Alloc/get/map/retrieve everything that deals with IO. */ #ifdef FreeBSD_4_Bus if ((command & PCI_COMMAND_IO_ENABLE) != 0) { int regs_id = SYM_PCI_IO; np->io_res = bus_alloc_resource(dev, SYS_RES_IOPORT, ®s_id, 0, ~0, 1, RF_ACTIVE); } if (!np->io_res) { device_printf(dev, "failed to allocate IO resources\n"); goto attach_failed; } np->io_bsh = rman_get_bushandle(np->io_res); np->io_tag = rman_get_bustag(np->io_res); np->io_port = rman_get_start(np->io_res); #else if ((command & PCI_COMMAND_IO_ENABLE) != 0) { pci_port_t io_port; if (!pci_map_port (pci_tag, SYM_PCI_IO, &io_port)) { printf("%s: failed to map IO window\n", sym_name(np)); goto attach_failed; } np->io_port = io_port; } #endif #endif /* SYM_CONF_IOMAPPED */ /* * If the chip has RAM. * Alloc/get/map/retrieve the corresponding resources. */ if ((np->features & (FE_RAM|FE_RAM8K)) && (command & PCIM_CMD_MEMEN) != 0) { #ifdef FreeBSD_4_Bus int regs_id = SYM_PCI_RAM; if (np->features & FE_64BIT) regs_id = SYM_PCI_RAM64; np->ram_res = bus_alloc_resource(dev, SYS_RES_MEMORY, ®s_id, 0, ~0, 1, RF_ACTIVE); if (!np->ram_res) { device_printf(dev,"failed to allocate RAM resources\n"); goto attach_failed; } np->ram_id = regs_id; np->ram_bsh = rman_get_bushandle(np->ram_res); np->ram_tag = rman_get_bustag(np->ram_res); np->ram_pa = rman_get_start(np->ram_res); np->ram_va = (vm_offset_t) rman_get_virtual(np->ram_res); np->ram_ba = np->ram_pa; #else vm_offset_t vaddr, paddr; int regs_id = SYM_PCI_RAM; if (np->features & FE_64BIT) regs_id = SYM_PCI_RAM64; if (!pci_map_mem(pci_tag, regs_id, &vaddr, &paddr)) { printf("%s: failed to map RAM window\n", sym_name(np)); goto attach_failed; } np->ram_va = vaddr; np->ram_pa = paddr; np->ram_ba = paddr; #endif } /* * Save setting of some IO registers, so we will * be able to probe specific implementations. */ sym_save_initial_setting (np); /* * Reset the chip now, since it has been reported * that SCSI clock calibration may not work properly * if the chip is currently active. */ sym_chip_reset (np); /* * Try to read the user set-up. */ (void) sym_read_nvram(np, &nvram); /* * Prepare controller and devices settings, according * to chip features, user set-up and driver set-up. */ (void) sym_prepare_setting(np, &nvram); /* * Check the PCI clock frequency. * Must be performed after prepare_setting since it destroys * STEST1 that is used to probe for the clock doubler. */ i = sym_getpciclock(np); if (i > 37000) #ifdef FreeBSD_4_Bus device_printf(dev, "PCI BUS clock seems too high: %u KHz.\n",i); #else printf("%s: PCI BUS clock seems too high: %u KHz.\n", sym_name(np), i); #endif /* * Allocate the start queue. */ np->squeue = (u32 *) sym_calloc(sizeof(u32)*(MAX_QUEUE*2), "SQUEUE"); if (!np->squeue) goto attach_failed; /* * Allocate the done queue. */ np->dqueue = (u32 *) sym_calloc(sizeof(u32)*(MAX_QUEUE*2), "DQUEUE"); if (!np->dqueue) goto attach_failed; /* * Allocate the target bus address array. */ np->targtbl = (u32 *) sym_calloc(256, "TARGTBL"); if (!np->targtbl) goto attach_failed; /* * Allocate SCRIPTS areas. */ np->script0 = (struct sym_scr *) sym_calloc(sizeof(struct sym_scr), "SCRIPT0"); np->scripth0 = (struct sym_scrh *) sym_calloc(sizeof(struct sym_scrh), "SCRIPTH0"); if (!np->script0 || !np->scripth0) goto attach_failed; /* * Initialyze the CCB free and busy queues. * Allocate some CCB. We need at least ONE. */ sym_que_init(&np->free_ccbq); sym_que_init(&np->busy_ccbq); sym_que_init(&np->comp_ccbq); if (!sym_alloc_ccb(np)) goto attach_failed; /* * Initialyze the CAM CCB pending queue. */ sym_que_init(&np->cam_ccbq); /* * Fill-up variable-size parts of the SCRIPTS. */ sym_fill_scripts(&script0, &scripth0); /* * Calculate BUS addresses where we are going * to load the SCRIPTS. */ np->script_ba = vtobus(np->script0); np->scripth_ba = vtobus(np->scripth0); np->scripth0_ba = np->scripth_ba; if (np->ram_ba) { np->script_ba = np->ram_ba; if (np->features & FE_RAM8K) { np->ram_ws = 8192; np->scripth_ba = np->script_ba + 4096; #if BITS_PER_LONG > 32 np->scr_ram_seg = cpu_to_scr(np->script_ba >> 32); #endif } else np->ram_ws = 4096; } /* * Bind SCRIPTS with physical addresses usable by the * SCRIPTS processor (as seen from the BUS = BUS addresses). */ sym_bind_script(np, (u32 *) &script0, (u32 *) np->script0, sizeof(struct sym_scr)); sym_bind_script(np, (u32 *) &scripth0, (u32 *) np->scripth0, sizeof(struct sym_scrh)); /* * If not 64 bit chip, patch some places in SCRIPTS. */ if (!(np->features & FE_64BIT)) { np->scripth0->swide_fin_32[0] = cpu_to_scr(SCR_JUMP); np->scripth0->swide_fin_32[1] = cpu_to_scr(SCRIPT_BA(np, dispatch)); } /* * Patch some variables in SCRIPTS. * These ones are loaded by the SCRIPTS processor. */ np->scripth0->pm0_data_addr[0] = cpu_to_scr(SCRIPT_BA(np,pm0_data)); np->scripth0->pm1_data_addr[0] = cpu_to_scr(SCRIPT_BA(np,pm1_data)); /* * Still some for LED support. */ if (np->features & FE_LED0) { np->script0->idle[0] = cpu_to_scr(SCR_REG_REG(gpreg, SCR_OR, 0x01)); np->script0->reselected[0] = cpu_to_scr(SCR_REG_REG(gpreg, SCR_AND, 0xfe)); np->script0->start[0] = cpu_to_scr(SCR_REG_REG(gpreg, SCR_AND, 0xfe)); } /* * Load SCNTL4 on reselection for the C10. */ if (np->features & FE_C10) { np->script0->resel_scntl4[0] = cpu_to_scr(SCR_LOAD_REL (scntl4, 1)); np->script0->resel_scntl4[1] = cpu_to_scr(offsetof(struct sym_tcb, uval)); } #ifdef SYM_CONF_IARB_SUPPORT /* * If user does not want to use IMMEDIATE ARBITRATION * when we are reselected while attempting to arbitrate, * patch the SCRIPTS accordingly with a SCRIPT NO_OP. */ if (!SYM_CONF_SET_IARB_ON_ARB_LOST) np->script0->ungetjob[0] = cpu_to_scr(SCR_NO_OP); /* * If user wants IARB to be set when we win arbitration * and have other jobs, compute the max number of consecutive * settings of IARB hints before we leave devices a chance to * arbitrate for reselection. */ #ifdef SYM_SETUP_IARB_MAX np->iarb_max = SYM_SETUP_IARB_MAX; #else np->iarb_max = 4; #endif #endif /* * Prepare the idle and invalid task actions. */ np->idletask.start = cpu_to_scr(SCRIPT_BA(np, idle)); np->idletask.restart = cpu_to_scr(SCRIPTH_BA(np, bad_i_t_l)); np->idletask_ba = vtobus(&np->idletask); np->notask.start = cpu_to_scr(SCRIPT_BA(np, idle)); np->notask.restart = cpu_to_scr(SCRIPTH_BA(np, bad_i_t_l)); np->notask_ba = vtobus(&np->notask); np->bad_itl.start = cpu_to_scr(SCRIPT_BA(np, idle)); np->bad_itl.restart = cpu_to_scr(SCRIPTH_BA(np, bad_i_t_l)); np->bad_itl_ba = vtobus(&np->bad_itl); np->bad_itlq.start = cpu_to_scr(SCRIPT_BA(np, idle)); np->bad_itlq.restart = cpu_to_scr(SCRIPTH_BA (np,bad_i_t_l_q)); np->bad_itlq_ba = vtobus(&np->bad_itlq); /* * Allocate and prepare the lun JUMP table that is used * for a target prior the probing of devices (bad lun table). * A private table will be allocated for the target on the * first INQUIRY response received. */ np->badluntbl = sym_calloc(256, "BADLUNTBL"); if (!np->badluntbl) goto attach_failed; np->badlun_sa = cpu_to_scr(SCRIPTH_BA(np, resel_bad_lun)); for (i = 0 ; i < 64 ; i++) /* 64 luns/target, no less */ np->badluntbl[i] = cpu_to_scr(vtobus(&np->badlun_sa)); /* * Prepare the bus address array that contains the bus * address of each target control bloc. * For now, assume all logical unit are wrong. :) */ np->scripth0->targtbl[0] = cpu_to_scr(vtobus(np->targtbl)); for (i = 0 ; i < SYM_CONF_MAX_TARGET ; i++) { np->targtbl[i] = cpu_to_scr(vtobus(&np->target[i])); np->target[i].luntbl_sa = cpu_to_scr(vtobus(np->badluntbl)); np->target[i].lun0_sa = cpu_to_scr(vtobus(&np->badlun_sa)); } /* * Reset the chip. * We should use sym_soft_reset(), but we donnot want to do * so, since we may not be safe if ABRT interrupt occurs due * to the BIOS or previous O/S having enable this interrupt. */ sym_chip_reset (np); /* * Now check the cache handling of the pci chipset. */ if (sym_snooptest (np)) { #ifdef FreeBSD_4_Bus device_printf(dev, "CACHE INCORRECTLY CONFIGURED.\n"); #else printf("%s: CACHE INCORRECTLY CONFIGURED.\n", sym_name(np)); #endif goto attach_failed; }; /* * Now deal with CAM. * Hopefully, we will succeed with that one.:) */ if (!sym_cam_attach(np)) goto attach_failed; /* * Sigh! we are done. */ return 0; /* * We have failed. * We will try to free all the resources we have * allocated, but if we are a boot device, this * will not help that much.;) */ attach_failed: if (np) sym_pci_free(np); return ENXIO; } /* * Free everything that have been allocated for this device. */ static void sym_pci_free(hcb_p np) { ccb_p cp; tcb_p tp; lcb_p lp; int target, lun; int s; /* * First free CAM resources. */ s = splcam(); sym_cam_free(np); splx(s); /* * Now every should be quiet for us to * free other resources. */ #ifdef FreeBSD_4_Bus if (np->ram_res) bus_release_resource(np->device, SYS_RES_MEMORY, np->ram_id, np->ram_res); if (np->mmio_res) bus_release_resource(np->device, SYS_RES_MEMORY, SYM_PCI_MMIO, np->mmio_res); if (np->io_res) bus_release_resource(np->device, SYS_RES_IOPORT, SYM_PCI_IO, np->io_res); if (np->irq_res) bus_release_resource(np->device, SYS_RES_IRQ, 0, np->irq_res); #else /* * YEAH!!! * It seems there is no means to free MMIO resources. */ #endif if (np->scripth0) sym_mfree(np->scripth0, sizeof(struct sym_scrh), "SCRIPTH0"); if (np->script0) sym_mfree(np->script0, sizeof(struct sym_scr), "SCRIPT0"); if (np->squeue) sym_mfree(np->squeue, sizeof(u32)*(MAX_QUEUE*2), "SQUEUE"); if (np->dqueue) sym_mfree(np->dqueue, sizeof(u32)*(MAX_QUEUE*2), "DQUEUE"); while ((cp = np->ccbc) != NULL) { np->ccbc = cp->link_ccb; sym_mfree(cp, sizeof(*cp), "CCB"); } if (np->badluntbl) sym_mfree(np->badluntbl, 256,"BADLUNTBL"); for (target = 0; target < SYM_CONF_MAX_TARGET ; target++) { tp = &np->target[target]; for (lun = 0 ; lun < SYM_CONF_MAX_LUN ; lun++) { lp = sym_lp(np, tp, lun); if (!lp) continue; if (lp->itlq_tbl) sym_mfree(lp->itlq_tbl, SYM_CONF_MAX_TASK*4, "ITLQ_TBL"); if (lp->cb_tags) sym_mfree(lp->cb_tags, SYM_CONF_MAX_TASK, "CB_TAGS"); sym_mfree(lp, sizeof(*lp), "LCB"); } #if SYM_CONF_MAX_LUN > 1 if (tp->lunmp) sym_mfree(tp->lunmp, SYM_CONF_MAX_LUN*sizeof(lcb_p), "LUNMP"); #endif } sym_mfree(np, sizeof(*np), "HCB"); } /* * Allocate CAM resources and register a bus to CAM. */ int sym_cam_attach(hcb_p np) { struct cam_devq *devq = 0; struct cam_sim *sim = 0; struct cam_path *path = 0; int err, s; s = splcam(); /* * Establish our interrupt handler. */ #ifdef FreeBSD_4_Bus err = bus_setup_intr(np->device, np->irq_res, INTR_TYPE_CAM, sym_intr, np, &np->intr); if (err) { device_printf(np->device, "bus_setup_intr() failed: %d\n", err); goto fail; } #else if (!pci_map_int (np->pci_tag, sym_intr, np, &cam_imask)) { printf("%s: failed to map interrupt\n", sym_name(np)); goto fail; } #endif /* * Create the device queue for our sym SIM. */ devq = cam_simq_alloc(SYM_CONF_MAX_START); if (!devq) goto fail; /* * Construct our SIM entry. */ sim = cam_sim_alloc(sym_action, sym_poll, "sym", np, np->unit, 1, SYM_SETUP_MAX_TAG, devq); if (!sim) goto fail; devq = 0; if (xpt_bus_register(sim, 0) != CAM_SUCCESS) goto fail; np->sim = sim; sim = 0; if (xpt_create_path(&path, 0, cam_sim_path(np->sim), CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD) != CAM_REQ_CMP) { goto fail; } np->path = path; /* * Hmmm... This should be useful, but I donnot want to * know about. */ #if __FreeBSD_version < 400000 #ifdef __alpha__ #ifdef FreeBSD_4_Bus alpha_register_pci_scsi(pci_get_bus(np->device), pci_get_slot(np->device), np->sim); #else alpha_register_pci_scsi(pci_tag->bus, pci_tag->slot, np->sim); #endif #endif #endif #if 0 /* * Establish our async notification handler. */ { struct ccb_setasync csa; xpt_setup_ccb(&csa.ccb_h, np->path, 5); csa.ccb_h.func_code = XPT_SASYNC_CB; csa.event_enable = AC_LOST_DEVICE; csa.callback = sym_async; csa.callback_arg = np->sim; xpt_action((union ccb *)&csa); } #endif splx(s); return 1; fail: if (sim) cam_sim_free(sim, FALSE); if (devq) cam_simq_free(devq); sym_cam_free(np); splx(s); return 0; } /* * Free everything that deals with CAM. */ void sym_cam_free(hcb_p np) { #ifdef FreeBSD_4_Bus if (np->intr) bus_teardown_intr(np->device, np->irq_res, np->intr); #else /* pci_unmap_int(np->pci_tag); */ /* Does nothing */ #endif if (np->sim) { xpt_bus_deregister(cam_sim_path(np->sim)); cam_sim_free(np->sim, /*free_devq*/ TRUE); } if (np->path) xpt_free_path(np->path); } /*============ OPTIONNAL NVRAM SUPPORT =================*/ /* * Get host setup from NVRAM. */ static void sym_nvram_setup_host (hcb_p np, struct sym_nvram *nvram) { #ifdef SYM_CONF_NVRAM_SUPPORT /* * Get parity checking, host ID and verbose mode from NVRAM */ switch(nvram->type) { case SYM_SYMBIOS_NVRAM: if (!(nvram->data.Symbios.flags & SYMBIOS_PARITY_ENABLE)) np->rv_scntl0 &= ~0x0a; np->myaddr = nvram->data.Symbios.host_id & 0x0f; if (nvram->data.Symbios.flags & SYMBIOS_VERBOSE_MSGS) np->verbose += 1; break; case SYM_TEKRAM_NVRAM: np->myaddr = nvram->data.Tekram.host_id & 0x0f; break; default: break; } #endif } /* * Get target setup from NVRAM. */ #ifdef SYM_CONF_NVRAM_SUPPORT static void sym_Symbios_setup_target(hcb_p np,int target, Symbios_nvram *nvram); static void sym_Tekram_setup_target(hcb_p np,int target, Tekram_nvram *nvram); #endif static void sym_nvram_setup_target (hcb_p np, int target, struct sym_nvram *nvp) { #ifdef SYM_CONF_NVRAM_SUPPORT switch(nvp->type) { case SYM_SYMBIOS_NVRAM: sym_Symbios_setup_target (np, target, &nvp->data.Symbios); break; case SYM_TEKRAM_NVRAM: sym_Tekram_setup_target (np, target, &nvp->data.Tekram); break; default: break; } #endif } #ifdef SYM_CONF_NVRAM_SUPPORT /* * Get target set-up from Symbios format NVRAM. */ static void sym_Symbios_setup_target(hcb_p np, int target, Symbios_nvram *nvram) { tcb_p tp = &np->target[target]; Symbios_target *tn = &nvram->target[target]; tp->tinfo.user.period = tn->sync_period ? (tn->sync_period + 3) / 4 : 0; tp->tinfo.user.width = tn->bus_width == 0x10 ? BUS_16_BIT : BUS_8_BIT; tp->usrtags = (tn->flags & SYMBIOS_QUEUE_TAGS_ENABLED)? SYM_SETUP_MAX_TAG : 0; if (!(tn->flags & SYMBIOS_DISCONNECT_ENABLE)) tp->usrflags &= ~SYM_DISC_ENABLED; if (!(tn->flags & SYMBIOS_SCAN_AT_BOOT_TIME)) tp->usrflags |= SYM_SCAN_BOOT_DISABLED; if (!(tn->flags & SYMBIOS_SCAN_LUNS)) tp->usrflags |= SYM_SCAN_LUNS_DISABLED; } /* * Get target set-up from Tekram format NVRAM. */ static void sym_Tekram_setup_target(hcb_p np, int target, Tekram_nvram *nvram) { tcb_p tp = &np->target[target]; struct Tekram_target *tn = &nvram->target[target]; int i; if (tn->flags & TEKRAM_SYNC_NEGO) { i = tn->sync_index & 0xf; tp->tinfo.user.period = Tekram_sync[i]; } tp->tinfo.user.width = (tn->flags & TEKRAM_WIDE_NEGO) ? BUS_16_BIT : BUS_8_BIT; if (tn->flags & TEKRAM_TAGGED_COMMANDS) { tp->usrtags = 2 << nvram->max_tags_index; } if (tn->flags & TEKRAM_DISCONNECT_ENABLE) tp->usrflags |= SYM_DISC_ENABLED; /* If any device does not support parity, we will not use this option */ if (!(tn->flags & TEKRAM_PARITY_CHECK)) np->rv_scntl0 &= ~0x0a; /* SCSI parity checking disabled */ } #ifdef SYM_CONF_DEBUG_NVRAM /* * Dump Symbios format NVRAM for debugging purpose. */ void sym_display_Symbios_nvram(hcb_p np, Symbios_nvram *nvram) { int i; /* display Symbios nvram host data */ printf("%s: HOST ID=%d%s%s%s%s%s\n", sym_name(np), nvram->host_id & 0x0f, (nvram->flags & SYMBIOS_SCAM_ENABLE) ? " SCAM" :"", (nvram->flags & SYMBIOS_PARITY_ENABLE) ? " PARITY" :"", (nvram->flags & SYMBIOS_VERBOSE_MSGS) ? " VERBOSE" :"", (nvram->flags & SYMBIOS_CHS_MAPPING) ? " CHS_ALT" :"", (nvram->flags1 & SYMBIOS_SCAN_HI_LO) ? " HI_LO" :""); /* display Symbios nvram drive data */ for (i = 0 ; i < 15 ; i++) { struct Symbios_target *tn = &nvram->target[i]; printf("%s-%d:%s%s%s%s WIDTH=%d SYNC=%d TMO=%d\n", sym_name(np), i, (tn->flags & SYMBIOS_DISCONNECT_ENABLE) ? " DISC" : "", (tn->flags & SYMBIOS_SCAN_AT_BOOT_TIME) ? " SCAN_BOOT" : "", (tn->flags & SYMBIOS_SCAN_LUNS) ? " SCAN_LUNS" : "", (tn->flags & SYMBIOS_QUEUE_TAGS_ENABLED)? " TCQ" : "", tn->bus_width, tn->sync_period / 4, tn->timeout); } } /* * Dump TEKRAM format NVRAM for debugging purpose. */ static u_char Tekram_boot_delay[7] __initdata = {3, 5, 10, 20, 30, 60, 120}; void sym_display_Tekram_nvram(hcb_p np, Tekram_nvram *nvram) { int i, tags, boot_delay; char *rem; /* display Tekram nvram host data */ tags = 2 << nvram->max_tags_index; boot_delay = 0; if (nvram->boot_delay_index < 6) boot_delay = Tekram_boot_delay[nvram->boot_delay_index]; switch((nvram->flags & TEKRAM_REMOVABLE_FLAGS) >> 6) { default: case 0: rem = ""; break; case 1: rem = " REMOVABLE=boot device"; break; case 2: rem = " REMOVABLE=all"; break; } printf("%s: HOST ID=%d%s%s%s%s%s%s%s%s%s BOOT DELAY=%d tags=%d\n", sym_name(np), nvram->host_id & 0x0f, (nvram->flags1 & SYMBIOS_SCAM_ENABLE) ? " SCAM" :"", (nvram->flags & TEKRAM_MORE_THAN_2_DRIVES) ? " >2DRIVES" :"", (nvram->flags & TEKRAM_DRIVES_SUP_1GB) ? " >1GB" :"", (nvram->flags & TEKRAM_RESET_ON_POWER_ON) ? " RESET" :"", (nvram->flags & TEKRAM_ACTIVE_NEGATION) ? " ACT_NEG" :"", (nvram->flags & TEKRAM_IMMEDIATE_SEEK) ? " IMM_SEEK" :"", (nvram->flags & TEKRAM_SCAN_LUNS) ? " SCAN_LUNS" :"", (nvram->flags1 & TEKRAM_F2_F6_ENABLED) ? " F2_F6" :"", rem, boot_delay, tags); /* display Tekram nvram drive data */ for (i = 0; i <= 15; i++) { int sync, j; struct Tekram_target *tn = &nvram->target[i]; j = tn->sync_index & 0xf; sync = Tekram_sync[j]; printf("%s-%d:%s%s%s%s%s%s PERIOD=%d\n", sym_name(np), i, (tn->flags & TEKRAM_PARITY_CHECK) ? " PARITY" : "", (tn->flags & TEKRAM_SYNC_NEGO) ? " SYNC" : "", (tn->flags & TEKRAM_DISCONNECT_ENABLE) ? " DISC" : "", (tn->flags & TEKRAM_START_CMD) ? " START" : "", (tn->flags & TEKRAM_TAGGED_COMMANDS) ? " TCQ" : "", (tn->flags & TEKRAM_WIDE_NEGO) ? " WIDE" : "", sync); } } #endif /* SYM_CONF_DEBUG_NVRAM */ #endif /* SYM_CONF_NVRAM_SUPPORT */ /* * Try reading Symbios or Tekram NVRAM */ #ifdef SYM_CONF_NVRAM_SUPPORT static int sym_read_Symbios_nvram (hcb_p np, Symbios_nvram *nvram); static int sym_read_Tekram_nvram (hcb_p np, Tekram_nvram *nvram); #endif int sym_read_nvram(hcb_p np, struct sym_nvram *nvp) { #ifdef SYM_CONF_NVRAM_SUPPORT /* * Try to read SYMBIOS nvram. * Try to read TEKRAM nvram if Symbios nvram not found. */ if (SYM_SETUP_SYMBIOS_NVRAM && !sym_read_Symbios_nvram (np, &nvp->data.Symbios)) nvp->type = SYM_SYMBIOS_NVRAM; else if (SYM_SETUP_TEKRAM_NVRAM && !sym_read_Tekram_nvram (np, &nvp->data.Tekram)) nvp->type = SYM_TEKRAM_NVRAM; else nvp->type = 0; #else nvp->type = 0; #endif return nvp->type; } #ifdef SYM_CONF_NVRAM_SUPPORT /* * 24C16 EEPROM reading. * * GPOI0 - data in/data out * GPIO1 - clock * Symbios NVRAM wiring now also used by Tekram. */ #define SET_BIT 0 #define CLR_BIT 1 #define SET_CLK 2 #define CLR_CLK 3 /* * Set/clear data/clock bit in GPIO0 */ static void S24C16_set_bit(hcb_p np, u_char write_bit, u_char *gpreg, int bit_mode) { UDELAY (5); switch (bit_mode){ case SET_BIT: *gpreg |= write_bit; break; case CLR_BIT: *gpreg &= 0xfe; break; case SET_CLK: *gpreg |= 0x02; break; case CLR_CLK: *gpreg &= 0xfd; break; } OUTB (nc_gpreg, *gpreg); UDELAY (5); } /* * Send START condition to NVRAM to wake it up. */ static void S24C16_start(hcb_p np, u_char *gpreg) { S24C16_set_bit(np, 1, gpreg, SET_BIT); S24C16_set_bit(np, 0, gpreg, SET_CLK); S24C16_set_bit(np, 0, gpreg, CLR_BIT); S24C16_set_bit(np, 0, gpreg, CLR_CLK); } /* * Send STOP condition to NVRAM - puts NVRAM to sleep... ZZzzzz!! */ static void S24C16_stop(hcb_p np, u_char *gpreg) { S24C16_set_bit(np, 0, gpreg, SET_CLK); S24C16_set_bit(np, 1, gpreg, SET_BIT); } /* * Read or write a bit to the NVRAM, * read if GPIO0 input else write if GPIO0 output */ static void S24C16_do_bit(hcb_p np, u_char *read_bit, u_char write_bit, u_char *gpreg) { S24C16_set_bit(np, write_bit, gpreg, SET_BIT); S24C16_set_bit(np, 0, gpreg, SET_CLK); if (read_bit) *read_bit = INB (nc_gpreg); S24C16_set_bit(np, 0, gpreg, CLR_CLK); S24C16_set_bit(np, 0, gpreg, CLR_BIT); } /* * Output an ACK to the NVRAM after reading, * change GPIO0 to output and when done back to an input */ static void S24C16_write_ack(hcb_p np, u_char write_bit, u_char *gpreg, u_char *gpcntl) { OUTB (nc_gpcntl, *gpcntl & 0xfe); S24C16_do_bit(np, 0, write_bit, gpreg); OUTB (nc_gpcntl, *gpcntl); } /* * Input an ACK from NVRAM after writing, * change GPIO0 to input and when done back to an output */ static void S24C16_read_ack(hcb_p np, u_char *read_bit, u_char *gpreg, u_char *gpcntl) { OUTB (nc_gpcntl, *gpcntl | 0x01); S24C16_do_bit(np, read_bit, 1, gpreg); OUTB (nc_gpcntl, *gpcntl); } /* * WRITE a byte to the NVRAM and then get an ACK to see it was accepted OK, * GPIO0 must already be set as an output */ static void S24C16_write_byte(hcb_p np, u_char *ack_data, u_char write_data, u_char *gpreg, u_char *gpcntl) { int x; for (x = 0; x < 8; x++) S24C16_do_bit(np, 0, (write_data >> (7 - x)) & 0x01, gpreg); S24C16_read_ack(np, ack_data, gpreg, gpcntl); } /* * READ a byte from the NVRAM and then send an ACK to say we have got it, * GPIO0 must already be set as an input */ static void S24C16_read_byte(hcb_p np, u_char *read_data, u_char ack_data, u_char *gpreg, u_char *gpcntl) { int x; u_char read_bit; *read_data = 0; for (x = 0; x < 8; x++) { S24C16_do_bit(np, &read_bit, 1, gpreg); *read_data |= ((read_bit & 0x01) << (7 - x)); } S24C16_write_ack(np, ack_data, gpreg, gpcntl); } /* * Read 'len' bytes starting at 'offset'. */ static int sym_read_S24C16_nvram (hcb_p np, int offset, u_char *data, int len) { u_char gpcntl, gpreg; u_char old_gpcntl, old_gpreg; u_char ack_data; int retv = 1; int x; /* save current state of GPCNTL and GPREG */ old_gpreg = INB (nc_gpreg); old_gpcntl = INB (nc_gpcntl); gpcntl = old_gpcntl & 0xfc; /* set up GPREG & GPCNTL to set GPIO0 and GPIO1 in to known state */ OUTB (nc_gpreg, old_gpreg); OUTB (nc_gpcntl, gpcntl); /* this is to set NVRAM into a known state with GPIO0/1 both low */ gpreg = old_gpreg; S24C16_set_bit(np, 0, &gpreg, CLR_CLK); S24C16_set_bit(np, 0, &gpreg, CLR_BIT); /* now set NVRAM inactive with GPIO0/1 both high */ S24C16_stop(np, &gpreg); /* activate NVRAM */ S24C16_start(np, &gpreg); /* write device code and random address MSB */ S24C16_write_byte(np, &ack_data, 0xa0 | ((offset >> 7) & 0x0e), &gpreg, &gpcntl); if (ack_data & 0x01) goto out; /* write random address LSB */ S24C16_write_byte(np, &ack_data, (offset & 0x7f) << 1, &gpreg, &gpcntl); if (ack_data & 0x01) goto out; /* regenerate START state to set up for reading */ S24C16_start(np, &gpreg); /* rewrite device code and address MSB with read bit set (lsb = 0x01) */ S24C16_write_byte(np, &ack_data, 0xa1 | ((offset >> 7) & 0x0e), &gpreg, &gpcntl); if (ack_data & 0x01) goto out; /* now set up GPIO0 for inputting data */ gpcntl |= 0x01; OUTB (nc_gpcntl, gpcntl); /* input all requested data - only part of total NVRAM */ for (x = 0; x < len; x++) S24C16_read_byte(np, &data[x], (x == (len-1)), &gpreg, &gpcntl); /* finally put NVRAM back in inactive mode */ gpcntl &= 0xfe; OUTB (nc_gpcntl, gpcntl); S24C16_stop(np, &gpreg); retv = 0; out: /* return GPIO0/1 to original states after having accessed NVRAM */ OUTB (nc_gpcntl, old_gpcntl); OUTB (nc_gpreg, old_gpreg); return retv; } #undef SET_BIT 0 #undef CLR_BIT 1 #undef SET_CLK 2 #undef CLR_CLK 3 /* * Try reading Symbios NVRAM. * Return 0 if OK. */ static int sym_read_Symbios_nvram (hcb_p np, Symbios_nvram *nvram) { static u_char Symbios_trailer[6] = {0xfe, 0xfe, 0, 0, 0, 0}; u_char *data = (u_char *) nvram; int len = sizeof(*nvram); u_short csum; int x; /* probe the 24c16 and read the SYMBIOS 24c16 area */ if (sym_read_S24C16_nvram (np, SYMBIOS_NVRAM_ADDRESS, data, len)) return 1; /* check valid NVRAM signature, verify byte count and checksum */ if (nvram->type != 0 || bcmp(nvram->trailer, Symbios_trailer, 6) || nvram->byte_count != len - 12) return 1; /* verify checksum */ for (x = 6, csum = 0; x < len - 6; x++) csum += data[x]; if (csum != nvram->checksum) return 1; return 0; } /* * 93C46 EEPROM reading. * * GPOI0 - data in * GPIO1 - data out * GPIO2 - clock * GPIO4 - chip select * * Used by Tekram. */ /* * Pulse clock bit in GPIO0 */ static void T93C46_Clk(hcb_p np, u_char *gpreg) { OUTB (nc_gpreg, *gpreg | 0x04); UDELAY (2); OUTB (nc_gpreg, *gpreg); } /* * Read bit from NVRAM */ static void T93C46_Read_Bit(hcb_p np, u_char *read_bit, u_char *gpreg) { UDELAY (2); T93C46_Clk(np, gpreg); *read_bit = INB (nc_gpreg); } /* * Write bit to GPIO0 */ static void T93C46_Write_Bit(hcb_p np, u_char write_bit, u_char *gpreg) { if (write_bit & 0x01) *gpreg |= 0x02; else *gpreg &= 0xfd; *gpreg |= 0x10; OUTB (nc_gpreg, *gpreg); UDELAY (2); T93C46_Clk(np, gpreg); } /* * Send STOP condition to NVRAM - puts NVRAM to sleep... ZZZzzz!! */ static void T93C46_Stop(hcb_p np, u_char *gpreg) { *gpreg &= 0xef; OUTB (nc_gpreg, *gpreg); UDELAY (2); T93C46_Clk(np, gpreg); } /* * Send read command and address to NVRAM */ static void T93C46_Send_Command(hcb_p np, u_short write_data, u_char *read_bit, u_char *gpreg) { int x; /* send 9 bits, start bit (1), command (2), address (6) */ for (x = 0; x < 9; x++) T93C46_Write_Bit(np, (u_char) (write_data >> (8 - x)), gpreg); *read_bit = INB (nc_gpreg); } /* * READ 2 bytes from the NVRAM */ static void T93C46_Read_Word(hcb_p np, u_short *nvram_data, u_char *gpreg) { int x; u_char read_bit; *nvram_data = 0; for (x = 0; x < 16; x++) { T93C46_Read_Bit(np, &read_bit, gpreg); if (read_bit & 0x01) *nvram_data |= (0x01 << (15 - x)); else *nvram_data &= ~(0x01 << (15 - x)); } } /* * Read Tekram NvRAM data. */ static int T93C46_Read_Data(hcb_p np, u_short *data,int len,u_char *gpreg) { u_char read_bit; int x; for (x = 0; x < len; x++) { /* output read command and address */ T93C46_Send_Command(np, 0x180 | x, &read_bit, gpreg); if (read_bit & 0x01) return 1; /* Bad */ T93C46_Read_Word(np, &data[x], gpreg); T93C46_Stop(np, gpreg); } return 0; } /* * Try reading 93C46 Tekram NVRAM. */ static int sym_read_T93C46_nvram (hcb_p np, Tekram_nvram *nvram) { u_char gpcntl, gpreg; u_char old_gpcntl, old_gpreg; int retv = 1; /* save current state of GPCNTL and GPREG */ old_gpreg = INB (nc_gpreg); old_gpcntl = INB (nc_gpcntl); /* set up GPREG & GPCNTL to set GPIO0/1/2/4 in to known state, 0 in, 1/2/4 out */ gpreg = old_gpreg & 0xe9; OUTB (nc_gpreg, gpreg); gpcntl = (old_gpcntl & 0xe9) | 0x09; OUTB (nc_gpcntl, gpcntl); /* input all of NVRAM, 64 words */ retv = T93C46_Read_Data(np, (u_short *) nvram, sizeof(*nvram) / sizeof(short), &gpreg); /* return GPIO0/1/2/4 to original states after having accessed NVRAM */ OUTB (nc_gpcntl, old_gpcntl); OUTB (nc_gpreg, old_gpreg); return retv; } /* * Try reading Tekram NVRAM. * Return 0 if OK. */ static int sym_read_Tekram_nvram (hcb_p np, Tekram_nvram *nvram) { u_char *data = (u_char *) nvram; int len = sizeof(*nvram); u_short csum; int x; switch (np->device_id) { case PCI_ID_SYM53C885: case PCI_ID_SYM53C895: case PCI_ID_SYM53C896: x = sym_read_S24C16_nvram(np, TEKRAM_24C16_NVRAM_ADDRESS, data, len); break; case PCI_ID_SYM53C875: x = sym_read_S24C16_nvram(np, TEKRAM_24C16_NVRAM_ADDRESS, data, len); if (!x) break; default: x = sym_read_T93C46_nvram(np, nvram); break; } if (x) return 1; /* verify checksum */ for (x = 0, csum = 0; x < len - 1; x += 2) csum += data[x] + (data[x+1] << 8); if (csum != 0x1234) return 1; return 0; } #endif /* SYM_CONF_NVRAM_SUPPORT */