/* * Copyright (c) 1997 John S. Dyson. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. John S. Dyson's name may not be used to endorse or promote products * derived from this software without specific prior written permission. * * DISCLAIMER: This code isn't warranted to do anything useful. Anything * bad that happens because of using this software isn't the responsibility * of the author. This software is distributed AS-IS. * * $FreeBSD$ */ /* * This file contains support for the POSIX 1003.1B AIO/LIO facility. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "opt_vfs_aio.h" /* * Counter for allocating reference ids to new jobs. Wrapped to 1 on * overflow. */ static long jobrefid; #define JOBST_NULL 0x0 #define JOBST_JOBQGLOBAL 0x2 #define JOBST_JOBRUNNING 0x3 #define JOBST_JOBFINISHED 0x4 #define JOBST_JOBQBUF 0x5 #define JOBST_JOBBFINISHED 0x6 #ifndef MAX_AIO_PER_PROC #define MAX_AIO_PER_PROC 32 #endif #ifndef MAX_AIO_QUEUE_PER_PROC #define MAX_AIO_QUEUE_PER_PROC 256 /* Bigger than AIO_LISTIO_MAX */ #endif #ifndef MAX_AIO_PROCS #define MAX_AIO_PROCS 32 #endif #ifndef MAX_AIO_QUEUE #define MAX_AIO_QUEUE 1024 /* Bigger than AIO_LISTIO_MAX */ #endif #ifndef TARGET_AIO_PROCS #define TARGET_AIO_PROCS 4 #endif #ifndef MAX_BUF_AIO #define MAX_BUF_AIO 16 #endif #ifndef AIOD_TIMEOUT_DEFAULT #define AIOD_TIMEOUT_DEFAULT (10 * hz) #endif #ifndef AIOD_LIFETIME_DEFAULT #define AIOD_LIFETIME_DEFAULT (30 * hz) #endif SYSCTL_NODE(_vfs, OID_AUTO, aio, CTLFLAG_RW, 0, "Async IO management"); static int max_aio_procs = MAX_AIO_PROCS; SYSCTL_INT(_vfs_aio, OID_AUTO, max_aio_procs, CTLFLAG_RW, &max_aio_procs, 0, "Maximum number of kernel threads to use for handling async IO "); static int num_aio_procs = 0; SYSCTL_INT(_vfs_aio, OID_AUTO, num_aio_procs, CTLFLAG_RD, &num_aio_procs, 0, "Number of presently active kernel threads for async IO"); /* * The code will adjust the actual number of AIO processes towards this * number when it gets a chance. */ static int target_aio_procs = TARGET_AIO_PROCS; SYSCTL_INT(_vfs_aio, OID_AUTO, target_aio_procs, CTLFLAG_RW, &target_aio_procs, 0, "Preferred number of ready kernel threads for async IO"); static int max_queue_count = MAX_AIO_QUEUE; SYSCTL_INT(_vfs_aio, OID_AUTO, max_aio_queue, CTLFLAG_RW, &max_queue_count, 0, "Maximum number of aio requests to queue, globally"); static int num_queue_count = 0; SYSCTL_INT(_vfs_aio, OID_AUTO, num_queue_count, CTLFLAG_RD, &num_queue_count, 0, "Number of queued aio requests"); static int num_buf_aio = 0; SYSCTL_INT(_vfs_aio, OID_AUTO, num_buf_aio, CTLFLAG_RD, &num_buf_aio, 0, "Number of aio requests presently handled by the buf subsystem"); /* Number of async I/O thread in the process of being started */ /* XXX This should be local to _aio_aqueue() */ static int num_aio_resv_start = 0; static int aiod_timeout; SYSCTL_INT(_vfs_aio, OID_AUTO, aiod_timeout, CTLFLAG_RW, &aiod_timeout, 0, "Timeout value for synchronous aio operations"); static int aiod_lifetime; SYSCTL_INT(_vfs_aio, OID_AUTO, aiod_lifetime, CTLFLAG_RW, &aiod_lifetime, 0, "Maximum lifetime for idle aiod"); static int unloadable = 0; SYSCTL_INT(_vfs_aio, OID_AUTO, unloadable, CTLFLAG_RW, &unloadable, 0, "Allow unload of aio (not recommended)"); static int max_aio_per_proc = MAX_AIO_PER_PROC; SYSCTL_INT(_vfs_aio, OID_AUTO, max_aio_per_proc, CTLFLAG_RW, &max_aio_per_proc, 0, "Maximum active aio requests per process (stored in the process)"); static int max_aio_queue_per_proc = MAX_AIO_QUEUE_PER_PROC; SYSCTL_INT(_vfs_aio, OID_AUTO, max_aio_queue_per_proc, CTLFLAG_RW, &max_aio_queue_per_proc, 0, "Maximum queued aio requests per process (stored in the process)"); static int max_buf_aio = MAX_BUF_AIO; SYSCTL_INT(_vfs_aio, OID_AUTO, max_buf_aio, CTLFLAG_RW, &max_buf_aio, 0, "Maximum buf aio requests per process (stored in the process)"); struct aiocblist { TAILQ_ENTRY(aiocblist) list; /* List of jobs */ TAILQ_ENTRY(aiocblist) plist; /* List of jobs for proc */ int jobflags; int jobstate; int inputcharge; int outputcharge; struct callout_handle timeouthandle; struct buf *bp; /* Buffer pointer */ struct proc *userproc; /* User process */ /* Not td! */ struct file *fd_file; /* Pointer to file structure */ struct aio_liojob *lio; /* Optional lio job */ struct aiocb *uuaiocb; /* Pointer in userspace of aiocb */ struct klist klist; /* list of knotes */ struct aiocb uaiocb; /* Kernel I/O control block */ }; /* jobflags */ #define AIOCBLIST_RUNDOWN 0x4 #define AIOCBLIST_ASYNCFREE 0x8 #define AIOCBLIST_DONE 0x10 /* * AIO process info */ #define AIOP_FREE 0x1 /* proc on free queue */ #define AIOP_SCHED 0x2 /* proc explicitly scheduled */ struct aiothreadlist { int aiothreadflags; /* AIO proc flags */ TAILQ_ENTRY(aiothreadlist) list; /* List of processes */ struct thread *aiothread; /* The AIO thread */ }; /* * data-structure for lio signal management */ struct aio_liojob { int lioj_flags; int lioj_buffer_count; int lioj_buffer_finished_count; int lioj_queue_count; int lioj_queue_finished_count; struct sigevent lioj_signal; /* signal on all I/O done */ TAILQ_ENTRY(aio_liojob) lioj_list; struct kaioinfo *lioj_ki; }; #define LIOJ_SIGNAL 0x1 /* signal on all done (lio) */ #define LIOJ_SIGNAL_POSTED 0x2 /* signal has been posted */ /* * per process aio data structure */ struct kaioinfo { int kaio_flags; /* per process kaio flags */ int kaio_maxactive_count; /* maximum number of AIOs */ int kaio_active_count; /* number of currently used AIOs */ int kaio_qallowed_count; /* maxiumu size of AIO queue */ int kaio_queue_count; /* size of AIO queue */ int kaio_ballowed_count; /* maximum number of buffers */ int kaio_queue_finished_count; /* number of daemon jobs finished */ int kaio_buffer_count; /* number of physio buffers */ int kaio_buffer_finished_count; /* count of I/O done */ struct proc *kaio_p; /* process that uses this kaio block */ TAILQ_HEAD(,aio_liojob) kaio_liojoblist; /* list of lio jobs */ TAILQ_HEAD(,aiocblist) kaio_jobqueue; /* job queue for process */ TAILQ_HEAD(,aiocblist) kaio_jobdone; /* done queue for process */ TAILQ_HEAD(,aiocblist) kaio_bufqueue; /* buffer job queue for process */ TAILQ_HEAD(,aiocblist) kaio_bufdone; /* buffer done queue for process */ TAILQ_HEAD(,aiocblist) kaio_sockqueue; /* queue for aios waiting on sockets */ }; #define KAIO_RUNDOWN 0x1 /* process is being run down */ #define KAIO_WAKEUP 0x2 /* wakeup process when there is a significant event */ static TAILQ_HEAD(,aiothreadlist) aio_activeproc; /* Active daemons */ static TAILQ_HEAD(,aiothreadlist) aio_freeproc; /* Idle daemons */ static TAILQ_HEAD(,aiocblist) aio_jobs; /* Async job list */ static TAILQ_HEAD(,aiocblist) aio_bufjobs; /* Phys I/O job list */ static void aio_init_aioinfo(struct proc *p); static void aio_onceonly(void); static int aio_free_entry(struct aiocblist *aiocbe); static void aio_process(struct aiocblist *aiocbe); static int aio_newproc(void); static int aio_aqueue(struct thread *td, struct aiocb *job, int type); static void aio_physwakeup(struct buf *bp); static void aio_proc_rundown(struct proc *p); static int aio_fphysio(struct aiocblist *aiocbe); static int aio_qphysio(struct proc *p, struct aiocblist *iocb); static void aio_daemon(void *uproc); static void aio_swake_cb(struct socket *, struct sockbuf *); static int aio_unload(void); static void process_signal(void *aioj); static int filt_aioattach(struct knote *kn); static void filt_aiodetach(struct knote *kn); static int filt_aio(struct knote *kn, long hint); /* * Zones for: * kaio Per process async io info * aiop async io thread data * aiocb async io jobs * aiol list io job pointer - internal to aio_suspend XXX * aiolio list io jobs */ static uma_zone_t kaio_zone, aiop_zone, aiocb_zone, aiol_zone, aiolio_zone; /* kqueue filters for aio */ static struct filterops aio_filtops = { 0, filt_aioattach, filt_aiodetach, filt_aio }; /* * Main operations function for use as a kernel module. */ static int aio_modload(struct module *module, int cmd, void *arg) { int error = 0; switch (cmd) { case MOD_LOAD: aio_onceonly(); break; case MOD_UNLOAD: error = aio_unload(); break; case MOD_SHUTDOWN: break; default: error = EINVAL; break; } return (error); } static moduledata_t aio_mod = { "aio", &aio_modload, NULL }; SYSCALL_MODULE_HELPER(aio_return); SYSCALL_MODULE_HELPER(aio_suspend); SYSCALL_MODULE_HELPER(aio_cancel); SYSCALL_MODULE_HELPER(aio_error); SYSCALL_MODULE_HELPER(aio_read); SYSCALL_MODULE_HELPER(aio_write); SYSCALL_MODULE_HELPER(aio_waitcomplete); SYSCALL_MODULE_HELPER(lio_listio); DECLARE_MODULE(aio, aio_mod, SI_SUB_VFS, SI_ORDER_ANY); MODULE_VERSION(aio, 1); /* * Startup initialization */ static void aio_onceonly(void) { /* XXX: should probably just use so->callback */ aio_swake = &aio_swake_cb; at_exit(aio_proc_rundown); at_exec(aio_proc_rundown); kqueue_add_filteropts(EVFILT_AIO, &aio_filtops); TAILQ_INIT(&aio_freeproc); TAILQ_INIT(&aio_activeproc); TAILQ_INIT(&aio_jobs); TAILQ_INIT(&aio_bufjobs); kaio_zone = uma_zcreate("AIO", sizeof(struct kaioinfo), NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE); aiop_zone = uma_zcreate("AIOP", sizeof(struct aiothreadlist), NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE); aiocb_zone = uma_zcreate("AIOCB", sizeof(struct aiocblist), NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE); aiol_zone = uma_zcreate("AIOL", AIO_LISTIO_MAX*sizeof(intptr_t) , NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE); aiolio_zone = uma_zcreate("AIOLIO", sizeof(struct aio_liojob), NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE); aiod_timeout = AIOD_TIMEOUT_DEFAULT; aiod_lifetime = AIOD_LIFETIME_DEFAULT; jobrefid = 1; } /* * Callback for unload of AIO when used as a module. */ static int aio_unload(void) { /* * XXX: no unloads by default, it's too dangerous. * perhaps we could do it if locked out callers and then * did an aio_proc_rundown() on each process. */ if (!unloadable) return (EOPNOTSUPP); aio_swake = NULL; rm_at_exit(aio_proc_rundown); rm_at_exec(aio_proc_rundown); kqueue_del_filteropts(EVFILT_AIO); return (0); } /* * Init the per-process aioinfo structure. The aioinfo limits are set * per-process for user limit (resource) management. */ static void aio_init_aioinfo(struct proc *p) { struct kaioinfo *ki; if (p->p_aioinfo == NULL) { ki = uma_zalloc(kaio_zone, M_WAITOK); p->p_aioinfo = ki; ki->kaio_flags = 0; ki->kaio_maxactive_count = max_aio_per_proc; ki->kaio_active_count = 0; ki->kaio_qallowed_count = max_aio_queue_per_proc; ki->kaio_queue_count = 0; ki->kaio_ballowed_count = max_buf_aio; ki->kaio_buffer_count = 0; ki->kaio_buffer_finished_count = 0; ki->kaio_p = p; TAILQ_INIT(&ki->kaio_jobdone); TAILQ_INIT(&ki->kaio_jobqueue); TAILQ_INIT(&ki->kaio_bufdone); TAILQ_INIT(&ki->kaio_bufqueue); TAILQ_INIT(&ki->kaio_liojoblist); TAILQ_INIT(&ki->kaio_sockqueue); } while (num_aio_procs < target_aio_procs) aio_newproc(); } /* * Free a job entry. Wait for completion if it is currently active, but don't * delay forever. If we delay, we return a flag that says that we have to * restart the queue scan. */ static int aio_free_entry(struct aiocblist *aiocbe) { struct kaioinfo *ki; struct aio_liojob *lj; struct proc *p; int error; int s; if (aiocbe->jobstate == JOBST_NULL) panic("aio_free_entry: freeing already free job"); p = aiocbe->userproc; ki = p->p_aioinfo; lj = aiocbe->lio; if (ki == NULL) panic("aio_free_entry: missing p->p_aioinfo"); while (aiocbe->jobstate == JOBST_JOBRUNNING) { if (aiocbe->jobflags & AIOCBLIST_ASYNCFREE) return 0; aiocbe->jobflags |= AIOCBLIST_RUNDOWN; tsleep(aiocbe, PRIBIO, "jobwai", 0); } aiocbe->jobflags &= ~AIOCBLIST_ASYNCFREE; if (aiocbe->bp == NULL) { if (ki->kaio_queue_count <= 0) panic("aio_free_entry: process queue size <= 0"); if (num_queue_count <= 0) panic("aio_free_entry: system wide queue size <= 0"); if (lj) { lj->lioj_queue_count--; if (aiocbe->jobflags & AIOCBLIST_DONE) lj->lioj_queue_finished_count--; } ki->kaio_queue_count--; if (aiocbe->jobflags & AIOCBLIST_DONE) ki->kaio_queue_finished_count--; num_queue_count--; } else { if (lj) { lj->lioj_buffer_count--; if (aiocbe->jobflags & AIOCBLIST_DONE) lj->lioj_buffer_finished_count--; } if (aiocbe->jobflags & AIOCBLIST_DONE) ki->kaio_buffer_finished_count--; ki->kaio_buffer_count--; num_buf_aio--; } /* aiocbe is going away, we need to destroy any knotes */ /* XXXKSE Note the thread here is used to eventually find the * owning process again, but it is also used to do a fo_close * and that requires the thread. (but does it require the * OWNING thread? (or maybe the running thread?) * There is a semantic problem here... */ knote_remove(FIRST_THREAD_IN_PROC(p), &aiocbe->klist); /* XXXKSE */ if ((ki->kaio_flags & KAIO_WAKEUP) || ((ki->kaio_flags & KAIO_RUNDOWN) && ((ki->kaio_buffer_count == 0) && (ki->kaio_queue_count == 0)))) { ki->kaio_flags &= ~KAIO_WAKEUP; wakeup(p); } if (aiocbe->jobstate == JOBST_JOBQBUF) { if ((error = aio_fphysio(aiocbe)) != 0) return error; if (aiocbe->jobstate != JOBST_JOBBFINISHED) panic("aio_free_entry: invalid physio finish-up state"); s = splbio(); TAILQ_REMOVE(&ki->kaio_bufdone, aiocbe, plist); splx(s); } else if (aiocbe->jobstate == JOBST_JOBQGLOBAL) { s = splnet(); TAILQ_REMOVE(&aio_jobs, aiocbe, list); TAILQ_REMOVE(&ki->kaio_jobqueue, aiocbe, plist); splx(s); } else if (aiocbe->jobstate == JOBST_JOBFINISHED) TAILQ_REMOVE(&ki->kaio_jobdone, aiocbe, plist); else if (aiocbe->jobstate == JOBST_JOBBFINISHED) { s = splbio(); TAILQ_REMOVE(&ki->kaio_bufdone, aiocbe, plist); splx(s); if (aiocbe->bp) { vunmapbuf(aiocbe->bp); relpbuf(aiocbe->bp, NULL); aiocbe->bp = NULL; } } if (lj && (lj->lioj_buffer_count == 0) && (lj->lioj_queue_count == 0)) { TAILQ_REMOVE(&ki->kaio_liojoblist, lj, lioj_list); uma_zfree(aiolio_zone, lj); } aiocbe->jobstate = JOBST_NULL; untimeout(process_signal, aiocbe, aiocbe->timeouthandle); fdrop(aiocbe->fd_file, curthread); uma_zfree(aiocb_zone, aiocbe); return 0; } /* * Rundown the jobs for a given process. */ static void aio_proc_rundown(struct proc *p) { int s; struct kaioinfo *ki; struct aio_liojob *lj, *ljn; struct aiocblist *aiocbe, *aiocbn; struct file *fp; struct socket *so; ki = p->p_aioinfo; if (ki == NULL) return; ki->kaio_flags |= LIOJ_SIGNAL_POSTED; while ((ki->kaio_active_count > 0) || (ki->kaio_buffer_count > ki->kaio_buffer_finished_count)) { ki->kaio_flags |= KAIO_RUNDOWN; if (tsleep(p, PRIBIO, "kaiowt", aiod_timeout)) break; } /* * Move any aio ops that are waiting on socket I/O to the normal job * queues so they are cleaned up with any others. */ s = splnet(); for (aiocbe = TAILQ_FIRST(&ki->kaio_sockqueue); aiocbe; aiocbe = aiocbn) { aiocbn = TAILQ_NEXT(aiocbe, plist); fp = aiocbe->fd_file; if (fp != NULL) { so = (struct socket *)fp->f_data; TAILQ_REMOVE(&so->so_aiojobq, aiocbe, list); if (TAILQ_EMPTY(&so->so_aiojobq)) { so->so_snd.sb_flags &= ~SB_AIO; so->so_rcv.sb_flags &= ~SB_AIO; } } TAILQ_REMOVE(&ki->kaio_sockqueue, aiocbe, plist); TAILQ_INSERT_HEAD(&aio_jobs, aiocbe, list); TAILQ_INSERT_HEAD(&ki->kaio_jobqueue, aiocbe, plist); } splx(s); restart1: for (aiocbe = TAILQ_FIRST(&ki->kaio_jobdone); aiocbe; aiocbe = aiocbn) { aiocbn = TAILQ_NEXT(aiocbe, plist); if (aio_free_entry(aiocbe)) goto restart1; } restart2: for (aiocbe = TAILQ_FIRST(&ki->kaio_jobqueue); aiocbe; aiocbe = aiocbn) { aiocbn = TAILQ_NEXT(aiocbe, plist); if (aio_free_entry(aiocbe)) goto restart2; } /* * Note the use of lots of splbio here, trying to avoid splbio for long chains * of I/O. Probably unnecessary. */ restart3: s = splbio(); while (TAILQ_FIRST(&ki->kaio_bufqueue)) { ki->kaio_flags |= KAIO_WAKEUP; tsleep(p, PRIBIO, "aioprn", 0); splx(s); goto restart3; } splx(s); restart4: s = splbio(); for (aiocbe = TAILQ_FIRST(&ki->kaio_bufdone); aiocbe; aiocbe = aiocbn) { aiocbn = TAILQ_NEXT(aiocbe, plist); if (aio_free_entry(aiocbe)) { splx(s); goto restart4; } } splx(s); /* * If we've slept, jobs might have moved from one queue to another. * Retry rundown if we didn't manage to empty the queues. */ if (TAILQ_FIRST(&ki->kaio_jobdone) != NULL || TAILQ_FIRST(&ki->kaio_jobqueue) != NULL || TAILQ_FIRST(&ki->kaio_bufqueue) != NULL || TAILQ_FIRST(&ki->kaio_bufdone) != NULL) goto restart1; for (lj = TAILQ_FIRST(&ki->kaio_liojoblist); lj; lj = ljn) { ljn = TAILQ_NEXT(lj, lioj_list); if ((lj->lioj_buffer_count == 0) && (lj->lioj_queue_count == 0)) { TAILQ_REMOVE(&ki->kaio_liojoblist, lj, lioj_list); uma_zfree(aiolio_zone, lj); } else { #ifdef DIAGNOSTIC printf("LIO job not cleaned up: B:%d, BF:%d, Q:%d, " "QF:%d\n", lj->lioj_buffer_count, lj->lioj_buffer_finished_count, lj->lioj_queue_count, lj->lioj_queue_finished_count); #endif } } uma_zfree(kaio_zone, ki); p->p_aioinfo = NULL; } /* * Select a job to run (called by an AIO daemon). */ static struct aiocblist * aio_selectjob(struct aiothreadlist *aiop) { int s; struct aiocblist *aiocbe; struct kaioinfo *ki; struct proc *userp; s = splnet(); for (aiocbe = TAILQ_FIRST(&aio_jobs); aiocbe; aiocbe = TAILQ_NEXT(aiocbe, list)) { userp = aiocbe->userproc; ki = userp->p_aioinfo; if (ki->kaio_active_count < ki->kaio_maxactive_count) { TAILQ_REMOVE(&aio_jobs, aiocbe, list); splx(s); return aiocbe; } } splx(s); return NULL; } /* * The AIO processing activity. This is the code that does the I/O request for * the non-physio version of the operations. The normal vn operations are used, * and this code should work in all instances for every type of file, including * pipes, sockets, fifos, and regular files. */ static void aio_process(struct aiocblist *aiocbe) { struct thread *td; struct proc *mycp; struct aiocb *cb; struct file *fp; struct uio auio; struct iovec aiov; int cnt; int error; int oublock_st, oublock_end; int inblock_st, inblock_end; td = curthread; mycp = td->td_proc; cb = &aiocbe->uaiocb; fp = aiocbe->fd_file; aiov.iov_base = (void *)(uintptr_t)cb->aio_buf; aiov.iov_len = cb->aio_nbytes; auio.uio_iov = &aiov; auio.uio_iovcnt = 1; auio.uio_offset = cb->aio_offset; auio.uio_resid = cb->aio_nbytes; cnt = cb->aio_nbytes; auio.uio_segflg = UIO_USERSPACE; auio.uio_td = td; inblock_st = mycp->p_stats->p_ru.ru_inblock; oublock_st = mycp->p_stats->p_ru.ru_oublock; /* * _aio_aqueue() acquires a reference to the file that is * released in aio_free_entry(). */ if (cb->aio_lio_opcode == LIO_READ) { auio.uio_rw = UIO_READ; error = fo_read(fp, &auio, fp->f_cred, FOF_OFFSET, td); } else { auio.uio_rw = UIO_WRITE; error = fo_write(fp, &auio, fp->f_cred, FOF_OFFSET, td); } inblock_end = mycp->p_stats->p_ru.ru_inblock; oublock_end = mycp->p_stats->p_ru.ru_oublock; aiocbe->inputcharge = inblock_end - inblock_st; aiocbe->outputcharge = oublock_end - oublock_st; if ((error) && (auio.uio_resid != cnt)) { if (error == ERESTART || error == EINTR || error == EWOULDBLOCK) error = 0; if ((error == EPIPE) && (cb->aio_lio_opcode == LIO_WRITE)) { PROC_LOCK(aiocbe->userproc); psignal(aiocbe->userproc, SIGPIPE); PROC_UNLOCK(aiocbe->userproc); } } cnt -= auio.uio_resid; cb->_aiocb_private.error = error; cb->_aiocb_private.status = cnt; } /* * The AIO daemon, most of the actual work is done in aio_process, * but the setup (and address space mgmt) is done in this routine. */ static void aio_daemon(void *uproc) { int s; struct aio_liojob *lj; struct aiocb *cb; struct aiocblist *aiocbe; struct aiothreadlist *aiop; struct kaioinfo *ki; struct proc *curcp, *mycp, *userp; struct vmspace *myvm, *tmpvm; struct thread *td = curthread; struct pgrp *newpgrp; struct session *newsess; mtx_lock(&Giant); /* * Local copies of curproc (cp) and vmspace (myvm) */ mycp = td->td_proc; myvm = mycp->p_vmspace; if (mycp->p_textvp) { vrele(mycp->p_textvp); mycp->p_textvp = NULL; } /* * Allocate and ready the aio control info. There is one aiop structure * per daemon. */ aiop = uma_zalloc(aiop_zone, M_WAITOK); aiop->aiothread = td; aiop->aiothreadflags |= AIOP_FREE; s = splnet(); /* * Place thread (lightweight process) onto the AIO free thread list. */ if (TAILQ_EMPTY(&aio_freeproc)) wakeup(&aio_freeproc); TAILQ_INSERT_HEAD(&aio_freeproc, aiop, list); splx(s); /* * Get rid of our current filedescriptors. AIOD's don't need any * filedescriptors, except as temporarily inherited from the client. */ fdfree(td); mycp->p_fd = NULL; /* The daemon resides in its own pgrp. */ MALLOC(newpgrp, struct pgrp *, sizeof(struct pgrp), M_PGRP, M_WAITOK | M_ZERO); MALLOC(newsess, struct session *, sizeof(struct session), M_SESSION, M_WAITOK | M_ZERO); PGRPSESS_XLOCK(); enterpgrp(mycp, mycp->p_pid, newpgrp, newsess); PGRPSESS_XUNLOCK(); /* Mark special process type. */ mycp->p_flag |= P_SYSTEM; /* * Wakeup parent process. (Parent sleeps to keep from blasting away * and creating too many daemons.) */ wakeup(mycp); for (;;) { /* * curcp is the current daemon process context. * userp is the current user process context. */ curcp = mycp; /* * Take daemon off of free queue */ if (aiop->aiothreadflags & AIOP_FREE) { s = splnet(); TAILQ_REMOVE(&aio_freeproc, aiop, list); TAILQ_INSERT_TAIL(&aio_activeproc, aiop, list); aiop->aiothreadflags &= ~AIOP_FREE; splx(s); } aiop->aiothreadflags &= ~AIOP_SCHED; /* * Check for jobs. */ while ((aiocbe = aio_selectjob(aiop)) != NULL) { cb = &aiocbe->uaiocb; userp = aiocbe->userproc; aiocbe->jobstate = JOBST_JOBRUNNING; /* * Connect to process address space for user program. */ if (userp != curcp) { /* * Save the current address space that we are * connected to. */ tmpvm = mycp->p_vmspace; /* * Point to the new user address space, and * refer to it. */ mycp->p_vmspace = userp->p_vmspace; mycp->p_vmspace->vm_refcnt++; /* Activate the new mapping. */ pmap_activate(FIRST_THREAD_IN_PROC(mycp)); /* * If the old address space wasn't the daemons * own address space, then we need to remove the * daemon's reference from the other process * that it was acting on behalf of. */ if (tmpvm != myvm) { vmspace_free(tmpvm); } curcp = userp; } ki = userp->p_aioinfo; lj = aiocbe->lio; /* Account for currently active jobs. */ ki->kaio_active_count++; /* Do the I/O function. */ aio_process(aiocbe); /* Decrement the active job count. */ ki->kaio_active_count--; /* * Increment the completion count for wakeup/signal * comparisons. */ aiocbe->jobflags |= AIOCBLIST_DONE; ki->kaio_queue_finished_count++; if (lj) lj->lioj_queue_finished_count++; if ((ki->kaio_flags & KAIO_WAKEUP) || ((ki->kaio_flags & KAIO_RUNDOWN) && (ki->kaio_active_count == 0))) { ki->kaio_flags &= ~KAIO_WAKEUP; wakeup(userp); } s = splbio(); if (lj && (lj->lioj_flags & (LIOJ_SIGNAL|LIOJ_SIGNAL_POSTED)) == LIOJ_SIGNAL) { if ((lj->lioj_queue_finished_count == lj->lioj_queue_count) && (lj->lioj_buffer_finished_count == lj->lioj_buffer_count)) { PROC_LOCK(userp); psignal(userp, lj->lioj_signal.sigev_signo); PROC_UNLOCK(userp); lj->lioj_flags |= LIOJ_SIGNAL_POSTED; } } splx(s); aiocbe->jobstate = JOBST_JOBFINISHED; /* * If the I/O request should be automatically rundown, * do the needed cleanup. Otherwise, place the queue * entry for the just finished I/O request into the done * queue for the associated client. */ s = splnet(); if (aiocbe->jobflags & AIOCBLIST_ASYNCFREE) { aiocbe->jobflags &= ~AIOCBLIST_ASYNCFREE; uma_zfree(aiocb_zone, aiocbe); } else { TAILQ_REMOVE(&ki->kaio_jobqueue, aiocbe, plist); TAILQ_INSERT_TAIL(&ki->kaio_jobdone, aiocbe, plist); } splx(s); KNOTE(&aiocbe->klist, 0); if (aiocbe->jobflags & AIOCBLIST_RUNDOWN) { wakeup(aiocbe); aiocbe->jobflags &= ~AIOCBLIST_RUNDOWN; } if (cb->aio_sigevent.sigev_notify == SIGEV_SIGNAL) { PROC_LOCK(userp); psignal(userp, cb->aio_sigevent.sigev_signo); PROC_UNLOCK(userp); } } /* * Disconnect from user address space. */ if (curcp != mycp) { /* Get the user address space to disconnect from. */ tmpvm = mycp->p_vmspace; /* Get original address space for daemon. */ mycp->p_vmspace = myvm; /* Activate the daemon's address space. */ pmap_activate(FIRST_THREAD_IN_PROC(mycp)); #ifdef DIAGNOSTIC if (tmpvm == myvm) { printf("AIOD: vmspace problem -- %d\n", mycp->p_pid); } #endif /* Remove our vmspace reference. */ vmspace_free(tmpvm); curcp = mycp; } /* * If we are the first to be put onto the free queue, wakeup * anyone waiting for a daemon. */ s = splnet(); TAILQ_REMOVE(&aio_activeproc, aiop, list); if (TAILQ_EMPTY(&aio_freeproc)) wakeup(&aio_freeproc); TAILQ_INSERT_HEAD(&aio_freeproc, aiop, list); aiop->aiothreadflags |= AIOP_FREE; splx(s); /* * If daemon is inactive for a long time, allow it to exit, * thereby freeing resources. */ if ((aiop->aiothreadflags & AIOP_SCHED) == 0 && tsleep(aiop->aiothread, PRIBIO, "aiordy", aiod_lifetime)) { s = splnet(); if (TAILQ_EMPTY(&aio_jobs)) { if ((aiop->aiothreadflags & AIOP_FREE) && (num_aio_procs > target_aio_procs)) { TAILQ_REMOVE(&aio_freeproc, aiop, list); splx(s); uma_zfree(aiop_zone, aiop); num_aio_procs--; #ifdef DIAGNOSTIC if (mycp->p_vmspace->vm_refcnt <= 1) { printf("AIOD: bad vm refcnt for" " exiting daemon: %d\n", mycp->p_vmspace->vm_refcnt); } #endif kthread_exit(0); } } splx(s); } } } /* * Create a new AIO daemon. This is mostly a kernel-thread fork routine. The * AIO daemon modifies its environment itself. */ static int aio_newproc() { int error; struct proc *p; error = kthread_create(aio_daemon, curproc, &p, RFNOWAIT, "aiod%d", num_aio_procs); if (error) return error; /* * Wait until daemon is started, but continue on just in case to * handle error conditions. */ error = tsleep(p, PZERO, "aiosta", aiod_timeout); num_aio_procs++; return error; } /* * Try the high-performance, low-overhead physio method for eligible * VCHR devices. This method doesn't use an aio helper thread, and * thus has very low overhead. * * Assumes that the caller, _aio_aqueue(), has incremented the file * structure's reference count, preventing its deallocation for the * duration of this call. */ static int aio_qphysio(struct proc *p, struct aiocblist *aiocbe) { int error; struct aiocb *cb; struct file *fp; struct buf *bp; struct vnode *vp; struct kaioinfo *ki; struct aio_liojob *lj; int s; int notify; cb = &aiocbe->uaiocb; fp = aiocbe->fd_file; if (fp->f_type != DTYPE_VNODE) return (-1); vp = (struct vnode *)fp->f_data; /* * If its not a disk, we don't want to return a positive error. * It causes the aio code to not fall through to try the thread * way when you're talking to a regular file. */ if (!vn_isdisk(vp, &error)) { if (error == ENOTBLK) return (-1); else return (error); } if (cb->aio_nbytes % vp->v_rdev->si_bsize_phys) return (-1); if (cb->aio_nbytes > MAXPHYS - (((vm_offset_t) cb->aio_buf) & PAGE_MASK)) return (-1); ki = p->p_aioinfo; if (ki->kaio_buffer_count >= ki->kaio_ballowed_count) return (-1); ki->kaio_buffer_count++; lj = aiocbe->lio; if (lj) lj->lioj_buffer_count++; /* Create and build a buffer header for a transfer. */ bp = (struct buf *)getpbuf(NULL); BUF_KERNPROC(bp); /* * Get a copy of the kva from the physical buffer. */ bp->b_caller1 = p; bp->b_dev = vp->v_rdev; error = bp->b_error = 0; bp->b_bcount = cb->aio_nbytes; bp->b_bufsize = cb->aio_nbytes; bp->b_flags = B_PHYS; bp->b_iodone = aio_physwakeup; bp->b_saveaddr = bp->b_data; bp->b_data = (void *)(uintptr_t)cb->aio_buf; bp->b_blkno = btodb(cb->aio_offset); if (cb->aio_lio_opcode == LIO_WRITE) { bp->b_iocmd = BIO_WRITE; if (!useracc(bp->b_data, bp->b_bufsize, VM_PROT_READ)) { error = EFAULT; goto doerror; } } else { bp->b_iocmd = BIO_READ; if (!useracc(bp->b_data, bp->b_bufsize, VM_PROT_WRITE)) { error = EFAULT; goto doerror; } } /* Bring buffer into kernel space. */ vmapbuf(bp); s = splbio(); aiocbe->bp = bp; bp->b_spc = (void *)aiocbe; TAILQ_INSERT_TAIL(&aio_bufjobs, aiocbe, list); TAILQ_INSERT_TAIL(&ki->kaio_bufqueue, aiocbe, plist); aiocbe->jobstate = JOBST_JOBQBUF; cb->_aiocb_private.status = cb->aio_nbytes; num_buf_aio++; bp->b_error = 0; splx(s); /* Perform transfer. */ DEV_STRATEGY(bp, 0); notify = 0; s = splbio(); /* * If we had an error invoking the request, or an error in processing * the request before we have returned, we process it as an error in * transfer. Note that such an I/O error is not indicated immediately, * but is returned using the aio_error mechanism. In this case, * aio_suspend will return immediately. */ if (bp->b_error || (bp->b_ioflags & BIO_ERROR)) { struct aiocb *job = aiocbe->uuaiocb; aiocbe->uaiocb._aiocb_private.status = 0; suword(&job->_aiocb_private.status, 0); aiocbe->uaiocb._aiocb_private.error = bp->b_error; suword(&job->_aiocb_private.error, bp->b_error); ki->kaio_buffer_finished_count++; if (aiocbe->jobstate != JOBST_JOBBFINISHED) { aiocbe->jobstate = JOBST_JOBBFINISHED; aiocbe->jobflags |= AIOCBLIST_DONE; TAILQ_REMOVE(&aio_bufjobs, aiocbe, list); TAILQ_REMOVE(&ki->kaio_bufqueue, aiocbe, plist); TAILQ_INSERT_TAIL(&ki->kaio_bufdone, aiocbe, plist); notify = 1; } } splx(s); if (notify) KNOTE(&aiocbe->klist, 0); return 0; doerror: ki->kaio_buffer_count--; if (lj) lj->lioj_buffer_count--; aiocbe->bp = NULL; relpbuf(bp, NULL); return error; } /* * This waits/tests physio completion. */ static int aio_fphysio(struct aiocblist *iocb) { int s; struct buf *bp; int error; bp = iocb->bp; s = splbio(); while ((bp->b_flags & B_DONE) == 0) { if (tsleep(bp, PRIBIO, "physstr", aiod_timeout)) { if ((bp->b_flags & B_DONE) == 0) { splx(s); return EINPROGRESS; } else break; } } splx(s); /* Release mapping into kernel space. */ vunmapbuf(bp); iocb->bp = 0; error = 0; /* Check for an error. */ if (bp->b_ioflags & BIO_ERROR) error = bp->b_error; relpbuf(bp, NULL); return (error); } /* * Wake up aio requests that may be serviceable now. */ static void aio_swake_cb(struct socket *so, struct sockbuf *sb) { struct aiocblist *cb,*cbn; struct proc *p; struct kaioinfo *ki = NULL; int opcode, wakecount = 0; struct aiothreadlist *aiop; if (sb == &so->so_snd) { opcode = LIO_WRITE; so->so_snd.sb_flags &= ~SB_AIO; } else { opcode = LIO_READ; so->so_rcv.sb_flags &= ~SB_AIO; } for (cb = TAILQ_FIRST(&so->so_aiojobq); cb; cb = cbn) { cbn = TAILQ_NEXT(cb, list); if (opcode == cb->uaiocb.aio_lio_opcode) { p = cb->userproc; ki = p->p_aioinfo; TAILQ_REMOVE(&so->so_aiojobq, cb, list); TAILQ_REMOVE(&ki->kaio_sockqueue, cb, plist); TAILQ_INSERT_TAIL(&aio_jobs, cb, list); TAILQ_INSERT_TAIL(&ki->kaio_jobqueue, cb, plist); wakecount++; if (cb->jobstate != JOBST_JOBQGLOBAL) panic("invalid queue value"); } } while (wakecount--) { if ((aiop = TAILQ_FIRST(&aio_freeproc)) != 0) { TAILQ_REMOVE(&aio_freeproc, aiop, list); TAILQ_INSERT_TAIL(&aio_activeproc, aiop, list); aiop->aiothreadflags &= ~AIOP_FREE; wakeup(aiop->aiothread); } } } /* * Queue a new AIO request. Choosing either the threaded or direct physio VCHR * technique is done in this code. */ static int _aio_aqueue(struct thread *td, struct aiocb *job, struct aio_liojob *lj, int type) { struct proc *p = td->td_proc; struct filedesc *fdp; struct file *fp; unsigned int fd; struct socket *so; int s; int error; int opcode; struct aiocblist *aiocbe; struct aiothreadlist *aiop; struct kaioinfo *ki; struct kevent kev; struct kqueue *kq; struct file *kq_fp; aiocbe = uma_zalloc(aiocb_zone, M_WAITOK); aiocbe->inputcharge = 0; aiocbe->outputcharge = 0; callout_handle_init(&aiocbe->timeouthandle); SLIST_INIT(&aiocbe->klist); suword(&job->_aiocb_private.status, -1); suword(&job->_aiocb_private.error, 0); suword(&job->_aiocb_private.kernelinfo, -1); error = copyin(job, &aiocbe->uaiocb, sizeof(aiocbe->uaiocb)); if (error) { suword(&job->_aiocb_private.error, error); uma_zfree(aiocb_zone, aiocbe); return error; } if (aiocbe->uaiocb.aio_sigevent.sigev_notify == SIGEV_SIGNAL && !_SIG_VALID(aiocbe->uaiocb.aio_sigevent.sigev_signo)) { uma_zfree(aiocb_zone, aiocbe); return EINVAL; } /* Save userspace address of the job info. */ aiocbe->uuaiocb = job; /* Get the opcode. */ if (type != LIO_NOP) aiocbe->uaiocb.aio_lio_opcode = type; opcode = aiocbe->uaiocb.aio_lio_opcode; /* Get the fd info for process. */ fdp = p->p_fd; /* * Range check file descriptor. */ fd = aiocbe->uaiocb.aio_fildes; if (fd >= fdp->fd_nfiles) { uma_zfree(aiocb_zone, aiocbe); if (type == 0) suword(&job->_aiocb_private.error, EBADF); return EBADF; } fp = aiocbe->fd_file = fdp->fd_ofiles[fd]; if ((fp == NULL) || ((opcode == LIO_WRITE) && ((fp->f_flag & FWRITE) == 0))) { uma_zfree(aiocb_zone, aiocbe); if (type == 0) suword(&job->_aiocb_private.error, EBADF); return EBADF; } fhold(fp); if (aiocbe->uaiocb.aio_offset == -1LL) { error = EINVAL; goto aqueue_fail; } error = suword(&job->_aiocb_private.kernelinfo, jobrefid); if (error) { error = EINVAL; goto aqueue_fail; } aiocbe->uaiocb._aiocb_private.kernelinfo = (void *)(intptr_t)jobrefid; if (jobrefid == LONG_MAX) jobrefid = 1; else jobrefid++; if (opcode == LIO_NOP) { fdrop(fp, td); uma_zfree(aiocb_zone, aiocbe); if (type == 0) { suword(&job->_aiocb_private.error, 0); suword(&job->_aiocb_private.status, 0); suword(&job->_aiocb_private.kernelinfo, 0); } return 0; } if ((opcode != LIO_READ) && (opcode != LIO_WRITE)) { if (type == 0) suword(&job->_aiocb_private.status, 0); error = EINVAL; goto aqueue_fail; } if (aiocbe->uaiocb.aio_sigevent.sigev_notify == SIGEV_KEVENT) { kev.ident = aiocbe->uaiocb.aio_sigevent.sigev_notify_kqueue; kev.udata = aiocbe->uaiocb.aio_sigevent.sigev_value.sigval_ptr; } else { /* * This method for requesting kevent-based notification won't * work on the alpha, since we're passing in a pointer * via aio_lio_opcode, which is an int. Use the SIGEV_KEVENT- * based method instead. */ struct kevent *kevp; kevp = (struct kevent *)(uintptr_t)job->aio_lio_opcode; if (kevp == NULL) goto no_kqueue; error = copyin(kevp, &kev, sizeof(kev)); if (error) goto aqueue_fail; } if ((u_int)kev.ident >= fdp->fd_nfiles || (kq_fp = fdp->fd_ofiles[kev.ident]) == NULL || (kq_fp->f_type != DTYPE_KQUEUE)) { error = EBADF; goto aqueue_fail; } kq = (struct kqueue *)kq_fp->f_data; kev.ident = (uintptr_t)aiocbe; kev.filter = EVFILT_AIO; kev.flags = EV_ADD | EV_ENABLE | EV_FLAG1; error = kqueue_register(kq, &kev, td); aqueue_fail: if (error) { fdrop(fp, td); uma_zfree(aiocb_zone, aiocbe); if (type == 0) suword(&job->_aiocb_private.error, error); goto done; } no_kqueue: suword(&job->_aiocb_private.error, EINPROGRESS); aiocbe->uaiocb._aiocb_private.error = EINPROGRESS; aiocbe->userproc = p; aiocbe->jobflags = 0; aiocbe->lio = lj; ki = p->p_aioinfo; if (fp->f_type == DTYPE_SOCKET) { /* * Alternate queueing for socket ops: Reach down into the * descriptor to get the socket data. Then check to see if the * socket is ready to be read or written (based on the requested * operation). * * If it is not ready for io, then queue the aiocbe on the * socket, and set the flags so we get a call when sbnotify() * happens. */ so = (struct socket *)fp->f_data; s = splnet(); if (((opcode == LIO_READ) && (!soreadable(so))) || ((opcode == LIO_WRITE) && (!sowriteable(so)))) { TAILQ_INSERT_TAIL(&so->so_aiojobq, aiocbe, list); TAILQ_INSERT_TAIL(&ki->kaio_sockqueue, aiocbe, plist); if (opcode == LIO_READ) so->so_rcv.sb_flags |= SB_AIO; else so->so_snd.sb_flags |= SB_AIO; aiocbe->jobstate = JOBST_JOBQGLOBAL; /* XXX */ ki->kaio_queue_count++; num_queue_count++; splx(s); error = 0; goto done; } splx(s); } if ((error = aio_qphysio(p, aiocbe)) == 0) goto done; if (error > 0) { suword(&job->_aiocb_private.status, 0); aiocbe->uaiocb._aiocb_private.error = error; suword(&job->_aiocb_private.error, error); goto done; } /* No buffer for daemon I/O. */ aiocbe->bp = NULL; ki->kaio_queue_count++; if (lj) lj->lioj_queue_count++; s = splnet(); TAILQ_INSERT_TAIL(&ki->kaio_jobqueue, aiocbe, plist); TAILQ_INSERT_TAIL(&aio_jobs, aiocbe, list); splx(s); aiocbe->jobstate = JOBST_JOBQGLOBAL; num_queue_count++; error = 0; /* * If we don't have a free AIO process, and we are below our quota, then * start one. Otherwise, depend on the subsequent I/O completions to * pick-up this job. If we don't sucessfully create the new process * (thread) due to resource issues, we return an error for now (EAGAIN), * which is likely not the correct thing to do. */ s = splnet(); retryproc: if ((aiop = TAILQ_FIRST(&aio_freeproc)) != NULL) { TAILQ_REMOVE(&aio_freeproc, aiop, list); TAILQ_INSERT_TAIL(&aio_activeproc, aiop, list); aiop->aiothreadflags &= ~AIOP_FREE; wakeup(aiop->aiothread); } else if (((num_aio_resv_start + num_aio_procs) < max_aio_procs) && ((ki->kaio_active_count + num_aio_resv_start) < ki->kaio_maxactive_count)) { num_aio_resv_start++; if ((error = aio_newproc()) == 0) { num_aio_resv_start--; goto retryproc; } num_aio_resv_start--; } splx(s); done: return error; } /* * This routine queues an AIO request, checking for quotas. */ static int aio_aqueue(struct thread *td, struct aiocb *job, int type) { struct proc *p = td->td_proc; struct kaioinfo *ki; if (p->p_aioinfo == NULL) aio_init_aioinfo(p); if (num_queue_count >= max_queue_count) return EAGAIN; ki = p->p_aioinfo; if (ki->kaio_queue_count >= ki->kaio_qallowed_count) return EAGAIN; return _aio_aqueue(td, job, NULL, type); } /* * Support the aio_return system call, as a side-effect, kernel resources are * released. */ int aio_return(struct thread *td, struct aio_return_args *uap) { struct proc *p = td->td_proc; int s; long jobref; struct aiocblist *cb, *ncb; struct aiocb *ujob; struct kaioinfo *ki; ujob = uap->aiocbp; jobref = fuword(&ujob->_aiocb_private.kernelinfo); if (jobref == -1 || jobref == 0) return EINVAL; ki = p->p_aioinfo; if (ki == NULL) return EINVAL; TAILQ_FOREACH(cb, &ki->kaio_jobdone, plist) { if (((intptr_t) cb->uaiocb._aiocb_private.kernelinfo) == jobref) { if (cb->uaiocb.aio_lio_opcode == LIO_WRITE) { p->p_stats->p_ru.ru_oublock += cb->outputcharge; cb->outputcharge = 0; } else if (cb->uaiocb.aio_lio_opcode == LIO_READ) { p->p_stats->p_ru.ru_inblock += cb->inputcharge; cb->inputcharge = 0; } goto done; } } s = splbio(); for (cb = TAILQ_FIRST(&ki->kaio_bufdone); cb; cb = ncb) { ncb = TAILQ_NEXT(cb, plist); if (((intptr_t) cb->uaiocb._aiocb_private.kernelinfo) == jobref) { break; } } splx(s); done: if (cb != NULL) { if (ujob == cb->uuaiocb) { td->td_retval[0] = cb->uaiocb._aiocb_private.status; } else td->td_retval[0] = EFAULT; aio_free_entry(cb); return (0); } return (EINVAL); } /* * Allow a process to wakeup when any of the I/O requests are completed. */ int aio_suspend(struct thread *td, struct aio_suspend_args *uap) { struct proc *p = td->td_proc; struct timeval atv; struct timespec ts; struct aiocb *const *cbptr, *cbp; struct kaioinfo *ki; struct aiocblist *cb; int i; int njoblist; int error, s, timo; long *ijoblist; struct aiocb **ujoblist; if (uap->nent > AIO_LISTIO_MAX) return EINVAL; timo = 0; if (uap->timeout) { /* Get timespec struct. */ if ((error = copyin(uap->timeout, &ts, sizeof(ts))) != 0) return error; if (ts.tv_nsec < 0 || ts.tv_nsec >= 1000000000) return (EINVAL); TIMESPEC_TO_TIMEVAL(&atv, &ts); if (itimerfix(&atv)) return (EINVAL); timo = tvtohz(&atv); } ki = p->p_aioinfo; if (ki == NULL) return EAGAIN; njoblist = 0; ijoblist = uma_zalloc(aiol_zone, M_WAITOK); ujoblist = uma_zalloc(aiol_zone, M_WAITOK); cbptr = uap->aiocbp; for (i = 0; i < uap->nent; i++) { cbp = (struct aiocb *)(intptr_t)fuword((caddr_t)&cbptr[i]); if (cbp == 0) continue; ujoblist[njoblist] = cbp; ijoblist[njoblist] = fuword(&cbp->_aiocb_private.kernelinfo); njoblist++; } if (njoblist == 0) { uma_zfree(aiol_zone, ijoblist); uma_zfree(aiol_zone, ujoblist); return 0; } error = 0; for (;;) { TAILQ_FOREACH(cb, &ki->kaio_jobdone, plist) { for (i = 0; i < njoblist; i++) { if (((intptr_t) cb->uaiocb._aiocb_private.kernelinfo) == ijoblist[i]) { if (ujoblist[i] != cb->uuaiocb) error = EINVAL; uma_zfree(aiol_zone, ijoblist); uma_zfree(aiol_zone, ujoblist); return error; } } } s = splbio(); for (cb = TAILQ_FIRST(&ki->kaio_bufdone); cb; cb = TAILQ_NEXT(cb, plist)) { for (i = 0; i < njoblist; i++) { if (((intptr_t) cb->uaiocb._aiocb_private.kernelinfo) == ijoblist[i]) { splx(s); if (ujoblist[i] != cb->uuaiocb) error = EINVAL; uma_zfree(aiol_zone, ijoblist); uma_zfree(aiol_zone, ujoblist); return error; } } } ki->kaio_flags |= KAIO_WAKEUP; error = tsleep(p, PRIBIO | PCATCH, "aiospn", timo); splx(s); if (error == ERESTART || error == EINTR) { uma_zfree(aiol_zone, ijoblist); uma_zfree(aiol_zone, ujoblist); return EINTR; } else if (error == EWOULDBLOCK) { uma_zfree(aiol_zone, ijoblist); uma_zfree(aiol_zone, ujoblist); return EAGAIN; } } /* NOTREACHED */ return EINVAL; } /* * aio_cancel cancels any non-physio aio operations not currently in * progress. */ int aio_cancel(struct thread *td, struct aio_cancel_args *uap) { struct proc *p = td->td_proc; struct kaioinfo *ki; struct aiocblist *cbe, *cbn; struct file *fp; struct filedesc *fdp; struct socket *so; struct proc *po; int s,error; int cancelled=0; int notcancelled=0; struct vnode *vp; fdp = p->p_fd; if ((u_int)uap->fd >= fdp->fd_nfiles || (fp = fdp->fd_ofiles[uap->fd]) == NULL) return (EBADF); if (fp->f_type == DTYPE_VNODE) { vp = (struct vnode *)fp->f_data; if (vn_isdisk(vp,&error)) { td->td_retval[0] = AIO_NOTCANCELED; return 0; } } else if (fp->f_type == DTYPE_SOCKET) { so = (struct socket *)fp->f_data; s = splnet(); for (cbe = TAILQ_FIRST(&so->so_aiojobq); cbe; cbe = cbn) { cbn = TAILQ_NEXT(cbe, list); if ((uap->aiocbp == NULL) || (uap->aiocbp == cbe->uuaiocb) ) { po = cbe->userproc; ki = po->p_aioinfo; TAILQ_REMOVE(&so->so_aiojobq, cbe, list); TAILQ_REMOVE(&ki->kaio_sockqueue, cbe, plist); TAILQ_INSERT_TAIL(&ki->kaio_jobdone, cbe, plist); if (ki->kaio_flags & KAIO_WAKEUP) { wakeup(po); } cbe->jobstate = JOBST_JOBFINISHED; cbe->uaiocb._aiocb_private.status=-1; cbe->uaiocb._aiocb_private.error=ECANCELED; cancelled++; /* XXX cancelled, knote? */ if (cbe->uaiocb.aio_sigevent.sigev_notify == SIGEV_SIGNAL) { PROC_LOCK(cbe->userproc); psignal(cbe->userproc, cbe->uaiocb.aio_sigevent.sigev_signo); PROC_UNLOCK(cbe->userproc); } if (uap->aiocbp) break; } } splx(s); if ((cancelled) && (uap->aiocbp)) { td->td_retval[0] = AIO_CANCELED; return 0; } } ki=p->p_aioinfo; s = splnet(); for (cbe = TAILQ_FIRST(&ki->kaio_jobqueue); cbe; cbe = cbn) { cbn = TAILQ_NEXT(cbe, plist); if ((uap->fd == cbe->uaiocb.aio_fildes) && ((uap->aiocbp == NULL ) || (uap->aiocbp == cbe->uuaiocb))) { if (cbe->jobstate == JOBST_JOBQGLOBAL) { TAILQ_REMOVE(&aio_jobs, cbe, list); TAILQ_REMOVE(&ki->kaio_jobqueue, cbe, plist); TAILQ_INSERT_TAIL(&ki->kaio_jobdone, cbe, plist); cancelled++; ki->kaio_queue_finished_count++; cbe->jobstate = JOBST_JOBFINISHED; cbe->uaiocb._aiocb_private.status = -1; cbe->uaiocb._aiocb_private.error = ECANCELED; /* XXX cancelled, knote? */ if (cbe->uaiocb.aio_sigevent.sigev_notify == SIGEV_SIGNAL) { PROC_LOCK(cbe->userproc); psignal(cbe->userproc, cbe->uaiocb.aio_sigevent.sigev_signo); PROC_UNLOCK(cbe->userproc); } } else { notcancelled++; } } } splx(s); if (notcancelled) { td->td_retval[0] = AIO_NOTCANCELED; return 0; } if (cancelled) { td->td_retval[0] = AIO_CANCELED; return 0; } td->td_retval[0] = AIO_ALLDONE; return 0; } /* * aio_error is implemented in the kernel level for compatibility purposes only. * For a user mode async implementation, it would be best to do it in a userland * subroutine. */ int aio_error(struct thread *td, struct aio_error_args *uap) { struct proc *p = td->td_proc; int s; struct aiocblist *cb; struct kaioinfo *ki; long jobref; ki = p->p_aioinfo; if (ki == NULL) return EINVAL; jobref = fuword(&uap->aiocbp->_aiocb_private.kernelinfo); if ((jobref == -1) || (jobref == 0)) return EINVAL; TAILQ_FOREACH(cb, &ki->kaio_jobdone, plist) { if (((intptr_t)cb->uaiocb._aiocb_private.kernelinfo) == jobref) { td->td_retval[0] = cb->uaiocb._aiocb_private.error; return 0; } } s = splnet(); for (cb = TAILQ_FIRST(&ki->kaio_jobqueue); cb; cb = TAILQ_NEXT(cb, plist)) { if (((intptr_t)cb->uaiocb._aiocb_private.kernelinfo) == jobref) { td->td_retval[0] = EINPROGRESS; splx(s); return 0; } } for (cb = TAILQ_FIRST(&ki->kaio_sockqueue); cb; cb = TAILQ_NEXT(cb, plist)) { if (((intptr_t)cb->uaiocb._aiocb_private.kernelinfo) == jobref) { td->td_retval[0] = EINPROGRESS; splx(s); return 0; } } splx(s); s = splbio(); for (cb = TAILQ_FIRST(&ki->kaio_bufdone); cb; cb = TAILQ_NEXT(cb, plist)) { if (((intptr_t)cb->uaiocb._aiocb_private.kernelinfo) == jobref) { td->td_retval[0] = cb->uaiocb._aiocb_private.error; splx(s); return 0; } } for (cb = TAILQ_FIRST(&ki->kaio_bufqueue); cb; cb = TAILQ_NEXT(cb, plist)) { if (((intptr_t)cb->uaiocb._aiocb_private.kernelinfo) == jobref) { td->td_retval[0] = EINPROGRESS; splx(s); return 0; } } splx(s); #if (0) /* * Hack for lio. */ status = fuword(&uap->aiocbp->_aiocb_private.status); if (status == -1) return fuword(&uap->aiocbp->_aiocb_private.error); #endif return EINVAL; } /* syscall - asynchronous read from a file (REALTIME) */ int aio_read(struct thread *td, struct aio_read_args *uap) { return aio_aqueue(td, uap->aiocbp, LIO_READ); } /* syscall - asynchronous write to a file (REALTIME) */ int aio_write(struct thread *td, struct aio_write_args *uap) { return aio_aqueue(td, uap->aiocbp, LIO_WRITE); } /* syscall - XXX undocumented */ int lio_listio(struct thread *td, struct lio_listio_args *uap) { struct proc *p = td->td_proc; int nent, nentqueued; struct aiocb *iocb, * const *cbptr; struct aiocblist *cb; struct kaioinfo *ki; struct aio_liojob *lj; int error, runningcode; int nerror; int i; int s; if ((uap->mode != LIO_NOWAIT) && (uap->mode != LIO_WAIT)) return EINVAL; nent = uap->nent; if (nent > AIO_LISTIO_MAX) return EINVAL; if (p->p_aioinfo == NULL) aio_init_aioinfo(p); if ((nent + num_queue_count) > max_queue_count) return EAGAIN; ki = p->p_aioinfo; if ((nent + ki->kaio_queue_count) > ki->kaio_qallowed_count) return EAGAIN; lj = uma_zalloc(aiolio_zone, M_WAITOK); if (!lj) return EAGAIN; lj->lioj_flags = 0; lj->lioj_buffer_count = 0; lj->lioj_buffer_finished_count = 0; lj->lioj_queue_count = 0; lj->lioj_queue_finished_count = 0; lj->lioj_ki = ki; /* * Setup signal. */ if (uap->sig && (uap->mode == LIO_NOWAIT)) { error = copyin(uap->sig, &lj->lioj_signal, sizeof(lj->lioj_signal)); if (error) { uma_zfree(aiolio_zone, lj); return error; } if (!_SIG_VALID(lj->lioj_signal.sigev_signo)) { uma_zfree(aiolio_zone, lj); return EINVAL; } lj->lioj_flags |= LIOJ_SIGNAL; lj->lioj_flags &= ~LIOJ_SIGNAL_POSTED; } else lj->lioj_flags &= ~LIOJ_SIGNAL; TAILQ_INSERT_TAIL(&ki->kaio_liojoblist, lj, lioj_list); /* * Get pointers to the list of I/O requests. */ nerror = 0; nentqueued = 0; cbptr = uap->acb_list; for (i = 0; i < uap->nent; i++) { iocb = (struct aiocb *)(intptr_t)fuword((caddr_t)&cbptr[i]); if (((intptr_t)iocb != -1) && ((intptr_t)iocb != NULL)) { error = _aio_aqueue(td, iocb, lj, 0); if (error == 0) nentqueued++; else nerror++; } } /* * If we haven't queued any, then just return error. */ if (nentqueued == 0) return 0; /* * Calculate the appropriate error return. */ runningcode = 0; if (nerror) runningcode = EIO; if (uap->mode == LIO_WAIT) { int command, found, jobref; for (;;) { found = 0; for (i = 0; i < uap->nent; i++) { /* * Fetch address of the control buf pointer in * user space. */ iocb = (struct aiocb *)(intptr_t)fuword((caddr_t)&cbptr[i]); if (((intptr_t)iocb == -1) || ((intptr_t)iocb == 0)) continue; /* * Fetch the associated command from user space. */ command = fuword(&iocb->aio_lio_opcode); if (command == LIO_NOP) { found++; continue; } jobref = fuword(&iocb->_aiocb_private.kernelinfo); TAILQ_FOREACH(cb, &ki->kaio_jobdone, plist) { if (((intptr_t)cb->uaiocb._aiocb_private.kernelinfo) == jobref) { if (cb->uaiocb.aio_lio_opcode == LIO_WRITE) { p->p_stats->p_ru.ru_oublock += cb->outputcharge; cb->outputcharge = 0; } else if (cb->uaiocb.aio_lio_opcode == LIO_READ) { p->p_stats->p_ru.ru_inblock += cb->inputcharge; cb->inputcharge = 0; } found++; break; } } s = splbio(); TAILQ_FOREACH(cb, &ki->kaio_bufdone, plist) { if (((intptr_t)cb->uaiocb._aiocb_private.kernelinfo) == jobref) { found++; break; } } splx(s); } /* * If all I/Os have been disposed of, then we can * return. */ if (found == nentqueued) return runningcode; ki->kaio_flags |= KAIO_WAKEUP; error = tsleep(p, PRIBIO | PCATCH, "aiospn", 0); if (error == EINTR) return EINTR; else if (error == EWOULDBLOCK) return EAGAIN; } } return runningcode; } /* * This is a weird hack so that we can post a signal. It is safe to do so from * a timeout routine, but *not* from an interrupt routine. */ static void process_signal(void *aioj) { struct aiocblist *aiocbe = aioj; struct aio_liojob *lj = aiocbe->lio; struct aiocb *cb = &aiocbe->uaiocb; if ((lj) && (lj->lioj_signal.sigev_notify == SIGEV_SIGNAL) && (lj->lioj_queue_count == lj->lioj_queue_finished_count)) { PROC_LOCK(lj->lioj_ki->kaio_p); psignal(lj->lioj_ki->kaio_p, lj->lioj_signal.sigev_signo); PROC_UNLOCK(lj->lioj_ki->kaio_p); lj->lioj_flags |= LIOJ_SIGNAL_POSTED; } if (cb->aio_sigevent.sigev_notify == SIGEV_SIGNAL) { PROC_LOCK(aiocbe->userproc); psignal(aiocbe->userproc, cb->aio_sigevent.sigev_signo); PROC_UNLOCK(aiocbe->userproc); } } /* * Interrupt handler for physio, performs the necessary process wakeups, and * signals. */ static void aio_physwakeup(struct buf *bp) { struct aiocblist *aiocbe; struct proc *p; struct kaioinfo *ki; struct aio_liojob *lj; wakeup(bp); aiocbe = (struct aiocblist *)bp->b_spc; if (aiocbe) { p = bp->b_caller1; aiocbe->jobstate = JOBST_JOBBFINISHED; aiocbe->uaiocb._aiocb_private.status -= bp->b_resid; aiocbe->uaiocb._aiocb_private.error = 0; aiocbe->jobflags |= AIOCBLIST_DONE; if (bp->b_ioflags & BIO_ERROR) aiocbe->uaiocb._aiocb_private.error = bp->b_error; lj = aiocbe->lio; if (lj) { lj->lioj_buffer_finished_count++; /* * wakeup/signal if all of the interrupt jobs are done. */ if (lj->lioj_buffer_finished_count == lj->lioj_buffer_count) { /* * Post a signal if it is called for. */ if ((lj->lioj_flags & (LIOJ_SIGNAL|LIOJ_SIGNAL_POSTED)) == LIOJ_SIGNAL) { lj->lioj_flags |= LIOJ_SIGNAL_POSTED; aiocbe->timeouthandle = timeout(process_signal, aiocbe, 0); } } } ki = p->p_aioinfo; if (ki) { ki->kaio_buffer_finished_count++; TAILQ_REMOVE(&aio_bufjobs, aiocbe, list); TAILQ_REMOVE(&ki->kaio_bufqueue, aiocbe, plist); TAILQ_INSERT_TAIL(&ki->kaio_bufdone, aiocbe, plist); KNOTE(&aiocbe->klist, 0); /* Do the wakeup. */ if (ki->kaio_flags & (KAIO_RUNDOWN|KAIO_WAKEUP)) { ki->kaio_flags &= ~KAIO_WAKEUP; wakeup(p); } } if (aiocbe->uaiocb.aio_sigevent.sigev_notify == SIGEV_SIGNAL) aiocbe->timeouthandle = timeout(process_signal, aiocbe, 0); } } /* syscall - wait for the next completion of an aio request */ int aio_waitcomplete(struct thread *td, struct aio_waitcomplete_args *uap) { struct proc *p = td->td_proc; struct timeval atv; struct timespec ts; struct aiocb **cbptr; struct kaioinfo *ki; struct aiocblist *cb = NULL; int error, s, timo; suword(uap->aiocbp, (int)NULL); timo = 0; if (uap->timeout) { /* Get timespec struct. */ error = copyin(uap->timeout, &ts, sizeof(ts)); if (error) return error; if ((ts.tv_nsec < 0) || (ts.tv_nsec >= 1000000000)) return (EINVAL); TIMESPEC_TO_TIMEVAL(&atv, &ts); if (itimerfix(&atv)) return (EINVAL); timo = tvtohz(&atv); } ki = p->p_aioinfo; if (ki == NULL) return EAGAIN; cbptr = uap->aiocbp; for (;;) { if ((cb = TAILQ_FIRST(&ki->kaio_jobdone)) != 0) { suword(uap->aiocbp, (uintptr_t)cb->uuaiocb); td->td_retval[0] = cb->uaiocb._aiocb_private.status; if (cb->uaiocb.aio_lio_opcode == LIO_WRITE) { p->p_stats->p_ru.ru_oublock += cb->outputcharge; cb->outputcharge = 0; } else if (cb->uaiocb.aio_lio_opcode == LIO_READ) { p->p_stats->p_ru.ru_inblock += cb->inputcharge; cb->inputcharge = 0; } aio_free_entry(cb); return cb->uaiocb._aiocb_private.error; } s = splbio(); if ((cb = TAILQ_FIRST(&ki->kaio_bufdone)) != 0 ) { splx(s); suword(uap->aiocbp, (uintptr_t)cb->uuaiocb); td->td_retval[0] = cb->uaiocb._aiocb_private.status; aio_free_entry(cb); return cb->uaiocb._aiocb_private.error; } ki->kaio_flags |= KAIO_WAKEUP; error = tsleep(p, PRIBIO | PCATCH, "aiowc", timo); splx(s); if (error == ERESTART) return EINTR; else if (error < 0) return error; else if (error == EINTR) return EINTR; else if (error == EWOULDBLOCK) return EAGAIN; } } /* kqueue attach function */ static int filt_aioattach(struct knote *kn) { struct aiocblist *aiocbe = (struct aiocblist *)kn->kn_id; /* * The aiocbe pointer must be validated before using it, so * registration is restricted to the kernel; the user cannot * set EV_FLAG1. */ if ((kn->kn_flags & EV_FLAG1) == 0) return (EPERM); kn->kn_flags &= ~EV_FLAG1; SLIST_INSERT_HEAD(&aiocbe->klist, kn, kn_selnext); return (0); } /* kqueue detach function */ static void filt_aiodetach(struct knote *kn) { struct aiocblist *aiocbe = (struct aiocblist *)kn->kn_id; SLIST_REMOVE(&aiocbe->klist, kn, knote, kn_selnext); } /* kqueue filter function */ /*ARGSUSED*/ static int filt_aio(struct knote *kn, long hint) { struct aiocblist *aiocbe = (struct aiocblist *)kn->kn_id; kn->kn_data = aiocbe->uaiocb._aiocb_private.error; if (aiocbe->jobstate != JOBST_JOBFINISHED && aiocbe->jobstate != JOBST_JOBBFINISHED) return (0); kn->kn_flags |= EV_EOF; return (1); }