freebsd-nq/sys/kern/kern_ktrace.c
Robert Watson c5c9bd5b72 In ktr_getrequest(), acquire ktrace_mtx earlier -- while the race
currently present is minor and offers no real semantic issues, it also
doesn't make sense since an earlier lockless check has already
occurred.  Also hold the mutex longer, over a manipulation of
per-process ktrace state, which requires synchronization.

MFC after:	1 month
Pointed out by:	jhb
2005-11-14 19:30:09 +00:00

1030 lines
24 KiB
C

/*-
* Copyright (c) 1989, 1993
* The Regents of the University of California.
* Copyright (c) 2005 Robert N. M. Watson
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 4. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* @(#)kern_ktrace.c 8.2 (Berkeley) 9/23/93
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include "opt_ktrace.h"
#include "opt_mac.h"
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/fcntl.h>
#include <sys/kernel.h>
#include <sys/kthread.h>
#include <sys/lock.h>
#include <sys/mutex.h>
#include <sys/mac.h>
#include <sys/malloc.h>
#include <sys/namei.h>
#include <sys/proc.h>
#include <sys/unistd.h>
#include <sys/vnode.h>
#include <sys/ktrace.h>
#include <sys/sx.h>
#include <sys/sysctl.h>
#include <sys/syslog.h>
#include <sys/sysproto.h>
/*
* The ktrace facility allows the tracing of certain key events in user space
* processes, such as system calls, signal delivery, context switches, and
* user generated events using utrace(2). It works by streaming event
* records and data to a vnode associated with the process using the
* ktrace(2) system call. In general, records can be written directly from
* the context that generates the event. One important exception to this is
* during a context switch, where sleeping is not permitted. To handle this
* case, trace events are generated using in-kernel ktr_request records, and
* then delivered to disk at a convenient moment -- either immediately, the
* next traceable event, at system call return, or at process exit.
*
* When dealing with multiple threads or processes writing to the same event
* log, ordering guarantees are weak: specifically, if an event has multiple
* records (i.e., system call enter and return), they may be interlaced with
* records from another event. Process and thread ID information is provided
* in the record, and user applications can de-interlace events if required.
*/
static MALLOC_DEFINE(M_KTRACE, "KTRACE", "KTRACE");
#ifdef KTRACE
#ifndef KTRACE_REQUEST_POOL
#define KTRACE_REQUEST_POOL 100
#endif
struct ktr_request {
struct ktr_header ktr_header;
void *ktr_buffer;
union {
struct ktr_syscall ktr_syscall;
struct ktr_sysret ktr_sysret;
struct ktr_genio ktr_genio;
struct ktr_psig ktr_psig;
struct ktr_csw ktr_csw;
} ktr_data;
STAILQ_ENTRY(ktr_request) ktr_list;
};
static int data_lengths[] = {
0, /* none */
offsetof(struct ktr_syscall, ktr_args), /* KTR_SYSCALL */
sizeof(struct ktr_sysret), /* KTR_SYSRET */
0, /* KTR_NAMEI */
sizeof(struct ktr_genio), /* KTR_GENIO */
sizeof(struct ktr_psig), /* KTR_PSIG */
sizeof(struct ktr_csw), /* KTR_CSW */
0 /* KTR_USER */
};
static STAILQ_HEAD(, ktr_request) ktr_free;
static SYSCTL_NODE(_kern, OID_AUTO, ktrace, CTLFLAG_RD, 0, "KTRACE options");
static u_int ktr_requestpool = KTRACE_REQUEST_POOL;
TUNABLE_INT("kern.ktrace.request_pool", &ktr_requestpool);
static u_int ktr_geniosize = PAGE_SIZE;
TUNABLE_INT("kern.ktrace.genio_size", &ktr_geniosize);
SYSCTL_UINT(_kern_ktrace, OID_AUTO, genio_size, CTLFLAG_RW, &ktr_geniosize,
0, "Maximum size of genio event payload");
static int print_message = 1;
struct mtx ktrace_mtx;
static struct cv ktrace_cv;
static struct sx ktrace_sx;
static void ktrace_init(void *dummy);
static int sysctl_kern_ktrace_request_pool(SYSCTL_HANDLER_ARGS);
static u_int ktrace_resize_pool(u_int newsize);
static struct ktr_request *ktr_getrequest(int type);
static void ktr_submitrequest(struct thread *td, struct ktr_request *req);
static void ktr_freerequest(struct ktr_request *req);
static void ktr_writerequest(struct thread *td, struct ktr_request *req);
static int ktrcanset(struct thread *,struct proc *);
static int ktrsetchildren(struct thread *,struct proc *,int,int,struct vnode *);
static int ktrops(struct thread *,struct proc *,int,int,struct vnode *);
/*
* ktrace itself generates events, such as context switches, which we do not
* wish to trace. Maintain a flag, TDP_INKTRACE, on each thread to determine
* whether or not it is in a region where tracing of events should be
* suppressed.
*/
static void
ktrace_enter(struct thread *td)
{
KASSERT(!(td->td_pflags & TDP_INKTRACE), ("ktrace_enter: flag set"));
td->td_pflags |= TDP_INKTRACE;
}
static void
ktrace_exit(struct thread *td)
{
KASSERT(td->td_pflags & TDP_INKTRACE, ("ktrace_exit: flag not set"));
td->td_pflags &= ~TDP_INKTRACE;
}
static void
ktrace_assert(struct thread *td)
{
KASSERT(td->td_pflags & TDP_INKTRACE, ("ktrace_assert: flag not set"));
}
static void
ktrace_init(void *dummy)
{
struct ktr_request *req;
int i;
mtx_init(&ktrace_mtx, "ktrace", NULL, MTX_DEF | MTX_QUIET);
sx_init(&ktrace_sx, "ktrace_sx");
cv_init(&ktrace_cv, "ktrace");
STAILQ_INIT(&ktr_free);
for (i = 0; i < ktr_requestpool; i++) {
req = malloc(sizeof(struct ktr_request), M_KTRACE, M_WAITOK);
STAILQ_INSERT_HEAD(&ktr_free, req, ktr_list);
}
}
SYSINIT(ktrace_init, SI_SUB_KTRACE, SI_ORDER_ANY, ktrace_init, NULL);
static int
sysctl_kern_ktrace_request_pool(SYSCTL_HANDLER_ARGS)
{
struct thread *td;
u_int newsize, oldsize, wantsize;
int error;
/* Handle easy read-only case first to avoid warnings from GCC. */
if (!req->newptr) {
mtx_lock(&ktrace_mtx);
oldsize = ktr_requestpool;
mtx_unlock(&ktrace_mtx);
return (SYSCTL_OUT(req, &oldsize, sizeof(u_int)));
}
error = SYSCTL_IN(req, &wantsize, sizeof(u_int));
if (error)
return (error);
td = curthread;
ktrace_enter(td);
mtx_lock(&ktrace_mtx);
oldsize = ktr_requestpool;
newsize = ktrace_resize_pool(wantsize);
mtx_unlock(&ktrace_mtx);
ktrace_exit(td);
error = SYSCTL_OUT(req, &oldsize, sizeof(u_int));
if (error)
return (error);
if (wantsize > oldsize && newsize < wantsize)
return (ENOSPC);
return (0);
}
SYSCTL_PROC(_kern_ktrace, OID_AUTO, request_pool, CTLTYPE_UINT|CTLFLAG_RW,
&ktr_requestpool, 0, sysctl_kern_ktrace_request_pool, "IU", "");
static u_int
ktrace_resize_pool(u_int newsize)
{
struct ktr_request *req;
int bound;
mtx_assert(&ktrace_mtx, MA_OWNED);
print_message = 1;
bound = newsize - ktr_requestpool;
if (bound == 0)
return (ktr_requestpool);
if (bound < 0)
/* Shrink pool down to newsize if possible. */
while (bound++ < 0) {
req = STAILQ_FIRST(&ktr_free);
if (req == NULL)
return (ktr_requestpool);
STAILQ_REMOVE_HEAD(&ktr_free, ktr_list);
ktr_requestpool--;
mtx_unlock(&ktrace_mtx);
free(req, M_KTRACE);
mtx_lock(&ktrace_mtx);
}
else
/* Grow pool up to newsize. */
while (bound-- > 0) {
mtx_unlock(&ktrace_mtx);
req = malloc(sizeof(struct ktr_request), M_KTRACE,
M_WAITOK);
mtx_lock(&ktrace_mtx);
STAILQ_INSERT_HEAD(&ktr_free, req, ktr_list);
ktr_requestpool++;
}
return (ktr_requestpool);
}
static struct ktr_request *
ktr_getrequest(int type)
{
struct ktr_request *req;
struct thread *td = curthread;
struct proc *p = td->td_proc;
int pm;
ktrace_enter(td); /* XXX: In caller instead? */
mtx_lock(&ktrace_mtx);
if (!KTRCHECK(td, type)) {
mtx_unlock(&ktrace_mtx);
ktrace_exit(td);
return (NULL);
}
req = STAILQ_FIRST(&ktr_free);
if (req != NULL) {
STAILQ_REMOVE_HEAD(&ktr_free, ktr_list);
req->ktr_header.ktr_type = type;
if (p->p_traceflag & KTRFAC_DROP) {
req->ktr_header.ktr_type |= KTR_DROP;
p->p_traceflag &= ~KTRFAC_DROP;
}
mtx_unlock(&ktrace_mtx);
microtime(&req->ktr_header.ktr_time);
req->ktr_header.ktr_pid = p->p_pid;
req->ktr_header.ktr_tid = td->td_tid;
bcopy(p->p_comm, req->ktr_header.ktr_comm, MAXCOMLEN + 1);
req->ktr_buffer = NULL;
req->ktr_header.ktr_len = 0;
} else {
p->p_traceflag |= KTRFAC_DROP;
pm = print_message;
print_message = 0;
mtx_unlock(&ktrace_mtx);
if (pm)
printf("Out of ktrace request objects.\n");
ktrace_exit(td);
}
return (req);
}
/*
* Some trace generation environments don't permit direct access to VFS,
* such as during a context switch where sleeping is not allowed. Under these
* circumstances, queue a request to the thread to be written asynchronously
* later.
*/
static void
ktr_enqueuerequest(struct thread *td, struct ktr_request *req)
{
mtx_lock(&ktrace_mtx);
STAILQ_INSERT_TAIL(&td->td_proc->p_ktr, req, ktr_list);
mtx_unlock(&ktrace_mtx);
ktrace_exit(td);
}
/*
* Drain any pending ktrace records from the per-thread queue to disk. This
* is used both internally before committing other records, and also on
* system call return. We drain all the ones we can find at the time when
* drain is requested, but don't keep draining after that as those events
* may me approximately "after" the current event.
*/
static void
ktr_drain(struct thread *td)
{
struct ktr_request *queued_req;
STAILQ_HEAD(, ktr_request) local_queue;
ktrace_assert(td);
sx_assert(&ktrace_sx, SX_XLOCKED);
STAILQ_INIT(&local_queue); /* XXXRW: needed? */
if (!STAILQ_EMPTY(&td->td_proc->p_ktr)) {
mtx_lock(&ktrace_mtx);
STAILQ_CONCAT(&local_queue, &td->td_proc->p_ktr);
mtx_unlock(&ktrace_mtx);
while ((queued_req = STAILQ_FIRST(&local_queue))) {
STAILQ_REMOVE_HEAD(&local_queue, ktr_list);
ktr_writerequest(td, queued_req);
ktr_freerequest(queued_req);
}
}
}
/*
* Submit a trace record for immediate commit to disk -- to be used only
* where entering VFS is OK. First drain any pending records that may have
* been cached in the thread.
*/
static void
ktr_submitrequest(struct thread *td, struct ktr_request *req)
{
ktrace_assert(td);
sx_xlock(&ktrace_sx);
ktr_drain(td);
ktr_writerequest(td, req);
ktr_freerequest(req);
sx_xunlock(&ktrace_sx);
ktrace_exit(td);
}
static void
ktr_freerequest(struct ktr_request *req)
{
if (req->ktr_buffer != NULL)
free(req->ktr_buffer, M_KTRACE);
mtx_lock(&ktrace_mtx);
STAILQ_INSERT_HEAD(&ktr_free, req, ktr_list);
mtx_unlock(&ktrace_mtx);
}
/*
* MPSAFE
*/
void
ktrsyscall(code, narg, args)
int code, narg;
register_t args[];
{
struct ktr_request *req;
struct ktr_syscall *ktp;
size_t buflen;
char *buf = NULL;
buflen = sizeof(register_t) * narg;
if (buflen > 0) {
buf = malloc(buflen, M_KTRACE, M_WAITOK);
bcopy(args, buf, buflen);
}
req = ktr_getrequest(KTR_SYSCALL);
if (req == NULL) {
if (buf != NULL)
free(buf, M_KTRACE);
return;
}
ktp = &req->ktr_data.ktr_syscall;
ktp->ktr_code = code;
ktp->ktr_narg = narg;
if (buflen > 0) {
req->ktr_header.ktr_len = buflen;
req->ktr_buffer = buf;
}
ktr_submitrequest(curthread, req);
}
/*
* MPSAFE
*/
void
ktrsysret(code, error, retval)
int code, error;
register_t retval;
{
struct ktr_request *req;
struct ktr_sysret *ktp;
req = ktr_getrequest(KTR_SYSRET);
if (req == NULL)
return;
ktp = &req->ktr_data.ktr_sysret;
ktp->ktr_code = code;
ktp->ktr_error = error;
ktp->ktr_retval = retval; /* what about val2 ? */
ktr_submitrequest(curthread, req);
}
/*
* When a process exits, drain per-process asynchronous trace records.
*/
void
ktrprocexit(struct thread *td)
{
ktrace_enter(td);
sx_xlock(&ktrace_sx);
ktr_drain(td);
sx_xunlock(&ktrace_sx);
ktrace_exit(td);
}
/*
* When a thread returns, drain any asynchronous records generated by the
* system call.
*/
void
ktruserret(struct thread *td)
{
ktrace_enter(td);
sx_xlock(&ktrace_sx);
ktr_drain(td);
sx_xunlock(&ktrace_sx);
ktrace_exit(td);
}
void
ktrnamei(path)
char *path;
{
struct ktr_request *req;
int namelen;
char *buf = NULL;
namelen = strlen(path);
if (namelen > 0) {
buf = malloc(namelen, M_KTRACE, M_WAITOK);
bcopy(path, buf, namelen);
}
req = ktr_getrequest(KTR_NAMEI);
if (req == NULL) {
if (buf != NULL)
free(buf, M_KTRACE);
return;
}
if (namelen > 0) {
req->ktr_header.ktr_len = namelen;
req->ktr_buffer = buf;
}
ktr_submitrequest(curthread, req);
}
/*
* Since the uio may not stay valid, we can not hand off this request to
* the thread and need to process it synchronously. However, we wish to
* keep the relative order of records in a trace file correct, so we
* do put this request on the queue (if it isn't empty) and then block.
* The ktrace thread waks us back up when it is time for this event to
* be posted and blocks until we have completed writing out the event
* and woken it back up.
*/
void
ktrgenio(fd, rw, uio, error)
int fd;
enum uio_rw rw;
struct uio *uio;
int error;
{
struct ktr_request *req;
struct ktr_genio *ktg;
int datalen;
char *buf;
if (error) {
free(uio, M_IOV);
return;
}
uio->uio_offset = 0;
uio->uio_rw = UIO_WRITE;
datalen = imin(uio->uio_resid, ktr_geniosize);
buf = malloc(datalen, M_KTRACE, M_WAITOK);
error = uiomove(buf, datalen, uio);
free(uio, M_IOV);
if (error) {
free(buf, M_KTRACE);
return;
}
req = ktr_getrequest(KTR_GENIO);
if (req == NULL) {
free(buf, M_KTRACE);
return;
}
ktg = &req->ktr_data.ktr_genio;
ktg->ktr_fd = fd;
ktg->ktr_rw = rw;
req->ktr_header.ktr_len = datalen;
req->ktr_buffer = buf;
ktr_submitrequest(curthread, req);
}
void
ktrpsig(sig, action, mask, code)
int sig;
sig_t action;
sigset_t *mask;
int code;
{
struct ktr_request *req;
struct ktr_psig *kp;
req = ktr_getrequest(KTR_PSIG);
if (req == NULL)
return;
kp = &req->ktr_data.ktr_psig;
kp->signo = (char)sig;
kp->action = action;
kp->mask = *mask;
kp->code = code;
ktr_enqueuerequest(curthread, req);
}
void
ktrcsw(out, user)
int out, user;
{
struct ktr_request *req;
struct ktr_csw *kc;
req = ktr_getrequest(KTR_CSW);
if (req == NULL)
return;
kc = &req->ktr_data.ktr_csw;
kc->out = out;
kc->user = user;
ktr_enqueuerequest(curthread, req);
}
#endif /* KTRACE */
/* Interface and common routines */
/*
* ktrace system call
*
* MPSAFE
*/
#ifndef _SYS_SYSPROTO_H_
struct ktrace_args {
char *fname;
int ops;
int facs;
int pid;
};
#endif
/* ARGSUSED */
int
ktrace(td, uap)
struct thread *td;
register struct ktrace_args *uap;
{
#ifdef KTRACE
register struct vnode *vp = NULL;
register struct proc *p;
struct pgrp *pg;
int facs = uap->facs & ~KTRFAC_ROOT;
int ops = KTROP(uap->ops);
int descend = uap->ops & KTRFLAG_DESCEND;
int nfound, ret = 0;
int flags, error = 0;
struct nameidata nd;
struct ucred *cred;
/*
* Need something to (un)trace.
*/
if (ops != KTROP_CLEARFILE && facs == 0)
return (EINVAL);
ktrace_enter(td);
if (ops != KTROP_CLEAR) {
/*
* an operation which requires a file argument.
*/
NDINIT(&nd, LOOKUP, NOFOLLOW, UIO_USERSPACE, uap->fname, td);
flags = FREAD | FWRITE | O_NOFOLLOW;
mtx_lock(&Giant);
error = vn_open(&nd, &flags, 0, -1);
if (error) {
mtx_unlock(&Giant);
ktrace_exit(td);
return (error);
}
NDFREE(&nd, NDF_ONLY_PNBUF);
vp = nd.ni_vp;
VOP_UNLOCK(vp, 0, td);
if (vp->v_type != VREG) {
(void) vn_close(vp, FREAD|FWRITE, td->td_ucred, td);
mtx_unlock(&Giant);
ktrace_exit(td);
return (EACCES);
}
mtx_unlock(&Giant);
}
/*
* Clear all uses of the tracefile.
*/
if (ops == KTROP_CLEARFILE) {
sx_slock(&allproc_lock);
LIST_FOREACH(p, &allproc, p_list) {
PROC_LOCK(p);
if (p->p_tracevp == vp) {
if (ktrcanset(td, p)) {
mtx_lock(&ktrace_mtx);
cred = p->p_tracecred;
p->p_tracecred = NULL;
p->p_tracevp = NULL;
p->p_traceflag = 0;
mtx_unlock(&ktrace_mtx);
PROC_UNLOCK(p);
mtx_lock(&Giant);
(void) vn_close(vp, FREAD|FWRITE,
cred, td);
mtx_unlock(&Giant);
crfree(cred);
} else {
PROC_UNLOCK(p);
error = EPERM;
}
} else
PROC_UNLOCK(p);
}
sx_sunlock(&allproc_lock);
goto done;
}
/*
* do it
*/
sx_slock(&proctree_lock);
if (uap->pid < 0) {
/*
* by process group
*/
pg = pgfind(-uap->pid);
if (pg == NULL) {
sx_sunlock(&proctree_lock);
error = ESRCH;
goto done;
}
/*
* ktrops() may call vrele(). Lock pg_members
* by the proctree_lock rather than pg_mtx.
*/
PGRP_UNLOCK(pg);
nfound = 0;
LIST_FOREACH(p, &pg->pg_members, p_pglist) {
PROC_LOCK(p);
if (p_cansee(td, p) != 0) {
PROC_UNLOCK(p);
continue;
}
PROC_UNLOCK(p);
nfound++;
if (descend)
ret |= ktrsetchildren(td, p, ops, facs, vp);
else
ret |= ktrops(td, p, ops, facs, vp);
}
if (nfound == 0) {
sx_sunlock(&proctree_lock);
error = ESRCH;
goto done;
}
} else {
/*
* by pid
*/
p = pfind(uap->pid);
if (p == NULL) {
sx_sunlock(&proctree_lock);
error = ESRCH;
goto done;
}
error = p_cansee(td, p);
/*
* The slock of the proctree lock will keep this process
* from going away, so unlocking the proc here is ok.
*/
PROC_UNLOCK(p);
if (error) {
sx_sunlock(&proctree_lock);
goto done;
}
if (descend)
ret |= ktrsetchildren(td, p, ops, facs, vp);
else
ret |= ktrops(td, p, ops, facs, vp);
}
sx_sunlock(&proctree_lock);
if (!ret)
error = EPERM;
done:
if (vp != NULL) {
mtx_lock(&Giant);
(void) vn_close(vp, FWRITE, td->td_ucred, td);
mtx_unlock(&Giant);
}
ktrace_exit(td);
return (error);
#else /* !KTRACE */
return (ENOSYS);
#endif /* KTRACE */
}
/*
* utrace system call
*
* MPSAFE
*/
/* ARGSUSED */
int
utrace(td, uap)
struct thread *td;
register struct utrace_args *uap;
{
#ifdef KTRACE
struct ktr_request *req;
void *cp;
int error;
if (!KTRPOINT(td, KTR_USER))
return (0);
if (uap->len > KTR_USER_MAXLEN)
return (EINVAL);
cp = malloc(uap->len, M_KTRACE, M_WAITOK);
error = copyin(uap->addr, cp, uap->len);
if (error) {
free(cp, M_KTRACE);
return (error);
}
req = ktr_getrequest(KTR_USER);
if (req == NULL) {
free(cp, M_KTRACE);
return (ENOMEM);
}
req->ktr_buffer = cp;
req->ktr_header.ktr_len = uap->len;
ktr_submitrequest(td, req);
return (0);
#else /* !KTRACE */
return (ENOSYS);
#endif /* KTRACE */
}
#ifdef KTRACE
static int
ktrops(td, p, ops, facs, vp)
struct thread *td;
struct proc *p;
int ops, facs;
struct vnode *vp;
{
struct vnode *tracevp = NULL;
struct ucred *tracecred = NULL;
PROC_LOCK(p);
if (!ktrcanset(td, p)) {
PROC_UNLOCK(p);
return (0);
}
mtx_lock(&ktrace_mtx);
if (ops == KTROP_SET) {
if (p->p_tracevp != vp) {
/*
* if trace file already in use, relinquish below
*/
tracevp = p->p_tracevp;
VREF(vp);
p->p_tracevp = vp;
}
if (p->p_tracecred != td->td_ucred) {
tracecred = p->p_tracecred;
p->p_tracecred = crhold(td->td_ucred);
}
p->p_traceflag |= facs;
if (td->td_ucred->cr_uid == 0)
p->p_traceflag |= KTRFAC_ROOT;
} else {
/* KTROP_CLEAR */
if (((p->p_traceflag &= ~facs) & KTRFAC_MASK) == 0) {
/* no more tracing */
p->p_traceflag = 0;
tracevp = p->p_tracevp;
p->p_tracevp = NULL;
tracecred = p->p_tracecred;
p->p_tracecred = NULL;
}
}
mtx_unlock(&ktrace_mtx);
PROC_UNLOCK(p);
if (tracevp != NULL) {
mtx_lock(&Giant);
vrele(tracevp);
mtx_unlock(&Giant);
}
if (tracecred != NULL)
crfree(tracecred);
return (1);
}
static int
ktrsetchildren(td, top, ops, facs, vp)
struct thread *td;
struct proc *top;
int ops, facs;
struct vnode *vp;
{
register struct proc *p;
register int ret = 0;
p = top;
sx_assert(&proctree_lock, SX_LOCKED);
for (;;) {
ret |= ktrops(td, p, ops, facs, vp);
/*
* If this process has children, descend to them next,
* otherwise do any siblings, and if done with this level,
* follow back up the tree (but not past top).
*/
if (!LIST_EMPTY(&p->p_children))
p = LIST_FIRST(&p->p_children);
else for (;;) {
if (p == top)
return (ret);
if (LIST_NEXT(p, p_sibling)) {
p = LIST_NEXT(p, p_sibling);
break;
}
p = p->p_pptr;
}
}
/*NOTREACHED*/
}
static void
ktr_writerequest(struct thread *td, struct ktr_request *req)
{
struct ktr_header *kth;
struct vnode *vp;
struct proc *p;
struct ucred *cred;
struct uio auio;
struct iovec aiov[3];
struct mount *mp;
int datalen, buflen, vrele_count;
int error;
/*
* We hold the vnode and credential for use in I/O in case ktrace is
* disabled on the process as we write out the request.
*
* XXXRW: This is not ideal: we could end up performing a write after
* the vnode has been closed.
*/
mtx_lock(&ktrace_mtx);
vp = td->td_proc->p_tracevp;
if (vp != NULL)
VREF(vp);
cred = td->td_proc->p_tracecred;
if (cred != NULL)
crhold(cred);
mtx_unlock(&ktrace_mtx);
/*
* If vp is NULL, the vp has been cleared out from under this
* request, so just drop it. Make sure the credential and vnode are
* in sync: we should have both or neither.
*/
if (vp == NULL) {
KASSERT(cred == NULL, ("ktr_writerequest: cred != NULL"));
return;
}
KASSERT(cred != NULL, ("ktr_writerequest: cred == NULL"));
kth = &req->ktr_header;
datalen = data_lengths[(u_short)kth->ktr_type & ~KTR_DROP];
buflen = kth->ktr_len;
auio.uio_iov = &aiov[0];
auio.uio_offset = 0;
auio.uio_segflg = UIO_SYSSPACE;
auio.uio_rw = UIO_WRITE;
aiov[0].iov_base = (caddr_t)kth;
aiov[0].iov_len = sizeof(struct ktr_header);
auio.uio_resid = sizeof(struct ktr_header);
auio.uio_iovcnt = 1;
auio.uio_td = td;
if (datalen != 0) {
aiov[1].iov_base = (caddr_t)&req->ktr_data;
aiov[1].iov_len = datalen;
auio.uio_resid += datalen;
auio.uio_iovcnt++;
kth->ktr_len += datalen;
}
if (buflen != 0) {
KASSERT(req->ktr_buffer != NULL, ("ktrace: nothing to write"));
aiov[auio.uio_iovcnt].iov_base = req->ktr_buffer;
aiov[auio.uio_iovcnt].iov_len = buflen;
auio.uio_resid += buflen;
auio.uio_iovcnt++;
}
mtx_lock(&Giant);
vn_start_write(vp, &mp, V_WAIT);
vn_lock(vp, LK_EXCLUSIVE | LK_RETRY, td);
(void)VOP_LEASE(vp, td, cred, LEASE_WRITE);
#ifdef MAC
error = mac_check_vnode_write(cred, NOCRED, vp);
if (error == 0)
#endif
error = VOP_WRITE(vp, &auio, IO_UNIT | IO_APPEND, cred);
VOP_UNLOCK(vp, 0, td);
vn_finished_write(mp);
mtx_unlock(&Giant);
if (!error)
return;
/*
* If error encountered, give up tracing on this vnode. We defer
* all the vrele()'s on the vnode until after we are finished walking
* the various lists to avoid needlessly holding locks.
*/
log(LOG_NOTICE, "ktrace write failed, errno %d, tracing stopped\n",
error);
vrele_count = 0;
/*
* First, clear this vnode from being used by any processes in the
* system.
* XXX - If one process gets an EPERM writing to the vnode, should
* we really do this? Other processes might have suitable
* credentials for the operation.
*/
cred = NULL;
sx_slock(&allproc_lock);
LIST_FOREACH(p, &allproc, p_list) {
PROC_LOCK(p);
if (p->p_tracevp == vp) {
mtx_lock(&ktrace_mtx);
p->p_tracevp = NULL;
p->p_traceflag = 0;
cred = p->p_tracecred;
p->p_tracecred = NULL;
mtx_unlock(&ktrace_mtx);
vrele_count++;
}
PROC_UNLOCK(p);
if (cred != NULL) {
crfree(cred);
cred = NULL;
}
}
sx_sunlock(&allproc_lock);
/*
* We can't clear any pending requests in threads that have cached
* them but not yet committed them, as those are per-thread. The
* thread will have to clear it itself on system call return.
*/
mtx_lock(&Giant);
while (vrele_count-- > 0)
vrele(vp);
mtx_unlock(&Giant);
}
/*
* Return true if caller has permission to set the ktracing state
* of target. Essentially, the target can't possess any
* more permissions than the caller. KTRFAC_ROOT signifies that
* root previously set the tracing status on the target process, and
* so, only root may further change it.
*/
static int
ktrcanset(td, targetp)
struct thread *td;
struct proc *targetp;
{
PROC_LOCK_ASSERT(targetp, MA_OWNED);
if (targetp->p_traceflag & KTRFAC_ROOT &&
suser_cred(td->td_ucred, SUSER_ALLOWJAIL))
return (0);
if (p_candebug(td, targetp) != 0)
return (0);
return (1);
}
#endif /* KTRACE */