freebsd-nq/sys/dev/sound/usb/uaudio.c
Hans Petter Selasky 067e471a24 Add USB audio support for S/PDIF output with C-Media CM6206 devices.
Submitted by:		Julien Nadeau <vedge@hypertriton.com>
PR:			216131
MFC after:		1 week
2017-01-17 08:15:10 +00:00

6237 lines
151 KiB
C

/* $NetBSD: uaudio.c,v 1.91 2004/11/05 17:46:14 kent Exp $ */
/* $FreeBSD$ */
/*-
* Copyright (c) 1999 The NetBSD Foundation, Inc.
* All rights reserved.
*
* This code is derived from software contributed to The NetBSD Foundation
* by Lennart Augustsson (lennart@augustsson.net) at
* Carlstedt Research & Technology.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
/*
* USB audio specs: http://www.usb.org/developers/devclass_docs/audio10.pdf
* http://www.usb.org/developers/devclass_docs/frmts10.pdf
* http://www.usb.org/developers/devclass_docs/termt10.pdf
*/
/*
* Also merged:
* $NetBSD: uaudio.c,v 1.94 2005/01/15 15:19:53 kent Exp $
* $NetBSD: uaudio.c,v 1.95 2005/01/16 06:02:19 dsainty Exp $
* $NetBSD: uaudio.c,v 1.96 2005/01/16 12:46:00 kent Exp $
* $NetBSD: uaudio.c,v 1.97 2005/02/24 08:19:38 martin Exp $
*/
#include <sys/stdint.h>
#include <sys/stddef.h>
#include <sys/param.h>
#include <sys/queue.h>
#include <sys/types.h>
#include <sys/systm.h>
#include <sys/kernel.h>
#include <sys/bus.h>
#include <sys/module.h>
#include <sys/lock.h>
#include <sys/mutex.h>
#include <sys/condvar.h>
#include <sys/sysctl.h>
#include <sys/sx.h>
#include <sys/unistd.h>
#include <sys/callout.h>
#include <sys/malloc.h>
#include <sys/priv.h>
#include "usbdevs.h"
#include <dev/usb/usb.h>
#include <dev/usb/usbdi.h>
#include <dev/usb/usbdi_util.h>
#include <dev/usb/usbhid.h>
#include <dev/usb/usb_request.h>
#include <dev/usb/usb_process.h>
#define USB_DEBUG_VAR uaudio_debug
#include <dev/usb/usb_debug.h>
#include <dev/usb/quirk/usb_quirk.h>
#include <sys/reboot.h> /* for bootverbose */
#ifdef HAVE_KERNEL_OPTION_HEADERS
#include "opt_snd.h"
#endif
#include <dev/sound/pcm/sound.h>
#include <dev/sound/usb/uaudioreg.h>
#include <dev/sound/usb/uaudio.h>
#include <dev/sound/chip.h>
#include "feeder_if.h"
static int uaudio_default_rate = 0; /* use rate list */
static int uaudio_default_bits = 32;
static int uaudio_default_channels = 0; /* use default */
static int uaudio_buffer_ms = 8;
#ifdef USB_DEBUG
static int uaudio_debug = 0;
static SYSCTL_NODE(_hw_usb, OID_AUTO, uaudio, CTLFLAG_RW, 0, "USB uaudio");
SYSCTL_INT(_hw_usb_uaudio, OID_AUTO, debug, CTLFLAG_RWTUN,
&uaudio_debug, 0, "uaudio debug level");
SYSCTL_INT(_hw_usb_uaudio, OID_AUTO, default_rate, CTLFLAG_RWTUN,
&uaudio_default_rate, 0, "uaudio default sample rate");
SYSCTL_INT(_hw_usb_uaudio, OID_AUTO, default_bits, CTLFLAG_RWTUN,
&uaudio_default_bits, 0, "uaudio default sample bits");
SYSCTL_INT(_hw_usb_uaudio, OID_AUTO, default_channels, CTLFLAG_RWTUN,
&uaudio_default_channels, 0, "uaudio default sample channels");
static int
uaudio_buffer_ms_sysctl(SYSCTL_HANDLER_ARGS)
{
int err, val;
val = uaudio_buffer_ms;
err = sysctl_handle_int(oidp, &val, 0, req);
if (err != 0 || req->newptr == NULL || val == uaudio_buffer_ms)
return (err);
if (val > 8)
val = 8;
else if (val < 2)
val = 2;
uaudio_buffer_ms = val;
return (0);
}
SYSCTL_PROC(_hw_usb_uaudio, OID_AUTO, buffer_ms, CTLTYPE_INT | CTLFLAG_RWTUN,
0, sizeof(int), uaudio_buffer_ms_sysctl, "I",
"uaudio buffering delay from 2ms to 8ms");
#endif
#define UAUDIO_NFRAMES 64 /* must be factor of 8 due HS-USB */
#define UAUDIO_NCHANBUFS 2 /* number of outstanding request */
#define UAUDIO_RECURSE_LIMIT 255 /* rounds */
#define UAUDIO_CHANNELS_MAX MIN(64, AFMT_CHANNEL_MAX)
#define UAUDIO_MATRIX_MAX 8 /* channels */
#define MAKE_WORD(h,l) (((h) << 8) | (l))
#define BIT_TEST(bm,bno) (((bm)[(bno) / 8] >> (7 - ((bno) % 8))) & 1)
#define UAUDIO_MAX_CHAN(x) (x)
#define MIX(sc) ((sc)->sc_mixer_node)
union uaudio_asid {
const struct usb_audio_streaming_interface_descriptor *v1;
const struct usb_audio20_streaming_interface_descriptor *v2;
};
union uaudio_asf1d {
const struct usb_audio_streaming_type1_descriptor *v1;
const struct usb_audio20_streaming_type1_descriptor *v2;
};
union uaudio_sed {
const struct usb_audio_streaming_endpoint_descriptor *v1;
const struct usb_audio20_streaming_endpoint_descriptor *v2;
};
struct uaudio_mixer_node {
const char *name;
int32_t minval;
int32_t maxval;
#define MIX_MAX_CHAN 16
int32_t wValue[MIX_MAX_CHAN]; /* using nchan */
uint32_t mul;
uint32_t ctl;
int wData[MIX_MAX_CHAN]; /* using nchan */
uint16_t wIndex;
uint8_t update[(MIX_MAX_CHAN + 7) / 8];
uint8_t nchan;
uint8_t type;
#define MIX_ON_OFF 1
#define MIX_SIGNED_16 2
#define MIX_UNSIGNED_16 3
#define MIX_SIGNED_8 4
#define MIX_SELECTOR 5
#define MIX_UNKNOWN 6
#define MIX_SIZE(n) ((((n) == MIX_SIGNED_16) || \
((n) == MIX_UNSIGNED_16)) ? 2 : 1)
#define MIX_UNSIGNED(n) ((n) == MIX_UNSIGNED_16)
#define MAX_SELECTOR_INPUT_PIN 256
uint8_t slctrtype[MAX_SELECTOR_INPUT_PIN];
uint8_t class;
uint8_t val_default;
uint8_t desc[64];
struct uaudio_mixer_node *next;
};
struct uaudio_configure_msg {
struct usb_proc_msg hdr;
struct uaudio_softc *sc;
};
#define CHAN_MAX_ALT 24
struct uaudio_chan_alt {
union uaudio_asf1d p_asf1d;
union uaudio_sed p_sed;
const usb_endpoint_descriptor_audio_t *p_ed1;
const struct uaudio_format *p_fmt;
const struct usb_config *usb_cfg;
uint32_t sample_rate; /* in Hz */
uint16_t sample_size;
uint8_t iface_index;
uint8_t iface_alt_index;
uint8_t channels;
};
struct uaudio_chan {
struct pcmchan_caps pcm_cap; /* capabilities */
struct uaudio_chan_alt usb_alt[CHAN_MAX_ALT];
struct snd_dbuf *pcm_buf;
struct mtx *pcm_mtx; /* lock protecting this structure */
struct uaudio_softc *priv_sc;
struct pcm_channel *pcm_ch;
struct usb_xfer *xfer[UAUDIO_NCHANBUFS + 1];
uint8_t *buf; /* pointer to buffer */
uint8_t *start; /* upper layer buffer start */
uint8_t *end; /* upper layer buffer end */
uint8_t *cur; /* current position in upper layer
* buffer */
uint32_t intr_frames; /* in units */
uint32_t frames_per_second;
uint32_t sample_rem;
uint32_t sample_curr;
uint32_t max_buf;
int32_t jitter_rem;
int32_t jitter_curr;
int feedback_rate;
uint32_t pcm_format[2];
uint16_t bytes_per_frame[2];
uint32_t intr_counter;
uint32_t running;
uint32_t num_alt;
uint32_t cur_alt;
uint32_t set_alt;
uint32_t operation;
#define CHAN_OP_NONE 0
#define CHAN_OP_START 1
#define CHAN_OP_STOP 2
#define CHAN_OP_DRAIN 3
};
#define UMIDI_EMB_JACK_MAX 16 /* units */
#define UMIDI_TX_FRAMES 256 /* units */
#define UMIDI_TX_BUFFER (UMIDI_TX_FRAMES * 4) /* bytes */
enum {
UMIDI_TX_TRANSFER,
UMIDI_RX_TRANSFER,
UMIDI_N_TRANSFER,
};
struct umidi_sub_chan {
struct usb_fifo_sc fifo;
uint8_t *temp_cmd;
uint8_t temp_0[4];
uint8_t temp_1[4];
uint8_t state;
#define UMIDI_ST_UNKNOWN 0 /* scan for command */
#define UMIDI_ST_1PARAM 1
#define UMIDI_ST_2PARAM_1 2
#define UMIDI_ST_2PARAM_2 3
#define UMIDI_ST_SYSEX_0 4
#define UMIDI_ST_SYSEX_1 5
#define UMIDI_ST_SYSEX_2 6
uint8_t read_open:1;
uint8_t write_open:1;
uint8_t unused:6;
};
struct umidi_chan {
struct umidi_sub_chan sub[UMIDI_EMB_JACK_MAX];
struct mtx mtx;
struct usb_xfer *xfer[UMIDI_N_TRANSFER];
uint8_t iface_index;
uint8_t iface_alt_index;
uint8_t read_open_refcount;
uint8_t write_open_refcount;
uint8_t curr_cable;
uint8_t max_emb_jack;
uint8_t valid;
uint8_t single_command;
};
struct uaudio_search_result {
uint8_t bit_input[(256 + 7) / 8];
uint8_t bit_output[(256 + 7) / 8];
uint8_t recurse_level;
uint8_t id_max;
uint8_t is_input;
};
enum {
UAUDIO_HID_RX_TRANSFER,
UAUDIO_HID_N_TRANSFER,
};
struct uaudio_hid {
struct usb_xfer *xfer[UAUDIO_HID_N_TRANSFER];
struct hid_location volume_up_loc;
struct hid_location volume_down_loc;
struct hid_location mute_loc;
uint32_t flags;
#define UAUDIO_HID_VALID 0x0001
#define UAUDIO_HID_HAS_ID 0x0002
#define UAUDIO_HID_HAS_VOLUME_UP 0x0004
#define UAUDIO_HID_HAS_VOLUME_DOWN 0x0008
#define UAUDIO_HID_HAS_MUTE 0x0010
uint8_t iface_index;
uint8_t volume_up_id;
uint8_t volume_down_id;
uint8_t mute_id;
};
#define UAUDIO_SPDIF_OUT 0x01 /* Enable S/PDIF output */
#define UAUDIO_SPDIF_OUT_48K 0x02 /* Out sample rate = 48K */
#define UAUDIO_SPDIF_OUT_96K 0x04 /* Out sample rate = 96K */
#define UAUDIO_SPDIF_IN_MIX 0x10 /* Input mix enable */
struct uaudio_softc {
struct sbuf sc_sndstat;
struct sndcard_func sc_sndcard_func;
struct uaudio_chan sc_rec_chan;
struct uaudio_chan sc_play_chan;
struct umidi_chan sc_midi_chan;
struct uaudio_hid sc_hid;
struct uaudio_search_result sc_mixer_clocks;
struct uaudio_mixer_node sc_mixer_node;
struct uaudio_configure_msg sc_config_msg[2];
struct mtx *sc_mixer_lock;
struct snd_mixer *sc_mixer_dev;
struct usb_device *sc_udev;
struct usb_xfer *sc_mixer_xfer[1];
struct uaudio_mixer_node *sc_mixer_root;
struct uaudio_mixer_node *sc_mixer_curr;
int (*sc_set_spdif_fn) (struct uaudio_softc *, int);
uint32_t sc_mix_info;
uint32_t sc_recsrc_info;
uint16_t sc_audio_rev;
uint16_t sc_mixer_count;
uint8_t sc_sndstat_valid;
uint8_t sc_mixer_iface_index;
uint8_t sc_mixer_iface_no;
uint8_t sc_mixer_chan;
uint8_t sc_pcm_registered:1;
uint8_t sc_mixer_init:1;
uint8_t sc_uq_audio_swap_lr:1;
uint8_t sc_uq_au_inp_async:1;
uint8_t sc_uq_au_no_xu:1;
uint8_t sc_uq_bad_adc:1;
uint8_t sc_uq_au_vendor_class:1;
uint8_t sc_pcm_bitperfect:1;
};
struct uaudio_terminal_node {
union {
const struct usb_descriptor *desc;
const struct usb_audio_input_terminal *it_v1;
const struct usb_audio_output_terminal *ot_v1;
const struct usb_audio_mixer_unit_0 *mu_v1;
const struct usb_audio_selector_unit *su_v1;
const struct usb_audio_feature_unit *fu_v1;
const struct usb_audio_processing_unit_0 *pu_v1;
const struct usb_audio_extension_unit_0 *eu_v1;
const struct usb_audio20_clock_source_unit *csrc_v2;
const struct usb_audio20_clock_selector_unit_0 *csel_v2;
const struct usb_audio20_clock_multiplier_unit *cmul_v2;
const struct usb_audio20_input_terminal *it_v2;
const struct usb_audio20_output_terminal *ot_v2;
const struct usb_audio20_mixer_unit_0 *mu_v2;
const struct usb_audio20_selector_unit *su_v2;
const struct usb_audio20_feature_unit *fu_v2;
const struct usb_audio20_sample_rate_unit *ru_v2;
const struct usb_audio20_processing_unit_0 *pu_v2;
const struct usb_audio20_extension_unit_0 *eu_v2;
const struct usb_audio20_effect_unit *ef_v2;
} u;
struct uaudio_search_result usr;
struct uaudio_terminal_node *root;
};
struct uaudio_format {
uint16_t wFormat;
uint8_t bPrecision;
uint32_t freebsd_fmt;
const char *description;
};
static const struct uaudio_format uaudio10_formats[] = {
{UA_FMT_PCM8, 8, AFMT_U8, "8-bit U-LE PCM"},
{UA_FMT_PCM8, 16, AFMT_U16_LE, "16-bit U-LE PCM"},
{UA_FMT_PCM8, 24, AFMT_U24_LE, "24-bit U-LE PCM"},
{UA_FMT_PCM8, 32, AFMT_U32_LE, "32-bit U-LE PCM"},
{UA_FMT_PCM, 8, AFMT_S8, "8-bit S-LE PCM"},
{UA_FMT_PCM, 16, AFMT_S16_LE, "16-bit S-LE PCM"},
{UA_FMT_PCM, 24, AFMT_S24_LE, "24-bit S-LE PCM"},
{UA_FMT_PCM, 32, AFMT_S32_LE, "32-bit S-LE PCM"},
{UA_FMT_ALAW, 8, AFMT_A_LAW, "8-bit A-Law"},
{UA_FMT_MULAW, 8, AFMT_MU_LAW, "8-bit mu-Law"},
{0, 0, 0, NULL}
};
static const struct uaudio_format uaudio20_formats[] = {
{UA20_FMT_PCM, 8, AFMT_S8, "8-bit S-LE PCM"},
{UA20_FMT_PCM, 16, AFMT_S16_LE, "16-bit S-LE PCM"},
{UA20_FMT_PCM, 24, AFMT_S24_LE, "24-bit S-LE PCM"},
{UA20_FMT_PCM, 32, AFMT_S32_LE, "32-bit S-LE PCM"},
{UA20_FMT_PCM8, 8, AFMT_U8, "8-bit U-LE PCM"},
{UA20_FMT_PCM8, 16, AFMT_U16_LE, "16-bit U-LE PCM"},
{UA20_FMT_PCM8, 24, AFMT_U24_LE, "24-bit U-LE PCM"},
{UA20_FMT_PCM8, 32, AFMT_U32_LE, "32-bit U-LE PCM"},
{UA20_FMT_ALAW, 8, AFMT_A_LAW, "8-bit A-Law"},
{UA20_FMT_MULAW, 8, AFMT_MU_LAW, "8-bit mu-Law"},
{0, 0, 0, NULL}
};
#define UAC_OUTPUT 0
#define UAC_INPUT 1
#define UAC_EQUAL 2
#define UAC_RECORD 3
#define UAC_NCLASSES 4
#ifdef USB_DEBUG
static const char *uac_names[] = {
"outputs", "inputs", "equalization", "record"
};
#endif
/* prototypes */
static device_probe_t uaudio_probe;
static device_attach_t uaudio_attach;
static device_detach_t uaudio_detach;
static usb_callback_t uaudio_chan_play_callback;
static usb_callback_t uaudio_chan_play_sync_callback;
static usb_callback_t uaudio_chan_record_callback;
static usb_callback_t uaudio_chan_record_sync_callback;
static usb_callback_t uaudio_mixer_write_cfg_callback;
static usb_callback_t umidi_bulk_read_callback;
static usb_callback_t umidi_bulk_write_callback;
static usb_callback_t uaudio_hid_rx_callback;
static usb_proc_callback_t uaudio_configure_msg;
/* ==== USB mixer ==== */
static int uaudio_mixer_sysctl_handler(SYSCTL_HANDLER_ARGS);
static void uaudio_mixer_ctl_free(struct uaudio_softc *);
static void uaudio_mixer_register_sysctl(struct uaudio_softc *, device_t);
static void uaudio_mixer_reload_all(struct uaudio_softc *);
static void uaudio_mixer_controls_create_ftu(struct uaudio_softc *);
/* ==== USB audio v1.0 ==== */
static void uaudio_mixer_add_mixer(struct uaudio_softc *,
const struct uaudio_terminal_node *, int);
static void uaudio_mixer_add_selector(struct uaudio_softc *,
const struct uaudio_terminal_node *, int);
static uint32_t uaudio_mixer_feature_get_bmaControls(
const struct usb_audio_feature_unit *, uint8_t);
static void uaudio_mixer_add_feature(struct uaudio_softc *,
const struct uaudio_terminal_node *, int);
static void uaudio_mixer_add_processing_updown(struct uaudio_softc *,
const struct uaudio_terminal_node *, int);
static void uaudio_mixer_add_processing(struct uaudio_softc *,
const struct uaudio_terminal_node *, int);
static void uaudio_mixer_add_extension(struct uaudio_softc *,
const struct uaudio_terminal_node *, int);
static struct usb_audio_cluster uaudio_mixer_get_cluster(uint8_t,
const struct uaudio_terminal_node *);
static uint16_t uaudio_mixer_determine_class(const struct uaudio_terminal_node *,
struct uaudio_mixer_node *);
static uint16_t uaudio_mixer_feature_name(const struct uaudio_terminal_node *,
struct uaudio_mixer_node *);
static void uaudio_mixer_find_inputs_sub(struct uaudio_terminal_node *,
const uint8_t *, uint8_t, struct uaudio_search_result *);
static const void *uaudio_mixer_verify_desc(const void *, uint32_t);
static usb_error_t uaudio_set_speed(struct usb_device *, uint8_t, uint32_t);
static int uaudio_mixer_get(struct usb_device *, uint16_t, uint8_t,
struct uaudio_mixer_node *);
/* ==== USB audio v2.0 ==== */
static void uaudio20_mixer_add_mixer(struct uaudio_softc *,
const struct uaudio_terminal_node *, int);
static void uaudio20_mixer_add_selector(struct uaudio_softc *,
const struct uaudio_terminal_node *, int);
static void uaudio20_mixer_add_feature(struct uaudio_softc *,
const struct uaudio_terminal_node *, int);
static struct usb_audio20_cluster uaudio20_mixer_get_cluster(uint8_t,
const struct uaudio_terminal_node *);
static uint16_t uaudio20_mixer_determine_class(const struct uaudio_terminal_node *,
struct uaudio_mixer_node *);
static uint16_t uaudio20_mixer_feature_name(const struct uaudio_terminal_node *,
struct uaudio_mixer_node *);
static void uaudio20_mixer_find_inputs_sub(struct uaudio_terminal_node *,
const uint8_t *, uint8_t, struct uaudio_search_result *);
static const void *uaudio20_mixer_verify_desc(const void *, uint32_t);
static usb_error_t uaudio20_set_speed(struct usb_device *, uint8_t,
uint8_t, uint32_t);
/* USB audio v1.0 and v2.0 */
static void uaudio_chan_fill_info_sub(struct uaudio_softc *,
struct usb_device *, uint32_t, uint8_t, uint8_t);
static void uaudio_chan_fill_info(struct uaudio_softc *,
struct usb_device *);
static void uaudio_mixer_add_ctl_sub(struct uaudio_softc *,
struct uaudio_mixer_node *);
static void uaudio_mixer_add_ctl(struct uaudio_softc *,
struct uaudio_mixer_node *);
static void uaudio_mixer_fill_info(struct uaudio_softc *,
struct usb_device *, void *);
static void uaudio_mixer_ctl_set(struct uaudio_softc *,
struct uaudio_mixer_node *, uint8_t, int32_t val);
static int uaudio_mixer_signext(uint8_t, int);
static int uaudio_mixer_bsd2value(struct uaudio_mixer_node *, int32_t val);
static void uaudio_mixer_init(struct uaudio_softc *);
static const struct uaudio_terminal_node *uaudio_mixer_get_input(
const struct uaudio_terminal_node *, uint8_t);
static const struct uaudio_terminal_node *uaudio_mixer_get_output(
const struct uaudio_terminal_node *, uint8_t);
static void uaudio_mixer_find_outputs_sub(struct uaudio_terminal_node *,
uint8_t, uint8_t, struct uaudio_search_result *);
static uint8_t umidi_convert_to_usb(struct umidi_sub_chan *, uint8_t, uint8_t);
static struct umidi_sub_chan *umidi_sub_by_fifo(struct usb_fifo *);
static void umidi_start_read(struct usb_fifo *);
static void umidi_stop_read(struct usb_fifo *);
static void umidi_start_write(struct usb_fifo *);
static void umidi_stop_write(struct usb_fifo *);
static int umidi_open(struct usb_fifo *, int);
static int umidi_ioctl(struct usb_fifo *, u_long cmd, void *, int);
static void umidi_close(struct usb_fifo *, int);
static void umidi_init(device_t dev);
static int umidi_probe(device_t dev);
static int umidi_detach(device_t dev);
static int uaudio_hid_probe(struct uaudio_softc *sc,
struct usb_attach_arg *uaa);
static void uaudio_hid_detach(struct uaudio_softc *sc);
#ifdef USB_DEBUG
static void uaudio_chan_dump_ep_desc(
const usb_endpoint_descriptor_audio_t *);
#endif
static const struct usb_config
uaudio_cfg_record[UAUDIO_NCHANBUFS + 1] = {
[0] = {
.type = UE_ISOCHRONOUS,
.endpoint = UE_ADDR_ANY,
.direction = UE_DIR_IN,
.bufsize = 0, /* use "wMaxPacketSize * frames" */
.frames = UAUDIO_NFRAMES,
.flags = {.short_xfer_ok = 1,},
.callback = &uaudio_chan_record_callback,
},
[1] = {
.type = UE_ISOCHRONOUS,
.endpoint = UE_ADDR_ANY,
.direction = UE_DIR_IN,
.bufsize = 0, /* use "wMaxPacketSize * frames" */
.frames = UAUDIO_NFRAMES,
.flags = {.short_xfer_ok = 1,},
.callback = &uaudio_chan_record_callback,
},
[2] = {
.type = UE_ISOCHRONOUS,
.endpoint = UE_ADDR_ANY,
.direction = UE_DIR_OUT,
.bufsize = 0, /* use "wMaxPacketSize * frames" */
.frames = 1,
.flags = {.no_pipe_ok = 1,.short_xfer_ok = 1,},
.callback = &uaudio_chan_record_sync_callback,
},
};
static const struct usb_config
uaudio_cfg_play[UAUDIO_NCHANBUFS + 1] = {
[0] = {
.type = UE_ISOCHRONOUS,
.endpoint = UE_ADDR_ANY,
.direction = UE_DIR_OUT,
.bufsize = 0, /* use "wMaxPacketSize * frames" */
.frames = UAUDIO_NFRAMES,
.flags = {.short_xfer_ok = 1,},
.callback = &uaudio_chan_play_callback,
},
[1] = {
.type = UE_ISOCHRONOUS,
.endpoint = UE_ADDR_ANY,
.direction = UE_DIR_OUT,
.bufsize = 0, /* use "wMaxPacketSize * frames" */
.frames = UAUDIO_NFRAMES,
.flags = {.short_xfer_ok = 1,},
.callback = &uaudio_chan_play_callback,
},
[2] = {
.type = UE_ISOCHRONOUS,
.endpoint = UE_ADDR_ANY,
.direction = UE_DIR_IN,
.bufsize = 0, /* use "wMaxPacketSize * frames" */
.frames = 1,
.flags = {.no_pipe_ok = 1,.short_xfer_ok = 1,},
.callback = &uaudio_chan_play_sync_callback,
},
};
static const struct usb_config
uaudio_mixer_config[1] = {
[0] = {
.type = UE_CONTROL,
.endpoint = 0x00, /* Control pipe */
.direction = UE_DIR_ANY,
.bufsize = (sizeof(struct usb_device_request) + 4),
.callback = &uaudio_mixer_write_cfg_callback,
.timeout = 1000, /* 1 second */
},
};
static const
uint8_t umidi_cmd_to_len[16] = {
[0x0] = 0, /* reserved */
[0x1] = 0, /* reserved */
[0x2] = 2, /* bytes */
[0x3] = 3, /* bytes */
[0x4] = 3, /* bytes */
[0x5] = 1, /* bytes */
[0x6] = 2, /* bytes */
[0x7] = 3, /* bytes */
[0x8] = 3, /* bytes */
[0x9] = 3, /* bytes */
[0xA] = 3, /* bytes */
[0xB] = 3, /* bytes */
[0xC] = 2, /* bytes */
[0xD] = 2, /* bytes */
[0xE] = 3, /* bytes */
[0xF] = 1, /* bytes */
};
static const struct usb_config
umidi_config[UMIDI_N_TRANSFER] = {
[UMIDI_TX_TRANSFER] = {
.type = UE_BULK,
.endpoint = UE_ADDR_ANY,
.direction = UE_DIR_OUT,
.bufsize = UMIDI_TX_BUFFER,
.flags = {.no_pipe_ok = 1},
.callback = &umidi_bulk_write_callback,
},
[UMIDI_RX_TRANSFER] = {
.type = UE_BULK,
.endpoint = UE_ADDR_ANY,
.direction = UE_DIR_IN,
.bufsize = 4, /* bytes */
.flags = {.short_xfer_ok = 1,.proxy_buffer = 1,.no_pipe_ok = 1},
.callback = &umidi_bulk_read_callback,
},
};
static const struct usb_config
uaudio_hid_config[UAUDIO_HID_N_TRANSFER] = {
[UAUDIO_HID_RX_TRANSFER] = {
.type = UE_INTERRUPT,
.endpoint = UE_ADDR_ANY,
.direction = UE_DIR_IN,
.bufsize = 0, /* use wMaxPacketSize */
.flags = {.short_xfer_ok = 1,},
.callback = &uaudio_hid_rx_callback,
},
};
static devclass_t uaudio_devclass;
static device_method_t uaudio_methods[] = {
DEVMETHOD(device_probe, uaudio_probe),
DEVMETHOD(device_attach, uaudio_attach),
DEVMETHOD(device_detach, uaudio_detach),
DEVMETHOD(device_suspend, bus_generic_suspend),
DEVMETHOD(device_resume, bus_generic_resume),
DEVMETHOD(device_shutdown, bus_generic_shutdown),
DEVMETHOD_END
};
static driver_t uaudio_driver = {
.name = "uaudio",
.methods = uaudio_methods,
.size = sizeof(struct uaudio_softc),
};
/* The following table is derived from Linux's quirks-table.h */
static const STRUCT_USB_HOST_ID uaudio_vendor_midi[] = {
{ USB_VPI(USB_VENDOR_YAMAHA, 0x1000, 0) }, /* UX256 */
{ USB_VPI(USB_VENDOR_YAMAHA, 0x1001, 0) }, /* MU1000 */
{ USB_VPI(USB_VENDOR_YAMAHA, 0x1002, 0) }, /* MU2000 */
{ USB_VPI(USB_VENDOR_YAMAHA, 0x1003, 0) }, /* MU500 */
{ USB_VPI(USB_VENDOR_YAMAHA, 0x1004, 3) }, /* UW500 */
{ USB_VPI(USB_VENDOR_YAMAHA, 0x1005, 0) }, /* MOTIF6 */
{ USB_VPI(USB_VENDOR_YAMAHA, 0x1006, 0) }, /* MOTIF7 */
{ USB_VPI(USB_VENDOR_YAMAHA, 0x1007, 0) }, /* MOTIF8 */
{ USB_VPI(USB_VENDOR_YAMAHA, 0x1008, 0) }, /* UX96 */
{ USB_VPI(USB_VENDOR_YAMAHA, 0x1009, 0) }, /* UX16 */
{ USB_VPI(USB_VENDOR_YAMAHA, 0x100a, 3) }, /* EOS BX */
{ USB_VPI(USB_VENDOR_YAMAHA, 0x100c, 0) }, /* UC-MX */
{ USB_VPI(USB_VENDOR_YAMAHA, 0x100d, 0) }, /* UC-KX */
{ USB_VPI(USB_VENDOR_YAMAHA, 0x100e, 0) }, /* S08 */
{ USB_VPI(USB_VENDOR_YAMAHA, 0x100f, 0) }, /* CLP-150 */
{ USB_VPI(USB_VENDOR_YAMAHA, 0x1010, 0) }, /* CLP-170 */
{ USB_VPI(USB_VENDOR_YAMAHA, 0x1011, 0) }, /* P-250 */
{ USB_VPI(USB_VENDOR_YAMAHA, 0x1012, 0) }, /* TYROS */
{ USB_VPI(USB_VENDOR_YAMAHA, 0x1013, 0) }, /* PF-500 */
{ USB_VPI(USB_VENDOR_YAMAHA, 0x1014, 0) }, /* S90 */
{ USB_VPI(USB_VENDOR_YAMAHA, 0x1015, 0) }, /* MOTIF-R */
{ USB_VPI(USB_VENDOR_YAMAHA, 0x1016, 0) }, /* MDP-5 */
{ USB_VPI(USB_VENDOR_YAMAHA, 0x1017, 0) }, /* CVP-204 */
{ USB_VPI(USB_VENDOR_YAMAHA, 0x1018, 0) }, /* CVP-206 */
{ USB_VPI(USB_VENDOR_YAMAHA, 0x1019, 0) }, /* CVP-208 */
{ USB_VPI(USB_VENDOR_YAMAHA, 0x101a, 0) }, /* CVP-210 */
{ USB_VPI(USB_VENDOR_YAMAHA, 0x101b, 0) }, /* PSR-1100 */
{ USB_VPI(USB_VENDOR_YAMAHA, 0x101c, 0) }, /* PSR-2100 */
{ USB_VPI(USB_VENDOR_YAMAHA, 0x101d, 0) }, /* CLP-175 */
{ USB_VPI(USB_VENDOR_YAMAHA, 0x101e, 0) }, /* PSR-K1 */
{ USB_VPI(USB_VENDOR_YAMAHA, 0x101f, 0) }, /* EZ-J24 */
{ USB_VPI(USB_VENDOR_YAMAHA, 0x1020, 0) }, /* EZ-250i */
{ USB_VPI(USB_VENDOR_YAMAHA, 0x1021, 0) }, /* MOTIF ES 6 */
{ USB_VPI(USB_VENDOR_YAMAHA, 0x1022, 0) }, /* MOTIF ES 7 */
{ USB_VPI(USB_VENDOR_YAMAHA, 0x1023, 0) }, /* MOTIF ES 8 */
{ USB_VPI(USB_VENDOR_YAMAHA, 0x1024, 0) }, /* CVP-301 */
{ USB_VPI(USB_VENDOR_YAMAHA, 0x1025, 0) }, /* CVP-303 */
{ USB_VPI(USB_VENDOR_YAMAHA, 0x1026, 0) }, /* CVP-305 */
{ USB_VPI(USB_VENDOR_YAMAHA, 0x1027, 0) }, /* CVP-307 */
{ USB_VPI(USB_VENDOR_YAMAHA, 0x1028, 0) }, /* CVP-309 */
{ USB_VPI(USB_VENDOR_YAMAHA, 0x1029, 0) }, /* CVP-309GP */
{ USB_VPI(USB_VENDOR_YAMAHA, 0x102a, 0) }, /* PSR-1500 */
{ USB_VPI(USB_VENDOR_YAMAHA, 0x102b, 0) }, /* PSR-3000 */
{ USB_VPI(USB_VENDOR_YAMAHA, 0x102e, 0) }, /* ELS-01/01C */
{ USB_VPI(USB_VENDOR_YAMAHA, 0x1030, 0) }, /* PSR-295/293 */
{ USB_VPI(USB_VENDOR_YAMAHA, 0x1031, 0) }, /* DGX-205/203 */
{ USB_VPI(USB_VENDOR_YAMAHA, 0x1032, 0) }, /* DGX-305 */
{ USB_VPI(USB_VENDOR_YAMAHA, 0x1033, 0) }, /* DGX-505 */
{ USB_VPI(USB_VENDOR_YAMAHA, 0x1034, 0) }, /* NULL */
{ USB_VPI(USB_VENDOR_YAMAHA, 0x1035, 0) }, /* NULL */
{ USB_VPI(USB_VENDOR_YAMAHA, 0x1036, 0) }, /* NULL */
{ USB_VPI(USB_VENDOR_YAMAHA, 0x1037, 0) }, /* NULL */
{ USB_VPI(USB_VENDOR_YAMAHA, 0x1038, 0) }, /* NULL */
{ USB_VPI(USB_VENDOR_YAMAHA, 0x1039, 0) }, /* NULL */
{ USB_VPI(USB_VENDOR_YAMAHA, 0x103a, 0) }, /* NULL */
{ USB_VPI(USB_VENDOR_YAMAHA, 0x103b, 0) }, /* NULL */
{ USB_VPI(USB_VENDOR_YAMAHA, 0x103c, 0) }, /* NULL */
{ USB_VPI(USB_VENDOR_YAMAHA, 0x103d, 0) }, /* NULL */
{ USB_VPI(USB_VENDOR_YAMAHA, 0x103e, 0) }, /* NULL */
{ USB_VPI(USB_VENDOR_YAMAHA, 0x103f, 0) }, /* NULL */
{ USB_VPI(USB_VENDOR_YAMAHA, 0x1040, 0) }, /* NULL */
{ USB_VPI(USB_VENDOR_YAMAHA, 0x1041, 0) }, /* NULL */
{ USB_VPI(USB_VENDOR_YAMAHA, 0x1042, 0) }, /* NULL */
{ USB_VPI(USB_VENDOR_YAMAHA, 0x1043, 0) }, /* NULL */
{ USB_VPI(USB_VENDOR_YAMAHA, 0x1044, 0) }, /* NULL */
{ USB_VPI(USB_VENDOR_YAMAHA, 0x1045, 0) }, /* NULL */
{ USB_VPI(USB_VENDOR_YAMAHA, 0x104e, 0) }, /* NULL */
{ USB_VPI(USB_VENDOR_YAMAHA, 0x104f, 0) }, /* NULL */
{ USB_VPI(USB_VENDOR_YAMAHA, 0x1050, 0) }, /* NULL */
{ USB_VPI(USB_VENDOR_YAMAHA, 0x1051, 0) }, /* NULL */
{ USB_VPI(USB_VENDOR_YAMAHA, 0x1052, 0) }, /* NULL */
{ USB_VPI(USB_VENDOR_YAMAHA, 0x1053, 0) }, /* NULL */
{ USB_VPI(USB_VENDOR_YAMAHA, 0x1054, 0) }, /* NULL */
{ USB_VPI(USB_VENDOR_YAMAHA, 0x1055, 0) }, /* NULL */
{ USB_VPI(USB_VENDOR_YAMAHA, 0x1056, 0) }, /* NULL */
{ USB_VPI(USB_VENDOR_YAMAHA, 0x1057, 0) }, /* NULL */
{ USB_VPI(USB_VENDOR_YAMAHA, 0x1058, 0) }, /* NULL */
{ USB_VPI(USB_VENDOR_YAMAHA, 0x1059, 0) }, /* NULL */
{ USB_VPI(USB_VENDOR_YAMAHA, 0x105a, 0) }, /* NULL */
{ USB_VPI(USB_VENDOR_YAMAHA, 0x105b, 0) }, /* NULL */
{ USB_VPI(USB_VENDOR_YAMAHA, 0x105c, 0) }, /* NULL */
{ USB_VPI(USB_VENDOR_YAMAHA, 0x105d, 0) }, /* NULL */
{ USB_VPI(USB_VENDOR_YAMAHA, 0x1503, 3) }, /* MOX6/MOX8 */
{ USB_VPI(USB_VENDOR_YAMAHA, 0x2000, 0) }, /* DGP-7 */
{ USB_VPI(USB_VENDOR_YAMAHA, 0x2001, 0) }, /* DGP-5 */
{ USB_VPI(USB_VENDOR_YAMAHA, 0x2002, 0) }, /* NULL */
{ USB_VPI(USB_VENDOR_YAMAHA, 0x2003, 0) }, /* NULL */
{ USB_VPI(USB_VENDOR_YAMAHA, 0x5000, 0) }, /* CS1D */
{ USB_VPI(USB_VENDOR_YAMAHA, 0x5001, 0) }, /* DSP1D */
{ USB_VPI(USB_VENDOR_YAMAHA, 0x5002, 0) }, /* DME32 */
{ USB_VPI(USB_VENDOR_YAMAHA, 0x5003, 0) }, /* DM2000 */
{ USB_VPI(USB_VENDOR_YAMAHA, 0x5004, 0) }, /* 02R96 */
{ USB_VPI(USB_VENDOR_YAMAHA, 0x5005, 0) }, /* ACU16-C */
{ USB_VPI(USB_VENDOR_YAMAHA, 0x5006, 0) }, /* NHB32-C */
{ USB_VPI(USB_VENDOR_YAMAHA, 0x5007, 0) }, /* DM1000 */
{ USB_VPI(USB_VENDOR_YAMAHA, 0x5008, 0) }, /* 01V96 */
{ USB_VPI(USB_VENDOR_YAMAHA, 0x5009, 0) }, /* SPX2000 */
{ USB_VPI(USB_VENDOR_YAMAHA, 0x500a, 0) }, /* PM5D */
{ USB_VPI(USB_VENDOR_YAMAHA, 0x500b, 0) }, /* DME64N */
{ USB_VPI(USB_VENDOR_YAMAHA, 0x500c, 0) }, /* DME24N */
{ USB_VPI(USB_VENDOR_YAMAHA, 0x500d, 0) }, /* NULL */
{ USB_VPI(USB_VENDOR_YAMAHA, 0x500e, 0) }, /* NULL */
{ USB_VPI(USB_VENDOR_YAMAHA, 0x500f, 0) }, /* NULL */
{ USB_VPI(USB_VENDOR_YAMAHA, 0x7000, 0) }, /* DTX */
{ USB_VPI(USB_VENDOR_YAMAHA, 0x7010, 0) }, /* UB99 */
};
static const STRUCT_USB_HOST_ID __used uaudio_devs[] = {
/* Generic USB audio class match */
{USB_IFACE_CLASS(UICLASS_AUDIO),
USB_IFACE_SUBCLASS(UISUBCLASS_AUDIOCONTROL),},
/* Generic USB MIDI class match */
{USB_IFACE_CLASS(UICLASS_AUDIO),
USB_IFACE_SUBCLASS(UISUBCLASS_MIDISTREAM),},
};
static int
uaudio_probe(device_t dev)
{
struct usb_attach_arg *uaa = device_get_ivars(dev);
if (uaa->usb_mode != USB_MODE_HOST)
return (ENXIO);
/* lookup non-standard device(s) */
if (usbd_lookup_id_by_uaa(uaudio_vendor_midi,
sizeof(uaudio_vendor_midi), uaa) == 0) {
return (BUS_PROBE_SPECIFIC);
}
if (uaa->info.bInterfaceClass != UICLASS_AUDIO) {
if (uaa->info.bInterfaceClass != UICLASS_VENDOR ||
usb_test_quirk(uaa, UQ_AU_VENDOR_CLASS) == 0)
return (ENXIO);
}
/* check for AUDIO control interface */
if (uaa->info.bInterfaceSubClass == UISUBCLASS_AUDIOCONTROL) {
if (usb_test_quirk(uaa, UQ_BAD_AUDIO))
return (ENXIO);
else
return (BUS_PROBE_GENERIC);
}
/* check for MIDI stream */
if (uaa->info.bInterfaceSubClass == UISUBCLASS_MIDISTREAM) {
if (usb_test_quirk(uaa, UQ_BAD_MIDI))
return (ENXIO);
else
return (BUS_PROBE_GENERIC);
}
return (ENXIO);
}
/*
* Set Cmedia CM6206 S/PDIF settings
* Source: CM6206 Datasheet v2.3.
*/
static int
uaudio_set_spdif_cm6206(struct uaudio_softc *sc, int flags)
{
uint8_t cmd[2][4] = {
{0x20, 0x20, 0x00, 0},
{0x20, 0x30, 0x02, 1}
};
int i;
if (flags & UAUDIO_SPDIF_OUT)
cmd[1][1] = 0x00;
else
cmd[1][1] = 0x02;
if (flags & UAUDIO_SPDIF_OUT_96K)
cmd[0][1] = 0x60; /* 96K: 3'b110 */
if (flags & UAUDIO_SPDIF_IN_MIX)
cmd[1][1] = 0x03; /* SPDIFMIX */
for (i = 0; i < 2; i++) {
if (usbd_req_set_report(sc->sc_udev, NULL,
cmd[i], sizeof(cmd[0]),
sc->sc_mixer_iface_index, UHID_OUTPUT_REPORT, 0) != 0) {
return (ENXIO);
}
}
return (0);
}
static int
uaudio_set_spdif_dummy(struct uaudio_softc *sc, int flags)
{
return (0);
}
static int
uaudio_attach(device_t dev)
{
struct usb_attach_arg *uaa = device_get_ivars(dev);
struct uaudio_softc *sc = device_get_softc(dev);
struct usb_interface_descriptor *id;
usb_error_t err;
device_t child;
sc->sc_play_chan.priv_sc = sc;
sc->sc_rec_chan.priv_sc = sc;
sc->sc_udev = uaa->device;
sc->sc_mixer_iface_index = uaa->info.bIfaceIndex;
sc->sc_mixer_iface_no = uaa->info.bIfaceNum;
sc->sc_config_msg[0].hdr.pm_callback = &uaudio_configure_msg;
sc->sc_config_msg[0].sc = sc;
sc->sc_config_msg[1].hdr.pm_callback = &uaudio_configure_msg;
sc->sc_config_msg[1].sc = sc;
if (usb_test_quirk(uaa, UQ_AUDIO_SWAP_LR))
sc->sc_uq_audio_swap_lr = 1;
if (usb_test_quirk(uaa, UQ_AU_INP_ASYNC))
sc->sc_uq_au_inp_async = 1;
if (usb_test_quirk(uaa, UQ_AU_NO_XU))
sc->sc_uq_au_no_xu = 1;
if (usb_test_quirk(uaa, UQ_BAD_ADC))
sc->sc_uq_bad_adc = 1;
if (usb_test_quirk(uaa, UQ_AU_VENDOR_CLASS))
sc->sc_uq_au_vendor_class = 1;
/* set S/PDIF function */
if (usb_test_quirk(uaa, UQ_AU_SET_SPDIF_CM6206))
sc->sc_set_spdif_fn = uaudio_set_spdif_cm6206;
else
sc->sc_set_spdif_fn = uaudio_set_spdif_dummy;
umidi_init(dev);
device_set_usb_desc(dev);
id = usbd_get_interface_descriptor(uaa->iface);
/* must fill mixer info before channel info */
uaudio_mixer_fill_info(sc, uaa->device, id);
/* fill channel info */
uaudio_chan_fill_info(sc, uaa->device);
DPRINTF("audio rev %d.%02x\n",
sc->sc_audio_rev >> 8,
sc->sc_audio_rev & 0xff);
if (sc->sc_mixer_count == 0) {
if (uaa->info.idVendor == USB_VENDOR_MAUDIO &&
(uaa->info.idProduct == USB_PRODUCT_MAUDIO_FASTTRACKULTRA ||
uaa->info.idProduct == USB_PRODUCT_MAUDIO_FASTTRACKULTRA8R)) {
DPRINTF("Generating mixer descriptors\n");
uaudio_mixer_controls_create_ftu(sc);
}
}
DPRINTF("%d mixer controls\n",
sc->sc_mixer_count);
if (sc->sc_play_chan.num_alt > 0) {
uint8_t x;
/*
* Need to set a default alternate interface, else
* some USB audio devices might go into an infinte
* re-enumeration loop:
*/
err = usbd_set_alt_interface_index(sc->sc_udev,
sc->sc_play_chan.usb_alt[0].iface_index,
sc->sc_play_chan.usb_alt[0].iface_alt_index);
if (err) {
DPRINTF("setting of alternate index failed: %s!\n",
usbd_errstr(err));
}
for (x = 0; x != sc->sc_play_chan.num_alt; x++) {
device_printf(dev, "Play: %d Hz, %d ch, %s format, "
"2x8ms buffer.\n",
sc->sc_play_chan.usb_alt[x].sample_rate,
sc->sc_play_chan.usb_alt[x].channels,
sc->sc_play_chan.usb_alt[x].p_fmt->description);
}
} else {
device_printf(dev, "No playback.\n");
}
if (sc->sc_rec_chan.num_alt > 0) {
uint8_t x;
/*
* Need to set a default alternate interface, else
* some USB audio devices might go into an infinte
* re-enumeration loop:
*/
err = usbd_set_alt_interface_index(sc->sc_udev,
sc->sc_rec_chan.usb_alt[0].iface_index,
sc->sc_rec_chan.usb_alt[0].iface_alt_index);
if (err) {
DPRINTF("setting of alternate index failed: %s!\n",
usbd_errstr(err));
}
for (x = 0; x != sc->sc_rec_chan.num_alt; x++) {
device_printf(dev, "Record: %d Hz, %d ch, %s format, "
"2x8ms buffer.\n",
sc->sc_rec_chan.usb_alt[x].sample_rate,
sc->sc_rec_chan.usb_alt[x].channels,
sc->sc_rec_chan.usb_alt[x].p_fmt->description);
}
} else {
device_printf(dev, "No recording.\n");
}
if (sc->sc_midi_chan.valid == 0) {
if (usbd_lookup_id_by_uaa(uaudio_vendor_midi,
sizeof(uaudio_vendor_midi), uaa) == 0) {
sc->sc_midi_chan.iface_index =
(uint8_t)uaa->driver_info;
sc->sc_midi_chan.iface_alt_index = 0;
sc->sc_midi_chan.valid = 1;
}
}
if (sc->sc_midi_chan.valid) {
if (umidi_probe(dev)) {
goto detach;
}
device_printf(dev, "MIDI sequencer.\n");
} else {
device_printf(dev, "No MIDI sequencer.\n");
}
DPRINTF("doing child attach\n");
/* attach the children */
sc->sc_sndcard_func.func = SCF_PCM;
/*
* Only attach a PCM device if we have a playback, recording
* or mixer device present:
*/
if (sc->sc_play_chan.num_alt > 0 ||
sc->sc_rec_chan.num_alt > 0 ||
sc->sc_mix_info) {
child = device_add_child(dev, "pcm", -1);
if (child == NULL) {
DPRINTF("out of memory\n");
goto detach;
}
device_set_ivars(child, &sc->sc_sndcard_func);
}
if (bus_generic_attach(dev)) {
DPRINTF("child attach failed\n");
goto detach;
}
if (uaudio_hid_probe(sc, uaa) == 0) {
device_printf(dev, "HID volume keys found.\n");
} else {
device_printf(dev, "No HID volume keys found.\n");
}
/* reload all mixer settings */
uaudio_mixer_reload_all(sc);
/* enable S/PDIF output, if any */
if (sc->sc_set_spdif_fn(sc,
UAUDIO_SPDIF_OUT | UAUDIO_SPDIF_OUT_48K) != 0) {
device_printf(dev, "Failed to enable S/PDIF at 48K\n");
}
return (0); /* success */
detach:
uaudio_detach(dev);
return (ENXIO);
}
static void
uaudio_pcm_setflags(device_t dev, uint32_t flags)
{
pcm_setflags(dev, pcm_getflags(dev) | flags);
}
int
uaudio_attach_sub(device_t dev, kobj_class_t mixer_class, kobj_class_t chan_class)
{
struct uaudio_softc *sc = device_get_softc(device_get_parent(dev));
char status[SND_STATUSLEN];
uaudio_mixer_init(sc);
if (sc->sc_uq_audio_swap_lr) {
DPRINTF("hardware has swapped left and right\n");
/* uaudio_pcm_setflags(dev, SD_F_PSWAPLR); */
}
if (!(sc->sc_mix_info & SOUND_MASK_PCM)) {
DPRINTF("emulating master volume\n");
/*
* Emulate missing pcm mixer controller
* through FEEDER_VOLUME
*/
uaudio_pcm_setflags(dev, SD_F_SOFTPCMVOL);
}
if (sc->sc_pcm_bitperfect) {
DPRINTF("device needs bitperfect by default\n");
uaudio_pcm_setflags(dev, SD_F_BITPERFECT);
}
if (mixer_init(dev, mixer_class, sc))
goto detach;
sc->sc_mixer_init = 1;
mixer_hwvol_init(dev);
snprintf(status, sizeof(status), "at ? %s", PCM_KLDSTRING(snd_uaudio));
if (pcm_register(dev, sc,
(sc->sc_play_chan.num_alt > 0) ? 1 : 0,
(sc->sc_rec_chan.num_alt > 0) ? 1 : 0)) {
goto detach;
}
uaudio_pcm_setflags(dev, SD_F_MPSAFE);
sc->sc_pcm_registered = 1;
if (sc->sc_play_chan.num_alt > 0) {
pcm_addchan(dev, PCMDIR_PLAY, chan_class, sc);
}
if (sc->sc_rec_chan.num_alt > 0) {
pcm_addchan(dev, PCMDIR_REC, chan_class, sc);
}
pcm_setstatus(dev, status);
uaudio_mixer_register_sysctl(sc, dev);
SYSCTL_ADD_INT(device_get_sysctl_ctx(dev),
SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO,
"feedback_rate", CTLFLAG_RD, &sc->sc_play_chan.feedback_rate,
0, "Feedback sample rate in Hz");
return (0); /* success */
detach:
uaudio_detach_sub(dev);
return (ENXIO);
}
int
uaudio_detach_sub(device_t dev)
{
struct uaudio_softc *sc = device_get_softc(device_get_parent(dev));
int error = 0;
/* disable S/PDIF output, if any */
(void) sc->sc_set_spdif_fn(sc, 0);
repeat:
if (sc->sc_pcm_registered) {
error = pcm_unregister(dev);
} else {
if (sc->sc_mixer_init) {
error = mixer_uninit(dev);
}
}
if (error) {
device_printf(dev, "Waiting for sound application to exit!\n");
usb_pause_mtx(NULL, 2 * hz);
goto repeat; /* try again */
}
return (0); /* success */
}
static int
uaudio_detach(device_t dev)
{
struct uaudio_softc *sc = device_get_softc(dev);
/*
* Stop USB transfers early so that any audio applications
* will time out and close opened /dev/dspX.Y device(s), if
* any.
*/
usb_proc_explore_lock(sc->sc_udev);
sc->sc_play_chan.operation = CHAN_OP_DRAIN;
sc->sc_rec_chan.operation = CHAN_OP_DRAIN;
usb_proc_explore_mwait(sc->sc_udev,
&sc->sc_config_msg[0], &sc->sc_config_msg[1]);
usb_proc_explore_unlock(sc->sc_udev);
usbd_transfer_unsetup(sc->sc_play_chan.xfer, UAUDIO_NCHANBUFS + 1);
usbd_transfer_unsetup(sc->sc_rec_chan.xfer, UAUDIO_NCHANBUFS + 1);
uaudio_hid_detach(sc);
if (bus_generic_detach(dev) != 0) {
DPRINTF("detach failed!\n");
}
sbuf_delete(&sc->sc_sndstat);
sc->sc_sndstat_valid = 0;
umidi_detach(dev);
/* free mixer data */
uaudio_mixer_ctl_free(sc);
return (0);
}
static uint32_t
uaudio_get_buffer_size(struct uaudio_chan *ch, uint8_t alt)
{
struct uaudio_chan_alt *chan_alt = &ch->usb_alt[alt];
/* We use 2 times 8ms of buffer */
uint32_t buf_size = chan_alt->sample_size *
howmany(chan_alt->sample_rate * (UAUDIO_NFRAMES / 8), 1000);
return (buf_size);
}
static void
uaudio_configure_msg_sub(struct uaudio_softc *sc,
struct uaudio_chan *chan, int dir)
{
struct uaudio_chan_alt *chan_alt;
uint32_t frames;
uint32_t buf_size;
uint16_t fps;
uint8_t set_alt;
uint8_t fps_shift;
uint8_t operation;
usb_error_t err;
if (chan->num_alt <= 0)
return;
DPRINTF("\n");
usb_proc_explore_lock(sc->sc_udev);
operation = chan->operation;
chan->operation = CHAN_OP_NONE;
usb_proc_explore_unlock(sc->sc_udev);
mtx_lock(chan->pcm_mtx);
if (chan->cur_alt != chan->set_alt)
set_alt = chan->set_alt;
else
set_alt = CHAN_MAX_ALT;
mtx_unlock(chan->pcm_mtx);
if (set_alt >= chan->num_alt)
goto done;
chan_alt = chan->usb_alt + set_alt;
usbd_transfer_unsetup(chan->xfer, UAUDIO_NCHANBUFS + 1);
err = usbd_set_alt_interface_index(sc->sc_udev,
chan_alt->iface_index, chan_alt->iface_alt_index);
if (err) {
DPRINTF("setting of alternate index failed: %s!\n",
usbd_errstr(err));
goto error;
}
/*
* Only set the sample rate if the channel reports that it
* supports the frequency control.
*/
if (sc->sc_audio_rev >= UAUDIO_VERSION_30) {
/* FALLTHROUGH */
} else if (sc->sc_audio_rev >= UAUDIO_VERSION_20) {
unsigned int x;
for (x = 0; x != 256; x++) {
if (dir == PCMDIR_PLAY) {
if (!(sc->sc_mixer_clocks.bit_output[x / 8] &
(1 << (x % 8)))) {
continue;
}
} else {
if (!(sc->sc_mixer_clocks.bit_input[x / 8] &
(1 << (x % 8)))) {
continue;
}
}
if (uaudio20_set_speed(sc->sc_udev,
sc->sc_mixer_iface_no, x, chan_alt->sample_rate)) {
/*
* If the endpoint is adaptive setting
* the speed may fail.
*/
DPRINTF("setting of sample rate failed! "
"(continuing anyway)\n");
}
}
} else if (chan_alt->p_sed.v1->bmAttributes & UA_SED_FREQ_CONTROL) {
if (uaudio_set_speed(sc->sc_udev,
chan_alt->p_ed1->bEndpointAddress, chan_alt->sample_rate)) {
/*
* If the endpoint is adaptive setting the
* speed may fail.
*/
DPRINTF("setting of sample rate failed! "
"(continuing anyway)\n");
}
}
if (usbd_transfer_setup(sc->sc_udev, &chan_alt->iface_index, chan->xfer,
chan_alt->usb_cfg, UAUDIO_NCHANBUFS + 1, chan, chan->pcm_mtx)) {
DPRINTF("could not allocate USB transfers!\n");
goto error;
}
fps = usbd_get_isoc_fps(sc->sc_udev);
if (fps < 8000) {
/* FULL speed USB */
frames = uaudio_buffer_ms;
} else {
/* HIGH speed USB */
frames = uaudio_buffer_ms * 8;
}
fps_shift = usbd_xfer_get_fps_shift(chan->xfer[0]);
/* down shift number of frames per second, if any */
fps >>= fps_shift;
frames >>= fps_shift;
/* bytes per frame should not be zero */
chan->bytes_per_frame[0] =
((chan_alt->sample_rate / fps) * chan_alt->sample_size);
chan->bytes_per_frame[1] = howmany(chan_alt->sample_rate, fps) *
chan_alt->sample_size;
/* setup data rate dithering, if any */
chan->frames_per_second = fps;
chan->sample_rem = chan_alt->sample_rate % fps;
chan->sample_curr = 0;
/* compute required buffer size */
buf_size = (chan->bytes_per_frame[1] * frames);
if (buf_size > (chan->end - chan->start)) {
DPRINTF("buffer size is too big\n");
goto error;
}
chan->intr_frames = frames;
DPRINTF("fps=%d sample_rem=%d\n", (int)fps, (int)chan->sample_rem);
if (chan->intr_frames == 0) {
DPRINTF("frame shift is too high!\n");
goto error;
}
mtx_lock(chan->pcm_mtx);
chan->cur_alt = set_alt;
mtx_unlock(chan->pcm_mtx);
done:
#if (UAUDIO_NCHANBUFS != 2)
#error "please update code"
#endif
switch (operation) {
case CHAN_OP_START:
mtx_lock(chan->pcm_mtx);
usbd_transfer_start(chan->xfer[0]);
usbd_transfer_start(chan->xfer[1]);
mtx_unlock(chan->pcm_mtx);
break;
case CHAN_OP_STOP:
mtx_lock(chan->pcm_mtx);
usbd_transfer_stop(chan->xfer[0]);
usbd_transfer_stop(chan->xfer[1]);
mtx_unlock(chan->pcm_mtx);
break;
default:
break;
}
return;
error:
usbd_transfer_unsetup(chan->xfer, UAUDIO_NCHANBUFS + 1);
mtx_lock(chan->pcm_mtx);
chan->cur_alt = CHAN_MAX_ALT;
mtx_unlock(chan->pcm_mtx);
}
static void
uaudio_configure_msg(struct usb_proc_msg *pm)
{
struct uaudio_softc *sc = ((struct uaudio_configure_msg *)pm)->sc;
usb_proc_explore_unlock(sc->sc_udev);
uaudio_configure_msg_sub(sc, &sc->sc_play_chan, PCMDIR_PLAY);
uaudio_configure_msg_sub(sc, &sc->sc_rec_chan, PCMDIR_REC);
usb_proc_explore_lock(sc->sc_udev);
}
/*========================================================================*
* AS - Audio Stream - routines
*========================================================================*/
#ifdef USB_DEBUG
static void
uaudio_chan_dump_ep_desc(const usb_endpoint_descriptor_audio_t *ed)
{
if (ed) {
DPRINTF("endpoint=%p bLength=%d bDescriptorType=%d \n"
"bEndpointAddress=%d bmAttributes=0x%x \n"
"wMaxPacketSize=%d bInterval=%d \n"
"bRefresh=%d bSynchAddress=%d\n",
ed, ed->bLength, ed->bDescriptorType,
ed->bEndpointAddress, ed->bmAttributes,
UGETW(ed->wMaxPacketSize), ed->bInterval,
UEP_HAS_REFRESH(ed) ? ed->bRefresh : 0,
UEP_HAS_SYNCADDR(ed) ? ed->bSynchAddress : 0);
}
}
#endif
/*
* The following is a workaround for broken no-name USB audio devices
* sold by dealextreme called "3D sound". The problem is that the
* manufacturer computed wMaxPacketSize is too small to hold the
* actual data sent. In other words the device sometimes sends more
* data than it actually reports it can send in a single isochronous
* packet.
*/
static void
uaudio_record_fix_fs(usb_endpoint_descriptor_audio_t *ep,
uint32_t xps, uint32_t add)
{
uint32_t mps;
mps = UGETW(ep->wMaxPacketSize);
/*
* If the device indicates it can send more data than what the
* sample rate indicates, we apply the workaround.
*/
if (mps > xps) {
/* allow additional data */
xps += add;
/* check against the maximum USB 1.x length */
if (xps > 1023)
xps = 1023;
/* check if we should do an update */
if (mps < xps) {
/* simply update the wMaxPacketSize field */
USETW(ep->wMaxPacketSize, xps);
DPRINTF("Workaround: Updated wMaxPacketSize "
"from %d to %d bytes.\n",
(int)mps, (int)xps);
}
}
}
static usb_error_t
uaudio20_check_rate(struct usb_device *udev, uint8_t iface_no,
uint8_t clockid, uint32_t rate)
{
struct usb_device_request req;
usb_error_t error;
uint8_t data[255];
uint16_t actlen;
uint16_t rates;
uint16_t x;
DPRINTFN(6, "ifaceno=%d clockid=%d rate=%u\n",
iface_no, clockid, rate);
req.bmRequestType = UT_READ_CLASS_INTERFACE;
req.bRequest = UA20_CS_RANGE;
USETW2(req.wValue, UA20_CS_SAM_FREQ_CONTROL, 0);
USETW2(req.wIndex, clockid, iface_no);
USETW(req.wLength, 255);
error = usbd_do_request_flags(udev, NULL, &req, data,
USB_SHORT_XFER_OK, &actlen, USB_DEFAULT_TIMEOUT);
if (error != 0 || actlen < 2)
return (USB_ERR_INVAL);
rates = data[0] | (data[1] << 8);
actlen = (actlen - 2) / 12;
if (rates > actlen) {
DPRINTF("Too many rates\n");
rates = actlen;
}
for (x = 0; x != rates; x++) {
uint32_t min = UGETDW(data + 2 + (12 * x));
uint32_t max = UGETDW(data + 6 + (12 * x));
uint32_t res = UGETDW(data + 10 + (12 * x));
if (res == 0) {
DPRINTF("Zero residue\n");
res = 1;
}
if (min > max) {
DPRINTF("Swapped max and min\n");
uint32_t temp;
temp = min;
min = max;
max = temp;
}
if (rate >= min && rate <= max &&
(((rate - min) % res) == 0)) {
return (0);
}
}
return (USB_ERR_INVAL);
}
static void
uaudio_chan_fill_info_sub(struct uaudio_softc *sc, struct usb_device *udev,
uint32_t rate, uint8_t channels, uint8_t bit_resolution)
{
struct usb_descriptor *desc = NULL;
union uaudio_asid asid = { NULL };
union uaudio_asf1d asf1d = { NULL };
union uaudio_sed sed = { NULL };
struct usb_midi_streaming_endpoint_descriptor *msid = NULL;
usb_endpoint_descriptor_audio_t *ed1 = NULL;
const struct usb_audio_control_descriptor *acdp = NULL;
struct usb_config_descriptor *cd = usbd_get_config_descriptor(udev);
struct usb_interface_descriptor *id;
const struct uaudio_format *p_fmt = NULL;
struct uaudio_chan *chan;
struct uaudio_chan_alt *chan_alt;
uint32_t format;
uint16_t curidx = 0xFFFF;
uint16_t lastidx = 0xFFFF;
uint16_t alt_index = 0;
uint16_t audio_rev = 0;
uint16_t x;
uint8_t ep_dir;
uint8_t bChannels;
uint8_t bBitResolution;
uint8_t audio_if = 0;
uint8_t midi_if = 0;
uint8_t uma_if_class;
while ((desc = usb_desc_foreach(cd, desc))) {
if ((desc->bDescriptorType == UDESC_INTERFACE) &&
(desc->bLength >= sizeof(*id))) {
id = (void *)desc;
if (id->bInterfaceNumber != lastidx) {
lastidx = id->bInterfaceNumber;
curidx++;
alt_index = 0;
} else {
alt_index++;
}
if ((!(sc->sc_hid.flags & UAUDIO_HID_VALID)) &&
(id->bInterfaceClass == UICLASS_HID) &&
(id->bInterfaceSubClass == 0) &&
(id->bInterfaceProtocol == 0) &&
(alt_index == 0) &&
usbd_get_iface(udev, curidx) != NULL) {
DPRINTF("Found HID interface at %d\n",
curidx);
sc->sc_hid.flags |= UAUDIO_HID_VALID;
sc->sc_hid.iface_index = curidx;
}
uma_if_class =
((id->bInterfaceClass == UICLASS_AUDIO) ||
((id->bInterfaceClass == UICLASS_VENDOR) &&
(sc->sc_uq_au_vendor_class != 0)));
if ((uma_if_class != 0) &&
(id->bInterfaceSubClass == UISUBCLASS_AUDIOSTREAM)) {
audio_if = 1;
} else {
audio_if = 0;
}
if ((uma_if_class != 0) &&
(id->bInterfaceSubClass == UISUBCLASS_MIDISTREAM)) {
/*
* XXX could allow multiple MIDI interfaces
*/
midi_if = 1;
if ((sc->sc_midi_chan.valid == 0) &&
(usbd_get_iface(udev, curidx) != NULL)) {
sc->sc_midi_chan.iface_index = curidx;
sc->sc_midi_chan.iface_alt_index = alt_index;
sc->sc_midi_chan.valid = 1;
}
} else {
midi_if = 0;
}
asid.v1 = NULL;
asf1d.v1 = NULL;
ed1 = NULL;
sed.v1 = NULL;
/*
* There can only be one USB audio instance
* per USB device. Grab all USB audio
* interfaces on this USB device so that we
* don't attach USB audio twice:
*/
if (alt_index == 0 && curidx != sc->sc_mixer_iface_index &&
(id->bInterfaceClass == UICLASS_AUDIO || audio_if != 0 ||
midi_if != 0)) {
usbd_set_parent_iface(sc->sc_udev, curidx,
sc->sc_mixer_iface_index);
}
}
if (audio_if == 0) {
if (midi_if == 0) {
if ((acdp == NULL) &&
(desc->bDescriptorType == UDESC_CS_INTERFACE) &&
(desc->bDescriptorSubtype == UDESCSUB_AC_HEADER) &&
(desc->bLength >= sizeof(*acdp))) {
acdp = (void *)desc;
audio_rev = UGETW(acdp->bcdADC);
}
} else {
msid = (void *)desc;
/* get the maximum number of embedded jacks in use, if any */
if (msid->bLength >= sizeof(*msid) &&
msid->bDescriptorType == UDESC_CS_ENDPOINT &&
msid->bDescriptorSubtype == MS_GENERAL &&
msid->bNumEmbMIDIJack > sc->sc_midi_chan.max_emb_jack) {
sc->sc_midi_chan.max_emb_jack = msid->bNumEmbMIDIJack;
}
}
/*
* Don't collect any USB audio descriptors if
* this is not an USB audio stream interface.
*/
continue;
}
if ((acdp != NULL) &&
(desc->bDescriptorType == UDESC_CS_INTERFACE) &&
(desc->bDescriptorSubtype == AS_GENERAL) &&
(asid.v1 == NULL)) {
if (audio_rev >= UAUDIO_VERSION_30) {
/* FALLTHROUGH */
} else if (audio_rev >= UAUDIO_VERSION_20) {
if (desc->bLength >= sizeof(*asid.v2)) {
asid.v2 = (void *)desc;
}
} else {
if (desc->bLength >= sizeof(*asid.v1)) {
asid.v1 = (void *)desc;
}
}
}
if ((acdp != NULL) &&
(desc->bDescriptorType == UDESC_CS_INTERFACE) &&
(desc->bDescriptorSubtype == FORMAT_TYPE) &&
(asf1d.v1 == NULL)) {
if (audio_rev >= UAUDIO_VERSION_30) {
/* FALLTHROUGH */
} else if (audio_rev >= UAUDIO_VERSION_20) {
if (desc->bLength >= sizeof(*asf1d.v2))
asf1d.v2 = (void *)desc;
} else {
if (desc->bLength >= sizeof(*asf1d.v1)) {
asf1d.v1 = (void *)desc;
if (asf1d.v1->bFormatType != FORMAT_TYPE_I) {
DPRINTFN(11, "ignored bFormatType = %d\n",
asf1d.v1->bFormatType);
asf1d.v1 = NULL;
continue;
}
if (desc->bLength < (sizeof(*asf1d.v1) +
((asf1d.v1->bSamFreqType == 0) ? 6 :
(asf1d.v1->bSamFreqType * 3)))) {
DPRINTFN(11, "invalid descriptor, "
"too short\n");
asf1d.v1 = NULL;
continue;
}
}
}
}
if ((desc->bDescriptorType == UDESC_ENDPOINT) &&
(desc->bLength >= UEP_MINSIZE) &&
(ed1 == NULL)) {
ed1 = (void *)desc;
if (UE_GET_XFERTYPE(ed1->bmAttributes) != UE_ISOCHRONOUS) {
ed1 = NULL;
continue;
}
}
if ((acdp != NULL) &&
(desc->bDescriptorType == UDESC_CS_ENDPOINT) &&
(desc->bDescriptorSubtype == AS_GENERAL) &&
(sed.v1 == NULL)) {
if (audio_rev >= UAUDIO_VERSION_30) {
/* FALLTHROUGH */
} else if (audio_rev >= UAUDIO_VERSION_20) {
if (desc->bLength >= sizeof(*sed.v2))
sed.v2 = (void *)desc;
} else {
if (desc->bLength >= sizeof(*sed.v1))
sed.v1 = (void *)desc;
}
}
if (asid.v1 == NULL || asf1d.v1 == NULL ||
ed1 == NULL || sed.v1 == NULL) {
/* need more descriptors */
continue;
}
ep_dir = UE_GET_DIR(ed1->bEndpointAddress);
/* We ignore sync endpoint information until further. */
if (audio_rev >= UAUDIO_VERSION_30) {
goto next_ep;
} else if (audio_rev >= UAUDIO_VERSION_20) {
uint32_t dwFormat;
dwFormat = UGETDW(asid.v2->bmFormats);
bChannels = asid.v2->bNrChannels;
bBitResolution = asf1d.v2->bSubslotSize * 8;
if ((bChannels != channels) ||
(bBitResolution != bit_resolution)) {
DPRINTF("Wrong number of channels\n");
goto next_ep;
}
for (p_fmt = uaudio20_formats;
p_fmt->wFormat != 0; p_fmt++) {
if ((p_fmt->wFormat & dwFormat) &&
(p_fmt->bPrecision == bBitResolution))
break;
}
if (p_fmt->wFormat == 0) {
DPRINTF("Unsupported audio format\n");
goto next_ep;
}
for (x = 0; x != 256; x++) {
if (ep_dir == UE_DIR_OUT) {
if (!(sc->sc_mixer_clocks.bit_output[x / 8] &
(1 << (x % 8)))) {
continue;
}
} else {
if (!(sc->sc_mixer_clocks.bit_input[x / 8] &
(1 << (x % 8)))) {
continue;
}
}
DPRINTF("Checking clock ID=%d\n", x);
if (uaudio20_check_rate(udev,
sc->sc_mixer_iface_no, x, rate)) {
DPRINTF("Unsupported sampling "
"rate, id=%d\n", x);
goto next_ep;
}
}
} else {
uint16_t wFormat;
wFormat = UGETW(asid.v1->wFormatTag);
bChannels = UAUDIO_MAX_CHAN(asf1d.v1->bNrChannels);
bBitResolution = asf1d.v1->bSubFrameSize * 8;
if (asf1d.v1->bSamFreqType == 0) {
DPRINTFN(16, "Sample rate: %d-%dHz\n",
UA_SAMP_LO(asf1d.v1),
UA_SAMP_HI(asf1d.v1));
if ((rate >= UA_SAMP_LO(asf1d.v1)) &&
(rate <= UA_SAMP_HI(asf1d.v1)))
goto found_rate;
} else {
for (x = 0; x < asf1d.v1->bSamFreqType; x++) {
DPRINTFN(16, "Sample rate = %dHz\n",
UA_GETSAMP(asf1d.v1, x));
if (rate == UA_GETSAMP(asf1d.v1, x))
goto found_rate;
}
}
goto next_ep;
found_rate:
for (p_fmt = uaudio10_formats;
p_fmt->wFormat != 0; p_fmt++) {
if ((p_fmt->wFormat == wFormat) &&
(p_fmt->bPrecision == bBitResolution))
break;
}
if (p_fmt->wFormat == 0) {
DPRINTF("Unsupported audio format\n");
goto next_ep;
}
if ((bChannels != channels) ||
(bBitResolution != bit_resolution)) {
DPRINTF("Wrong number of channels\n");
goto next_ep;
}
}
chan = (ep_dir == UE_DIR_IN) ?
&sc->sc_rec_chan : &sc->sc_play_chan;
if (usbd_get_iface(udev, curidx) == NULL) {
DPRINTF("Interface is not valid\n");
goto next_ep;
}
if (chan->num_alt == CHAN_MAX_ALT) {
DPRINTF("Too many alternate settings\n");
goto next_ep;
}
chan->set_alt = 0;
chan->cur_alt = CHAN_MAX_ALT;
chan_alt = &chan->usb_alt[chan->num_alt++];
#ifdef USB_DEBUG
uaudio_chan_dump_ep_desc(ed1);
#endif
DPRINTF("Sample rate = %dHz, channels = %d, "
"bits = %d, format = %s\n", rate, channels,
bit_resolution, p_fmt->description);
chan_alt->sample_rate = rate;
chan_alt->p_asf1d = asf1d;
chan_alt->p_ed1 = ed1;
chan_alt->p_fmt = p_fmt;
chan_alt->p_sed = sed;
chan_alt->iface_index = curidx;
chan_alt->iface_alt_index = alt_index;
if (ep_dir == UE_DIR_IN)
chan_alt->usb_cfg = uaudio_cfg_record;
else
chan_alt->usb_cfg = uaudio_cfg_play;
chan_alt->sample_size = (UAUDIO_MAX_CHAN(channels) *
p_fmt->bPrecision) / 8;
chan_alt->channels = channels;
if (ep_dir == UE_DIR_IN &&
usbd_get_speed(udev) == USB_SPEED_FULL) {
uaudio_record_fix_fs(ed1,
chan_alt->sample_size * (rate / 1000),
chan_alt->sample_size * (rate / 4000));
}
/* setup play/record format */
format = chan_alt->p_fmt->freebsd_fmt;
/* get default SND_FORMAT() */
format = SND_FORMAT(format, chan_alt->channels, 0);
switch (chan_alt->channels) {
uint32_t temp_fmt;
case 1:
case 2:
/* mono and stereo */
break;
default:
/* surround and more */
temp_fmt = feeder_matrix_default_format(format);
/* if multichannel, then format can be zero */
if (temp_fmt != 0)
format = temp_fmt;
break;
}
/* check if format is not supported */
if (format == 0) {
DPRINTF("The selected audio format is not supported\n");
chan->num_alt--;
goto next_ep;
}
if (chan->num_alt > 1) {
/* we only accumulate one format at different sample rates */
if (chan->pcm_format[0] != format) {
DPRINTF("Multiple formats is not supported\n");
chan->num_alt--;
goto next_ep;
}
/* ignore if duplicate sample rate entry */
if (rate == chan->usb_alt[chan->num_alt - 2].sample_rate) {
DPRINTF("Duplicate sample rate detected\n");
chan->num_alt--;
goto next_ep;
}
}
chan->pcm_cap.fmtlist = chan->pcm_format;
chan->pcm_cap.fmtlist[0] = format;
/* check if device needs bitperfect */
if (chan_alt->channels > UAUDIO_MATRIX_MAX)
sc->sc_pcm_bitperfect = 1;
if (rate < chan->pcm_cap.minspeed || chan->pcm_cap.minspeed == 0)
chan->pcm_cap.minspeed = rate;
if (rate > chan->pcm_cap.maxspeed || chan->pcm_cap.maxspeed == 0)
chan->pcm_cap.maxspeed = rate;
if (sc->sc_sndstat_valid != 0) {
sbuf_printf(&sc->sc_sndstat, "\n\t"
"mode %d.%d:(%s) %dch, %dbit, %s, %dHz",
curidx, alt_index,
(ep_dir == UE_DIR_IN) ? "input" : "output",
channels, p_fmt->bPrecision,
p_fmt->description, rate);
}
next_ep:
sed.v1 = NULL;
ed1 = NULL;
}
}
/* This structure defines all the supported rates. */
static const uint32_t uaudio_rate_list[CHAN_MAX_ALT] = {
384000,
352800,
192000,
176400,
96000,
88200,
88000,
80000,
72000,
64000,
56000,
48000,
44100,
40000,
32000,
24000,
22050,
16000,
11025,
8000,
0
};
static void
uaudio_chan_fill_info(struct uaudio_softc *sc, struct usb_device *udev)
{
uint32_t rate = uaudio_default_rate;
uint8_t z;
uint8_t bits = uaudio_default_bits;
uint8_t y;
uint8_t channels = uaudio_default_channels;
uint8_t x;
bits -= (bits % 8);
if ((bits == 0) || (bits > 32)) {
/* set a valid value */
bits = 32;
}
if (channels == 0) {
switch (usbd_get_speed(udev)) {
case USB_SPEED_LOW:
case USB_SPEED_FULL:
/*
* Due to high bandwidth usage and problems
* with HIGH-speed split transactions we
* disable surround setups on FULL-speed USB
* by default
*/
channels = 4;
break;
default:
channels = UAUDIO_CHANNELS_MAX;
break;
}
} else if (channels > UAUDIO_CHANNELS_MAX)
channels = UAUDIO_CHANNELS_MAX;
if (sbuf_new(&sc->sc_sndstat, NULL, 4096, SBUF_AUTOEXTEND))
sc->sc_sndstat_valid = 1;
/* try to search for a valid config */
for (x = channels; x; x--) {
for (y = bits; y; y -= 8) {
/* try user defined rate, if any */
if (rate != 0)
uaudio_chan_fill_info_sub(sc, udev, rate, x, y);
/* try find a matching rate, if any */
for (z = 0; uaudio_rate_list[z]; z++)
uaudio_chan_fill_info_sub(sc, udev, uaudio_rate_list[z], x, y);
}
}
if (sc->sc_sndstat_valid)
sbuf_finish(&sc->sc_sndstat);
}
static void
uaudio_chan_play_sync_callback(struct usb_xfer *xfer, usb_error_t error)
{
struct uaudio_chan *ch = usbd_xfer_softc(xfer);
struct usb_page_cache *pc;
uint64_t sample_rate;
uint8_t buf[4];
uint64_t temp;
int len;
int actlen;
int nframes;
usbd_xfer_status(xfer, &actlen, NULL, NULL, &nframes);
switch (USB_GET_STATE(xfer)) {
case USB_ST_TRANSFERRED:
DPRINTFN(6, "transferred %d bytes\n", actlen);
if (nframes == 0)
break;
len = usbd_xfer_frame_len(xfer, 0);
if (len == 0)
break;
if (len > sizeof(buf))
len = sizeof(buf);
memset(buf, 0, sizeof(buf));
pc = usbd_xfer_get_frame(xfer, 0);
usbd_copy_out(pc, 0, buf, len);
temp = UGETDW(buf);
DPRINTF("Value = 0x%08x\n", (int)temp);
/* auto-detect SYNC format */
if (len == 4)
temp &= 0x0fffffff;
/* check for no data */
if (temp == 0)
break;
temp *= 125ULL;
sample_rate = ch->usb_alt[ch->cur_alt].sample_rate;
/* auto adjust */
while (temp < (sample_rate - (sample_rate / 4)))
temp *= 2;
while (temp > (sample_rate + (sample_rate / 2)))
temp /= 2;
DPRINTF("Comparing %d Hz :: %d Hz\n",
(int)temp, (int)sample_rate);
/*
* Use feedback value as fallback when there is no
* recording channel:
*/
if (ch->priv_sc->sc_rec_chan.num_alt == 0) {
int32_t jitter_max = howmany(sample_rate, 16000);
/*
* Range check the jitter values to avoid
* bogus sample rate adjustments. The expected
* deviation should not be more than 1Hz per
* second. The USB v2.0 specification also
* mandates this requirement. Refer to chapter
* 5.12.4.2 about feedback.
*/
ch->jitter_curr = temp - sample_rate;
if (ch->jitter_curr > jitter_max)
ch->jitter_curr = jitter_max;
else if (ch->jitter_curr < -jitter_max)
ch->jitter_curr = -jitter_max;
}
ch->feedback_rate = temp;
break;
case USB_ST_SETUP:
usbd_xfer_set_frames(xfer, 1);
usbd_xfer_set_frame_len(xfer, 0, usbd_xfer_max_framelen(xfer));
usbd_transfer_submit(xfer);
break;
default: /* Error */
break;
}
}
static int
uaudio_chan_is_async(struct uaudio_chan *ch, uint8_t alt)
{
uint8_t attr = ch->usb_alt[alt].p_ed1->bmAttributes;
return (UE_GET_ISO_TYPE(attr) == UE_ISO_ASYNC);
}
static void
uaudio_chan_play_callback(struct usb_xfer *xfer, usb_error_t error)
{
struct uaudio_chan *ch = usbd_xfer_softc(xfer);
struct uaudio_chan *ch_rec;
struct usb_page_cache *pc;
uint32_t mfl;
uint32_t total;
uint32_t blockcount;
uint32_t n;
uint32_t offset;
int sample_size;
int actlen;
int sumlen;
if (ch->running == 0 || ch->start == ch->end) {
DPRINTF("not running or no buffer!\n");
return;
}
/* check if there is a record channel */
if (ch->priv_sc->sc_rec_chan.num_alt > 0)
ch_rec = &ch->priv_sc->sc_rec_chan;
else
ch_rec = NULL;
usbd_xfer_status(xfer, &actlen, &sumlen, NULL, NULL);
switch (USB_GET_STATE(xfer)) {
case USB_ST_SETUP:
tr_setup:
if (ch_rec != NULL) {
/* reset receive jitter counters */
mtx_lock(ch_rec->pcm_mtx);
ch_rec->jitter_curr = 0;
ch_rec->jitter_rem = 0;
mtx_unlock(ch_rec->pcm_mtx);
}
/* reset transmit jitter counters */
ch->jitter_curr = 0;
ch->jitter_rem = 0;
/* FALLTHROUGH */
case USB_ST_TRANSFERRED:
if (actlen < sumlen) {
DPRINTF("short transfer, "
"%d of %d bytes\n", actlen, sumlen);
}
chn_intr(ch->pcm_ch);
/*
* Check for asynchronous playback endpoint and that
* the playback endpoint is properly configured:
*/
if (ch_rec != NULL &&
uaudio_chan_is_async(ch, ch->cur_alt) != 0) {
mtx_lock(ch_rec->pcm_mtx);
if (ch_rec->cur_alt < ch_rec->num_alt) {
int64_t tx_jitter;
int64_t rx_rate;
/* translate receive jitter into transmit jitter */
tx_jitter = ch->usb_alt[ch->cur_alt].sample_rate;
tx_jitter = (tx_jitter * ch_rec->jitter_curr) +
ch->jitter_rem;
/* reset receive jitter counters */
ch_rec->jitter_curr = 0;
ch_rec->jitter_rem = 0;
/* compute exact number of transmit jitter samples */
rx_rate = ch_rec->usb_alt[ch_rec->cur_alt].sample_rate;
ch->jitter_curr += tx_jitter / rx_rate;
ch->jitter_rem = tx_jitter % rx_rate;
}
mtx_unlock(ch_rec->pcm_mtx);
}
/* start the SYNC transfer one time per second, if any */
ch->intr_counter += ch->intr_frames;
if (ch->intr_counter >= ch->frames_per_second) {
ch->intr_counter -= ch->frames_per_second;
usbd_transfer_start(ch->xfer[UAUDIO_NCHANBUFS]);
}
mfl = usbd_xfer_max_framelen(xfer);
if (ch->bytes_per_frame[1] > mfl) {
DPRINTF("bytes per transfer, %d, "
"exceeds maximum, %d!\n",
ch->bytes_per_frame[1],
mfl);
break;
}
blockcount = ch->intr_frames;
/* setup number of frames */
usbd_xfer_set_frames(xfer, blockcount);
/* get sample size */
sample_size = ch->usb_alt[ch->cur_alt].sample_size;
/* reset total length */
total = 0;
/* setup frame lengths */
for (n = 0; n != blockcount; n++) {
uint32_t frame_len;
ch->sample_curr += ch->sample_rem;
if (ch->sample_curr >= ch->frames_per_second) {
ch->sample_curr -= ch->frames_per_second;
frame_len = ch->bytes_per_frame[1];
} else {
frame_len = ch->bytes_per_frame[0];
}
/* handle free running clock case */
if (ch->jitter_curr > 0 &&
(frame_len + sample_size) <= mfl) {
DPRINTFN(6, "sending one sample more\n");
ch->jitter_curr--;
frame_len += sample_size;
} else if (ch->jitter_curr < 0 &&
frame_len >= sample_size) {
DPRINTFN(6, "sending one sample less\n");
ch->jitter_curr++;
frame_len -= sample_size;
}
usbd_xfer_set_frame_len(xfer, n, frame_len);
total += frame_len;
}
DPRINTFN(6, "transferring %d bytes\n", total);
offset = 0;
pc = usbd_xfer_get_frame(xfer, 0);
while (total > 0) {
n = (ch->end - ch->cur);
if (n > total)
n = total;
usbd_copy_in(pc, offset, ch->cur, n);
total -= n;
ch->cur += n;
offset += n;
if (ch->cur >= ch->end)
ch->cur = ch->start;
}
usbd_transfer_submit(xfer);
break;
default: /* Error */
if (error != USB_ERR_CANCELLED)
goto tr_setup;
break;
}
}
static void
uaudio_chan_record_sync_callback(struct usb_xfer *xfer, usb_error_t error)
{
/* TODO */
}
static void
uaudio_chan_record_callback(struct usb_xfer *xfer, usb_error_t error)
{
struct uaudio_chan *ch = usbd_xfer_softc(xfer);
struct usb_page_cache *pc;
uint32_t offset0;
uint32_t mfl;
int m;
int n;
int len;
int actlen;
int nframes;
int expected_bytes;
int sample_size;
if (ch->start == ch->end) {
DPRINTF("no buffer!\n");
return;
}
usbd_xfer_status(xfer, &actlen, NULL, NULL, &nframes);
mfl = usbd_xfer_max_framelen(xfer);
switch (USB_GET_STATE(xfer)) {
case USB_ST_TRANSFERRED:
offset0 = 0;
pc = usbd_xfer_get_frame(xfer, 0);
/* try to compute the number of expected bytes */
ch->sample_curr += (ch->sample_rem * ch->intr_frames);
/* compute number of expected bytes */
expected_bytes = (ch->intr_frames * ch->bytes_per_frame[0]) +
((ch->sample_curr / ch->frames_per_second) *
(ch->bytes_per_frame[1] - ch->bytes_per_frame[0]));
/* keep remainder */
ch->sample_curr %= ch->frames_per_second;
/* get current sample size */
sample_size = ch->usb_alt[ch->cur_alt].sample_size;
for (n = 0; n != nframes; n++) {
uint32_t offset1 = offset0;
len = usbd_xfer_frame_len(xfer, n);
/* make sure we only receive complete samples */
len = len - (len % sample_size);
/* subtract bytes received from expected payload */
expected_bytes -= len;
/* don't receive data when not ready */
if (ch->running == 0 || ch->cur_alt != ch->set_alt)
continue;
/* fill ring buffer with samples, if any */
while (len > 0) {
m = (ch->end - ch->cur);
if (m > len)
m = len;
usbd_copy_out(pc, offset1, ch->cur, m);
len -= m;
offset1 += m;
ch->cur += m;
if (ch->cur >= ch->end)
ch->cur = ch->start;
}
offset0 += mfl;
}
/* update current jitter */
ch->jitter_curr -= (expected_bytes / sample_size);
/* don't allow a huge amount of jitter to accumulate */
nframes = 2 * ch->intr_frames;
/* range check current jitter */
if (ch->jitter_curr < -nframes)
ch->jitter_curr = -nframes;
else if (ch->jitter_curr > nframes)
ch->jitter_curr = nframes;
DPRINTFN(6, "transferred %d bytes, jitter %d samples\n",
actlen, ch->jitter_curr);
if (ch->running != 0)
chn_intr(ch->pcm_ch);
case USB_ST_SETUP:
tr_setup:
nframes = ch->intr_frames;
usbd_xfer_set_frames(xfer, nframes);
for (n = 0; n != nframes; n++)
usbd_xfer_set_frame_len(xfer, n, mfl);
usbd_transfer_submit(xfer);
break;
default: /* Error */
if (error != USB_ERR_CANCELLED)
goto tr_setup;
break;
}
}
void *
uaudio_chan_init(struct uaudio_softc *sc, struct snd_dbuf *b,
struct pcm_channel *c, int dir)
{
struct uaudio_chan *ch = ((dir == PCMDIR_PLAY) ?
&sc->sc_play_chan : &sc->sc_rec_chan);
uint32_t buf_size;
uint8_t x;
/* store mutex and PCM channel */
ch->pcm_ch = c;
ch->pcm_mtx = c->lock;
/* compute worst case buffer */
buf_size = 0;
for (x = 0; x != ch->num_alt; x++) {
uint32_t temp = uaudio_get_buffer_size(ch, x);
if (temp > buf_size)
buf_size = temp;
}
/* allow double buffering */
buf_size *= 2;
DPRINTF("Worst case buffer is %d bytes\n", (int)buf_size);
ch->buf = malloc(buf_size, M_DEVBUF, M_WAITOK | M_ZERO);
if (ch->buf == NULL)
goto error;
if (sndbuf_setup(b, ch->buf, buf_size) != 0)
goto error;
ch->start = ch->buf;
ch->end = ch->buf + buf_size;
ch->cur = ch->buf;
ch->pcm_buf = b;
ch->max_buf = buf_size;
if (ch->pcm_mtx == NULL) {
DPRINTF("ERROR: PCM channels does not have a mutex!\n");
goto error;
}
return (ch);
error:
uaudio_chan_free(ch);
return (NULL);
}
int
uaudio_chan_free(struct uaudio_chan *ch)
{
if (ch->buf != NULL) {
free(ch->buf, M_DEVBUF);
ch->buf = NULL;
}
usbd_transfer_unsetup(ch->xfer, UAUDIO_NCHANBUFS + 1);
ch->num_alt = 0;
return (0);
}
int
uaudio_chan_set_param_blocksize(struct uaudio_chan *ch, uint32_t blocksize)
{
uint32_t temp = 2 * uaudio_get_buffer_size(ch, ch->set_alt);
sndbuf_setup(ch->pcm_buf, ch->buf, temp);
return (temp / 2);
}
int
uaudio_chan_set_param_fragments(struct uaudio_chan *ch, uint32_t blocksize,
uint32_t blockcount)
{
return (1);
}
int
uaudio_chan_set_param_speed(struct uaudio_chan *ch, uint32_t speed)
{
struct uaudio_softc *sc;
uint8_t x;
sc = ch->priv_sc;
for (x = 0; x < ch->num_alt; x++) {
if (ch->usb_alt[x].sample_rate < speed) {
/* sample rate is too low */
break;
}
}
if (x != 0)
x--;
usb_proc_explore_lock(sc->sc_udev);
ch->set_alt = x;
usb_proc_explore_unlock(sc->sc_udev);
DPRINTF("Selecting alt %d\n", (int)x);
return (ch->usb_alt[x].sample_rate);
}
int
uaudio_chan_getptr(struct uaudio_chan *ch)
{
return (ch->cur - ch->start);
}
struct pcmchan_caps *
uaudio_chan_getcaps(struct uaudio_chan *ch)
{
return (&ch->pcm_cap);
}
static struct pcmchan_matrix uaudio_chan_matrix_swap_2_0 = {
.id = SND_CHN_MATRIX_DRV,
.channels = 2,
.ext = 0,
.map = {
/* Right */
[0] = {
.type = SND_CHN_T_FR,
.members =
SND_CHN_T_MASK_FR | SND_CHN_T_MASK_FC |
SND_CHN_T_MASK_LF | SND_CHN_T_MASK_BR |
SND_CHN_T_MASK_BC | SND_CHN_T_MASK_SR
},
/* Left */
[1] = {
.type = SND_CHN_T_FL,
.members =
SND_CHN_T_MASK_FL | SND_CHN_T_MASK_FC |
SND_CHN_T_MASK_LF | SND_CHN_T_MASK_BL |
SND_CHN_T_MASK_BC | SND_CHN_T_MASK_SL
},
[2] = {
.type = SND_CHN_T_MAX,
.members = 0
}
},
.mask = SND_CHN_T_MASK_FR | SND_CHN_T_MASK_FL,
.offset = { 1, 0, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1, -1 }
};
struct pcmchan_matrix *
uaudio_chan_getmatrix(struct uaudio_chan *ch, uint32_t format)
{
struct uaudio_softc *sc;
sc = ch->priv_sc;
if (sc != NULL && sc->sc_uq_audio_swap_lr != 0 &&
AFMT_CHANNEL(format) == 2)
return (&uaudio_chan_matrix_swap_2_0);
return (feeder_matrix_format_map(format));
}
int
uaudio_chan_set_param_format(struct uaudio_chan *ch, uint32_t format)
{
DPRINTF("Selecting format 0x%08x\n", (unsigned int)format);
return (0);
}
static void
uaudio_chan_start_sub(struct uaudio_chan *ch)
{
struct uaudio_softc *sc = ch->priv_sc;
int do_start = 0;
if (ch->operation != CHAN_OP_DRAIN) {
if (ch->cur_alt == ch->set_alt &&
ch->operation == CHAN_OP_NONE &&
mtx_owned(ch->pcm_mtx) != 0) {
/* save doing the explore task */
do_start = 1;
} else {
ch->operation = CHAN_OP_START;
(void)usb_proc_explore_msignal(sc->sc_udev,
&sc->sc_config_msg[0], &sc->sc_config_msg[1]);
}
}
if (do_start) {
usbd_transfer_start(ch->xfer[0]);
usbd_transfer_start(ch->xfer[1]);
}
}
static int
uaudio_chan_need_both(struct uaudio_softc *sc)
{
return (sc->sc_play_chan.num_alt > 0 &&
sc->sc_play_chan.running != 0 &&
uaudio_chan_is_async(&sc->sc_play_chan,
sc->sc_play_chan.set_alt) != 0 &&
sc->sc_rec_chan.num_alt > 0 &&
sc->sc_rec_chan.running == 0);
}
static int
uaudio_chan_need_none(struct uaudio_softc *sc)
{
return (sc->sc_play_chan.num_alt > 0 &&
sc->sc_play_chan.running == 0 &&
sc->sc_rec_chan.num_alt > 0 &&
sc->sc_rec_chan.running == 0);
}
void
uaudio_chan_start(struct uaudio_chan *ch)
{
struct uaudio_softc *sc = ch->priv_sc;
/* make operation atomic */
usb_proc_explore_lock(sc->sc_udev);
/* check if not running */
if (ch->running == 0) {
uint32_t temp;
/* get current buffer size */
temp = 2 * uaudio_get_buffer_size(ch, ch->set_alt);
/* set running flag */
ch->running = 1;
/* ensure the hardware buffer is reset */
ch->start = ch->buf;
ch->end = ch->buf + temp;
ch->cur = ch->buf;
if (uaudio_chan_need_both(sc)) {
/*
* Start both endpoints because of need for
* jitter information:
*/
uaudio_chan_start_sub(&sc->sc_rec_chan);
uaudio_chan_start_sub(&sc->sc_play_chan);
} else {
uaudio_chan_start_sub(ch);
}
}
/* exit atomic operation */
usb_proc_explore_unlock(sc->sc_udev);
}
static void
uaudio_chan_stop_sub(struct uaudio_chan *ch)
{
struct uaudio_softc *sc = ch->priv_sc;
int do_stop = 0;
if (ch->operation != CHAN_OP_DRAIN) {
if (ch->cur_alt == ch->set_alt &&
ch->operation == CHAN_OP_NONE &&
mtx_owned(ch->pcm_mtx) != 0) {
/* save doing the explore task */
do_stop = 1;
} else {
ch->operation = CHAN_OP_STOP;
(void)usb_proc_explore_msignal(sc->sc_udev,
&sc->sc_config_msg[0], &sc->sc_config_msg[1]);
}
}
if (do_stop) {
usbd_transfer_stop(ch->xfer[0]);
usbd_transfer_stop(ch->xfer[1]);
}
}
void
uaudio_chan_stop(struct uaudio_chan *ch)
{
struct uaudio_softc *sc = ch->priv_sc;
/* make operation atomic */
usb_proc_explore_lock(sc->sc_udev);
/* check if running */
if (ch->running != 0) {
/* clear running flag */
ch->running = 0;
if (uaudio_chan_need_both(sc)) {
/*
* Leave the endpoints running because we need
* information about jitter!
*/
} else if (uaudio_chan_need_none(sc)) {
/*
* Stop both endpoints in case the one was used for
* jitter information:
*/
uaudio_chan_stop_sub(&sc->sc_rec_chan);
uaudio_chan_stop_sub(&sc->sc_play_chan);
} else {
uaudio_chan_stop_sub(ch);
}
}
/* exit atomic operation */
usb_proc_explore_unlock(sc->sc_udev);
}
/*========================================================================*
* AC - Audio Controller - routines
*========================================================================*/
static int
uaudio_mixer_sysctl_handler(SYSCTL_HANDLER_ARGS)
{
struct uaudio_softc *sc;
struct uaudio_mixer_node *pmc;
int hint;
int error;
int temp = 0;
int chan = 0;
sc = (struct uaudio_softc *)oidp->oid_arg1;
hint = oidp->oid_arg2;
if (sc->sc_mixer_lock == NULL)
return (ENXIO);
/* lookup mixer node */
mtx_lock(sc->sc_mixer_lock);
for (pmc = sc->sc_mixer_root; pmc != NULL; pmc = pmc->next) {
for (chan = 0; chan != (int)pmc->nchan; chan++) {
if (pmc->wValue[chan] != -1 &&
pmc->wValue[chan] == hint) {
temp = pmc->wData[chan];
goto found;
}
}
}
found:
mtx_unlock(sc->sc_mixer_lock);
error = sysctl_handle_int(oidp, &temp, 0, req);
if (error != 0 || req->newptr == NULL)
return (error);
/* update mixer value */
mtx_lock(sc->sc_mixer_lock);
if (pmc != NULL &&
temp >= pmc->minval &&
temp <= pmc->maxval) {
pmc->wData[chan] = temp;
pmc->update[(chan / 8)] |= (1 << (chan % 8));
/* start the transfer, if not already started */
usbd_transfer_start(sc->sc_mixer_xfer[0]);
}
mtx_unlock(sc->sc_mixer_lock);
return (0);
}
static void
uaudio_mixer_ctl_free(struct uaudio_softc *sc)
{
struct uaudio_mixer_node *p_mc;
while ((p_mc = sc->sc_mixer_root) != NULL) {
sc->sc_mixer_root = p_mc->next;
free(p_mc, M_USBDEV);
}
}
static void
uaudio_mixer_register_sysctl(struct uaudio_softc *sc, device_t dev)
{
struct uaudio_mixer_node *pmc;
struct sysctl_oid *mixer_tree;
struct sysctl_oid *control_tree;
char buf[32];
int chan;
int n;
mixer_tree = SYSCTL_ADD_NODE(device_get_sysctl_ctx(dev),
SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO, "mixer",
CTLFLAG_RD, NULL, "");
if (mixer_tree == NULL)
return;
for (n = 0, pmc = sc->sc_mixer_root; pmc != NULL;
pmc = pmc->next, n++) {
for (chan = 0; chan < pmc->nchan; chan++) {
if (pmc->nchan > 1) {
snprintf(buf, sizeof(buf), "%s_%d_%d",
pmc->name, n, chan);
} else {
snprintf(buf, sizeof(buf), "%s_%d",
pmc->name, n);
}
control_tree = SYSCTL_ADD_NODE(device_get_sysctl_ctx(dev),
SYSCTL_CHILDREN(mixer_tree), OID_AUTO, buf,
CTLFLAG_RD, NULL, "Mixer control nodes");
if (control_tree == NULL)
continue;
SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
SYSCTL_CHILDREN(control_tree),
OID_AUTO, "val", CTLTYPE_INT | CTLFLAG_RWTUN, sc,
pmc->wValue[chan],
uaudio_mixer_sysctl_handler, "I", "Current value");
SYSCTL_ADD_INT(device_get_sysctl_ctx(dev),
SYSCTL_CHILDREN(control_tree),
OID_AUTO, "min", CTLFLAG_RD, 0, pmc->minval,
"Minimum value");
SYSCTL_ADD_INT(device_get_sysctl_ctx(dev),
SYSCTL_CHILDREN(control_tree),
OID_AUTO, "max", CTLFLAG_RD, 0, pmc->maxval,
"Maximum value");
SYSCTL_ADD_STRING(device_get_sysctl_ctx(dev),
SYSCTL_CHILDREN(control_tree),
OID_AUTO, "desc", CTLFLAG_RD, pmc->desc, 0,
"Description");
}
}
}
/* M-Audio FastTrack Ultra Mixer Description */
/* Origin: Linux USB Audio driver */
static void
uaudio_mixer_controls_create_ftu(struct uaudio_softc *sc)
{
int chx;
int chy;
memset(&MIX(sc), 0, sizeof(MIX(sc)));
MIX(sc).wIndex = MAKE_WORD(6, sc->sc_mixer_iface_no);
MIX(sc).wValue[0] = MAKE_WORD(8, 0);
MIX(sc).class = UAC_OUTPUT;
MIX(sc).type = MIX_UNSIGNED_16;
MIX(sc).ctl = SOUND_MIXER_NRDEVICES;
MIX(sc).name = "effect";
MIX(sc).minval = 0;
MIX(sc).maxval = 7;
MIX(sc).mul = 7;
MIX(sc).nchan = 1;
MIX(sc).update[0] = 1;
strlcpy(MIX(sc).desc, "Room1,2,3,Hall1,2,Plate,Delay,Echo", sizeof(MIX(sc).desc));
uaudio_mixer_add_ctl_sub(sc, &MIX(sc));
memset(&MIX(sc), 0, sizeof(MIX(sc)));
MIX(sc).wIndex = MAKE_WORD(5, sc->sc_mixer_iface_no);
for (chx = 0; chx != 8; chx++) {
for (chy = 0; chy != 8; chy++) {
MIX(sc).wValue[0] = MAKE_WORD(chx + 1, chy + 1);
MIX(sc).type = MIX_SIGNED_16;
MIX(sc).ctl = SOUND_MIXER_NRDEVICES;
MIX(sc).name = "mix_rec";
MIX(sc).nchan = 1;
MIX(sc).update[0] = 1;
MIX(sc).val_default = 0;
snprintf(MIX(sc).desc, sizeof(MIX(sc).desc),
"AIn%d - Out%d Record Volume", chy + 1, chx + 1);
uaudio_mixer_add_ctl(sc, &MIX(sc));
MIX(sc).wValue[0] = MAKE_WORD(chx + 1, chy + 1 + 8);
MIX(sc).type = MIX_SIGNED_16;
MIX(sc).ctl = SOUND_MIXER_NRDEVICES;
MIX(sc).name = "mix_play";
MIX(sc).nchan = 1;
MIX(sc).update[0] = 1;
MIX(sc).val_default = (chx == chy) ? 2 : 0;
snprintf(MIX(sc).desc, sizeof(MIX(sc).desc),
"DIn%d - Out%d Playback Volume", chy + 1, chx + 1);
uaudio_mixer_add_ctl(sc, &MIX(sc));
}
}
memset(&MIX(sc), 0, sizeof(MIX(sc)));
MIX(sc).wIndex = MAKE_WORD(6, sc->sc_mixer_iface_no);
MIX(sc).wValue[0] = MAKE_WORD(2, 0);
MIX(sc).class = UAC_OUTPUT;
MIX(sc).type = MIX_SIGNED_8;
MIX(sc).ctl = SOUND_MIXER_NRDEVICES;
MIX(sc).name = "effect_vol";
MIX(sc).nchan = 1;
MIX(sc).update[0] = 1;
MIX(sc).minval = 0;
MIX(sc).maxval = 0x7f;
MIX(sc).mul = 0x7f;
MIX(sc).nchan = 1;
MIX(sc).update[0] = 1;
strlcpy(MIX(sc).desc, "Effect Volume", sizeof(MIX(sc).desc));
uaudio_mixer_add_ctl_sub(sc, &MIX(sc));
memset(&MIX(sc), 0, sizeof(MIX(sc)));
MIX(sc).wIndex = MAKE_WORD(6, sc->sc_mixer_iface_no);
MIX(sc).wValue[0] = MAKE_WORD(3, 0);
MIX(sc).class = UAC_OUTPUT;
MIX(sc).type = MIX_SIGNED_16;
MIX(sc).ctl = SOUND_MIXER_NRDEVICES;
MIX(sc).name = "effect_dur";
MIX(sc).nchan = 1;
MIX(sc).update[0] = 1;
MIX(sc).minval = 0;
MIX(sc).maxval = 0x7f00;
MIX(sc).mul = 0x7f00;
MIX(sc).nchan = 1;
MIX(sc).update[0] = 1;
strlcpy(MIX(sc).desc, "Effect Duration", sizeof(MIX(sc).desc));
uaudio_mixer_add_ctl_sub(sc, &MIX(sc));
memset(&MIX(sc), 0, sizeof(MIX(sc)));
MIX(sc).wIndex = MAKE_WORD(6, sc->sc_mixer_iface_no);
MIX(sc).wValue[0] = MAKE_WORD(4, 0);
MIX(sc).class = UAC_OUTPUT;
MIX(sc).type = MIX_SIGNED_8;
MIX(sc).ctl = SOUND_MIXER_NRDEVICES;
MIX(sc).name = "effect_fb";
MIX(sc).nchan = 1;
MIX(sc).update[0] = 1;
MIX(sc).minval = 0;
MIX(sc).maxval = 0x7f;
MIX(sc).mul = 0x7f;
MIX(sc).nchan = 1;
MIX(sc).update[0] = 1;
strlcpy(MIX(sc).desc, "Effect Feedback Volume", sizeof(MIX(sc).desc));
uaudio_mixer_add_ctl_sub(sc, &MIX(sc));
memset(&MIX(sc), 0, sizeof(MIX(sc)));
MIX(sc).wIndex = MAKE_WORD(7, sc->sc_mixer_iface_no);
for (chy = 0; chy != 4; chy++) {
MIX(sc).wValue[0] = MAKE_WORD(7, chy + 1);
MIX(sc).type = MIX_SIGNED_16;
MIX(sc).ctl = SOUND_MIXER_NRDEVICES;
MIX(sc).name = "effect_ret";
MIX(sc).nchan = 1;
MIX(sc).update[0] = 1;
snprintf(MIX(sc).desc, sizeof(MIX(sc).desc),
"Effect Return %d Volume", chy + 1);
uaudio_mixer_add_ctl(sc, &MIX(sc));
}
memset(&MIX(sc), 0, sizeof(MIX(sc)));
MIX(sc).wIndex = MAKE_WORD(5, sc->sc_mixer_iface_no);
for (chy = 0; chy != 8; chy++) {
MIX(sc).wValue[0] = MAKE_WORD(9, chy + 1);
MIX(sc).type = MIX_SIGNED_16;
MIX(sc).ctl = SOUND_MIXER_NRDEVICES;
MIX(sc).name = "effect_send";
MIX(sc).nchan = 1;
MIX(sc).update[0] = 1;
snprintf(MIX(sc).desc, sizeof(MIX(sc).desc),
"Effect Send AIn%d Volume", chy + 1);
uaudio_mixer_add_ctl(sc, &MIX(sc));
MIX(sc).wValue[0] = MAKE_WORD(9, chy + 1 + 8);
MIX(sc).type = MIX_SIGNED_16;
MIX(sc).ctl = SOUND_MIXER_NRDEVICES;
MIX(sc).name = "effect_send";
MIX(sc).nchan = 1;
MIX(sc).update[0] = 1;
snprintf(MIX(sc).desc, sizeof(MIX(sc).desc),
"Effect Send DIn%d Volume", chy + 1);
uaudio_mixer_add_ctl(sc, &MIX(sc));
}
}
static void
uaudio_mixer_reload_all(struct uaudio_softc *sc)
{
struct uaudio_mixer_node *pmc;
int chan;
if (sc->sc_mixer_lock == NULL)
return;
mtx_lock(sc->sc_mixer_lock);
for (pmc = sc->sc_mixer_root; pmc != NULL; pmc = pmc->next) {
/* use reset defaults for non-oss controlled settings */
if (pmc->ctl == SOUND_MIXER_NRDEVICES)
continue;
for (chan = 0; chan < pmc->nchan; chan++)
pmc->update[chan / 8] |= (1 << (chan % 8));
}
usbd_transfer_start(sc->sc_mixer_xfer[0]);
/* start HID volume keys, if any */
usbd_transfer_start(sc->sc_hid.xfer[0]);
mtx_unlock(sc->sc_mixer_lock);
}
static void
uaudio_mixer_add_ctl_sub(struct uaudio_softc *sc, struct uaudio_mixer_node *mc)
{
struct uaudio_mixer_node *p_mc_new =
malloc(sizeof(*p_mc_new), M_USBDEV, M_WAITOK);
int ch;
if (p_mc_new != NULL) {
memcpy(p_mc_new, mc, sizeof(*p_mc_new));
p_mc_new->next = sc->sc_mixer_root;
sc->sc_mixer_root = p_mc_new;
sc->sc_mixer_count++;
/* set default value for all channels */
for (ch = 0; ch < p_mc_new->nchan; ch++) {
switch (p_mc_new->val_default) {
case 1:
/* 50% */
p_mc_new->wData[ch] = (p_mc_new->maxval + p_mc_new->minval) / 2;
break;
case 2:
/* 100% */
p_mc_new->wData[ch] = p_mc_new->maxval;
break;
default:
/* 0% */
p_mc_new->wData[ch] = p_mc_new->minval;
break;
}
}
} else {
DPRINTF("out of memory\n");
}
}
static void
uaudio_mixer_add_ctl(struct uaudio_softc *sc, struct uaudio_mixer_node *mc)
{
int32_t res;
if (mc->class < UAC_NCLASSES) {
DPRINTF("adding %s.%d\n",
uac_names[mc->class], mc->ctl);
} else {
DPRINTF("adding %d\n", mc->ctl);
}
if (mc->type == MIX_ON_OFF) {
mc->minval = 0;
mc->maxval = 1;
} else if (mc->type == MIX_SELECTOR) {
} else {
/* determine min and max values */
mc->minval = uaudio_mixer_get(sc->sc_udev,
sc->sc_audio_rev, GET_MIN, mc);
mc->maxval = uaudio_mixer_get(sc->sc_udev,
sc->sc_audio_rev, GET_MAX, mc);
/* check if max and min was swapped */
if (mc->maxval < mc->minval) {
res = mc->maxval;
mc->maxval = mc->minval;
mc->minval = res;
}
/* compute value range */
mc->mul = mc->maxval - mc->minval;
if (mc->mul == 0)
mc->mul = 1;
/* compute value alignment */
res = uaudio_mixer_get(sc->sc_udev,
sc->sc_audio_rev, GET_RES, mc);
DPRINTF("Resolution = %d\n", (int)res);
}
uaudio_mixer_add_ctl_sub(sc, mc);
#ifdef USB_DEBUG
if (uaudio_debug > 2) {
uint8_t i;
for (i = 0; i < mc->nchan; i++) {
DPRINTF("[mix] wValue=%04x\n", mc->wValue[0]);
}
DPRINTF("[mix] wIndex=%04x type=%d ctl='%d' "
"min=%d max=%d\n",
mc->wIndex, mc->type, mc->ctl,
mc->minval, mc->maxval);
}
#endif
}
static void
uaudio_mixer_add_mixer(struct uaudio_softc *sc,
const struct uaudio_terminal_node *iot, int id)
{
const struct usb_audio_mixer_unit_0 *d0 = iot[id].u.mu_v1;
const struct usb_audio_mixer_unit_1 *d1;
uint32_t bno; /* bit number */
uint32_t p; /* bit number accumulator */
uint32_t mo; /* matching outputs */
uint32_t mc; /* matching channels */
uint32_t ichs; /* input channels */
uint32_t ochs; /* output channels */
uint32_t c;
uint32_t chs; /* channels */
uint32_t i;
uint32_t o;
DPRINTFN(3, "bUnitId=%d bNrInPins=%d\n",
d0->bUnitId, d0->bNrInPins);
/* compute the number of input channels */
ichs = 0;
for (i = 0; i < d0->bNrInPins; i++) {
ichs += uaudio_mixer_get_cluster(
d0->baSourceId[i], iot).bNrChannels;
}
d1 = (const void *)(d0->baSourceId + d0->bNrInPins);
/* and the number of output channels */
ochs = d1->bNrChannels;
DPRINTFN(3, "ichs=%d ochs=%d\n", ichs, ochs);
memset(&MIX(sc), 0, sizeof(MIX(sc)));
MIX(sc).wIndex = MAKE_WORD(d0->bUnitId, sc->sc_mixer_iface_no);
uaudio_mixer_determine_class(&iot[id], &MIX(sc));
MIX(sc).type = MIX_SIGNED_16;
if (uaudio_mixer_verify_desc(d0, ((ichs * ochs) + 7) / 8) == NULL)
return;
for (p = i = 0; i < d0->bNrInPins; i++) {
chs = uaudio_mixer_get_cluster(
d0->baSourceId[i], iot).bNrChannels;
mc = 0;
for (c = 0; c < chs; c++) {
mo = 0;
for (o = 0; o < ochs; o++) {
bno = ((p + c) * ochs) + o;
if (BIT_TEST(d1->bmControls, bno))
mo++;
}
if (mo == 1)
mc++;
}
if ((mc == chs) && (chs <= MIX_MAX_CHAN)) {
/* repeat bit-scan */
mc = 0;
for (c = 0; c < chs; c++) {
for (o = 0; o < ochs; o++) {
bno = ((p + c) * ochs) + o;
if (BIT_TEST(d1->bmControls, bno))
MIX(sc).wValue[mc++] = MAKE_WORD(p + c + 1, o + 1);
}
}
MIX(sc).nchan = chs;
uaudio_mixer_add_ctl(sc, &MIX(sc));
}
p += chs;
}
}
static void
uaudio20_mixer_add_mixer(struct uaudio_softc *sc,
const struct uaudio_terminal_node *iot, int id)
{
const struct usb_audio20_mixer_unit_0 *d0 = iot[id].u.mu_v2;
const struct usb_audio20_mixer_unit_1 *d1;
uint32_t bno; /* bit number */
uint32_t p; /* bit number accumulator */
uint32_t mo; /* matching outputs */
uint32_t mc; /* matching channels */
uint32_t ichs; /* input channels */
uint32_t ochs; /* output channels */
uint32_t c;
uint32_t chs; /* channels */
uint32_t i;
uint32_t o;
DPRINTFN(3, "bUnitId=%d bNrInPins=%d\n",
d0->bUnitId, d0->bNrInPins);
/* compute the number of input channels */
ichs = 0;
for (i = 0; i < d0->bNrInPins; i++) {
ichs += uaudio20_mixer_get_cluster(
d0->baSourceId[i], iot).bNrChannels;
}
d1 = (const void *)(d0->baSourceId + d0->bNrInPins);
/* and the number of output channels */
ochs = d1->bNrChannels;
DPRINTFN(3, "ichs=%d ochs=%d\n", ichs, ochs);
memset(&MIX(sc), 0, sizeof(MIX(sc)));
MIX(sc).wIndex = MAKE_WORD(d0->bUnitId, sc->sc_mixer_iface_no);
uaudio20_mixer_determine_class(&iot[id], &MIX(sc));
MIX(sc).type = MIX_SIGNED_16;
if (uaudio20_mixer_verify_desc(d0, ((ichs * ochs) + 7) / 8) == NULL)
return;
for (p = i = 0; i < d0->bNrInPins; i++) {
chs = uaudio20_mixer_get_cluster(
d0->baSourceId[i], iot).bNrChannels;
mc = 0;
for (c = 0; c < chs; c++) {
mo = 0;
for (o = 0; o < ochs; o++) {
bno = ((p + c) * ochs) + o;
if (BIT_TEST(d1->bmControls, bno))
mo++;
}
if (mo == 1)
mc++;
}
if ((mc == chs) && (chs <= MIX_MAX_CHAN)) {
/* repeat bit-scan */
mc = 0;
for (c = 0; c < chs; c++) {
for (o = 0; o < ochs; o++) {
bno = ((p + c) * ochs) + o;
if (BIT_TEST(d1->bmControls, bno))
MIX(sc).wValue[mc++] = MAKE_WORD(p + c + 1, o + 1);
}
}
MIX(sc).nchan = chs;
uaudio_mixer_add_ctl(sc, &MIX(sc));
}
p += chs;
}
}
static void
uaudio_mixer_add_selector(struct uaudio_softc *sc,
const struct uaudio_terminal_node *iot, int id)
{
const struct usb_audio_selector_unit *d = iot[id].u.su_v1;
uint16_t i;
DPRINTFN(3, "bUnitId=%d bNrInPins=%d\n",
d->bUnitId, d->bNrInPins);
if (d->bNrInPins == 0)
return;
memset(&MIX(sc), 0, sizeof(MIX(sc)));
MIX(sc).wIndex = MAKE_WORD(d->bUnitId, sc->sc_mixer_iface_no);
MIX(sc).wValue[0] = MAKE_WORD(0, 0);
uaudio_mixer_determine_class(&iot[id], &MIX(sc));
MIX(sc).nchan = 1;
MIX(sc).type = MIX_SELECTOR;
MIX(sc).ctl = SOUND_MIXER_NRDEVICES;
MIX(sc).minval = 1;
MIX(sc).maxval = d->bNrInPins;
MIX(sc).name = "selector";
i = d->baSourceId[d->bNrInPins];
if (i == 0 ||
usbd_req_get_string_any(sc->sc_udev, NULL,
MIX(sc).desc, sizeof(MIX(sc).desc), i) != 0) {
MIX(sc).desc[0] = 0;
}
if (MIX(sc).maxval > MAX_SELECTOR_INPUT_PIN) {
MIX(sc).maxval = MAX_SELECTOR_INPUT_PIN;
}
MIX(sc).mul = (MIX(sc).maxval - MIX(sc).minval);
for (i = 0; i < MAX_SELECTOR_INPUT_PIN; i++) {
MIX(sc).slctrtype[i] = SOUND_MIXER_NRDEVICES;
}
for (i = 0; i < MIX(sc).maxval; i++) {
MIX(sc).slctrtype[i] = uaudio_mixer_feature_name(
&iot[d->baSourceId[i]], &MIX(sc));
}
MIX(sc).class = 0; /* not used */
uaudio_mixer_add_ctl(sc, &MIX(sc));
}
static void
uaudio20_mixer_add_selector(struct uaudio_softc *sc,
const struct uaudio_terminal_node *iot, int id)
{
const struct usb_audio20_selector_unit *d = iot[id].u.su_v2;
uint16_t i;
DPRINTFN(3, "bUnitId=%d bNrInPins=%d\n",
d->bUnitId, d->bNrInPins);
if (d->bNrInPins == 0)
return;
memset(&MIX(sc), 0, sizeof(MIX(sc)));
MIX(sc).wIndex = MAKE_WORD(d->bUnitId, sc->sc_mixer_iface_no);
MIX(sc).wValue[0] = MAKE_WORD(0, 0);
uaudio20_mixer_determine_class(&iot[id], &MIX(sc));
MIX(sc).nchan = 1;
MIX(sc).type = MIX_SELECTOR;
MIX(sc).ctl = SOUND_MIXER_NRDEVICES;
MIX(sc).minval = 1;
MIX(sc).maxval = d->bNrInPins;
MIX(sc).name = "selector";
i = d->baSourceId[d->bNrInPins];
if (i == 0 ||
usbd_req_get_string_any(sc->sc_udev, NULL,
MIX(sc).desc, sizeof(MIX(sc).desc), i) != 0) {
MIX(sc).desc[0] = 0;
}
if (MIX(sc).maxval > MAX_SELECTOR_INPUT_PIN)
MIX(sc).maxval = MAX_SELECTOR_INPUT_PIN;
MIX(sc).mul = (MIX(sc).maxval - MIX(sc).minval);
for (i = 0; i < MAX_SELECTOR_INPUT_PIN; i++)
MIX(sc).slctrtype[i] = SOUND_MIXER_NRDEVICES;
for (i = 0; i < MIX(sc).maxval; i++) {
MIX(sc).slctrtype[i] = uaudio20_mixer_feature_name(
&iot[d->baSourceId[i]], &MIX(sc));
}
MIX(sc).class = 0; /* not used */
uaudio_mixer_add_ctl(sc, &MIX(sc));
}
static uint32_t
uaudio_mixer_feature_get_bmaControls(const struct usb_audio_feature_unit *d,
uint8_t i)
{
uint32_t temp = 0;
uint32_t offset = (i * d->bControlSize);
if (d->bControlSize > 0) {
temp |= d->bmaControls[offset];
if (d->bControlSize > 1) {
temp |= d->bmaControls[offset + 1] << 8;
if (d->bControlSize > 2) {
temp |= d->bmaControls[offset + 2] << 16;
if (d->bControlSize > 3) {
temp |= d->bmaControls[offset + 3] << 24;
}
}
}
}
return (temp);
}
static void
uaudio_mixer_add_feature(struct uaudio_softc *sc,
const struct uaudio_terminal_node *iot, int id)
{
const struct usb_audio_feature_unit *d = iot[id].u.fu_v1;
uint32_t fumask;
uint32_t mmask;
uint32_t cmask;
uint16_t mixernumber;
uint8_t nchan;
uint8_t chan;
uint8_t ctl;
uint8_t i;
if (d->bControlSize == 0)
return;
memset(&MIX(sc), 0, sizeof(MIX(sc)));
nchan = (d->bLength - 7) / d->bControlSize;
mmask = uaudio_mixer_feature_get_bmaControls(d, 0);
cmask = 0;
if (nchan == 0)
return;
/* figure out what we can control */
for (chan = 1; chan < nchan; chan++) {
DPRINTFN(10, "chan=%d mask=%x\n",
chan, uaudio_mixer_feature_get_bmaControls(d, chan));
cmask |= uaudio_mixer_feature_get_bmaControls(d, chan);
}
if (nchan > MIX_MAX_CHAN) {
nchan = MIX_MAX_CHAN;
}
MIX(sc).wIndex = MAKE_WORD(d->bUnitId, sc->sc_mixer_iface_no);
i = d->bmaControls[d->bControlSize];
if (i == 0 ||
usbd_req_get_string_any(sc->sc_udev, NULL,
MIX(sc).desc, sizeof(MIX(sc).desc), i) != 0) {
MIX(sc).desc[0] = 0;
}
for (ctl = 1; ctl <= LOUDNESS_CONTROL; ctl++) {
fumask = FU_MASK(ctl);
DPRINTFN(5, "ctl=%d fumask=0x%04x\n",
ctl, fumask);
if (mmask & fumask) {
MIX(sc).nchan = 1;
MIX(sc).wValue[0] = MAKE_WORD(ctl, 0);
} else if (cmask & fumask) {
MIX(sc).nchan = nchan - 1;
for (i = 1; i < nchan; i++) {
if (uaudio_mixer_feature_get_bmaControls(d, i) & fumask)
MIX(sc).wValue[i - 1] = MAKE_WORD(ctl, i);
else
MIX(sc).wValue[i - 1] = -1;
}
} else {
continue;
}
mixernumber = uaudio_mixer_feature_name(&iot[id], &MIX(sc));
switch (ctl) {
case MUTE_CONTROL:
MIX(sc).type = MIX_ON_OFF;
MIX(sc).ctl = SOUND_MIXER_NRDEVICES;
MIX(sc).name = "mute";
break;
case VOLUME_CONTROL:
MIX(sc).type = MIX_SIGNED_16;
MIX(sc).ctl = mixernumber;
MIX(sc).name = "vol";
break;
case BASS_CONTROL:
MIX(sc).type = MIX_SIGNED_8;
MIX(sc).ctl = SOUND_MIXER_BASS;
MIX(sc).name = "bass";
break;
case MID_CONTROL:
MIX(sc).type = MIX_SIGNED_8;
MIX(sc).ctl = SOUND_MIXER_NRDEVICES; /* XXXXX */
MIX(sc).name = "mid";
break;
case TREBLE_CONTROL:
MIX(sc).type = MIX_SIGNED_8;
MIX(sc).ctl = SOUND_MIXER_TREBLE;
MIX(sc).name = "treble";
break;
case GRAPHIC_EQUALIZER_CONTROL:
continue; /* XXX don't add anything */
case AGC_CONTROL:
MIX(sc).type = MIX_ON_OFF;
MIX(sc).ctl = SOUND_MIXER_NRDEVICES; /* XXXXX */
MIX(sc).name = "agc";
break;
case DELAY_CONTROL:
MIX(sc).type = MIX_UNSIGNED_16;
MIX(sc).ctl = SOUND_MIXER_NRDEVICES; /* XXXXX */
MIX(sc).name = "delay";
break;
case BASS_BOOST_CONTROL:
MIX(sc).type = MIX_ON_OFF;
MIX(sc).ctl = SOUND_MIXER_NRDEVICES; /* XXXXX */
MIX(sc).name = "boost";
break;
case LOUDNESS_CONTROL:
MIX(sc).type = MIX_ON_OFF;
MIX(sc).ctl = SOUND_MIXER_LOUD; /* Is this correct ? */
MIX(sc).name = "loudness";
break;
default:
MIX(sc).type = MIX_UNKNOWN;
break;
}
if (MIX(sc).type != MIX_UNKNOWN)
uaudio_mixer_add_ctl(sc, &MIX(sc));
}
}
static void
uaudio20_mixer_add_feature(struct uaudio_softc *sc,
const struct uaudio_terminal_node *iot, int id)
{
const struct usb_audio20_feature_unit *d = iot[id].u.fu_v2;
uint32_t ctl;
uint32_t mmask;
uint32_t cmask;
uint16_t mixernumber;
uint8_t nchan;
uint8_t chan;
uint8_t i;
uint8_t what;
if (UGETDW(d->bmaControls[0]) == 0)
return;
memset(&MIX(sc), 0, sizeof(MIX(sc)));
nchan = (d->bLength - 6) / 4;
mmask = UGETDW(d->bmaControls[0]);
cmask = 0;
if (nchan == 0)
return;
/* figure out what we can control */
for (chan = 1; chan < nchan; chan++)
cmask |= UGETDW(d->bmaControls[chan]);
if (nchan > MIX_MAX_CHAN)
nchan = MIX_MAX_CHAN;
MIX(sc).wIndex = MAKE_WORD(d->bUnitId, sc->sc_mixer_iface_no);
i = d->bmaControls[nchan][0];
if (i == 0 ||
usbd_req_get_string_any(sc->sc_udev, NULL,
MIX(sc).desc, sizeof(MIX(sc).desc), i) != 0) {
MIX(sc).desc[0] = 0;
}
for (ctl = 3; ctl != 0; ctl <<= 2) {
mixernumber = uaudio20_mixer_feature_name(&iot[id], &MIX(sc));
switch (ctl) {
case (3 << 0):
MIX(sc).type = MIX_ON_OFF;
MIX(sc).ctl = SOUND_MIXER_NRDEVICES;
MIX(sc).name = "mute";
what = MUTE_CONTROL;
break;
case (3 << 2):
MIX(sc).type = MIX_SIGNED_16;
MIX(sc).ctl = mixernumber;
MIX(sc).name = "vol";
what = VOLUME_CONTROL;
break;
case (3 << 4):
MIX(sc).type = MIX_SIGNED_8;
MIX(sc).ctl = SOUND_MIXER_BASS;
MIX(sc).name = "bass";
what = BASS_CONTROL;
break;
case (3 << 6):
MIX(sc).type = MIX_SIGNED_8;
MIX(sc).ctl = SOUND_MIXER_NRDEVICES; /* XXXXX */
MIX(sc).name = "mid";
what = MID_CONTROL;
break;
case (3 << 8):
MIX(sc).type = MIX_SIGNED_8;
MIX(sc).ctl = SOUND_MIXER_TREBLE;
MIX(sc).name = "treble";
what = TREBLE_CONTROL;
break;
case (3 << 12):
MIX(sc).type = MIX_ON_OFF;
MIX(sc).ctl = SOUND_MIXER_NRDEVICES; /* XXXXX */
MIX(sc).name = "agc";
what = AGC_CONTROL;
break;
case (3 << 14):
MIX(sc).type = MIX_UNSIGNED_16;
MIX(sc).ctl = SOUND_MIXER_NRDEVICES; /* XXXXX */
MIX(sc).name = "delay";
what = DELAY_CONTROL;
break;
case (3 << 16):
MIX(sc).type = MIX_ON_OFF;
MIX(sc).ctl = SOUND_MIXER_NRDEVICES; /* XXXXX */
MIX(sc).name = "boost";
what = BASS_BOOST_CONTROL;
break;
case (3 << 18):
MIX(sc).type = MIX_ON_OFF;
MIX(sc).ctl = SOUND_MIXER_LOUD; /* Is this correct ? */
MIX(sc).name = "loudness";
what = LOUDNESS_CONTROL;
break;
case (3 << 20):
MIX(sc).type = MIX_SIGNED_16;
MIX(sc).ctl = mixernumber;
MIX(sc).name = "igain";
what = INPUT_GAIN_CONTROL;
break;
case (3 << 22):
MIX(sc).type = MIX_SIGNED_16;
MIX(sc).ctl = mixernumber;
MIX(sc).name = "igainpad";
what = INPUT_GAIN_PAD_CONTROL;
break;
default:
continue;
}
if ((mmask & ctl) == ctl) {
MIX(sc).nchan = 1;
MIX(sc).wValue[0] = MAKE_WORD(what, 0);
} else if ((cmask & ctl) == ctl) {
MIX(sc).nchan = nchan - 1;
for (i = 1; i < nchan; i++) {
if ((UGETDW(d->bmaControls[i]) & ctl) == ctl)
MIX(sc).wValue[i - 1] = MAKE_WORD(what, i);
else
MIX(sc).wValue[i - 1] = -1;
}
} else {
continue;
}
if (MIX(sc).type != MIX_UNKNOWN)
uaudio_mixer_add_ctl(sc, &MIX(sc));
}
}
static void
uaudio_mixer_add_processing_updown(struct uaudio_softc *sc,
const struct uaudio_terminal_node *iot, int id)
{
const struct usb_audio_processing_unit_0 *d0 = iot[id].u.pu_v1;
const struct usb_audio_processing_unit_1 *d1 =
(const void *)(d0->baSourceId + d0->bNrInPins);
const struct usb_audio_processing_unit_updown *ud =
(const void *)(d1->bmControls + d1->bControlSize);
uint8_t i;
if (uaudio_mixer_verify_desc(d0, sizeof(*ud)) == NULL) {
return;
}
if (uaudio_mixer_verify_desc(d0, sizeof(*ud) + (2 * ud->bNrModes))
== NULL) {
return;
}
DPRINTFN(3, "bUnitId=%d bNrModes=%d\n",
d0->bUnitId, ud->bNrModes);
if (!(d1->bmControls[0] & UA_PROC_MASK(UD_MODE_SELECT_CONTROL))) {
DPRINTF("no mode select\n");
return;
}
memset(&MIX(sc), 0, sizeof(MIX(sc)));
MIX(sc).wIndex = MAKE_WORD(d0->bUnitId, sc->sc_mixer_iface_no);
MIX(sc).nchan = 1;
MIX(sc).wValue[0] = MAKE_WORD(UD_MODE_SELECT_CONTROL, 0);
uaudio_mixer_determine_class(&iot[id], &MIX(sc));
MIX(sc).type = MIX_ON_OFF; /* XXX */
for (i = 0; i < ud->bNrModes; i++) {
DPRINTFN(3, "i=%d bm=0x%x\n", i, UGETW(ud->waModes[i]));
/* XXX */
}
uaudio_mixer_add_ctl(sc, &MIX(sc));
}
static void
uaudio_mixer_add_processing(struct uaudio_softc *sc,
const struct uaudio_terminal_node *iot, int id)
{
const struct usb_audio_processing_unit_0 *d0 = iot[id].u.pu_v1;
const struct usb_audio_processing_unit_1 *d1 =
(const void *)(d0->baSourceId + d0->bNrInPins);
uint16_t ptype;
memset(&MIX(sc), 0, sizeof(MIX(sc)));
ptype = UGETW(d0->wProcessType);
DPRINTFN(3, "wProcessType=%d bUnitId=%d "
"bNrInPins=%d\n", ptype, d0->bUnitId, d0->bNrInPins);
if (d1->bControlSize == 0) {
return;
}
if (d1->bmControls[0] & UA_PROC_ENABLE_MASK) {
MIX(sc).wIndex = MAKE_WORD(d0->bUnitId, sc->sc_mixer_iface_no);
MIX(sc).nchan = 1;
MIX(sc).wValue[0] = MAKE_WORD(XX_ENABLE_CONTROL, 0);
uaudio_mixer_determine_class(&iot[id], &MIX(sc));
MIX(sc).type = MIX_ON_OFF;
uaudio_mixer_add_ctl(sc, &MIX(sc));
}
switch (ptype) {
case UPDOWNMIX_PROCESS:
uaudio_mixer_add_processing_updown(sc, iot, id);
break;
case DOLBY_PROLOGIC_PROCESS:
case P3D_STEREO_EXTENDER_PROCESS:
case REVERBATION_PROCESS:
case CHORUS_PROCESS:
case DYN_RANGE_COMP_PROCESS:
default:
DPRINTF("unit %d, type=%d is not implemented\n",
d0->bUnitId, ptype);
break;
}
}
static void
uaudio_mixer_add_extension(struct uaudio_softc *sc,
const struct uaudio_terminal_node *iot, int id)
{
const struct usb_audio_extension_unit_0 *d0 = iot[id].u.eu_v1;
const struct usb_audio_extension_unit_1 *d1 =
(const void *)(d0->baSourceId + d0->bNrInPins);
DPRINTFN(3, "bUnitId=%d bNrInPins=%d\n",
d0->bUnitId, d0->bNrInPins);
if (sc->sc_uq_au_no_xu) {
return;
}
if (d1->bControlSize == 0) {
return;
}
if (d1->bmControls[0] & UA_EXT_ENABLE_MASK) {
memset(&MIX(sc), 0, sizeof(MIX(sc)));
MIX(sc).wIndex = MAKE_WORD(d0->bUnitId, sc->sc_mixer_iface_no);
MIX(sc).nchan = 1;
MIX(sc).wValue[0] = MAKE_WORD(UA_EXT_ENABLE, 0);
uaudio_mixer_determine_class(&iot[id], &MIX(sc));
MIX(sc).type = MIX_ON_OFF;
uaudio_mixer_add_ctl(sc, &MIX(sc));
}
}
static const void *
uaudio_mixer_verify_desc(const void *arg, uint32_t len)
{
const struct usb_audio_mixer_unit_1 *d1;
const struct usb_audio_extension_unit_1 *e1;
const struct usb_audio_processing_unit_1 *u1;
union {
const struct usb_descriptor *desc;
const struct usb_audio_input_terminal *it;
const struct usb_audio_output_terminal *ot;
const struct usb_audio_mixer_unit_0 *mu;
const struct usb_audio_selector_unit *su;
const struct usb_audio_feature_unit *fu;
const struct usb_audio_processing_unit_0 *pu;
const struct usb_audio_extension_unit_0 *eu;
} u;
u.desc = arg;
if (u.desc == NULL) {
goto error;
}
if (u.desc->bDescriptorType != UDESC_CS_INTERFACE) {
goto error;
}
switch (u.desc->bDescriptorSubtype) {
case UDESCSUB_AC_INPUT:
len += sizeof(*u.it);
break;
case UDESCSUB_AC_OUTPUT:
len += sizeof(*u.ot);
break;
case UDESCSUB_AC_MIXER:
len += sizeof(*u.mu);
if (u.desc->bLength < len) {
goto error;
}
len += u.mu->bNrInPins;
if (u.desc->bLength < len) {
goto error;
}
d1 = (const void *)(u.mu->baSourceId + u.mu->bNrInPins);
len += sizeof(*d1);
break;
case UDESCSUB_AC_SELECTOR:
len += sizeof(*u.su);
if (u.desc->bLength < len) {
goto error;
}
len += u.su->bNrInPins + 1;
break;
case UDESCSUB_AC_FEATURE:
len += sizeof(*u.fu) + 1;
if (u.desc->bLength < len)
goto error;
len += u.fu->bControlSize;
break;
case UDESCSUB_AC_PROCESSING:
len += sizeof(*u.pu);
if (u.desc->bLength < len) {
goto error;
}
len += u.pu->bNrInPins;
if (u.desc->bLength < len) {
goto error;
}
u1 = (const void *)(u.pu->baSourceId + u.pu->bNrInPins);
len += sizeof(*u1);
if (u.desc->bLength < len) {
goto error;
}
len += u1->bControlSize;
break;
case UDESCSUB_AC_EXTENSION:
len += sizeof(*u.eu);
if (u.desc->bLength < len) {
goto error;
}
len += u.eu->bNrInPins;
if (u.desc->bLength < len) {
goto error;
}
e1 = (const void *)(u.eu->baSourceId + u.eu->bNrInPins);
len += sizeof(*e1);
if (u.desc->bLength < len) {
goto error;
}
len += e1->bControlSize;
break;
default:
goto error;
}
if (u.desc->bLength < len) {
goto error;
}
return (u.desc);
error:
if (u.desc) {
DPRINTF("invalid descriptor, type=%d, "
"sub_type=%d, len=%d of %d bytes\n",
u.desc->bDescriptorType,
u.desc->bDescriptorSubtype,
u.desc->bLength, len);
}
return (NULL);
}
static const void *
uaudio20_mixer_verify_desc(const void *arg, uint32_t len)
{
const struct usb_audio20_mixer_unit_1 *d1;
const struct usb_audio20_extension_unit_1 *e1;
const struct usb_audio20_processing_unit_1 *u1;
const struct usb_audio20_clock_selector_unit_1 *c1;
union {
const struct usb_descriptor *desc;
const struct usb_audio20_clock_source_unit *csrc;
const struct usb_audio20_clock_selector_unit_0 *csel;
const struct usb_audio20_clock_multiplier_unit *cmul;
const struct usb_audio20_input_terminal *it;
const struct usb_audio20_output_terminal *ot;
const struct usb_audio20_mixer_unit_0 *mu;
const struct usb_audio20_selector_unit *su;
const struct usb_audio20_feature_unit *fu;
const struct usb_audio20_sample_rate_unit *ru;
const struct usb_audio20_processing_unit_0 *pu;
const struct usb_audio20_extension_unit_0 *eu;
const struct usb_audio20_effect_unit *ef;
} u;
u.desc = arg;
if (u.desc == NULL)
goto error;
if (u.desc->bDescriptorType != UDESC_CS_INTERFACE)
goto error;
switch (u.desc->bDescriptorSubtype) {
case UDESCSUB_AC_INPUT:
len += sizeof(*u.it);
break;
case UDESCSUB_AC_OUTPUT:
len += sizeof(*u.ot);
break;
case UDESCSUB_AC_MIXER:
len += sizeof(*u.mu);
if (u.desc->bLength < len)
goto error;
len += u.mu->bNrInPins;
if (u.desc->bLength < len)
goto error;
d1 = (const void *)(u.mu->baSourceId + u.mu->bNrInPins);
len += sizeof(*d1) + d1->bNrChannels;
break;
case UDESCSUB_AC_SELECTOR:
len += sizeof(*u.su);
if (u.desc->bLength < len)
goto error;
len += u.su->bNrInPins + 1;
break;
case UDESCSUB_AC_FEATURE:
len += sizeof(*u.fu) + 1;
break;
case UDESCSUB_AC_EFFECT:
len += sizeof(*u.ef) + 4;
break;
case UDESCSUB_AC_PROCESSING_V2:
len += sizeof(*u.pu);
if (u.desc->bLength < len)
goto error;
len += u.pu->bNrInPins;
if (u.desc->bLength < len)
goto error;
u1 = (const void *)(u.pu->baSourceId + u.pu->bNrInPins);
len += sizeof(*u1);
break;
case UDESCSUB_AC_EXTENSION_V2:
len += sizeof(*u.eu);
if (u.desc->bLength < len)
goto error;
len += u.eu->bNrInPins;
if (u.desc->bLength < len)
goto error;
e1 = (const void *)(u.eu->baSourceId + u.eu->bNrInPins);
len += sizeof(*e1);
break;
case UDESCSUB_AC_CLOCK_SRC:
len += sizeof(*u.csrc);
break;
case UDESCSUB_AC_CLOCK_SEL:
len += sizeof(*u.csel);
if (u.desc->bLength < len)
goto error;
len += u.csel->bNrInPins;
if (u.desc->bLength < len)
goto error;
c1 = (const void *)(u.csel->baCSourceId + u.csel->bNrInPins);
len += sizeof(*c1);
break;
case UDESCSUB_AC_CLOCK_MUL:
len += sizeof(*u.cmul);
break;
case UDESCSUB_AC_SAMPLE_RT:
len += sizeof(*u.ru);
break;
default:
goto error;
}
if (u.desc->bLength < len)
goto error;
return (u.desc);
error:
if (u.desc) {
DPRINTF("invalid descriptor, type=%d, "
"sub_type=%d, len=%d of %d bytes\n",
u.desc->bDescriptorType,
u.desc->bDescriptorSubtype,
u.desc->bLength, len);
}
return (NULL);
}
static struct usb_audio_cluster
uaudio_mixer_get_cluster(uint8_t id, const struct uaudio_terminal_node *iot)
{
struct usb_audio_cluster r;
const struct usb_descriptor *dp;
uint8_t i;
for (i = 0; i < UAUDIO_RECURSE_LIMIT; i++) { /* avoid infinite loops */
dp = iot[id].u.desc;
if (dp == NULL) {
goto error;
}
switch (dp->bDescriptorSubtype) {
case UDESCSUB_AC_INPUT:
r.bNrChannels = iot[id].u.it_v1->bNrChannels;
r.wChannelConfig[0] = iot[id].u.it_v1->wChannelConfig[0];
r.wChannelConfig[1] = iot[id].u.it_v1->wChannelConfig[1];
r.iChannelNames = iot[id].u.it_v1->iChannelNames;
goto done;
case UDESCSUB_AC_OUTPUT:
id = iot[id].u.ot_v1->bSourceId;
break;
case UDESCSUB_AC_MIXER:
r = *(const struct usb_audio_cluster *)
&iot[id].u.mu_v1->baSourceId[
iot[id].u.mu_v1->bNrInPins];
goto done;
case UDESCSUB_AC_SELECTOR:
if (iot[id].u.su_v1->bNrInPins > 0) {
/* XXX This is not really right */
id = iot[id].u.su_v1->baSourceId[0];
}
break;
case UDESCSUB_AC_FEATURE:
id = iot[id].u.fu_v1->bSourceId;
break;
case UDESCSUB_AC_PROCESSING:
r = *((const struct usb_audio_cluster *)
&iot[id].u.pu_v1->baSourceId[
iot[id].u.pu_v1->bNrInPins]);
goto done;
case UDESCSUB_AC_EXTENSION:
r = *((const struct usb_audio_cluster *)
&iot[id].u.eu_v1->baSourceId[
iot[id].u.eu_v1->bNrInPins]);
goto done;
default:
goto error;
}
}
error:
DPRINTF("bad data\n");
memset(&r, 0, sizeof(r));
done:
return (r);
}
static struct usb_audio20_cluster
uaudio20_mixer_get_cluster(uint8_t id, const struct uaudio_terminal_node *iot)
{
struct usb_audio20_cluster r;
const struct usb_descriptor *dp;
uint8_t i;
for (i = 0; i < UAUDIO_RECURSE_LIMIT; i++) { /* avoid infinite loops */
dp = iot[id].u.desc;
if (dp == NULL)
goto error;
switch (dp->bDescriptorSubtype) {
case UDESCSUB_AC_INPUT:
r.bNrChannels = iot[id].u.it_v2->bNrChannels;
r.bmChannelConfig[0] = iot[id].u.it_v2->bmChannelConfig[0];
r.bmChannelConfig[1] = iot[id].u.it_v2->bmChannelConfig[1];
r.bmChannelConfig[2] = iot[id].u.it_v2->bmChannelConfig[2];
r.bmChannelConfig[3] = iot[id].u.it_v2->bmChannelConfig[3];
r.iChannelNames = iot[id].u.it_v2->iTerminal;
goto done;
case UDESCSUB_AC_OUTPUT:
id = iot[id].u.ot_v2->bSourceId;
break;
case UDESCSUB_AC_MIXER:
r = *(const struct usb_audio20_cluster *)
&iot[id].u.mu_v2->baSourceId[
iot[id].u.mu_v2->bNrInPins];
goto done;
case UDESCSUB_AC_SELECTOR:
if (iot[id].u.su_v2->bNrInPins > 0) {
/* XXX This is not really right */
id = iot[id].u.su_v2->baSourceId[0];
}
break;
case UDESCSUB_AC_SAMPLE_RT:
id = iot[id].u.ru_v2->bSourceId;
break;
case UDESCSUB_AC_EFFECT:
id = iot[id].u.ef_v2->bSourceId;
break;
case UDESCSUB_AC_FEATURE:
id = iot[id].u.fu_v2->bSourceId;
break;
case UDESCSUB_AC_PROCESSING_V2:
r = *((const struct usb_audio20_cluster *)
&iot[id].u.pu_v2->baSourceId[
iot[id].u.pu_v2->bNrInPins]);
goto done;
case UDESCSUB_AC_EXTENSION_V2:
r = *((const struct usb_audio20_cluster *)
&iot[id].u.eu_v2->baSourceId[
iot[id].u.eu_v2->bNrInPins]);
goto done;
default:
goto error;
}
}
error:
DPRINTF("Bad data!\n");
memset(&r, 0, sizeof(r));
done:
return (r);
}
static uint16_t
uaudio_mixer_determine_class(const struct uaudio_terminal_node *iot,
struct uaudio_mixer_node *mix)
{
uint16_t terminal_type = 0x0000;
const struct uaudio_terminal_node *input[2];
const struct uaudio_terminal_node *output[2];
input[0] = uaudio_mixer_get_input(iot, 0);
input[1] = uaudio_mixer_get_input(iot, 1);
output[0] = uaudio_mixer_get_output(iot, 0);
output[1] = uaudio_mixer_get_output(iot, 1);
/*
* check if there is only
* one output terminal:
*/
if (output[0] && (!output[1])) {
terminal_type =
UGETW(output[0]->u.ot_v1->wTerminalType);
}
/*
* If the only output terminal is USB,
* the class is UAC_RECORD.
*/
if ((terminal_type & 0xff00) == (UAT_UNDEFINED & 0xff00)) {
mix->class = UAC_RECORD;
if (input[0] && (!input[1])) {
terminal_type =
UGETW(input[0]->u.it_v1->wTerminalType);
} else {
terminal_type = 0;
}
goto done;
}
/*
* if the unit is connected to just
* one input terminal, the
* class is UAC_INPUT:
*/
if (input[0] && (!input[1])) {
mix->class = UAC_INPUT;
terminal_type =
UGETW(input[0]->u.it_v1->wTerminalType);
goto done;
}
/*
* Otherwise, the class is UAC_OUTPUT.
*/
mix->class = UAC_OUTPUT;
done:
return (terminal_type);
}
static uint16_t
uaudio20_mixer_determine_class(const struct uaudio_terminal_node *iot,
struct uaudio_mixer_node *mix)
{
uint16_t terminal_type = 0x0000;
const struct uaudio_terminal_node *input[2];
const struct uaudio_terminal_node *output[2];
input[0] = uaudio_mixer_get_input(iot, 0);
input[1] = uaudio_mixer_get_input(iot, 1);
output[0] = uaudio_mixer_get_output(iot, 0);
output[1] = uaudio_mixer_get_output(iot, 1);
/*
* check if there is only
* one output terminal:
*/
if (output[0] && (!output[1]))
terminal_type = UGETW(output[0]->u.ot_v2->wTerminalType);
/*
* If the only output terminal is USB,
* the class is UAC_RECORD.
*/
if ((terminal_type & 0xff00) == (UAT_UNDEFINED & 0xff00)) {
mix->class = UAC_RECORD;
if (input[0] && (!input[1])) {
terminal_type =
UGETW(input[0]->u.it_v2->wTerminalType);
} else {
terminal_type = 0;
}
goto done;
}
/*
* if the unit is connected to just
* one input terminal, the
* class is UAC_INPUT:
*/
if (input[0] && (!input[1])) {
mix->class = UAC_INPUT;
terminal_type =
UGETW(input[0]->u.it_v2->wTerminalType);
goto done;
}
/*
* Otherwise, the class is UAC_OUTPUT.
*/
mix->class = UAC_OUTPUT;
done:
return (terminal_type);
}
struct uaudio_tt_to_feature {
uint16_t terminal_type;
uint16_t feature;
};
static const struct uaudio_tt_to_feature uaudio_tt_to_feature[] = {
{UAT_STREAM, SOUND_MIXER_PCM},
{UATI_MICROPHONE, SOUND_MIXER_MIC},
{UATI_DESKMICROPHONE, SOUND_MIXER_MIC},
{UATI_PERSONALMICROPHONE, SOUND_MIXER_MIC},
{UATI_OMNIMICROPHONE, SOUND_MIXER_MIC},
{UATI_MICROPHONEARRAY, SOUND_MIXER_MIC},
{UATI_PROCMICROPHONEARR, SOUND_MIXER_MIC},
{UATO_SPEAKER, SOUND_MIXER_SPEAKER},
{UATO_DESKTOPSPEAKER, SOUND_MIXER_SPEAKER},
{UATO_ROOMSPEAKER, SOUND_MIXER_SPEAKER},
{UATO_COMMSPEAKER, SOUND_MIXER_SPEAKER},
{UATE_ANALOGCONN, SOUND_MIXER_LINE},
{UATE_LINECONN, SOUND_MIXER_LINE},
{UATE_LEGACYCONN, SOUND_MIXER_LINE},
{UATE_DIGITALAUIFC, SOUND_MIXER_ALTPCM},
{UATE_SPDIF, SOUND_MIXER_ALTPCM},
{UATE_1394DA, SOUND_MIXER_ALTPCM},
{UATE_1394DV, SOUND_MIXER_ALTPCM},
{UATF_CDPLAYER, SOUND_MIXER_CD},
{UATF_SYNTHESIZER, SOUND_MIXER_SYNTH},
{UATF_VIDEODISCAUDIO, SOUND_MIXER_VIDEO},
{UATF_DVDAUDIO, SOUND_MIXER_VIDEO},
{UATF_TVTUNERAUDIO, SOUND_MIXER_VIDEO},
/* telephony terminal types */
{UATT_UNDEFINED, SOUND_MIXER_PHONEIN}, /* SOUND_MIXER_PHONEOUT */
{UATT_PHONELINE, SOUND_MIXER_PHONEIN}, /* SOUND_MIXER_PHONEOUT */
{UATT_TELEPHONE, SOUND_MIXER_PHONEIN}, /* SOUND_MIXER_PHONEOUT */
{UATT_DOWNLINEPHONE, SOUND_MIXER_PHONEIN}, /* SOUND_MIXER_PHONEOUT */
{UATF_RADIORECV, SOUND_MIXER_RADIO},
{UATF_RADIOXMIT, SOUND_MIXER_RADIO},
{UAT_UNDEFINED, SOUND_MIXER_VOLUME},
{UAT_VENDOR, SOUND_MIXER_VOLUME},
{UATI_UNDEFINED, SOUND_MIXER_VOLUME},
/* output terminal types */
{UATO_UNDEFINED, SOUND_MIXER_VOLUME},
{UATO_DISPLAYAUDIO, SOUND_MIXER_VOLUME},
{UATO_SUBWOOFER, SOUND_MIXER_VOLUME},
{UATO_HEADPHONES, SOUND_MIXER_VOLUME},
/* bidir terminal types */
{UATB_UNDEFINED, SOUND_MIXER_VOLUME},
{UATB_HANDSET, SOUND_MIXER_VOLUME},
{UATB_HEADSET, SOUND_MIXER_VOLUME},
{UATB_SPEAKERPHONE, SOUND_MIXER_VOLUME},
{UATB_SPEAKERPHONEESUP, SOUND_MIXER_VOLUME},
{UATB_SPEAKERPHONEECANC, SOUND_MIXER_VOLUME},
/* external terminal types */
{UATE_UNDEFINED, SOUND_MIXER_VOLUME},
/* embedded function terminal types */
{UATF_UNDEFINED, SOUND_MIXER_VOLUME},
{UATF_CALIBNOISE, SOUND_MIXER_VOLUME},
{UATF_EQUNOISE, SOUND_MIXER_VOLUME},
{UATF_DAT, SOUND_MIXER_VOLUME},
{UATF_DCC, SOUND_MIXER_VOLUME},
{UATF_MINIDISK, SOUND_MIXER_VOLUME},
{UATF_ANALOGTAPE, SOUND_MIXER_VOLUME},
{UATF_PHONOGRAPH, SOUND_MIXER_VOLUME},
{UATF_VCRAUDIO, SOUND_MIXER_VOLUME},
{UATF_SATELLITE, SOUND_MIXER_VOLUME},
{UATF_CABLETUNER, SOUND_MIXER_VOLUME},
{UATF_DSS, SOUND_MIXER_VOLUME},
{UATF_MULTITRACK, SOUND_MIXER_VOLUME},
{0xffff, SOUND_MIXER_VOLUME},
/* default */
{0x0000, SOUND_MIXER_VOLUME},
};
static uint16_t
uaudio_mixer_feature_name(const struct uaudio_terminal_node *iot,
struct uaudio_mixer_node *mix)
{
const struct uaudio_tt_to_feature *uat = uaudio_tt_to_feature;
uint16_t terminal_type = uaudio_mixer_determine_class(iot, mix);
if ((mix->class == UAC_RECORD) && (terminal_type == 0)) {
return (SOUND_MIXER_IMIX);
}
while (uat->terminal_type) {
if (uat->terminal_type == terminal_type) {
break;
}
uat++;
}
DPRINTF("terminal_type=0x%04x -> %d\n",
terminal_type, uat->feature);
return (uat->feature);
}
static uint16_t
uaudio20_mixer_feature_name(const struct uaudio_terminal_node *iot,
struct uaudio_mixer_node *mix)
{
const struct uaudio_tt_to_feature *uat;
uint16_t terminal_type = uaudio20_mixer_determine_class(iot, mix);
if ((mix->class == UAC_RECORD) && (terminal_type == 0))
return (SOUND_MIXER_IMIX);
for (uat = uaudio_tt_to_feature; uat->terminal_type != 0; uat++) {
if (uat->terminal_type == terminal_type)
break;
}
DPRINTF("terminal_type=0x%04x -> %d\n",
terminal_type, uat->feature);
return (uat->feature);
}
static const struct uaudio_terminal_node *
uaudio_mixer_get_input(const struct uaudio_terminal_node *iot, uint8_t i)
{
struct uaudio_terminal_node *root = iot->root;
uint8_t n;
n = iot->usr.id_max;
do {
if (iot->usr.bit_input[n / 8] & (1 << (n % 8))) {
if (!i--)
return (root + n);
}
} while (n--);
return (NULL);
}
static const struct uaudio_terminal_node *
uaudio_mixer_get_output(const struct uaudio_terminal_node *iot, uint8_t i)
{
struct uaudio_terminal_node *root = iot->root;
uint8_t n;
n = iot->usr.id_max;
do {
if (iot->usr.bit_output[n / 8] & (1 << (n % 8))) {
if (!i--)
return (root + n);
}
} while (n--);
return (NULL);
}
static void
uaudio_mixer_find_inputs_sub(struct uaudio_terminal_node *root,
const uint8_t *p_id, uint8_t n_id,
struct uaudio_search_result *info)
{
struct uaudio_terminal_node *iot;
uint8_t n;
uint8_t i;
uint8_t is_last;
top:
for (n = 0; n < n_id; n++) {
i = p_id[n];
if (info->recurse_level == UAUDIO_RECURSE_LIMIT) {
DPRINTF("avoided going into a circle at id=%d!\n", i);
return;
}
info->recurse_level++;
iot = (root + i);
if (iot->u.desc == NULL)
continue;
is_last = ((n + 1) == n_id);
switch (iot->u.desc->bDescriptorSubtype) {
case UDESCSUB_AC_INPUT:
info->bit_input[i / 8] |= (1 << (i % 8));
break;
case UDESCSUB_AC_FEATURE:
if (is_last) {
p_id = &iot->u.fu_v1->bSourceId;
n_id = 1;
goto top;
}
uaudio_mixer_find_inputs_sub(
root, &iot->u.fu_v1->bSourceId, 1, info);
break;
case UDESCSUB_AC_OUTPUT:
if (is_last) {
p_id = &iot->u.ot_v1->bSourceId;
n_id = 1;
goto top;
}
uaudio_mixer_find_inputs_sub(
root, &iot->u.ot_v1->bSourceId, 1, info);
break;
case UDESCSUB_AC_MIXER:
if (is_last) {
p_id = iot->u.mu_v1->baSourceId;
n_id = iot->u.mu_v1->bNrInPins;
goto top;
}
uaudio_mixer_find_inputs_sub(
root, iot->u.mu_v1->baSourceId,
iot->u.mu_v1->bNrInPins, info);
break;
case UDESCSUB_AC_SELECTOR:
if (is_last) {
p_id = iot->u.su_v1->baSourceId;
n_id = iot->u.su_v1->bNrInPins;
goto top;
}
uaudio_mixer_find_inputs_sub(
root, iot->u.su_v1->baSourceId,
iot->u.su_v1->bNrInPins, info);
break;
case UDESCSUB_AC_PROCESSING:
if (is_last) {
p_id = iot->u.pu_v1->baSourceId;
n_id = iot->u.pu_v1->bNrInPins;
goto top;
}
uaudio_mixer_find_inputs_sub(
root, iot->u.pu_v1->baSourceId,
iot->u.pu_v1->bNrInPins, info);
break;
case UDESCSUB_AC_EXTENSION:
if (is_last) {
p_id = iot->u.eu_v1->baSourceId;
n_id = iot->u.eu_v1->bNrInPins;
goto top;
}
uaudio_mixer_find_inputs_sub(
root, iot->u.eu_v1->baSourceId,
iot->u.eu_v1->bNrInPins, info);
break;
default:
break;
}
}
}
static void
uaudio20_mixer_find_inputs_sub(struct uaudio_terminal_node *root,
const uint8_t *p_id, uint8_t n_id,
struct uaudio_search_result *info)
{
struct uaudio_terminal_node *iot;
uint8_t n;
uint8_t i;
uint8_t is_last;
top:
for (n = 0; n < n_id; n++) {
i = p_id[n];
if (info->recurse_level == UAUDIO_RECURSE_LIMIT) {
DPRINTF("avoided going into a circle at id=%d!\n", i);
return;
}
info->recurse_level++;
iot = (root + i);
if (iot->u.desc == NULL)
continue;
is_last = ((n + 1) == n_id);
switch (iot->u.desc->bDescriptorSubtype) {
case UDESCSUB_AC_INPUT:
info->bit_input[i / 8] |= (1 << (i % 8));
break;
case UDESCSUB_AC_OUTPUT:
if (is_last) {
p_id = &iot->u.ot_v2->bSourceId;
n_id = 1;
goto top;
}
uaudio20_mixer_find_inputs_sub(
root, &iot->u.ot_v2->bSourceId, 1, info);
break;
case UDESCSUB_AC_MIXER:
if (is_last) {
p_id = iot->u.mu_v2->baSourceId;
n_id = iot->u.mu_v2->bNrInPins;
goto top;
}
uaudio20_mixer_find_inputs_sub(
root, iot->u.mu_v2->baSourceId,
iot->u.mu_v2->bNrInPins, info);
break;
case UDESCSUB_AC_SELECTOR:
if (is_last) {
p_id = iot->u.su_v2->baSourceId;
n_id = iot->u.su_v2->bNrInPins;
goto top;
}
uaudio20_mixer_find_inputs_sub(
root, iot->u.su_v2->baSourceId,
iot->u.su_v2->bNrInPins, info);
break;
case UDESCSUB_AC_SAMPLE_RT:
if (is_last) {
p_id = &iot->u.ru_v2->bSourceId;
n_id = 1;
goto top;
}
uaudio20_mixer_find_inputs_sub(
root, &iot->u.ru_v2->bSourceId,
1, info);
break;
case UDESCSUB_AC_EFFECT:
if (is_last) {
p_id = &iot->u.ef_v2->bSourceId;
n_id = 1;
goto top;
}
uaudio20_mixer_find_inputs_sub(
root, &iot->u.ef_v2->bSourceId,
1, info);
break;
case UDESCSUB_AC_FEATURE:
if (is_last) {
p_id = &iot->u.fu_v2->bSourceId;
n_id = 1;
goto top;
}
uaudio20_mixer_find_inputs_sub(
root, &iot->u.fu_v2->bSourceId, 1, info);
break;
case UDESCSUB_AC_PROCESSING_V2:
if (is_last) {
p_id = iot->u.pu_v2->baSourceId;
n_id = iot->u.pu_v2->bNrInPins;
goto top;
}
uaudio20_mixer_find_inputs_sub(
root, iot->u.pu_v2->baSourceId,
iot->u.pu_v2->bNrInPins, info);
break;
case UDESCSUB_AC_EXTENSION_V2:
if (is_last) {
p_id = iot->u.eu_v2->baSourceId;
n_id = iot->u.eu_v2->bNrInPins;
goto top;
}
uaudio20_mixer_find_inputs_sub(
root, iot->u.eu_v2->baSourceId,
iot->u.eu_v2->bNrInPins, info);
break;
default:
break;
}
}
}
static void
uaudio20_mixer_find_clocks_sub(struct uaudio_terminal_node *root,
const uint8_t *p_id, uint8_t n_id,
struct uaudio_search_result *info)
{
struct uaudio_terminal_node *iot;
uint8_t n;
uint8_t i;
uint8_t is_last;
uint8_t id;
top:
for (n = 0; n < n_id; n++) {
i = p_id[n];
if (info->recurse_level == UAUDIO_RECURSE_LIMIT) {
DPRINTF("avoided going into a circle at id=%d!\n", i);
return;
}
info->recurse_level++;
iot = (root + i);
if (iot->u.desc == NULL)
continue;
is_last = ((n + 1) == n_id);
switch (iot->u.desc->bDescriptorSubtype) {
case UDESCSUB_AC_INPUT:
info->is_input = 1;
if (is_last) {
p_id = &iot->u.it_v2->bCSourceId;
n_id = 1;
goto top;
}
uaudio20_mixer_find_clocks_sub(root,
&iot->u.it_v2->bCSourceId, 1, info);
break;
case UDESCSUB_AC_OUTPUT:
info->is_input = 0;
if (is_last) {
p_id = &iot->u.ot_v2->bCSourceId;
n_id = 1;
goto top;
}
uaudio20_mixer_find_clocks_sub(root,
&iot->u.ot_v2->bCSourceId, 1, info);
break;
case UDESCSUB_AC_CLOCK_SEL:
if (is_last) {
p_id = iot->u.csel_v2->baCSourceId;
n_id = iot->u.csel_v2->bNrInPins;
goto top;
}
uaudio20_mixer_find_clocks_sub(root,
iot->u.csel_v2->baCSourceId,
iot->u.csel_v2->bNrInPins, info);
break;
case UDESCSUB_AC_CLOCK_MUL:
if (is_last) {
p_id = &iot->u.cmul_v2->bCSourceId;
n_id = 1;
goto top;
}
uaudio20_mixer_find_clocks_sub(root,
&iot->u.cmul_v2->bCSourceId,
1, info);
break;
case UDESCSUB_AC_CLOCK_SRC:
id = iot->u.csrc_v2->bClockId;
switch (info->is_input) {
case 0:
info->bit_output[id / 8] |= (1 << (id % 8));
break;
case 1:
info->bit_input[id / 8] |= (1 << (id % 8));
break;
default:
break;
}
break;
default:
break;
}
}
}
static void
uaudio_mixer_find_outputs_sub(struct uaudio_terminal_node *root, uint8_t id,
uint8_t n_id, struct uaudio_search_result *info)
{
struct uaudio_terminal_node *iot = (root + id);
uint8_t j;
j = n_id;
do {
if ((j != id) && ((root + j)->u.desc) &&
((root + j)->u.desc->bDescriptorSubtype == UDESCSUB_AC_OUTPUT)) {
/*
* "j" (output) <--- virtual wire <--- "id" (input)
*
* if "j" has "id" on the input, then "id" have "j" on
* the output, because they are connected:
*/
if ((root + j)->usr.bit_input[id / 8] & (1 << (id % 8))) {
iot->usr.bit_output[j / 8] |= (1 << (j % 8));
}
}
} while (j--);
}
static void
uaudio_mixer_fill_info(struct uaudio_softc *sc,
struct usb_device *udev, void *desc)
{
const struct usb_audio_control_descriptor *acdp;
struct usb_config_descriptor *cd = usbd_get_config_descriptor(udev);
const struct usb_descriptor *dp;
const struct usb_audio_unit *au;
struct uaudio_terminal_node *iot = NULL;
uint16_t wTotalLen;
uint8_t ID_max = 0; /* inclusive */
uint8_t i;
desc = usb_desc_foreach(cd, desc);
if (desc == NULL) {
DPRINTF("no Audio Control header\n");
goto done;
}
acdp = desc;
if ((acdp->bLength < sizeof(*acdp)) ||
(acdp->bDescriptorType != UDESC_CS_INTERFACE) ||
(acdp->bDescriptorSubtype != UDESCSUB_AC_HEADER)) {
DPRINTF("invalid Audio Control header\n");
goto done;
}
/* "wTotalLen" is allowed to be corrupt */
wTotalLen = UGETW(acdp->wTotalLength) - acdp->bLength;
/* get USB audio revision */
sc->sc_audio_rev = UGETW(acdp->bcdADC);
DPRINTFN(3, "found AC header, vers=%03x, len=%d\n",
sc->sc_audio_rev, wTotalLen);
iot = malloc(sizeof(struct uaudio_terminal_node) * 256, M_TEMP,
M_WAITOK | M_ZERO);
if (iot == NULL) {
DPRINTF("no memory!\n");
goto done;
}
while ((desc = usb_desc_foreach(cd, desc))) {
dp = desc;
if (dp->bLength > wTotalLen) {
break;
} else {
wTotalLen -= dp->bLength;
}
if (sc->sc_audio_rev >= UAUDIO_VERSION_30)
au = NULL;
else if (sc->sc_audio_rev >= UAUDIO_VERSION_20)
au = uaudio20_mixer_verify_desc(dp, 0);
else
au = uaudio_mixer_verify_desc(dp, 0);
if (au) {
iot[au->bUnitId].u.desc = (const void *)au;
if (au->bUnitId > ID_max)
ID_max = au->bUnitId;
}
}
DPRINTF("Maximum ID=%d\n", ID_max);
/*
* determine sourcing inputs for
* all nodes in the tree:
*/
i = ID_max;
do {
if (sc->sc_audio_rev >= UAUDIO_VERSION_30) {
/* FALLTHROUGH */
} else if (sc->sc_audio_rev >= UAUDIO_VERSION_20) {
uaudio20_mixer_find_inputs_sub(iot,
&i, 1, &((iot + i)->usr));
sc->sc_mixer_clocks.is_input = 255;
sc->sc_mixer_clocks.recurse_level = 0;
uaudio20_mixer_find_clocks_sub(iot,
&i, 1, &sc->sc_mixer_clocks);
} else {
uaudio_mixer_find_inputs_sub(iot,
&i, 1, &((iot + i)->usr));
}
} while (i--);
/*
* determine outputs for
* all nodes in the tree:
*/
i = ID_max;
do {
uaudio_mixer_find_outputs_sub(iot,
i, ID_max, &((iot + i)->usr));
} while (i--);
/* set "id_max" and "root" */
i = ID_max;
do {
(iot + i)->usr.id_max = ID_max;
(iot + i)->root = iot;
} while (i--);
/*
* Scan the config to create a linked list of "mixer" nodes:
*/
i = ID_max;
do {
dp = iot[i].u.desc;
if (dp == NULL)
continue;
DPRINTFN(11, "id=%d subtype=%d\n",
i, dp->bDescriptorSubtype);
if (sc->sc_audio_rev >= UAUDIO_VERSION_30) {
continue;
} else if (sc->sc_audio_rev >= UAUDIO_VERSION_20) {
switch (dp->bDescriptorSubtype) {
case UDESCSUB_AC_HEADER:
DPRINTF("unexpected AC header\n");
break;
case UDESCSUB_AC_INPUT:
case UDESCSUB_AC_OUTPUT:
case UDESCSUB_AC_PROCESSING_V2:
case UDESCSUB_AC_EXTENSION_V2:
case UDESCSUB_AC_EFFECT:
case UDESCSUB_AC_CLOCK_SRC:
case UDESCSUB_AC_CLOCK_SEL:
case UDESCSUB_AC_CLOCK_MUL:
case UDESCSUB_AC_SAMPLE_RT:
break;
case UDESCSUB_AC_MIXER:
uaudio20_mixer_add_mixer(sc, iot, i);
break;
case UDESCSUB_AC_SELECTOR:
uaudio20_mixer_add_selector(sc, iot, i);
break;
case UDESCSUB_AC_FEATURE:
uaudio20_mixer_add_feature(sc, iot, i);
break;
default:
DPRINTF("bad AC desc subtype=0x%02x\n",
dp->bDescriptorSubtype);
break;
}
continue;
}
switch (dp->bDescriptorSubtype) {
case UDESCSUB_AC_HEADER:
DPRINTF("unexpected AC header\n");
break;
case UDESCSUB_AC_INPUT:
case UDESCSUB_AC_OUTPUT:
break;
case UDESCSUB_AC_MIXER:
uaudio_mixer_add_mixer(sc, iot, i);
break;
case UDESCSUB_AC_SELECTOR:
uaudio_mixer_add_selector(sc, iot, i);
break;
case UDESCSUB_AC_FEATURE:
uaudio_mixer_add_feature(sc, iot, i);
break;
case UDESCSUB_AC_PROCESSING:
uaudio_mixer_add_processing(sc, iot, i);
break;
case UDESCSUB_AC_EXTENSION:
uaudio_mixer_add_extension(sc, iot, i);
break;
default:
DPRINTF("bad AC desc subtype=0x%02x\n",
dp->bDescriptorSubtype);
break;
}
} while (i--);
done:
free(iot, M_TEMP);
}
static int
uaudio_mixer_get(struct usb_device *udev, uint16_t audio_rev,
uint8_t what, struct uaudio_mixer_node *mc)
{
struct usb_device_request req;
int val;
uint8_t data[2 + (2 * 3)];
usb_error_t err;
if (mc->wValue[0] == -1)
return (0);
if (audio_rev >= UAUDIO_VERSION_30)
return (0);
else if (audio_rev >= UAUDIO_VERSION_20) {
if (what == GET_CUR) {
req.bRequest = UA20_CS_CUR;
USETW(req.wLength, 2);
} else {
req.bRequest = UA20_CS_RANGE;
USETW(req.wLength, 8);
}
} else {
uint16_t len = MIX_SIZE(mc->type);
req.bRequest = what;
USETW(req.wLength, len);
}
req.bmRequestType = UT_READ_CLASS_INTERFACE;
USETW(req.wValue, mc->wValue[0]);
USETW(req.wIndex, mc->wIndex);
memset(data, 0, sizeof(data));
err = usbd_do_request(udev, NULL, &req, data);
if (err) {
DPRINTF("err=%s\n", usbd_errstr(err));
return (0);
}
if (audio_rev >= UAUDIO_VERSION_30) {
val = 0;
} else if (audio_rev >= UAUDIO_VERSION_20) {
switch (what) {
case GET_CUR:
val = (data[0] | (data[1] << 8));
break;
case GET_MIN:
val = (data[2] | (data[3] << 8));
break;
case GET_MAX:
val = (data[4] | (data[5] << 8));
break;
case GET_RES:
val = (data[6] | (data[7] << 8));
break;
default:
val = 0;
break;
}
} else {
val = (data[0] | (data[1] << 8));
}
if (what == GET_CUR || what == GET_MIN || what == GET_MAX)
val = uaudio_mixer_signext(mc->type, val);
DPRINTFN(3, "val=%d\n", val);
return (val);
}
static void
uaudio_mixer_write_cfg_callback(struct usb_xfer *xfer, usb_error_t error)
{
struct usb_device_request req;
struct uaudio_softc *sc = usbd_xfer_softc(xfer);
struct uaudio_mixer_node *mc = sc->sc_mixer_curr;
struct usb_page_cache *pc;
uint16_t len;
uint8_t repeat = 1;
uint8_t update;
uint8_t chan;
uint8_t buf[2];
DPRINTF("\n");
switch (USB_GET_STATE(xfer)) {
case USB_ST_TRANSFERRED:
tr_transferred:
case USB_ST_SETUP:
tr_setup:
if (mc == NULL) {
mc = sc->sc_mixer_root;
sc->sc_mixer_curr = mc;
sc->sc_mixer_chan = 0;
repeat = 0;
}
while (mc) {
while (sc->sc_mixer_chan < mc->nchan) {
chan = sc->sc_mixer_chan;
sc->sc_mixer_chan++;
update = ((mc->update[chan / 8] & (1 << (chan % 8))) &&
(mc->wValue[chan] != -1));
mc->update[chan / 8] &= ~(1 << (chan % 8));
if (update) {
req.bmRequestType = UT_WRITE_CLASS_INTERFACE;
USETW(req.wValue, mc->wValue[chan]);
USETW(req.wIndex, mc->wIndex);
if (sc->sc_audio_rev >= UAUDIO_VERSION_30) {
return;
} else if (sc->sc_audio_rev >= UAUDIO_VERSION_20) {
len = 2;
req.bRequest = UA20_CS_CUR;
USETW(req.wLength, len);
} else {
len = MIX_SIZE(mc->type);
req.bRequest = SET_CUR;
USETW(req.wLength, len);
}
buf[0] = (mc->wData[chan] & 0xFF);
buf[1] = (mc->wData[chan] >> 8) & 0xFF;
pc = usbd_xfer_get_frame(xfer, 0);
usbd_copy_in(pc, 0, &req, sizeof(req));
pc = usbd_xfer_get_frame(xfer, 1);
usbd_copy_in(pc, 0, buf, len);
usbd_xfer_set_frame_len(xfer, 0, sizeof(req));
usbd_xfer_set_frame_len(xfer, 1, len);
usbd_xfer_set_frames(xfer, len ? 2 : 1);
usbd_transfer_submit(xfer);
return;
}
}
mc = mc->next;
sc->sc_mixer_curr = mc;
sc->sc_mixer_chan = 0;
}
if (repeat) {
goto tr_setup;
}
break;
default: /* Error */
DPRINTF("error=%s\n", usbd_errstr(error));
if (error == USB_ERR_CANCELLED) {
/* do nothing - we are detaching */
break;
}
goto tr_transferred;
}
}
static usb_error_t
uaudio_set_speed(struct usb_device *udev, uint8_t endpt, uint32_t speed)
{
struct usb_device_request req;
uint8_t data[3];
DPRINTFN(6, "endpt=%d speed=%u\n", endpt, speed);
req.bmRequestType = UT_WRITE_CLASS_ENDPOINT;
req.bRequest = SET_CUR;
USETW2(req.wValue, SAMPLING_FREQ_CONTROL, 0);
USETW(req.wIndex, endpt);
USETW(req.wLength, 3);
data[0] = speed;
data[1] = speed >> 8;
data[2] = speed >> 16;
return (usbd_do_request(udev, NULL, &req, data));
}
static usb_error_t
uaudio20_set_speed(struct usb_device *udev, uint8_t iface_no,
uint8_t clockid, uint32_t speed)
{
struct usb_device_request req;
uint8_t data[4];
DPRINTFN(6, "ifaceno=%d clockid=%d speed=%u\n",
iface_no, clockid, speed);
req.bmRequestType = UT_WRITE_CLASS_INTERFACE;
req.bRequest = UA20_CS_CUR;
USETW2(req.wValue, UA20_CS_SAM_FREQ_CONTROL, 0);
USETW2(req.wIndex, clockid, iface_no);
USETW(req.wLength, 4);
data[0] = speed;
data[1] = speed >> 8;
data[2] = speed >> 16;
data[3] = speed >> 24;
return (usbd_do_request(udev, NULL, &req, data));
}
static int
uaudio_mixer_signext(uint8_t type, int val)
{
if (!MIX_UNSIGNED(type)) {
if (MIX_SIZE(type) == 2) {
val = (int16_t)val;
} else {
val = (int8_t)val;
}
}
return (val);
}
static int
uaudio_mixer_bsd2value(struct uaudio_mixer_node *mc, int32_t val)
{
if (mc->type == MIX_ON_OFF) {
val = (val != 0);
} else if (mc->type == MIX_SELECTOR) {
if ((val < mc->minval) ||
(val > mc->maxval)) {
val = mc->minval;
}
} else {
/* compute actual volume */
val = (val * mc->mul) / 255;
/* add lower offset */
val = val + mc->minval;
/* make sure we don't write a value out of range */
if (val > mc->maxval)
val = mc->maxval;
else if (val < mc->minval)
val = mc->minval;
}
DPRINTFN(6, "type=0x%03x val=%d min=%d max=%d val=%d\n",
mc->type, val, mc->minval, mc->maxval, val);
return (val);
}
static void
uaudio_mixer_ctl_set(struct uaudio_softc *sc, struct uaudio_mixer_node *mc,
uint8_t chan, int32_t val)
{
val = uaudio_mixer_bsd2value(mc, val);
mc->update[chan / 8] |= (1 << (chan % 8));
mc->wData[chan] = val;
/* start the transfer, if not already started */
usbd_transfer_start(sc->sc_mixer_xfer[0]);
}
static void
uaudio_mixer_init(struct uaudio_softc *sc)
{
struct uaudio_mixer_node *mc;
int32_t i;
for (mc = sc->sc_mixer_root; mc;
mc = mc->next) {
if (mc->ctl != SOUND_MIXER_NRDEVICES) {
/*
* Set device mask bits. See
* /usr/include/machine/soundcard.h
*/
sc->sc_mix_info |= (1 << mc->ctl);
}
if ((mc->ctl == SOUND_MIXER_NRDEVICES) &&
(mc->type == MIX_SELECTOR)) {
for (i = mc->minval; (i > 0) && (i <= mc->maxval); i++) {
if (mc->slctrtype[i - 1] == SOUND_MIXER_NRDEVICES) {
continue;
}
sc->sc_recsrc_info |= 1 << mc->slctrtype[i - 1];
}
}
}
}
int
uaudio_mixer_init_sub(struct uaudio_softc *sc, struct snd_mixer *m)
{
DPRINTF("\n");
sc->sc_mixer_lock = mixer_get_lock(m);
sc->sc_mixer_dev = m;
if (usbd_transfer_setup(sc->sc_udev, &sc->sc_mixer_iface_index,
sc->sc_mixer_xfer, uaudio_mixer_config, 1, sc,
sc->sc_mixer_lock)) {
DPRINTFN(0, "could not allocate USB "
"transfer for audio mixer!\n");
return (ENOMEM);
}
if (!(sc->sc_mix_info & SOUND_MASK_VOLUME)) {
mix_setparentchild(m, SOUND_MIXER_VOLUME, SOUND_MASK_PCM);
mix_setrealdev(m, SOUND_MIXER_VOLUME, SOUND_MIXER_NONE);
}
mix_setdevs(m, sc->sc_mix_info);
mix_setrecdevs(m, sc->sc_recsrc_info);
return (0);
}
int
uaudio_mixer_uninit_sub(struct uaudio_softc *sc)
{
DPRINTF("\n");
usbd_transfer_unsetup(sc->sc_mixer_xfer, 1);
sc->sc_mixer_lock = NULL;
return (0);
}
void
uaudio_mixer_set(struct uaudio_softc *sc, unsigned type,
unsigned left, unsigned right)
{
struct uaudio_mixer_node *mc;
int chan;
for (mc = sc->sc_mixer_root; mc != NULL; mc = mc->next) {
if (mc->ctl == type) {
for (chan = 0; chan < mc->nchan; chan++) {
uaudio_mixer_ctl_set(sc, mc, chan,
(int)((chan == 0 ? left : right) *
255) / 100);
}
}
}
}
uint32_t
uaudio_mixer_setrecsrc(struct uaudio_softc *sc, uint32_t src)
{
struct uaudio_mixer_node *mc;
uint32_t mask;
uint32_t temp;
int32_t i;
for (mc = sc->sc_mixer_root; mc;
mc = mc->next) {
if ((mc->ctl == SOUND_MIXER_NRDEVICES) &&
(mc->type == MIX_SELECTOR)) {
/* compute selector mask */
mask = 0;
for (i = mc->minval; (i > 0) && (i <= mc->maxval); i++) {
mask |= (1 << mc->slctrtype[i - 1]);
}
temp = mask & src;
if (temp == 0) {
continue;
}
/* find the first set bit */
temp = (-temp) & temp;
/* update "src" */
src &= ~mask;
src |= temp;
for (i = mc->minval; (i > 0) && (i <= mc->maxval); i++) {
if (temp != (1 << mc->slctrtype[i - 1])) {
continue;
}
uaudio_mixer_ctl_set(sc, mc, 0, i);
break;
}
}
}
return (src);
}
/*========================================================================*
* MIDI support routines
*========================================================================*/
static void
umidi_bulk_read_callback(struct usb_xfer *xfer, usb_error_t error)
{
struct umidi_chan *chan = usbd_xfer_softc(xfer);
struct umidi_sub_chan *sub;
struct usb_page_cache *pc;
uint8_t buf[4];
uint8_t cmd_len;
uint8_t cn;
uint16_t pos;
int actlen;
usbd_xfer_status(xfer, &actlen, NULL, NULL, NULL);
switch (USB_GET_STATE(xfer)) {
case USB_ST_TRANSFERRED:
DPRINTF("actlen=%d bytes\n", actlen);
pos = 0;
pc = usbd_xfer_get_frame(xfer, 0);
while (actlen >= 4) {
/* copy out the MIDI data */
usbd_copy_out(pc, pos, buf, 4);
/* command length */
cmd_len = umidi_cmd_to_len[buf[0] & 0xF];
/* cable number */
cn = buf[0] >> 4;
/*
* Lookup sub-channel. The index is range
* checked below.
*/
sub = &chan->sub[cn];
if ((cmd_len != 0) && (cn < chan->max_emb_jack) &&
(sub->read_open != 0)) {
/* Send data to the application */
usb_fifo_put_data_linear(
sub->fifo.fp[USB_FIFO_RX],
buf + 1, cmd_len, 1);
}
actlen -= 4;
pos += 4;
}
case USB_ST_SETUP:
DPRINTF("start\n");
tr_setup:
usbd_xfer_set_frame_len(xfer, 0, usbd_xfer_max_len(xfer));
usbd_transfer_submit(xfer);
break;
default:
DPRINTF("error=%s\n", usbd_errstr(error));
if (error != USB_ERR_CANCELLED) {
/* try to clear stall first */
usbd_xfer_set_stall(xfer);
goto tr_setup;
}
break;
}
}
/*
* The following statemachine, that converts MIDI commands to
* USB MIDI packets, derives from Linux's usbmidi.c, which
* was written by "Clemens Ladisch":
*
* Returns:
* 0: No command
* Else: Command is complete
*/
static uint8_t
umidi_convert_to_usb(struct umidi_sub_chan *sub, uint8_t cn, uint8_t b)
{
uint8_t p0 = (cn << 4);
if (b >= 0xf8) {
sub->temp_0[0] = p0 | 0x0f;
sub->temp_0[1] = b;
sub->temp_0[2] = 0;
sub->temp_0[3] = 0;
sub->temp_cmd = sub->temp_0;
return (1);
} else if (b >= 0xf0) {
switch (b) {
case 0xf0: /* system exclusive begin */
sub->temp_1[1] = b;
sub->state = UMIDI_ST_SYSEX_1;
break;
case 0xf1: /* MIDI time code */
case 0xf3: /* song select */
sub->temp_1[1] = b;
sub->state = UMIDI_ST_1PARAM;
break;
case 0xf2: /* song position pointer */
sub->temp_1[1] = b;
sub->state = UMIDI_ST_2PARAM_1;
break;
case 0xf4: /* unknown */
case 0xf5: /* unknown */
sub->state = UMIDI_ST_UNKNOWN;
break;
case 0xf6: /* tune request */
sub->temp_1[0] = p0 | 0x05;
sub->temp_1[1] = 0xf6;
sub->temp_1[2] = 0;
sub->temp_1[3] = 0;
sub->temp_cmd = sub->temp_1;
sub->state = UMIDI_ST_UNKNOWN;
return (1);
case 0xf7: /* system exclusive end */
switch (sub->state) {
case UMIDI_ST_SYSEX_0:
sub->temp_1[0] = p0 | 0x05;
sub->temp_1[1] = 0xf7;
sub->temp_1[2] = 0;
sub->temp_1[3] = 0;
sub->temp_cmd = sub->temp_1;
sub->state = UMIDI_ST_UNKNOWN;
return (1);
case UMIDI_ST_SYSEX_1:
sub->temp_1[0] = p0 | 0x06;
sub->temp_1[2] = 0xf7;
sub->temp_1[3] = 0;
sub->temp_cmd = sub->temp_1;
sub->state = UMIDI_ST_UNKNOWN;
return (1);
case UMIDI_ST_SYSEX_2:
sub->temp_1[0] = p0 | 0x07;
sub->temp_1[3] = 0xf7;
sub->temp_cmd = sub->temp_1;
sub->state = UMIDI_ST_UNKNOWN;
return (1);
}
sub->state = UMIDI_ST_UNKNOWN;
break;
}
} else if (b >= 0x80) {
sub->temp_1[1] = b;
if ((b >= 0xc0) && (b <= 0xdf)) {
sub->state = UMIDI_ST_1PARAM;
} else {
sub->state = UMIDI_ST_2PARAM_1;
}
} else { /* b < 0x80 */
switch (sub->state) {
case UMIDI_ST_1PARAM:
if (sub->temp_1[1] < 0xf0) {
p0 |= sub->temp_1[1] >> 4;
} else {
p0 |= 0x02;
sub->state = UMIDI_ST_UNKNOWN;
}
sub->temp_1[0] = p0;
sub->temp_1[2] = b;
sub->temp_1[3] = 0;
sub->temp_cmd = sub->temp_1;
return (1);
case UMIDI_ST_2PARAM_1:
sub->temp_1[2] = b;
sub->state = UMIDI_ST_2PARAM_2;
break;
case UMIDI_ST_2PARAM_2:
if (sub->temp_1[1] < 0xf0) {
p0 |= sub->temp_1[1] >> 4;
sub->state = UMIDI_ST_2PARAM_1;
} else {
p0 |= 0x03;
sub->state = UMIDI_ST_UNKNOWN;
}
sub->temp_1[0] = p0;
sub->temp_1[3] = b;
sub->temp_cmd = sub->temp_1;
return (1);
case UMIDI_ST_SYSEX_0:
sub->temp_1[1] = b;
sub->state = UMIDI_ST_SYSEX_1;
break;
case UMIDI_ST_SYSEX_1:
sub->temp_1[2] = b;
sub->state = UMIDI_ST_SYSEX_2;
break;
case UMIDI_ST_SYSEX_2:
sub->temp_1[0] = p0 | 0x04;
sub->temp_1[3] = b;
sub->temp_cmd = sub->temp_1;
sub->state = UMIDI_ST_SYSEX_0;
return (1);
default:
break;
}
}
return (0);
}
static void
umidi_bulk_write_callback(struct usb_xfer *xfer, usb_error_t error)
{
struct umidi_chan *chan = usbd_xfer_softc(xfer);
struct umidi_sub_chan *sub;
struct usb_page_cache *pc;
uint32_t actlen;
uint16_t nframes;
uint8_t buf;
uint8_t start_cable;
uint8_t tr_any;
int len;
usbd_xfer_status(xfer, &len, NULL, NULL, NULL);
/*
* NOTE: Some MIDI devices only accept 4 bytes of data per
* short terminated USB transfer.
*/
switch (USB_GET_STATE(xfer)) {
case USB_ST_TRANSFERRED:
DPRINTF("actlen=%d bytes\n", len);
case USB_ST_SETUP:
tr_setup:
DPRINTF("start\n");
nframes = 0; /* reset */
start_cable = chan->curr_cable;
tr_any = 0;
pc = usbd_xfer_get_frame(xfer, 0);
while (1) {
/* round robin de-queueing */
sub = &chan->sub[chan->curr_cable];
if (sub->write_open) {
usb_fifo_get_data_linear(sub->fifo.fp[USB_FIFO_TX],
&buf, 1, &actlen, 0);
} else {
actlen = 0;
}
if (actlen) {
tr_any = 1;
DPRINTF("byte=0x%02x from FIFO %u\n", buf,
(unsigned int)chan->curr_cable);
if (umidi_convert_to_usb(sub, chan->curr_cable, buf)) {
DPRINTF("sub=0x%02x 0x%02x 0x%02x 0x%02x\n",
sub->temp_cmd[0], sub->temp_cmd[1],
sub->temp_cmd[2], sub->temp_cmd[3]);
usbd_copy_in(pc, nframes * 4, sub->temp_cmd, 4);
nframes++;
if ((nframes >= UMIDI_TX_FRAMES) || (chan->single_command != 0))
break;
} else {
continue;
}
}
chan->curr_cable++;
if (chan->curr_cable >= chan->max_emb_jack)
chan->curr_cable = 0;
if (chan->curr_cable == start_cable) {
if (tr_any == 0)
break;
tr_any = 0;
}
}
if (nframes != 0) {
DPRINTF("Transferring %d frames\n", (int)nframes);
usbd_xfer_set_frame_len(xfer, 0, 4 * nframes);
usbd_transfer_submit(xfer);
}
break;
default: /* Error */
DPRINTF("error=%s\n", usbd_errstr(error));
if (error != USB_ERR_CANCELLED) {
/* try to clear stall first */
usbd_xfer_set_stall(xfer);
goto tr_setup;
}
break;
}
}
static struct umidi_sub_chan *
umidi_sub_by_fifo(struct usb_fifo *fifo)
{
struct umidi_chan *chan = usb_fifo_softc(fifo);
struct umidi_sub_chan *sub;
uint32_t n;
for (n = 0; n < UMIDI_EMB_JACK_MAX; n++) {
sub = &chan->sub[n];
if ((sub->fifo.fp[USB_FIFO_RX] == fifo) ||
(sub->fifo.fp[USB_FIFO_TX] == fifo)) {
return (sub);
}
}
panic("%s:%d cannot find usb_fifo!\n",
__FILE__, __LINE__);
return (NULL);
}
static void
umidi_start_read(struct usb_fifo *fifo)
{
struct umidi_chan *chan = usb_fifo_softc(fifo);
usbd_transfer_start(chan->xfer[UMIDI_RX_TRANSFER]);
}
static void
umidi_stop_read(struct usb_fifo *fifo)
{
struct umidi_chan *chan = usb_fifo_softc(fifo);
struct umidi_sub_chan *sub = umidi_sub_by_fifo(fifo);
DPRINTF("\n");
sub->read_open = 0;
if (--(chan->read_open_refcount) == 0) {
/*
* XXX don't stop the read transfer here, hence that causes
* problems with some MIDI adapters
*/
DPRINTF("(stopping read transfer)\n");
}
}
static void
umidi_start_write(struct usb_fifo *fifo)
{
struct umidi_chan *chan = usb_fifo_softc(fifo);
if (chan->xfer[UMIDI_TX_TRANSFER] == NULL) {
uint8_t buf[1];
int actlen;
do {
/* dump data */
usb_fifo_get_data_linear(fifo, buf, 1, &actlen, 0);
} while (actlen > 0);
} else {
usbd_transfer_start(chan->xfer[UMIDI_TX_TRANSFER]);
}
}
static void
umidi_stop_write(struct usb_fifo *fifo)
{
struct umidi_chan *chan = usb_fifo_softc(fifo);
struct umidi_sub_chan *sub = umidi_sub_by_fifo(fifo);
DPRINTF("\n");
sub->write_open = 0;
if (--(chan->write_open_refcount) == 0) {
DPRINTF("(stopping write transfer)\n");
usbd_transfer_stop(chan->xfer[UMIDI_TX_TRANSFER]);
}
}
static int
umidi_open(struct usb_fifo *fifo, int fflags)
{
struct umidi_chan *chan = usb_fifo_softc(fifo);
struct umidi_sub_chan *sub = umidi_sub_by_fifo(fifo);
if (fflags & FREAD) {
if (usb_fifo_alloc_buffer(fifo, 4, (1024 / 4))) {
return (ENOMEM);
}
mtx_lock(&chan->mtx);
chan->read_open_refcount++;
sub->read_open = 1;
mtx_unlock(&chan->mtx);
}
if (fflags & FWRITE) {
if (usb_fifo_alloc_buffer(fifo, 32, (1024 / 32))) {
return (ENOMEM);
}
/* clear stall first */
mtx_lock(&chan->mtx);
chan->write_open_refcount++;
sub->write_open = 1;
/* reset */
sub->state = UMIDI_ST_UNKNOWN;
mtx_unlock(&chan->mtx);
}
return (0); /* success */
}
static void
umidi_close(struct usb_fifo *fifo, int fflags)
{
if (fflags & FREAD) {
usb_fifo_free_buffer(fifo);
}
if (fflags & FWRITE) {
usb_fifo_free_buffer(fifo);
}
}
static int
umidi_ioctl(struct usb_fifo *fifo, u_long cmd, void *data,
int fflags)
{
return (ENODEV);
}
static void
umidi_init(device_t dev)
{
struct uaudio_softc *sc = device_get_softc(dev);
struct umidi_chan *chan = &sc->sc_midi_chan;
mtx_init(&chan->mtx, "umidi lock", NULL, MTX_DEF | MTX_RECURSE);
}
static struct usb_fifo_methods umidi_fifo_methods = {
.f_start_read = &umidi_start_read,
.f_start_write = &umidi_start_write,
.f_stop_read = &umidi_stop_read,
.f_stop_write = &umidi_stop_write,
.f_open = &umidi_open,
.f_close = &umidi_close,
.f_ioctl = &umidi_ioctl,
.basename[0] = "umidi",
};
static int
umidi_probe(device_t dev)
{
struct uaudio_softc *sc = device_get_softc(dev);
struct usb_attach_arg *uaa = device_get_ivars(dev);
struct umidi_chan *chan = &sc->sc_midi_chan;
struct umidi_sub_chan *sub;
int unit = device_get_unit(dev);
int error;
uint32_t n;
if (usb_test_quirk(uaa, UQ_SINGLE_CMD_MIDI))
chan->single_command = 1;
if (usbd_set_alt_interface_index(sc->sc_udev, chan->iface_index,
chan->iface_alt_index)) {
DPRINTF("setting of alternate index failed!\n");
goto detach;
}
usbd_set_parent_iface(sc->sc_udev, chan->iface_index,
sc->sc_mixer_iface_index);
error = usbd_transfer_setup(uaa->device, &chan->iface_index,
chan->xfer, umidi_config, UMIDI_N_TRANSFER,
chan, &chan->mtx);
if (error) {
DPRINTF("error=%s\n", usbd_errstr(error));
goto detach;
}
if (chan->xfer[UMIDI_TX_TRANSFER] == NULL &&
chan->xfer[UMIDI_RX_TRANSFER] == NULL) {
DPRINTF("no BULK or INTERRUPT MIDI endpoint(s) found\n");
goto detach;
}
/*
* Some USB MIDI device makers couldn't resist using
* wMaxPacketSize = 4 for RX and TX BULK endpoints, although
* that size is an unsupported value for FULL speed BULK
* endpoints. The same applies to some HIGH speed MIDI devices
* which are using a wMaxPacketSize different from 512 bytes.
*
* Refer to section 5.8.3 in USB 2.0 PDF: Cite: "All Host
* Controllers are required to have support for 8-, 16-, 32-,
* and 64-byte maximum packet sizes for full-speed bulk
* endpoints and 512 bytes for high-speed bulk endpoints."
*/
if (chan->xfer[UMIDI_TX_TRANSFER] != NULL &&
usbd_xfer_maxp_was_clamped(chan->xfer[UMIDI_TX_TRANSFER]))
chan->single_command = 1;
if (chan->single_command != 0)
device_printf(dev, "Single command MIDI quirk enabled\n");
if ((chan->max_emb_jack == 0) ||
(chan->max_emb_jack > UMIDI_EMB_JACK_MAX)) {
chan->max_emb_jack = UMIDI_EMB_JACK_MAX;
}
for (n = 0; n < chan->max_emb_jack; n++) {
sub = &chan->sub[n];
error = usb_fifo_attach(sc->sc_udev, chan, &chan->mtx,
&umidi_fifo_methods, &sub->fifo, unit, n,
chan->iface_index,
UID_ROOT, GID_OPERATOR, 0644);
if (error) {
goto detach;
}
}
mtx_lock(&chan->mtx);
/*
* NOTE: At least one device will not work properly unless the
* BULK IN pipe is open all the time. This might have to do
* about that the internal queues of the device overflow if we
* don't read them regularly.
*/
usbd_transfer_start(chan->xfer[UMIDI_RX_TRANSFER]);
mtx_unlock(&chan->mtx);
return (0); /* success */
detach:
return (ENXIO); /* failure */
}
static int
umidi_detach(device_t dev)
{
struct uaudio_softc *sc = device_get_softc(dev);
struct umidi_chan *chan = &sc->sc_midi_chan;
uint32_t n;
for (n = 0; n < UMIDI_EMB_JACK_MAX; n++)
usb_fifo_detach(&chan->sub[n].fifo);
mtx_lock(&chan->mtx);
usbd_transfer_stop(chan->xfer[UMIDI_RX_TRANSFER]);
mtx_unlock(&chan->mtx);
usbd_transfer_unsetup(chan->xfer, UMIDI_N_TRANSFER);
mtx_destroy(&chan->mtx);
return (0);
}
static void
uaudio_hid_rx_callback(struct usb_xfer *xfer, usb_error_t error)
{
struct uaudio_softc *sc = usbd_xfer_softc(xfer);
const uint8_t *buffer = usbd_xfer_get_frame_buffer(xfer, 0);
struct snd_mixer *m;
uint8_t id;
int actlen;
usbd_xfer_status(xfer, &actlen, NULL, NULL, NULL);
switch (USB_GET_STATE(xfer)) {
case USB_ST_TRANSFERRED:
DPRINTF("actlen=%d\n", actlen);
if (actlen != 0 &&
(sc->sc_hid.flags & UAUDIO_HID_HAS_ID)) {
id = *buffer;
buffer++;
actlen--;
} else {
id = 0;
}
m = sc->sc_mixer_dev;
if ((sc->sc_hid.flags & UAUDIO_HID_HAS_MUTE) &&
(sc->sc_hid.mute_id == id) &&
hid_get_data(buffer, actlen,
&sc->sc_hid.mute_loc)) {
DPRINTF("Mute toggle\n");
mixer_hwvol_mute_locked(m);
}
if ((sc->sc_hid.flags & UAUDIO_HID_HAS_VOLUME_UP) &&
(sc->sc_hid.volume_up_id == id) &&
hid_get_data(buffer, actlen,
&sc->sc_hid.volume_up_loc)) {
DPRINTF("Volume Up\n");
mixer_hwvol_step_locked(m, 1, 1);
}
if ((sc->sc_hid.flags & UAUDIO_HID_HAS_VOLUME_DOWN) &&
(sc->sc_hid.volume_down_id == id) &&
hid_get_data(buffer, actlen,
&sc->sc_hid.volume_down_loc)) {
DPRINTF("Volume Down\n");
mixer_hwvol_step_locked(m, -1, -1);
}
case USB_ST_SETUP:
tr_setup:
/* check if we can put more data into the FIFO */
usbd_xfer_set_frame_len(xfer, 0, usbd_xfer_max_len(xfer));
usbd_transfer_submit(xfer);
break;
default: /* Error */
DPRINTF("error=%s\n", usbd_errstr(error));
if (error != USB_ERR_CANCELLED) {
/* try to clear stall first */
usbd_xfer_set_stall(xfer);
goto tr_setup;
}
break;
}
}
static int
uaudio_hid_probe(struct uaudio_softc *sc,
struct usb_attach_arg *uaa)
{
void *d_ptr;
uint32_t flags;
uint16_t d_len;
uint8_t id;
int error;
if (!(sc->sc_hid.flags & UAUDIO_HID_VALID))
return (-1);
if (sc->sc_mixer_lock == NULL)
return (-1);
/* Get HID descriptor */
error = usbd_req_get_hid_desc(uaa->device, NULL, &d_ptr,
&d_len, M_TEMP, sc->sc_hid.iface_index);
if (error) {
DPRINTF("error reading report description\n");
return (-1);
}
/* check if there is an ID byte */
hid_report_size(d_ptr, d_len, hid_input, &id);
if (id != 0)
sc->sc_hid.flags |= UAUDIO_HID_HAS_ID;
if (hid_locate(d_ptr, d_len,
HID_USAGE2(HUP_CONSUMER, 0xE9 /* Volume Increment */),
hid_input, 0, &sc->sc_hid.volume_up_loc, &flags,
&sc->sc_hid.volume_up_id)) {
if (flags & HIO_VARIABLE)
sc->sc_hid.flags |= UAUDIO_HID_HAS_VOLUME_UP;
DPRINTFN(1, "Found Volume Up key\n");
}
if (hid_locate(d_ptr, d_len,
HID_USAGE2(HUP_CONSUMER, 0xEA /* Volume Decrement */),
hid_input, 0, &sc->sc_hid.volume_down_loc, &flags,
&sc->sc_hid.volume_down_id)) {
if (flags & HIO_VARIABLE)
sc->sc_hid.flags |= UAUDIO_HID_HAS_VOLUME_DOWN;
DPRINTFN(1, "Found Volume Down key\n");
}
if (hid_locate(d_ptr, d_len,
HID_USAGE2(HUP_CONSUMER, 0xE2 /* Mute */),
hid_input, 0, &sc->sc_hid.mute_loc, &flags,
&sc->sc_hid.mute_id)) {
if (flags & HIO_VARIABLE)
sc->sc_hid.flags |= UAUDIO_HID_HAS_MUTE;
DPRINTFN(1, "Found Mute key\n");
}
free(d_ptr, M_TEMP);
if (!(sc->sc_hid.flags & (UAUDIO_HID_HAS_VOLUME_UP |
UAUDIO_HID_HAS_VOLUME_DOWN |
UAUDIO_HID_HAS_MUTE))) {
DPRINTFN(1, "Did not find any volume related keys\n");
return (-1);
}
/* prevent the uhid driver from attaching */
usbd_set_parent_iface(uaa->device, sc->sc_hid.iface_index,
sc->sc_mixer_iface_index);
/* allocate USB transfers */
error = usbd_transfer_setup(uaa->device, &sc->sc_hid.iface_index,
sc->sc_hid.xfer, uaudio_hid_config, UAUDIO_HID_N_TRANSFER,
sc, sc->sc_mixer_lock);
if (error) {
DPRINTF("error=%s\n", usbd_errstr(error));
return (-1);
}
return (0);
}
static void
uaudio_hid_detach(struct uaudio_softc *sc)
{
usbd_transfer_unsetup(sc->sc_hid.xfer, UAUDIO_HID_N_TRANSFER);
}
DRIVER_MODULE_ORDERED(uaudio, uhub, uaudio_driver, uaudio_devclass, NULL, 0, SI_ORDER_ANY);
MODULE_DEPEND(uaudio, usb, 1, 1, 1);
MODULE_DEPEND(uaudio, sound, SOUND_MINVER, SOUND_PREFVER, SOUND_MAXVER);
MODULE_VERSION(uaudio, 1);
USB_PNP_HOST_INFO(uaudio_devs);