freebsd-nq/sys/i386/isa/if_ed.c
Jordan K. Hubbard 63c5d14d1b Miscellaneous changes from Bill Paul:
- /sys/i386/isa/if_ed.c doesn't quite know how to deal with SMC EtherEZ
  ethernet cards. The EtherEZ looks just like the Elite Ultra, except it
  has only 8K of shared memory. The only way to have it properly detected
  is to zero and test a few bytes of memory just about the first 8K region.
  If it clears properly, it's an Elite Ultra, otherwise it's an EtherEZ.

  I've also got an EtherEZ patch for netboot (Makefile, ether.c and ether.h).

- /sys/i386/isa/syscons.c wraps at the next to the last column rather than
  the last column, like it should. You don't really notice this unless you
  use certain programs that write all the way out to, say, the 80th column,
  like VMSmail. Along with a one-line fix for this are some changes to
  implement a non-blinking cursor. Put 'options "NOBLINK_CURSOR"' in your
  config file and give it a try. :)

Submitted by:	wpaul
1994-12-31 17:09:58 +00:00

2501 lines
61 KiB
C

/*
* Device driver for National Semiconductor DS8390/WD83C690 based ethernet
* adapters. By David Greenman, 29-April-1993
*
* Copyright (C) 1993, David Greenman. This software may be used, modified,
* copied, distributed, and sold, in both source and binary form provided
* that the above copyright and these terms are retained. Under no
* circumstances is the author responsible for the proper functioning
* of this software, nor does the author assume any responsibility
* for damages incurred with its use.
*
* Currently supports the Western Digital/SMC 8003 and 8013 series,
* the SMC Elite Ultra (8216), the 3Com 3c503, the NE1000 and NE2000,
* and a variety of similar clones.
*
* $Id: if_ed.c,v 1.59 1994/12/22 21:56:03 wollman Exp $
*/
#include "ed.h"
#include "bpfilter.h"
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/errno.h>
#include <sys/ioctl.h>
#include <sys/mbuf.h>
#include <sys/socket.h>
#include <sys/syslog.h>
#include <sys/devconf.h>
#include <net/if.h>
#include <net/if_dl.h>
#include <net/if_types.h>
#ifdef INET
#include <netinet/in.h>
#include <netinet/in_systm.h>
#include <netinet/in_var.h>
#include <netinet/ip.h>
#include <netinet/if_ether.h>
#endif
#ifdef NS
#include <netns/ns.h>
#include <netns/ns_if.h>
#endif
#if NBPFILTER > 0
#include <net/bpf.h>
#include <net/bpfdesc.h>
#endif
#include <i386/isa/isa.h>
#include <i386/isa/isa_device.h>
#include <i386/isa/icu.h>
#include <i386/isa/if_edreg.h>
/* For backwards compatibility */
#ifndef IFF_ALTPHYS
#define IFF_ALTPHYS IFF_LINK0
#endif
/*
* ed_softc: per line info and status
*/
struct ed_softc {
struct arpcom arpcom; /* ethernet common */
char *type_str; /* pointer to type string */
u_char vendor; /* interface vendor */
u_char type; /* interface type code */
u_short asic_addr; /* ASIC I/O bus address */
u_short nic_addr; /* NIC (DS8390) I/O bus address */
/*
* The following 'proto' variable is part of a work-around for 8013EBT asics
* being write-only. It's sort of a prototype/shadow of the real thing.
*/
u_char wd_laar_proto;
u_char cr_proto;
u_char isa16bit; /* width of access to card 0=8 or 1=16 */
int is790; /* set by the probe code if the card is 790
* based */
caddr_t bpf; /* BPF "magic cookie" */
caddr_t mem_start; /* NIC memory start address */
caddr_t mem_end; /* NIC memory end address */
u_long mem_size; /* total NIC memory size */
caddr_t mem_ring; /* start of RX ring-buffer (in NIC mem) */
u_char mem_shared; /* NIC memory is shared with host */
u_char xmit_busy; /* transmitter is busy */
u_char txb_cnt; /* number of transmit buffers */
u_char txb_inuse; /* number of TX buffers currently in-use */
u_char txb_new; /* pointer to where new buffer will be added */
u_char txb_next_tx; /* pointer to next buffer ready to xmit */
u_short txb_len[8]; /* buffered xmit buffer lengths */
u_char tx_page_start; /* first page of TX buffer area */
u_char rec_page_start; /* first page of RX ring-buffer */
u_char rec_page_stop; /* last page of RX ring-buffer */
u_char next_packet; /* pointer to next unread RX packet */
} ed_softc[NED];
int ed_attach(struct isa_device *);
void ed_init(int);
void edintr(int);
int ed_ioctl(struct ifnet *, int, caddr_t);
int ed_probe(struct isa_device *);
void ed_start(struct ifnet *);
void ed_reset(int);
void ed_watchdog(int);
int ed_probe_generic8390(struct ed_softc *);
int ed_probe_WD80x3(struct isa_device *);
int ed_probe_3Com(struct isa_device *);
int ed_probe_Novell(struct isa_device *);
void ds_getmcaf();
static void ed_get_packet(struct ed_softc *, char *, int /* u_short */ , int);
static void ed_stop(int);
static inline void ed_rint();
static inline void ed_xmit();
static inline char *ed_ring_copy();
void ed_pio_readmem(), ed_pio_writemem();
u_short ed_pio_write_mbufs();
void ed_setrcr(struct ifnet *, struct ed_softc *);
struct isa_driver eddriver = {
ed_probe,
ed_attach,
"ed",
1 /* We are ultra sensitive */
};
/*
* Interrupt conversion table for WD/SMC ASIC/83C584
* (IRQ* are defined in icu.h)
*/
static unsigned short ed_intr_mask[] = {
IRQ9,
IRQ3,
IRQ5,
IRQ7,
IRQ10,
IRQ11,
IRQ15,
IRQ4
};
/*
* Interrupt conversion table for 83C790
*/
static unsigned short ed_790_intr_mask[] = {
0,
IRQ9,
IRQ3,
IRQ5,
IRQ7,
IRQ10,
IRQ11,
IRQ15
};
#define ETHER_MIN_LEN 64
#define ETHER_MAX_LEN 1518
#define ETHER_ADDR_LEN 6
#define ETHER_HDR_SIZE 14
static struct kern_devconf kdc_ed[NED] = { {
0, 0, 0, /* filled in by dev_attach */
"ed", 0, { MDDT_ISA, 0, "net" },
isa_generic_externalize, 0, 0, ISA_EXTERNALLEN,
&kdc_isa0, /* parent */
0, /* parentdata */
DC_BUSY, /* network interfaces are always ``open'' */
"" /* description */
} };
static inline void
ed_registerdev(struct isa_device *id, const char *descr)
{
if(id->id_unit)
kdc_ed[id->id_unit] = kdc_ed[0];
kdc_ed[id->id_unit].kdc_unit = id->id_unit;
kdc_ed[id->id_unit].kdc_parentdata = id;
kdc_ed[id->id_unit].kdc_description = descr;
dev_attach(&kdc_ed[id->id_unit]);
}
/*
* Determine if the device is present
*
* on entry:
* a pointer to an isa_device struct
* on exit:
* NULL if device not found
* or # of i/o addresses used (if found)
*/
int
ed_probe(isa_dev)
struct isa_device *isa_dev;
{
int nports;
nports = ed_probe_WD80x3(isa_dev);
if (nports)
return (nports);
nports = ed_probe_3Com(isa_dev);
if (nports)
return (nports);
nports = ed_probe_Novell(isa_dev);
if (nports)
return (nports);
return (0);
}
/*
* Generic probe routine for testing for the existance of a DS8390.
* Must be called after the NIC has just been reset. This routine
* works by looking at certain register values that are gauranteed
* to be initialized a certain way after power-up or reset. Seems
* not to currently work on the 83C690.
*
* Specifically:
*
* Register reset bits set bits
* Command Register (CR) TXP, STA RD2, STP
* Interrupt Status (ISR) RST
* Interrupt Mask (IMR) All bits
* Data Control (DCR) LAS
* Transmit Config. (TCR) LB1, LB0
*
* We only look at the CR and ISR registers, however, because looking at
* the others would require changing register pages (which would be
* intrusive if this isn't an 8390).
*
* Return 1 if 8390 was found, 0 if not.
*/
int
ed_probe_generic8390(sc)
struct ed_softc *sc;
{
if ((inb(sc->nic_addr + ED_P0_CR) &
(ED_CR_RD2 | ED_CR_TXP | ED_CR_STA | ED_CR_STP)) !=
(ED_CR_RD2 | ED_CR_STP))
return (0);
if ((inb(sc->nic_addr + ED_P0_ISR) & ED_ISR_RST) != ED_ISR_RST)
return (0);
return (1);
}
/*
* Probe and vendor-specific initialization routine for SMC/WD80x3 boards
*/
int
ed_probe_WD80x3(isa_dev)
struct isa_device *isa_dev;
{
struct ed_softc *sc = &ed_softc[isa_dev->id_unit];
int i;
u_int memsize;
u_char iptr, isa16bit, sum;
sc->asic_addr = isa_dev->id_iobase;
sc->nic_addr = sc->asic_addr + ED_WD_NIC_OFFSET;
sc->is790 = 0;
#ifdef TOSH_ETHER
outb(sc->asic_addr + ED_WD_MSR, ED_WD_MSR_POW);
DELAY(10000);
#endif
/*
* Attempt to do a checksum over the station address PROM. If it
* fails, it's probably not a SMC/WD board. There is a problem with
* this, though: some clone WD boards don't pass the checksum test.
* Danpex boards for one.
*/
for (sum = 0, i = 0; i < 8; ++i)
sum += inb(sc->asic_addr + ED_WD_PROM + i);
if (sum != ED_WD_ROM_CHECKSUM_TOTAL) {
/*
* Checksum is invalid. This often happens with cheap WD8003E
* clones. In this case, the checksum byte (the eighth byte)
* seems to always be zero.
*/
if (inb(sc->asic_addr + ED_WD_CARD_ID) != ED_TYPE_WD8003E ||
inb(sc->asic_addr + ED_WD_PROM + 7) != 0)
return (0);
}
/* reset card to force it into a known state. */
#ifdef TOSH_ETHER
outb(sc->asic_addr + ED_WD_MSR, ED_WD_MSR_RST | ED_WD_MSR_POW);
#else
outb(sc->asic_addr + ED_WD_MSR, ED_WD_MSR_RST);
#endif
DELAY(100);
outb(sc->asic_addr + ED_WD_MSR, inb(sc->asic_addr + ED_WD_MSR) & ~ED_WD_MSR_RST);
/* wait in the case this card is reading it's EEROM */
DELAY(5000);
sc->vendor = ED_VENDOR_WD_SMC;
sc->type = inb(sc->asic_addr + ED_WD_CARD_ID);
/*
* Set initial values for width/size.
*/
memsize = 8192;
isa16bit = 0;
switch (sc->type) {
case ED_TYPE_WD8003S:
sc->type_str = "WD8003S";
break;
case ED_TYPE_WD8003E:
sc->type_str = "WD8003E";
break;
case ED_TYPE_WD8003EB:
sc->type_str = "WD8003EB";
break;
case ED_TYPE_WD8003W:
sc->type_str = "WD8003W";
break;
case ED_TYPE_WD8013EBT:
sc->type_str = "WD8013EBT";
memsize = 16384;
isa16bit = 1;
break;
case ED_TYPE_WD8013W:
sc->type_str = "WD8013W";
memsize = 16384;
isa16bit = 1;
break;
case ED_TYPE_WD8013EP: /* also WD8003EP */
if (inb(sc->asic_addr + ED_WD_ICR)
& ED_WD_ICR_16BIT) {
isa16bit = 1;
memsize = 16384;
sc->type_str = "WD8013EP";
} else {
sc->type_str = "WD8003EP";
}
break;
case ED_TYPE_WD8013WC:
sc->type_str = "WD8013WC";
memsize = 16384;
isa16bit = 1;
break;
case ED_TYPE_WD8013EBP:
sc->type_str = "WD8013EBP";
memsize = 16384;
isa16bit = 1;
break;
case ED_TYPE_WD8013EPC:
sc->type_str = "WD8013EPC";
memsize = 16384;
isa16bit = 1;
break;
case ED_TYPE_SMC8216C: /* 8216 has 16K shared mem -- 8416 has 8K */
(unsigned int) *(isa_dev->id_maddr+8192) = (unsigned int)0;
if ((unsigned int) *(isa_dev->id_maddr+8192)) {
sc->type_str = "SMC8416C/SMC8416BT";
memsize = 8192;
} else {
sc->type_str = "SMC8216/SMC8216C";
memsize = 16384;
}
isa16bit = 1;
sc->is790 = 1;
break;
case ED_TYPE_SMC8216T:
(unsigned int) *(isa_dev->id_maddr+8192) = (unsigned int)0;
if ((unsigned int) *(isa_dev->id_maddr+8192)) {
sc->type_str = "SMC8416T";
memsize = 8192;
} else {
sc->type_str = "SMC8216T";
memsize = 16384;
}
isa16bit = 1;
sc->is790 = 1;
break;
#ifdef TOSH_ETHER
case ED_TYPE_TOSHIBA1:
sc->type_str = "Toshiba1";
memsize = 32768;
isa16bit = 1;
break;
case ED_TYPE_TOSHIBA4:
sc->type_str = "Toshiba4";
memsize = 32768;
isa16bit = 1;
break;
#endif
default:
sc->type_str = "";
break;
}
/*
* Make some adjustments to initial values depending on what is found
* in the ICR.
*/
if (isa16bit && (sc->type != ED_TYPE_WD8013EBT)
#ifdef TOSH_ETHER
&& (sc->type != ED_TYPE_TOSHIBA1) && (sc->type != ED_TYPE_TOSHIBA4)
#endif
&& ((inb(sc->asic_addr + ED_WD_ICR) & ED_WD_ICR_16BIT) == 0)) {
isa16bit = 0;
memsize = 8192;
}
#if ED_DEBUG
printf("type = %x type_str=%s isa16bit=%d memsize=%d id_msize=%d\n",
sc->type, sc->type_str, isa16bit, memsize, isa_dev->id_msize);
for (i = 0; i < 8; i++)
printf("%x -> %x\n", i, inb(sc->asic_addr + i));
#endif
/*
* Allow the user to override the autoconfiguration
*/
if (isa_dev->id_msize)
memsize = isa_dev->id_msize;
/*
* (note that if the user specifies both of the following flags that
* '8bit' mode intentionally has precedence)
*/
if (isa_dev->id_flags & ED_FLAGS_FORCE_16BIT_MODE)
isa16bit = 1;
if (isa_dev->id_flags & ED_FLAGS_FORCE_8BIT_MODE)
isa16bit = 0;
/*
* If possible, get the assigned interrupt number from the card and
* use it.
*/
if ((sc->type & ED_WD_SOFTCONFIG) && (!sc->is790)) {
/*
* Assemble together the encoded interrupt number.
*/
iptr = (inb(isa_dev->id_iobase + ED_WD_ICR) & ED_WD_ICR_IR2) |
((inb(isa_dev->id_iobase + ED_WD_IRR) &
(ED_WD_IRR_IR0 | ED_WD_IRR_IR1)) >> 5);
/*
* Use what the board tells us.
*/
isa_dev->id_irq = ed_intr_mask[iptr];
/*
* Enable the interrupt.
*/
outb(isa_dev->id_iobase + ED_WD_IRR,
inb(isa_dev->id_iobase + ED_WD_IRR) | ED_WD_IRR_IEN);
}
if (sc->is790) {
outb(isa_dev->id_iobase + ED_WD790_HWR,
inb(isa_dev->id_iobase + ED_WD790_HWR) | ED_WD790_HWR_SWH);
iptr = (((inb(isa_dev->id_iobase + ED_WD790_GCR) & ED_WD790_GCR_IR2) >> 4) |
(inb(isa_dev->id_iobase + ED_WD790_GCR) &
(ED_WD790_GCR_IR1 | ED_WD790_GCR_IR0)) >> 2);
outb(isa_dev->id_iobase + ED_WD790_HWR,
inb(isa_dev->id_iobase + ED_WD790_HWR) & ~ED_WD790_HWR_SWH);
/*
* Use what the board tells us.
*/
isa_dev->id_irq = ed_790_intr_mask[iptr];
/*
* Enable interrupts.
*/
outb(isa_dev->id_iobase + ED_WD790_ICR,
inb(isa_dev->id_iobase + ED_WD790_ICR) | ED_WD790_ICR_EIL);
}
if (isa_dev->id_irq <= 0) {
printf("ed%d: %s cards don't support auto-detected/assigned interrupts.\n",
isa_dev->id_unit, sc->type_str);
return (0);
}
sc->isa16bit = isa16bit;
sc->mem_shared = 1;
isa_dev->id_msize = memsize;
sc->mem_start = (caddr_t) isa_dev->id_maddr;
/*
* allocate one xmit buffer if < 16k, two buffers otherwise
*/
if ((memsize < 16384) || (isa_dev->id_flags & ED_FLAGS_NO_MULTI_BUFFERING)) {
sc->mem_ring = sc->mem_start + (ED_PAGE_SIZE * ED_TXBUF_SIZE);
sc->txb_cnt = 1;
sc->rec_page_start = ED_TXBUF_SIZE;
} else {
sc->mem_ring = sc->mem_start + (ED_PAGE_SIZE * ED_TXBUF_SIZE * 2);
sc->txb_cnt = 2;
sc->rec_page_start = ED_TXBUF_SIZE * 2;
}
sc->mem_size = memsize;
sc->mem_end = sc->mem_start + memsize;
sc->rec_page_stop = memsize / ED_PAGE_SIZE;
sc->tx_page_start = ED_WD_PAGE_OFFSET;
/*
* Get station address from on-board ROM
*/
for (i = 0; i < ETHER_ADDR_LEN; ++i)
sc->arpcom.ac_enaddr[i] = inb(sc->asic_addr + ED_WD_PROM + i);
/*
* Set upper address bits and 8/16 bit access to shared memory
*/
if (isa16bit) {
if (sc->is790) {
sc->wd_laar_proto = inb(sc->asic_addr + ED_WD_LAAR);
outb(sc->asic_addr + ED_WD_LAAR, ED_WD_LAAR_M16EN);
} else {
outb(sc->asic_addr + ED_WD_LAAR, (sc->wd_laar_proto =
ED_WD_LAAR_L16EN | ED_WD_LAAR_M16EN |
((kvtop(sc->mem_start) >> 19) & ED_WD_LAAR_ADDRHI)));
}
} else {
if (((sc->type & ED_WD_SOFTCONFIG) ||
#ifdef TOSH_ETHER
(sc->type == ED_TYPE_TOSHIBA1) || (sc->type == ED_TYPE_TOSHIBA4) ||
#endif
(sc->type == ED_TYPE_WD8013EBT)) && (!sc->is790)) {
outb(sc->asic_addr + ED_WD_LAAR, (sc->wd_laar_proto =
((kvtop(sc->mem_start) >> 19) & ED_WD_LAAR_ADDRHI)));
}
}
/*
* Set address and enable interface shared memory.
*/
if (!sc->is790) {
#ifdef TOSH_ETHER
outb(sc->asic_addr + ED_WD_MSR + 1, ((kvtop(sc->mem_start) >> 8) & 0xe0) | 4);
outb(sc->asic_addr + ED_WD_MSR + 2, ((kvtop(sc->mem_start) >> 16) & 0x0f));
outb(sc->asic_addr + ED_WD_MSR, ED_WD_MSR_MENB | ED_WD_MSR_POW);
#else
outb(sc->asic_addr + ED_WD_MSR, ((kvtop(sc->mem_start) >> 13) &
ED_WD_MSR_ADDR) | ED_WD_MSR_MENB);
#endif
sc->cr_proto = ED_CR_RD2;
} else {
outb(sc->asic_addr + ED_WD_MSR, ED_WD_MSR_MENB);
outb(sc->asic_addr + 0x04, (inb(sc->asic_addr + 0x04) | 0x80));
outb(sc->asic_addr + 0x0b, ((kvtop(sc->mem_start) >> 13) & 0x0f) |
((kvtop(sc->mem_start) >> 11) & 0x40) |
(inb(sc->asic_addr + 0x0b) & 0xb0));
outb(sc->asic_addr + 0x04, (inb(sc->asic_addr + 0x04) & ~0x80));
sc->cr_proto = 0;
}
#if 0
printf("starting memory performance test at 0x%x, size %d...\n",
sc->mem_start, memsize*16384);
for (i = 0; i < 16384; i++)
bzero(sc->mem_start, memsize);
printf("***DONE***\n");
#endif
/*
* Now zero memory and verify that it is clear
*/
bzero(sc->mem_start, memsize);
for (i = 0; i < memsize; ++i) {
if (sc->mem_start[i]) {
printf("ed%d: failed to clear shared memory at %lx - check configuration\n",
isa_dev->id_unit, kvtop(sc->mem_start + i));
/*
* Disable 16 bit access to shared memory
*/
if (isa16bit) {
if (sc->is790) {
outb(sc->asic_addr + ED_WD_MSR, 0x00);
}
outb(sc->asic_addr + ED_WD_LAAR, (sc->wd_laar_proto &=
~ED_WD_LAAR_M16EN));
}
return (0);
}
}
/*
* Disable 16bit access to shared memory - we leave it
* disabled so that 1) machines reboot properly when the board
* is set 16 bit mode and there are conflicting 8bit
* devices/ROMS in the same 128k address space as this boards
* shared memory. and 2) so that other 8 bit devices with
* shared memory can be used in this 128k region, too.
*/
if (isa16bit) {
if (sc->is790) {
outb(sc->asic_addr + ED_WD_MSR, 0x00);
}
outb(sc->asic_addr + ED_WD_LAAR, (sc->wd_laar_proto &=
~ED_WD_LAAR_M16EN));
}
return (ED_WD_IO_PORTS);
}
/*
* Probe and vendor-specific initialization routine for 3Com 3c503 boards
*/
int
ed_probe_3Com(isa_dev)
struct isa_device *isa_dev;
{
struct ed_softc *sc = &ed_softc[isa_dev->id_unit];
int i;
u_int memsize;
u_char isa16bit;
sc->asic_addr = isa_dev->id_iobase + ED_3COM_ASIC_OFFSET;
sc->nic_addr = isa_dev->id_iobase + ED_3COM_NIC_OFFSET;
/*
* Verify that the kernel configured I/O address matches the board
* configured address
*/
switch (inb(sc->asic_addr + ED_3COM_BCFR)) {
case ED_3COM_BCFR_300:
if (isa_dev->id_iobase != 0x300)
return (0);
break;
case ED_3COM_BCFR_310:
if (isa_dev->id_iobase != 0x310)
return (0);
break;
case ED_3COM_BCFR_330:
if (isa_dev->id_iobase != 0x330)
return (0);
break;
case ED_3COM_BCFR_350:
if (isa_dev->id_iobase != 0x350)
return (0);
break;
case ED_3COM_BCFR_250:
if (isa_dev->id_iobase != 0x250)
return (0);
break;
case ED_3COM_BCFR_280:
if (isa_dev->id_iobase != 0x280)
return (0);
break;
case ED_3COM_BCFR_2A0:
if (isa_dev->id_iobase != 0x2a0)
return (0);
break;
case ED_3COM_BCFR_2E0:
if (isa_dev->id_iobase != 0x2e0)
return (0);
break;
default:
return (0);
}
/*
* Verify that the kernel shared memory address matches the board
* configured address.
*/
switch (inb(sc->asic_addr + ED_3COM_PCFR)) {
case ED_3COM_PCFR_DC000:
if (kvtop(isa_dev->id_maddr) != 0xdc000)
return (0);
break;
case ED_3COM_PCFR_D8000:
if (kvtop(isa_dev->id_maddr) != 0xd8000)
return (0);
break;
case ED_3COM_PCFR_CC000:
if (kvtop(isa_dev->id_maddr) != 0xcc000)
return (0);
break;
case ED_3COM_PCFR_C8000:
if (kvtop(isa_dev->id_maddr) != 0xc8000)
return (0);
break;
default:
return (0);
}
/*
* Reset NIC and ASIC. Enable on-board transceiver throughout reset
* sequence because it'll lock up if the cable isn't connected if we
* don't.
*/
outb(sc->asic_addr + ED_3COM_CR, ED_3COM_CR_RST | ED_3COM_CR_XSEL);
/*
* Wait for a while, then un-reset it
*/
DELAY(50);
/*
* The 3Com ASIC defaults to rather strange settings for the CR after
* a reset - it's important to set it again after the following outb
* (this is done when we map the PROM below).
*/
outb(sc->asic_addr + ED_3COM_CR, ED_3COM_CR_XSEL);
/*
* Wait a bit for the NIC to recover from the reset
*/
DELAY(5000);
sc->vendor = ED_VENDOR_3COM;
sc->type_str = "3c503";
sc->mem_shared = 1;
sc->cr_proto = ED_CR_RD2;
/*
* Hmmm...a 16bit 3Com board has 16k of memory, but only an 8k window
* to it.
*/
memsize = 8192;
/*
* Get station address from on-board ROM
*/
/*
* First, map ethernet address PROM over the top of where the NIC
* registers normally appear.
*/
outb(sc->asic_addr + ED_3COM_CR, ED_3COM_CR_EALO | ED_3COM_CR_XSEL);
for (i = 0; i < ETHER_ADDR_LEN; ++i)
sc->arpcom.ac_enaddr[i] = inb(sc->nic_addr + i);
/*
* Unmap PROM - select NIC registers. The proper setting of the
* tranceiver is set in ed_init so that the attach code is given a
* chance to set the default based on a compile-time config option
*/
outb(sc->asic_addr + ED_3COM_CR, ED_3COM_CR_XSEL);
/*
* Determine if this is an 8bit or 16bit board
*/
/*
* select page 0 registers
*/
outb(sc->nic_addr + ED_P0_CR, ED_CR_RD2 | ED_CR_STP);
/*
* Attempt to clear WTS bit. If it doesn't clear, then this is a 16bit
* board.
*/
outb(sc->nic_addr + ED_P0_DCR, 0);
/*
* select page 2 registers
*/
outb(sc->nic_addr + ED_P0_CR, ED_CR_PAGE_2 | ED_CR_RD2 | ED_CR_STP);
/*
* The 3c503 forces the WTS bit to a one if this is a 16bit board
*/
if (inb(sc->nic_addr + ED_P2_DCR) & ED_DCR_WTS)
isa16bit = 1;
else
isa16bit = 0;
/*
* select page 0 registers
*/
outb(sc->nic_addr + ED_P2_CR, ED_CR_RD2 | ED_CR_STP);
sc->mem_start = (caddr_t) isa_dev->id_maddr;
sc->mem_size = memsize;
sc->mem_end = sc->mem_start + memsize;
/*
* We have an entire 8k window to put the transmit buffers on the
* 16bit boards. But since the 16bit 3c503's shared memory is only
* fast enough to overlap the loading of one full-size packet, trying
* to load more than 2 buffers can actually leave the transmitter idle
* during the load. So 2 seems the best value. (Although a mix of
* variable-sized packets might change this assumption. Nonetheless,
* we optimize for linear transfers of same-size packets.)
*/
if (isa16bit) {
if (isa_dev->id_flags & ED_FLAGS_NO_MULTI_BUFFERING)
sc->txb_cnt = 1;
else
sc->txb_cnt = 2;
sc->tx_page_start = ED_3COM_TX_PAGE_OFFSET_16BIT;
sc->rec_page_start = ED_3COM_RX_PAGE_OFFSET_16BIT;
sc->rec_page_stop = memsize / ED_PAGE_SIZE +
ED_3COM_RX_PAGE_OFFSET_16BIT;
sc->mem_ring = sc->mem_start;
} else {
sc->txb_cnt = 1;
sc->tx_page_start = ED_3COM_TX_PAGE_OFFSET_8BIT;
sc->rec_page_start = ED_TXBUF_SIZE + ED_3COM_TX_PAGE_OFFSET_8BIT;
sc->rec_page_stop = memsize / ED_PAGE_SIZE +
ED_3COM_TX_PAGE_OFFSET_8BIT;
sc->mem_ring = sc->mem_start + (ED_PAGE_SIZE * ED_TXBUF_SIZE);
}
sc->isa16bit = isa16bit;
/*
* Initialize GA page start/stop registers. Probably only needed if
* doing DMA, but what the hell.
*/
outb(sc->asic_addr + ED_3COM_PSTR, sc->rec_page_start);
outb(sc->asic_addr + ED_3COM_PSPR, sc->rec_page_stop);
/*
* Set IRQ. 3c503 only allows a choice of irq 2-5.
*/
switch (isa_dev->id_irq) {
case IRQ2:
outb(sc->asic_addr + ED_3COM_IDCFR, ED_3COM_IDCFR_IRQ2);
break;
case IRQ3:
outb(sc->asic_addr + ED_3COM_IDCFR, ED_3COM_IDCFR_IRQ3);
break;
case IRQ4:
outb(sc->asic_addr + ED_3COM_IDCFR, ED_3COM_IDCFR_IRQ4);
break;
case IRQ5:
outb(sc->asic_addr + ED_3COM_IDCFR, ED_3COM_IDCFR_IRQ5);
break;
default:
printf("ed%d: Invalid irq configuration (%d) must be 2-5 for 3c503\n",
isa_dev->id_unit, ffs(isa_dev->id_irq) - 1);
return (0);
}
/*
* Initialize GA configuration register. Set bank and enable shared
* mem.
*/
outb(sc->asic_addr + ED_3COM_GACFR, ED_3COM_GACFR_RSEL |
ED_3COM_GACFR_MBS0);
/*
* Initialize "Vector Pointer" registers. These gawd-awful things are
* compared to 20 bits of the address on ISA, and if they match, the
* shared memory is disabled. We set them to 0xffff0...allegedly the
* reset vector.
*/
outb(sc->asic_addr + ED_3COM_VPTR2, 0xff);
outb(sc->asic_addr + ED_3COM_VPTR1, 0xff);
outb(sc->asic_addr + ED_3COM_VPTR0, 0x00);
/*
* Zero memory and verify that it is clear
*/
bzero(sc->mem_start, memsize);
for (i = 0; i < memsize; ++i)
if (sc->mem_start[i]) {
printf("ed%d: failed to clear shared memory at %lx - check configuration\n",
isa_dev->id_unit, kvtop(sc->mem_start + i));
return (0);
}
isa_dev->id_msize = memsize;
return (ED_3COM_IO_PORTS);
}
/*
* Probe and vendor-specific initialization routine for NE1000/2000 boards
*/
int
ed_probe_Novell(isa_dev)
struct isa_device *isa_dev;
{
struct ed_softc *sc = &ed_softc[isa_dev->id_unit];
u_int memsize, n;
u_char romdata[16], tmp;
static char test_pattern[32] = "THIS is A memory TEST pattern";
char test_buffer[32];
sc->asic_addr = isa_dev->id_iobase + ED_NOVELL_ASIC_OFFSET;
sc->nic_addr = isa_dev->id_iobase + ED_NOVELL_NIC_OFFSET;
/* XXX - do Novell-specific probe here */
/* Reset the board */
#ifdef GWETHER
outb(sc->asic_addr + ED_NOVELL_RESET, 0);
DELAY(200);
#endif /* GWETHER */
tmp = inb(sc->asic_addr + ED_NOVELL_RESET);
/*
* I don't know if this is necessary; probably cruft leftover from
* Clarkson packet driver code. Doesn't do a thing on the boards I've
* tested. -DG [note that a outb(0x84, 0) seems to work here, and is
* non-invasive...but some boards don't seem to reset and I don't have
* complete documentation on what the 'right' thing to do is...so we
* do the invasive thing for now. Yuck.]
*/
outb(sc->asic_addr + ED_NOVELL_RESET, tmp);
DELAY(5000);
/*
* This is needed because some NE clones apparently don't reset the
* NIC properly (or the NIC chip doesn't reset fully on power-up) XXX
* - this makes the probe invasive! ...Done against my better
* judgement. -DLG
*/
outb(sc->nic_addr + ED_P0_CR, ED_CR_RD2 | ED_CR_STP);
DELAY(5000);
/* Make sure that we really have an 8390 based board */
if (!ed_probe_generic8390(sc))
return (0);
sc->vendor = ED_VENDOR_NOVELL;
sc->mem_shared = 0;
sc->cr_proto = ED_CR_RD2;
isa_dev->id_maddr = 0;
/*
* Test the ability to read and write to the NIC memory. This has the
* side affect of determining if this is an NE1000 or an NE2000.
*/
/*
* This prevents packets from being stored in the NIC memory when the
* readmem routine turns on the start bit in the CR.
*/
outb(sc->nic_addr + ED_P0_RCR, ED_RCR_MON);
/* Temporarily initialize DCR for byte operations */
outb(sc->nic_addr + ED_P0_DCR, ED_DCR_FT1 | ED_DCR_LS);
outb(sc->nic_addr + ED_P0_PSTART, 8192 / ED_PAGE_SIZE);
outb(sc->nic_addr + ED_P0_PSTOP, 16384 / ED_PAGE_SIZE);
sc->isa16bit = 0;
/*
* Write a test pattern in byte mode. If this fails, then there
* probably isn't any memory at 8k - which likely means that the board
* is an NE2000.
*/
ed_pio_writemem(sc, test_pattern, 8192, sizeof(test_pattern));
ed_pio_readmem(sc, 8192, test_buffer, sizeof(test_pattern));
if (bcmp(test_pattern, test_buffer, sizeof(test_pattern))) {
/* not an NE1000 - try NE2000 */
outb(sc->nic_addr + ED_P0_DCR, ED_DCR_WTS | ED_DCR_FT1 | ED_DCR_LS);
outb(sc->nic_addr + ED_P0_PSTART, 16384 / ED_PAGE_SIZE);
outb(sc->nic_addr + ED_P0_PSTOP, 32768 / ED_PAGE_SIZE);
sc->isa16bit = 1;
/*
* Write a test pattern in word mode. If this also fails, then
* we don't know what this board is.
*/
ed_pio_writemem(sc, test_pattern, 16384, sizeof(test_pattern));
ed_pio_readmem(sc, 16384, test_buffer, sizeof(test_pattern));
if (bcmp(test_pattern, test_buffer, sizeof(test_pattern)))
return (0); /* not an NE2000 either */
sc->type = ED_TYPE_NE2000;
sc->type_str = "NE2000";
} else {
sc->type = ED_TYPE_NE1000;
sc->type_str = "NE1000";
}
/* 8k of memory plus an additional 8k if 16bit */
memsize = 8192 + sc->isa16bit * 8192;
#if 0 /* probably not useful - NE boards only come two ways */
/* allow kernel config file overrides */
if (isa_dev->id_msize)
memsize = isa_dev->id_msize;
#endif
sc->mem_size = memsize;
/* NIC memory doesn't start at zero on an NE board */
/* The start address is tied to the bus width */
sc->mem_start = (char *) 8192 + sc->isa16bit * 8192;
sc->mem_end = sc->mem_start + memsize;
sc->tx_page_start = memsize / ED_PAGE_SIZE;
#ifdef GWETHER
{
int x, i, mstart = 0, msize = 0;
char pbuf0[ED_PAGE_SIZE], pbuf[ED_PAGE_SIZE], tbuf[ED_PAGE_SIZE];
for (i = 0; i < ED_PAGE_SIZE; i++)
pbuf0[i] = 0;
/* Clear all the memory. */
for (x = 1; x < 256; x++)
ed_pio_writemem(sc, pbuf0, x * 256, ED_PAGE_SIZE);
/* Search for the start of RAM. */
for (x = 1; x < 256; x++) {
ed_pio_readmem(sc, x * 256, tbuf, ED_PAGE_SIZE);
if (memcmp(pbuf0, tbuf, ED_PAGE_SIZE) == 0) {
for (i = 0; i < ED_PAGE_SIZE; i++)
pbuf[i] = 255 - x;
ed_pio_writemem(sc, pbuf, x * 256, ED_PAGE_SIZE);
ed_pio_readmem(sc, x * 256, tbuf, ED_PAGE_SIZE);
if (memcmp(pbuf, tbuf, ED_PAGE_SIZE) == 0) {
mstart = x * ED_PAGE_SIZE;
msize = ED_PAGE_SIZE;
break;
}
}
}
if (mstart == 0) {
printf("ed%d: Cannot find start of RAM.\n", isa_dev->id_unit);
return 0;
}
/* Search for the start of RAM. */
for (x = (mstart / ED_PAGE_SIZE) + 1; x < 256; x++) {
ed_pio_readmem(sc, x * 256, tbuf, ED_PAGE_SIZE);
if (memcmp(pbuf0, tbuf, ED_PAGE_SIZE) == 0) {
for (i = 0; i < ED_PAGE_SIZE; i++)
pbuf[i] = 255 - x;
ed_pio_writemem(sc, pbuf, x * 256, ED_PAGE_SIZE);
ed_pio_readmem(sc, x * 256, tbuf, ED_PAGE_SIZE);
if (memcmp(pbuf, tbuf, ED_PAGE_SIZE) == 0)
msize += ED_PAGE_SIZE;
else {
break;
}
} else {
break;
}
}
if (msize == 0) {
printf("ed%d: Cannot find any RAM, start : %d, x = %d.\n", isa_dev->id_unit, mstart, x);
return 0;
}
printf("ed%d: RAM start at %d, size : %d.\n", isa_dev->id_unit, mstart, msize);
sc->mem_size = msize;
sc->mem_start = (char *) mstart;
sc->mem_end = (char *) (msize + mstart);
sc->tx_page_start = mstart / ED_PAGE_SIZE;
}
#endif /* GWETHER */
/*
* Use one xmit buffer if < 16k, two buffers otherwise (if not told
* otherwise).
*/
if ((memsize < 16384) || (isa_dev->id_flags & ED_FLAGS_NO_MULTI_BUFFERING))
sc->txb_cnt = 1;
else
sc->txb_cnt = 2;
sc->rec_page_start = sc->tx_page_start + sc->txb_cnt * ED_TXBUF_SIZE;
sc->rec_page_stop = sc->tx_page_start + memsize / ED_PAGE_SIZE;
sc->mem_ring = sc->mem_start + sc->txb_cnt * ED_PAGE_SIZE * ED_TXBUF_SIZE;
ed_pio_readmem(sc, 0, romdata, 16);
for (n = 0; n < ETHER_ADDR_LEN; n++)
sc->arpcom.ac_enaddr[n] = romdata[n * (sc->isa16bit + 1)];
#ifdef GWETHER
if (sc->arpcom.ac_enaddr[2] == 0x86)
sc->type_str = "Gateway AT";
#endif /* GWETHER */
/* clear any pending interrupts that might have occurred above */
outb(sc->nic_addr + ED_P0_ISR, 0xff);
return (ED_NOVELL_IO_PORTS);
}
/*
* Install interface into kernel networking data structures
*/
int
ed_attach(isa_dev)
struct isa_device *isa_dev;
{
struct ed_softc *sc = &ed_softc[isa_dev->id_unit];
struct ifnet *ifp = &sc->arpcom.ac_if;
/*
* Set interface to stopped condition (reset)
*/
ed_stop(isa_dev->id_unit);
/*
* Initialize ifnet structure
*/
ifp->if_unit = isa_dev->id_unit;
ifp->if_name = "ed";
ifp->if_init = ed_init;
ifp->if_output = ether_output;
ifp->if_start = ed_start;
ifp->if_ioctl = ed_ioctl;
ifp->if_reset = ed_reset;
ifp->if_watchdog = ed_watchdog;
/*
* Set default state for ALTPHYS flag (used to disable the tranceiver
* for AUI operation), based on compile-time config option.
*/
if (isa_dev->id_flags & ED_FLAGS_DISABLE_TRANCEIVER)
ifp->if_flags = (IFF_BROADCAST | IFF_SIMPLEX | IFF_NOTRAILERS |
IFF_MULTICAST | IFF_ALTPHYS);
else
ifp->if_flags = (IFF_BROADCAST | IFF_SIMPLEX | IFF_NOTRAILERS |
IFF_MULTICAST);
/*
* Attach the interface
*/
if_attach(ifp);
ed_registerdev(isa_dev, sc->type_str ? sc->type_str : "Ethernet adapter");
/*
* Print additional info when attached
*/
printf("ed%d: address %s, ", isa_dev->id_unit,
ether_sprintf(sc->arpcom.ac_enaddr));
if (sc->type_str && (*sc->type_str != 0))
printf("type %s ", sc->type_str);
else
printf("type unknown (0x%x) ", sc->type);
printf("%s ", sc->isa16bit ? "(16 bit)" : "(8 bit)");
printf("%s\n", ((sc->vendor == ED_VENDOR_3COM) &&
(ifp->if_flags & IFF_ALTPHYS)) ? " tranceiver disabled" : "");
/*
* If BPF is in the kernel, call the attach for it
*/
#if NBPFILTER > 0
bpfattach(&sc->bpf, ifp, DLT_EN10MB, sizeof(struct ether_header));
#endif
return 1;
}
/*
* Reset interface.
*/
void
ed_reset(unit)
int unit;
{
int s;
s = splimp();
/*
* Stop interface and re-initialize.
*/
ed_stop(unit);
ed_init(unit);
(void) splx(s);
}
/*
* Take interface offline.
*/
void
ed_stop(unit)
int unit;
{
struct ed_softc *sc = &ed_softc[unit];
int n = 5000;
/*
* Stop everything on the interface, and select page 0 registers.
*/
outb(sc->nic_addr + ED_P0_CR, sc->cr_proto | ED_CR_STP);
/*
* Wait for interface to enter stopped state, but limit # of checks to
* 'n' (about 5ms). It shouldn't even take 5us on modern DS8390's, but
* just in case it's an old one.
*/
while (((inb(sc->nic_addr + ED_P0_ISR) & ED_ISR_RST) == 0) && --n);
}
/*
* Device timeout/watchdog routine. Entered if the device neglects to
* generate an interrupt after a transmit has been started on it.
*/
void
ed_watchdog(unit)
int unit;
{
struct ed_softc *sc = &ed_softc[unit];
log(LOG_ERR, "ed%d: device timeout\n", unit);
++sc->arpcom.ac_if.if_oerrors;
ed_reset(unit);
}
/*
* Initialize device.
*/
void
ed_init(unit)
int unit;
{
struct ed_softc *sc = &ed_softc[unit];
struct ifnet *ifp = &sc->arpcom.ac_if;
int i, s;
/* address not known */
if (ifp->if_addrlist == (struct ifaddr *) 0)
return;
/*
* Initialize the NIC in the exact order outlined in the NS manual.
* This init procedure is "mandatory"...don't change what or when
* things happen.
*/
s = splimp();
/* reset transmitter flags */
sc->xmit_busy = 0;
sc->arpcom.ac_if.if_timer = 0;
sc->txb_inuse = 0;
sc->txb_new = 0;
sc->txb_next_tx = 0;
/* This variable is used below - don't move this assignment */
sc->next_packet = sc->rec_page_start + 1;
/*
* Set interface for page 0, Remote DMA complete, Stopped
*/
outb(sc->nic_addr + ED_P0_CR, sc->cr_proto | ED_CR_STP);
if (sc->isa16bit) {
/*
* Set FIFO threshold to 8, No auto-init Remote DMA, byte
* order=80x86, word-wide DMA xfers,
*/
outb(sc->nic_addr + ED_P0_DCR, ED_DCR_FT1 | ED_DCR_WTS | ED_DCR_LS);
} else {
/*
* Same as above, but byte-wide DMA xfers
*/
outb(sc->nic_addr + ED_P0_DCR, ED_DCR_FT1 | ED_DCR_LS);
}
/*
* Clear Remote Byte Count Registers
*/
outb(sc->nic_addr + ED_P0_RBCR0, 0);
outb(sc->nic_addr + ED_P0_RBCR1, 0);
/*
* For the moment, don't store incoming packets in memory.
*/
outb(sc->nic_addr + ED_P0_RCR, ED_RCR_MON);
/*
* Place NIC in internal loopback mode
*/
outb(sc->nic_addr + ED_P0_TCR, ED_TCR_LB0);
/*
* Initialize transmit/receive (ring-buffer) Page Start
*/
outb(sc->nic_addr + ED_P0_TPSR, sc->tx_page_start);
outb(sc->nic_addr + ED_P0_PSTART, sc->rec_page_start);
/* Set lower bits of byte addressable framing to 0 */
if (sc->is790)
outb(sc->nic_addr + 0x09, 0);
/*
* Initialize Receiver (ring-buffer) Page Stop and Boundry
*/
outb(sc->nic_addr + ED_P0_PSTOP, sc->rec_page_stop);
outb(sc->nic_addr + ED_P0_BNRY, sc->rec_page_start);
/*
* Clear all interrupts. A '1' in each bit position clears the
* corresponding flag.
*/
outb(sc->nic_addr + ED_P0_ISR, 0xff);
/*
* Enable the following interrupts: receive/transmit complete,
* receive/transmit error, and Receiver OverWrite.
*
* Counter overflow and Remote DMA complete are *not* enabled.
*/
outb(sc->nic_addr + ED_P0_IMR,
ED_IMR_PRXE | ED_IMR_PTXE | ED_IMR_RXEE | ED_IMR_TXEE | ED_IMR_OVWE);
/*
* Program Command Register for page 1
*/
outb(sc->nic_addr + ED_P0_CR, sc->cr_proto | ED_CR_PAGE_1 | ED_CR_STP);
/*
* Copy out our station address
*/
for (i = 0; i < ETHER_ADDR_LEN; ++i)
outb(sc->nic_addr + ED_P1_PAR0 + i, sc->arpcom.ac_enaddr[i]);
/*
* Set Current Page pointer to next_packet (initialized above)
*/
outb(sc->nic_addr + ED_P1_CURR, sc->next_packet);
/*
* Program Receiver Configuration Register and multicast filter. CR is
* set to page 0 on return.
*/
ed_setrcr(ifp, sc);
/*
* Take interface out of loopback
*/
outb(sc->nic_addr + ED_P0_TCR, 0);
/*
* If this is a 3Com board, the tranceiver must be software enabled
* (there is no settable hardware default).
*/
if (sc->vendor == ED_VENDOR_3COM) {
if (ifp->if_flags & IFF_ALTPHYS) {
outb(sc->asic_addr + ED_3COM_CR, 0);
} else {
outb(sc->asic_addr + ED_3COM_CR, ED_3COM_CR_XSEL);
}
}
/*
* Set 'running' flag, and clear output active flag.
*/
ifp->if_flags |= IFF_RUNNING;
ifp->if_flags &= ~IFF_OACTIVE;
/*
* ...and attempt to start output
*/
ed_start(ifp);
(void) splx(s);
}
/*
* This routine actually starts the transmission on the interface
*/
static inline void
ed_xmit(ifp)
struct ifnet *ifp;
{
struct ed_softc *sc = &ed_softc[ifp->if_unit];
unsigned short len;
len = sc->txb_len[sc->txb_next_tx];
/*
* Set NIC for page 0 register access
*/
outb(sc->nic_addr + ED_P0_CR, sc->cr_proto | ED_CR_STA);
/*
* Set TX buffer start page
*/
outb(sc->nic_addr + ED_P0_TPSR, sc->tx_page_start +
sc->txb_next_tx * ED_TXBUF_SIZE);
/*
* Set TX length
*/
outb(sc->nic_addr + ED_P0_TBCR0, len);
outb(sc->nic_addr + ED_P0_TBCR1, len >> 8);
/*
* Set page 0, Remote DMA complete, Transmit Packet, and *Start*
*/
outb(sc->nic_addr + ED_P0_CR, sc->cr_proto | ED_CR_TXP | ED_CR_STA);
sc->xmit_busy = 1;
/*
* Point to next transmit buffer slot and wrap if necessary.
*/
sc->txb_next_tx++;
if (sc->txb_next_tx == sc->txb_cnt)
sc->txb_next_tx = 0;
/*
* Set a timer just in case we never hear from the board again
*/
ifp->if_timer = 2;
}
/*
* Start output on interface.
* We make two assumptions here:
* 1) that the current priority is set to splimp _before_ this code
* is called *and* is returned to the appropriate priority after
* return
* 2) that the IFF_OACTIVE flag is checked before this code is called
* (i.e. that the output part of the interface is idle)
*/
void
ed_start(ifp)
struct ifnet *ifp;
{
struct ed_softc *sc = &ed_softc[ifp->if_unit];
struct mbuf *m0, *m;
caddr_t buffer;
int len;
outloop:
/*
* First, see if there are buffered packets and an idle transmitter -
* should never happen at this point.
*/
if (sc->txb_inuse && (sc->xmit_busy == 0)) {
printf("ed: packets buffered, but transmitter idle\n");
ed_xmit(ifp);
}
/*
* See if there is room to put another packet in the buffer.
*/
if (sc->txb_inuse == sc->txb_cnt) {
/*
* No room. Indicate this to the outside world and exit.
*/
ifp->if_flags |= IFF_OACTIVE;
return;
}
IF_DEQUEUE(&sc->arpcom.ac_if.if_snd, m);
if (m == 0) {
/*
* We are using the !OACTIVE flag to indicate to the outside
* world that we can accept an additional packet rather than
* that the transmitter is _actually_ active. Indeed, the
* transmitter may be active, but if we haven't filled all the
* buffers with data then we still want to accept more.
*/
ifp->if_flags &= ~IFF_OACTIVE;
return;
}
/*
* Copy the mbuf chain into the transmit buffer
*/
m0 = m;
/* txb_new points to next open buffer slot */
buffer = sc->mem_start + (sc->txb_new * ED_TXBUF_SIZE * ED_PAGE_SIZE);
if (sc->mem_shared) {
/*
* Special case setup for 16 bit boards...
*/
if (sc->isa16bit) {
switch (sc->vendor) {
/*
* For 16bit 3Com boards (which have 16k of
* memory), we have the xmit buffers in a
* different page of memory ('page 0') - so
* change pages.
*/
case ED_VENDOR_3COM:
outb(sc->asic_addr + ED_3COM_GACFR,
ED_3COM_GACFR_RSEL);
break;
/*
* Enable 16bit access to shared memory on
* WD/SMC boards.
*/
case ED_VENDOR_WD_SMC:{
outb(sc->asic_addr + ED_WD_LAAR,
(sc->wd_laar_proto | ED_WD_LAAR_M16EN));
if (sc->is790) {
outb(sc->asic_addr + ED_WD_MSR, ED_WD_MSR_MENB);
}
break;
}
}
}
for (len = 0; m != 0; m = m->m_next) {
bcopy(mtod(m, caddr_t), buffer, m->m_len);
buffer += m->m_len;
len += m->m_len;
}
/*
* Restore previous shared memory access
*/
if (sc->isa16bit) {
switch (sc->vendor) {
case ED_VENDOR_3COM:
outb(sc->asic_addr + ED_3COM_GACFR,
ED_3COM_GACFR_RSEL | ED_3COM_GACFR_MBS0);
break;
case ED_VENDOR_WD_SMC:{
if (sc->is790) {
outb(sc->asic_addr + ED_WD_MSR, 0x00);
}
outb(sc->asic_addr + ED_WD_LAAR, sc->wd_laar_proto);
break;
}
}
}
} else {
len = ed_pio_write_mbufs(sc, m, buffer);
}
sc->txb_len[sc->txb_new] = max(len, ETHER_MIN_LEN);
sc->txb_inuse++;
/*
* Point to next buffer slot and wrap if necessary.
*/
sc->txb_new++;
if (sc->txb_new == sc->txb_cnt)
sc->txb_new = 0;
if (sc->xmit_busy == 0)
ed_xmit(ifp);
/*
* Tap off here if there is a bpf listener.
*/
#if NBPFILTER > 0
if (sc->bpf) {
bpf_mtap(sc->bpf, m0);
}
#endif
m_freem(m0);
/*
* Loop back to the top to possibly buffer more packets
*/
goto outloop;
}
/*
* Ethernet interface receiver interrupt.
*/
static inline void
ed_rint(unit)
int unit;
{
register struct ed_softc *sc = &ed_softc[unit];
u_char boundry;
u_short len;
struct ed_ring packet_hdr;
char *packet_ptr;
/*
* Set NIC to page 1 registers to get 'current' pointer
*/
outb(sc->nic_addr + ED_P0_CR, sc->cr_proto | ED_CR_PAGE_1 | ED_CR_STA);
/*
* 'sc->next_packet' is the logical beginning of the ring-buffer -
* i.e. it points to where new data has been buffered. The 'CURR'
* (current) register points to the logical end of the ring-buffer -
* i.e. it points to where additional new data will be added. We loop
* here until the logical beginning equals the logical end (or in
* other words, until the ring-buffer is empty).
*/
while (sc->next_packet != inb(sc->nic_addr + ED_P1_CURR)) {
/* get pointer to this buffer's header structure */
packet_ptr = sc->mem_ring +
(sc->next_packet - sc->rec_page_start) * ED_PAGE_SIZE;
/*
* The byte count includes a 4 byte header that was added by
* the NIC.
*/
if (sc->mem_shared)
packet_hdr = *(struct ed_ring *) packet_ptr;
else
ed_pio_readmem(sc, packet_ptr, (char *) &packet_hdr,
sizeof(packet_hdr));
len = packet_hdr.count;
if (len > ETHER_MAX_LEN) {
/*
* Length is a wild value. There's a good chance that
* this was caused by the NIC being old and buggy.
* The bug is that the length low byte is duplicated in
* the high byte. Try to recalculate the length based on
* the pointer to the next packet.
*/
/*
* NOTE: sc->next_packet is pointing at the current packet.
*/
len &= ED_PAGE_SIZE - 1; /* preserve offset into page */
if (packet_hdr.next_packet >= sc->next_packet) {
len += (packet_hdr.next_packet - sc->next_packet) * ED_PAGE_SIZE;
} else {
len += ((packet_hdr.next_packet - sc->rec_page_start) +
(sc->rec_page_stop - sc->next_packet)) * ED_PAGE_SIZE;
}
}
/*
* Be fairly liberal about what we allow as a "reasonable" length
* so that a [crufty] packet will make it to BPF (and can thus
* be analyzed). Note that all that is really important is that
* we have a length that will fit into one mbuf cluster or less;
* the upper layer protocols can then figure out the length from
* their own length field(s).
*/
if ((len <= MCLBYTES) &&
(packet_hdr.next_packet >= sc->rec_page_start) &&
(packet_hdr.next_packet < sc->rec_page_stop)) {
/*
* Go get packet.
*/
ed_get_packet(sc, packet_ptr + sizeof(struct ed_ring),
len - sizeof(struct ed_ring), packet_hdr.rsr & ED_RSR_PHY);
++sc->arpcom.ac_if.if_ipackets;
} else {
/*
* Really BAD. The ring pointers are corrupted.
*/
log(LOG_ERR,
"ed%d: NIC memory corrupt - invalid packet length %d\n",
unit, len);
++sc->arpcom.ac_if.if_ierrors;
ed_reset(unit);
return;
}
/*
* Update next packet pointer
*/
sc->next_packet = packet_hdr.next_packet;
/*
* Update NIC boundry pointer - being careful to keep it one
* buffer behind. (as recommended by NS databook)
*/
boundry = sc->next_packet - 1;
if (boundry < sc->rec_page_start)
boundry = sc->rec_page_stop - 1;
/*
* Set NIC to page 0 registers to update boundry register
*/
outb(sc->nic_addr + ED_P0_CR, sc->cr_proto | ED_CR_STA);
outb(sc->nic_addr + ED_P0_BNRY, boundry);
/*
* Set NIC to page 1 registers before looping to top (prepare
* to get 'CURR' current pointer)
*/
outb(sc->nic_addr + ED_P0_CR, sc->cr_proto | ED_CR_PAGE_1 | ED_CR_STA);
}
}
/*
* Ethernet interface interrupt processor
*/
void
edintr(unit)
int unit;
{
struct ed_softc *sc = &ed_softc[unit];
u_char isr;
/*
* Set NIC to page 0 registers
*/
outb(sc->nic_addr + ED_P0_CR, sc->cr_proto | ED_CR_STA);
/*
* loop until there are no more new interrupts
*/
while ((isr = inb(sc->nic_addr + ED_P0_ISR)) != 0) {
/*
* reset all the bits that we are 'acknowledging' by writing a
* '1' to each bit position that was set (writing a '1'
* *clears* the bit)
*/
outb(sc->nic_addr + ED_P0_ISR, isr);
/*
* Handle transmitter interrupts. Handle these first because
* the receiver will reset the board under some conditions.
*/
if (isr & (ED_ISR_PTX | ED_ISR_TXE)) {
u_char collisions = inb(sc->nic_addr + ED_P0_NCR) & 0x0f;
/*
* Check for transmit error. If a TX completed with an
* error, we end up throwing the packet away. Really
* the only error that is possible is excessive
* collisions, and in this case it is best to allow
* the automatic mechanisms of TCP to backoff the
* flow. Of course, with UDP we're screwed, but this
* is expected when a network is heavily loaded.
*/
(void) inb(sc->nic_addr + ED_P0_TSR);
if (isr & ED_ISR_TXE) {
/*
* Excessive collisions (16)
*/
if ((inb(sc->nic_addr + ED_P0_TSR) & ED_TSR_ABT)
&& (collisions == 0)) {
/*
* When collisions total 16, the
* P0_NCR will indicate 0, and the
* TSR_ABT is set.
*/
collisions = 16;
}
/*
* update output errors counter
*/
++sc->arpcom.ac_if.if_oerrors;
} else {
/*
* Update total number of successfully
* transmitted packets.
*/
++sc->arpcom.ac_if.if_opackets;
}
/*
* reset tx busy and output active flags
*/
sc->xmit_busy = 0;
sc->arpcom.ac_if.if_flags &= ~IFF_OACTIVE;
/*
* clear watchdog timer
*/
sc->arpcom.ac_if.if_timer = 0;
/*
* Add in total number of collisions on last
* transmission.
*/
sc->arpcom.ac_if.if_collisions += collisions;
/*
* Decrement buffer in-use count if not zero (can only
* be zero if a transmitter interrupt occured while
* not actually transmitting). If data is ready to
* transmit, start it transmitting, otherwise defer
* until after handling receiver
*/
if (sc->txb_inuse && --sc->txb_inuse)
ed_xmit(&sc->arpcom.ac_if);
}
/*
* Handle receiver interrupts
*/
if (isr & (ED_ISR_PRX | ED_ISR_RXE | ED_ISR_OVW)) {
/*
* Overwrite warning. In order to make sure that a
* lockup of the local DMA hasn't occurred, we reset
* and re-init the NIC. The NSC manual suggests only a
* partial reset/re-init is necessary - but some chips
* seem to want more. The DMA lockup has been seen
* only with early rev chips - Methinks this bug was
* fixed in later revs. -DG
*/
if (isr & ED_ISR_OVW) {
++sc->arpcom.ac_if.if_ierrors;
#ifdef DIAGNOSTIC
log(LOG_WARNING,
"ed%d: warning - receiver ring buffer overrun\n",
unit);
#endif
/*
* Stop/reset/re-init NIC
*/
ed_reset(unit);
} else {
/*
* Receiver Error. One or more of: CRC error,
* frame alignment error FIFO overrun, or
* missed packet.
*/
if (isr & ED_ISR_RXE) {
++sc->arpcom.ac_if.if_ierrors;
#ifdef ED_DEBUG
printf("ed%d: receive error %x\n", unit,
inb(sc->nic_addr + ED_P0_RSR));
#endif
}
/*
* Go get the packet(s) XXX - Doing this on an
* error is dubious because there shouldn't be
* any data to get (we've configured the
* interface to not accept packets with
* errors).
*/
/*
* Enable 16bit access to shared memory first
* on WD/SMC boards.
*/
if (sc->isa16bit &&
(sc->vendor == ED_VENDOR_WD_SMC)) {
outb(sc->asic_addr + ED_WD_LAAR,
(sc->wd_laar_proto |=
ED_WD_LAAR_M16EN));
if (sc->is790) {
outb(sc->asic_addr + ED_WD_MSR,
ED_WD_MSR_MENB);
}
}
ed_rint(unit);
/* disable 16bit access */
if (sc->isa16bit &&
(sc->vendor == ED_VENDOR_WD_SMC)) {
if (sc->is790) {
outb(sc->asic_addr + ED_WD_MSR, 0x00);
}
outb(sc->asic_addr + ED_WD_LAAR,
(sc->wd_laar_proto &=
~ED_WD_LAAR_M16EN));
}
}
}
/*
* If it looks like the transmitter can take more data,
* attempt to start output on the interface. This is done
* after handling the receiver to give the receiver priority.
*/
if ((sc->arpcom.ac_if.if_flags & IFF_OACTIVE) == 0)
ed_start(&sc->arpcom.ac_if);
/*
* return NIC CR to standard state: page 0, remote DMA
* complete, start (toggling the TXP bit off, even if was just
* set in the transmit routine, is *okay* - it is 'edge'
* triggered from low to high)
*/
outb(sc->nic_addr + ED_P0_CR, sc->cr_proto | ED_CR_STA);
/*
* If the Network Talley Counters overflow, read them to reset
* them. It appears that old 8390's won't clear the ISR flag
* otherwise - resulting in an infinite loop.
*/
if (isr & ED_ISR_CNT) {
(void) inb(sc->nic_addr + ED_P0_CNTR0);
(void) inb(sc->nic_addr + ED_P0_CNTR1);
(void) inb(sc->nic_addr + ED_P0_CNTR2);
}
}
}
/*
* Process an ioctl request. This code needs some work - it looks
* pretty ugly.
*/
int
ed_ioctl(ifp, command, data)
register struct ifnet *ifp;
int command;
caddr_t data;
{
register struct ifaddr *ifa = (struct ifaddr *) data;
struct ed_softc *sc = &ed_softc[ifp->if_unit];
struct ifreq *ifr = (struct ifreq *) data;
int s, error = 0;
s = splimp();
switch (command) {
case SIOCSIFADDR:
ifp->if_flags |= IFF_UP;
switch (ifa->ifa_addr->sa_family) {
#ifdef INET
case AF_INET:
ed_init(ifp->if_unit); /* before arpwhohas */
arp_ifinit((struct arpcom *)ifp, ifa);
break;
#endif
#ifdef NS
/*
* XXX - This code is probably wrong
*/
case AF_NS:
{
register struct ns_addr *ina = &(IA_SNS(ifa)->sns_addr);
if (ns_nullhost(*ina))
ina->x_host =
*(union ns_host *) (sc->arpcom.ac_enaddr);
else {
bcopy((caddr_t) ina->x_host.c_host,
(caddr_t) sc->arpcom.ac_enaddr,
sizeof(sc->arpcom.ac_enaddr));
}
/*
* Set new address
*/
ed_init(ifp->if_unit);
break;
}
#endif
default:
ed_init(ifp->if_unit);
break;
}
break;
case SIOCGIFADDR:
{
struct sockaddr *sa;
sa = (struct sockaddr *) & ifr->ifr_data;
bcopy((caddr_t) sc->arpcom.ac_enaddr,
(caddr_t) sa->sa_data, ETHER_ADDR_LEN);
}
break;
case SIOCSIFFLAGS:
/*
* If interface is marked down and it is running, then stop it
*/
if (((ifp->if_flags & IFF_UP) == 0) &&
(ifp->if_flags & IFF_RUNNING)) {
ed_stop(ifp->if_unit);
ifp->if_flags &= ~IFF_RUNNING;
} else {
/*
* If interface is marked up and it is stopped, then
* start it
*/
if ((ifp->if_flags & IFF_UP) &&
((ifp->if_flags & IFF_RUNNING) == 0))
ed_init(ifp->if_unit);
}
#if NBPFILTER > 0
/*
* Promiscuous flag may have changed, so reprogram the RCR.
*/
ed_setrcr(ifp, sc);
#endif
/*
* An unfortunate hack to provide the (required) software
* control of the tranceiver for 3Com boards. The ALTPHYS flag
* disables the tranceiver if set.
*/
if (sc->vendor == ED_VENDOR_3COM) {
if (ifp->if_flags & IFF_ALTPHYS) {
outb(sc->asic_addr + ED_3COM_CR, 0);
} else {
outb(sc->asic_addr + ED_3COM_CR, ED_3COM_CR_XSEL);
}
}
break;
case SIOCADDMULTI:
case SIOCDELMULTI:
/*
* Update out multicast list.
*/
error = (command == SIOCADDMULTI) ?
ether_addmulti(ifr, &sc->arpcom) :
ether_delmulti(ifr, &sc->arpcom);
if (error == ENETRESET) {
/*
* Multicast list has changed; set the hardware filter
* accordingly.
*/
ed_setrcr(ifp, sc);
error = 0;
}
break;
case SIOCSIFMTU:
/*
* Set the interface MTU.
*/
if (ifr->ifr_mtu > ETHERMTU) {
error = EINVAL;
} else {
ifp->if_mtu = ifr->ifr_mtu;
}
break;
default:
error = EINVAL;
}
(void) splx(s);
return (error);
}
/*
* Retreive packet from shared memory and send to the next level up via
* ether_input(). If there is a BPF listener, give a copy to BPF, too.
*/
static void
ed_get_packet(sc, buf, len, multicast)
struct ed_softc *sc;
char *buf;
u_short len;
int multicast;
{
struct ether_header *eh;
struct mbuf *m;
/* Allocate a header mbuf */
MGETHDR(m, M_DONTWAIT, MT_DATA);
if (m == NULL)
return;
m->m_pkthdr.rcvif = &sc->arpcom.ac_if;
m->m_pkthdr.len = m->m_len = len;
/* Attach an mbuf cluster */
MCLGET(m, M_DONTWAIT);
/* Insist on getting a cluster */
if ((m->m_flags & M_EXT) == 0) {
m_freem(m);
return;
}
/*
* The +2 is to longword align the start of the real packet.
* This is important for NFS.
*/
m->m_data += 2;
eh = mtod(m, struct ether_header *);
/*
* Get packet, including link layer address, from interface.
*/
ed_ring_copy(sc, buf, (char *)eh, len);
#if NBPFILTER > 0
/*
* Check if there's a BPF listener on this interface. If so, hand off
* the raw packet to bpf.
*/
if (sc->bpf) {
bpf_mtap(sc->bpf, m);
/*
* Note that the interface cannot be in promiscuous mode if
* there are no BPF listeners. And if we are in promiscuous
* mode, we have to check if this packet is really ours.
*/
if ((sc->arpcom.ac_if.if_flags & IFF_PROMISC) &&
bcmp(eh->ether_dhost, sc->arpcom.ac_enaddr,
sizeof(eh->ether_dhost)) != 0 && multicast == 0) {
m_freem(m);
return;
}
}
#endif
/*
* Remove link layer address.
*/
m->m_pkthdr.len = m->m_len = len - sizeof(struct ether_header);
m->m_data += sizeof(struct ether_header);
ether_input(&sc->arpcom.ac_if, eh, m);
return;
}
/*
* Supporting routines
*/
/*
* Given a NIC memory source address and a host memory destination
* address, copy 'amount' from NIC to host using Programmed I/O.
* The 'amount' is rounded up to a word - okay as long as mbufs
* are word sized.
* This routine is currently Novell-specific.
*/
void
ed_pio_readmem(sc, src, dst, amount)
struct ed_softc *sc;
unsigned short src;
unsigned char *dst;
unsigned short amount;
{
unsigned short tmp_amount;
/* select page 0 registers */
outb(sc->nic_addr + ED_P0_CR, ED_CR_RD2 | ED_CR_STA);
/* round up to a word */
tmp_amount = amount;
if (amount & 1)
++amount;
/* set up DMA byte count */
outb(sc->nic_addr + ED_P0_RBCR0, amount);
outb(sc->nic_addr + ED_P0_RBCR1, amount >> 8);
/* set up source address in NIC mem */
outb(sc->nic_addr + ED_P0_RSAR0, src);
outb(sc->nic_addr + ED_P0_RSAR1, src >> 8);
outb(sc->nic_addr + ED_P0_CR, ED_CR_RD0 | ED_CR_STA);
if (sc->isa16bit) {
insw(sc->asic_addr + ED_NOVELL_DATA, dst, amount / 2);
} else
insb(sc->asic_addr + ED_NOVELL_DATA, dst, amount);
}
/*
* Stripped down routine for writing a linear buffer to NIC memory.
* Only used in the probe routine to test the memory. 'len' must
* be even.
*/
void
ed_pio_writemem(sc, src, dst, len)
struct ed_softc *sc;
char *src;
unsigned short dst;
unsigned short len;
{
int maxwait = 100; /* about 120us */
/* select page 0 registers */
outb(sc->nic_addr + ED_P0_CR, ED_CR_RD2 | ED_CR_STA);
/* reset remote DMA complete flag */
outb(sc->nic_addr + ED_P0_ISR, ED_ISR_RDC);
/* set up DMA byte count */
outb(sc->nic_addr + ED_P0_RBCR0, len);
outb(sc->nic_addr + ED_P0_RBCR1, len >> 8);
/* set up destination address in NIC mem */
outb(sc->nic_addr + ED_P0_RSAR0, dst);
outb(sc->nic_addr + ED_P0_RSAR1, dst >> 8);
/* set remote DMA write */
outb(sc->nic_addr + ED_P0_CR, ED_CR_RD1 | ED_CR_STA);
if (sc->isa16bit)
outsw(sc->asic_addr + ED_NOVELL_DATA, src, len / 2);
else
outsb(sc->asic_addr + ED_NOVELL_DATA, src, len);
/*
* Wait for remote DMA complete. This is necessary because on the
* transmit side, data is handled internally by the NIC in bursts and
* we can't start another remote DMA until this one completes. Not
* waiting causes really bad things to happen - like the NIC
* irrecoverably jamming the ISA bus.
*/
while (((inb(sc->nic_addr + ED_P0_ISR) & ED_ISR_RDC) != ED_ISR_RDC) && --maxwait);
}
/*
* Write an mbuf chain to the destination NIC memory address using
* programmed I/O.
*/
u_short
ed_pio_write_mbufs(sc, m, dst)
struct ed_softc *sc;
struct mbuf *m;
unsigned short dst;
{
unsigned short len;
struct mbuf *mp;
int maxwait = 100; /* about 120us */
/* First, count up the total number of bytes to copy */
for (len = 0, mp = m; mp; mp = mp->m_next)
len += mp->m_len;
/* select page 0 registers */
outb(sc->nic_addr + ED_P0_CR, ED_CR_RD2 | ED_CR_STA);
/* reset remote DMA complete flag */
outb(sc->nic_addr + ED_P0_ISR, ED_ISR_RDC);
/* set up DMA byte count */
outb(sc->nic_addr + ED_P0_RBCR0, len);
outb(sc->nic_addr + ED_P0_RBCR1, len >> 8);
/* set up destination address in NIC mem */
outb(sc->nic_addr + ED_P0_RSAR0, dst);
outb(sc->nic_addr + ED_P0_RSAR1, dst >> 8);
/* set remote DMA write */
outb(sc->nic_addr + ED_P0_CR, ED_CR_RD1 | ED_CR_STA);
/*
* Transfer the mbuf chain to the NIC memory.
* 16-bit cards require that data be transferred as words, and only words.
* So that case requires some extra code to patch over odd-length mbufs.
*/
if (!sc->isa16bit) {
/* NE1000s are easy */
while (m) {
if (m->m_len) {
outsb(sc->asic_addr + ED_NOVELL_DATA,
m->m_data, m->m_len);
}
m = m->m_next;
}
} else {
/* NE2000s are a pain */
unsigned char *data;
int len, wantbyte;
unsigned char savebyte[2];
wantbyte = 0;
while (m) {
data = mtod(m, caddr_t);
len = m->m_len;
if (len) {
/* finish the last word */
if (wantbyte) {
savebyte[1] = *data;
outw(sc->asic_addr + ED_NOVELL_DATA,
*((unsigned short *) savebyte));
data++;
len--;
wantbyte = 0;
}
/* output contiguous words */
if (len > 1) {
outsw(sc->asic_addr + ED_NOVELL_DATA,
data, len >> 1);
data += len & ~1;
len &= 1;
}
/* save last byte, if necessary */
if (len == 1) {
savebyte[0] = *data;
wantbyte = 1;
}
}
m = m->m_next;
}
/* spit last byte */
if (wantbyte)
outw(sc->asic_addr + ED_NOVELL_DATA,
*((unsigned short *) savebyte));
}
/*
* Wait for remote DMA complete. This is necessary because on the
* transmit side, data is handled internally by the NIC in bursts and
* we can't start another remote DMA until this one completes. Not
* waiting causes really bad things to happen - like the NIC
* irrecoverably jamming the ISA bus.
*/
while (((inb(sc->nic_addr + ED_P0_ISR) & ED_ISR_RDC) != ED_ISR_RDC) && --maxwait);
if (!maxwait) {
log(LOG_WARNING, "ed%d: remote transmit DMA failed to complete\n",
sc->arpcom.ac_if.if_unit);
ed_reset(sc->arpcom.ac_if.if_unit);
}
return (len);
}
/*
* Given a source and destination address, copy 'amount' of a packet from
* the ring buffer into a linear destination buffer. Takes into account
* ring-wrap.
*/
static inline char *
ed_ring_copy(sc, src, dst, amount)
struct ed_softc *sc;
char *src;
char *dst;
u_short amount;
{
u_short tmp_amount;
/* does copy wrap to lower addr in ring buffer? */
if (src + amount > sc->mem_end) {
tmp_amount = sc->mem_end - src;
/* copy amount up to end of NIC memory */
if (sc->mem_shared)
bcopy(src, dst, tmp_amount);
else
ed_pio_readmem(sc, src, dst, tmp_amount);
amount -= tmp_amount;
src = sc->mem_ring;
dst += tmp_amount;
}
if (sc->mem_shared)
bcopy(src, dst, amount);
else
ed_pio_readmem(sc, src, dst, amount);
return (src + amount);
}
void
ed_setrcr(ifp, sc)
struct ifnet *ifp;
struct ed_softc *sc;
{
int i;
/* set page 1 registers */
outb(sc->nic_addr + ED_P0_CR, sc->cr_proto | ED_CR_PAGE_1 | ED_CR_STP);
if (ifp->if_flags & IFF_PROMISC) {
/*
* Reconfigure the multicast filter.
*/
for (i = 0; i < 8; i++)
outb(sc->nic_addr + ED_P1_MAR0 + i, 0xff);
/*
* And turn on promiscuous mode. Also enable reception of
* runts and packets with CRC & alignment errors.
*/
/* Set page 0 registers */
outb(sc->nic_addr + ED_P0_CR, sc->cr_proto | ED_CR_STP);
outb(sc->nic_addr + ED_P0_RCR, ED_RCR_PRO | ED_RCR_AM |
ED_RCR_AB | ED_RCR_AR | ED_RCR_SEP);
} else {
/* set up multicast addresses and filter modes */
if (ifp->if_flags & IFF_MULTICAST) {
u_long mcaf[2];
if (ifp->if_flags & IFF_ALLMULTI) {
mcaf[0] = 0xffffffff;
mcaf[1] = 0xffffffff;
} else
ds_getmcaf(sc, mcaf);
/*
* Set multicast filter on chip.
*/
for (i = 0; i < 8; i++)
outb(sc->nic_addr + ED_P1_MAR0 + i, ((u_char *) mcaf)[i]);
/* Set page 0 registers */
outb(sc->nic_addr + ED_P0_CR, sc->cr_proto | ED_CR_STP);
outb(sc->nic_addr + ED_P0_RCR, ED_RCR_AM | ED_RCR_AB);
} else {
/*
* Initialize multicast address hashing registers to
* not accept multicasts.
*/
for (i = 0; i < 8; ++i)
outb(sc->nic_addr + ED_P1_MAR0 + i, 0x00);
/* Set page 0 registers */
outb(sc->nic_addr + ED_P0_CR, sc->cr_proto | ED_CR_STP);
outb(sc->nic_addr + ED_P0_RCR, ED_RCR_AB);
}
}
/*
* Start interface.
*/
outb(sc->nic_addr + ED_P0_CR, sc->cr_proto | ED_CR_STA);
}
/*
* Compute crc for ethernet address
*/
u_long
ds_crc(ep)
u_char *ep;
{
#define POLYNOMIAL 0x04c11db6
register u_long crc = 0xffffffffL;
register int carry, i, j;
register u_char b;
for (i = 6; --i >= 0;) {
b = *ep++;
for (j = 8; --j >= 0;) {
carry = ((crc & 0x80000000L) ? 1 : 0) ^ (b & 0x01);
crc <<= 1;
b >>= 1;
if (carry)
crc = ((crc ^ POLYNOMIAL) | carry);
}
}
return crc;
#undef POLYNOMIAL
}
/*
* Compute the multicast address filter from the
* list of multicast addresses we need to listen to.
*/
void
ds_getmcaf(sc, mcaf)
struct ed_softc *sc;
u_long *mcaf;
{
register u_int index;
register u_char *af = (u_char *) mcaf;
register struct ether_multi *enm;
register struct ether_multistep step;
mcaf[0] = 0;
mcaf[1] = 0;
ETHER_FIRST_MULTI(step, &sc->arpcom, enm);
while (enm != NULL) {
if (bcmp(enm->enm_addrlo, enm->enm_addrhi, 6) != 0) {
mcaf[0] = 0xffffffff;
mcaf[1] = 0xffffffff;
return;
}
index = ds_crc(enm->enm_addrlo, 6) >> 26;
af[index >> 3] |= 1 << (index & 7);
ETHER_NEXT_MULTI(step, enm);
}
}