1591 lines
59 KiB
C++
1591 lines
59 KiB
C++
//===- LazyCallGraph.cpp - Analysis of a Module's call graph --------------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/Analysis/LazyCallGraph.h"
|
|
#include "llvm/ADT/STLExtras.h"
|
|
#include "llvm/IR/CallSite.h"
|
|
#include "llvm/IR/InstVisitor.h"
|
|
#include "llvm/IR/Instructions.h"
|
|
#include "llvm/IR/PassManager.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/GraphWriter.h"
|
|
|
|
using namespace llvm;
|
|
|
|
#define DEBUG_TYPE "lcg"
|
|
|
|
static void addEdge(SmallVectorImpl<LazyCallGraph::Edge> &Edges,
|
|
DenseMap<Function *, int> &EdgeIndexMap, Function &F,
|
|
LazyCallGraph::Edge::Kind EK) {
|
|
// Note that we consider *any* function with a definition to be a viable
|
|
// edge. Even if the function's definition is subject to replacement by
|
|
// some other module (say, a weak definition) there may still be
|
|
// optimizations which essentially speculate based on the definition and
|
|
// a way to check that the specific definition is in fact the one being
|
|
// used. For example, this could be done by moving the weak definition to
|
|
// a strong (internal) definition and making the weak definition be an
|
|
// alias. Then a test of the address of the weak function against the new
|
|
// strong definition's address would be an effective way to determine the
|
|
// safety of optimizing a direct call edge.
|
|
if (!F.isDeclaration() &&
|
|
EdgeIndexMap.insert({&F, Edges.size()}).second) {
|
|
DEBUG(dbgs() << " Added callable function: " << F.getName() << "\n");
|
|
Edges.emplace_back(LazyCallGraph::Edge(F, EK));
|
|
}
|
|
}
|
|
|
|
static void findReferences(SmallVectorImpl<Constant *> &Worklist,
|
|
SmallPtrSetImpl<Constant *> &Visited,
|
|
SmallVectorImpl<LazyCallGraph::Edge> &Edges,
|
|
DenseMap<Function *, int> &EdgeIndexMap) {
|
|
while (!Worklist.empty()) {
|
|
Constant *C = Worklist.pop_back_val();
|
|
|
|
if (Function *F = dyn_cast<Function>(C)) {
|
|
addEdge(Edges, EdgeIndexMap, *F, LazyCallGraph::Edge::Ref);
|
|
continue;
|
|
}
|
|
|
|
for (Value *Op : C->operand_values())
|
|
if (Visited.insert(cast<Constant>(Op)).second)
|
|
Worklist.push_back(cast<Constant>(Op));
|
|
}
|
|
}
|
|
|
|
LazyCallGraph::Node::Node(LazyCallGraph &G, Function &F)
|
|
: G(&G), F(F), DFSNumber(0), LowLink(0) {
|
|
DEBUG(dbgs() << " Adding functions called by '" << F.getName()
|
|
<< "' to the graph.\n");
|
|
|
|
SmallVector<Constant *, 16> Worklist;
|
|
SmallPtrSet<Function *, 4> Callees;
|
|
SmallPtrSet<Constant *, 16> Visited;
|
|
|
|
// Find all the potential call graph edges in this function. We track both
|
|
// actual call edges and indirect references to functions. The direct calls
|
|
// are trivially added, but to accumulate the latter we walk the instructions
|
|
// and add every operand which is a constant to the worklist to process
|
|
// afterward.
|
|
for (BasicBlock &BB : F)
|
|
for (Instruction &I : BB) {
|
|
if (auto CS = CallSite(&I))
|
|
if (Function *Callee = CS.getCalledFunction())
|
|
if (Callees.insert(Callee).second) {
|
|
Visited.insert(Callee);
|
|
addEdge(Edges, EdgeIndexMap, *Callee, LazyCallGraph::Edge::Call);
|
|
}
|
|
|
|
for (Value *Op : I.operand_values())
|
|
if (Constant *C = dyn_cast<Constant>(Op))
|
|
if (Visited.insert(C).second)
|
|
Worklist.push_back(C);
|
|
}
|
|
|
|
// We've collected all the constant (and thus potentially function or
|
|
// function containing) operands to all of the instructions in the function.
|
|
// Process them (recursively) collecting every function found.
|
|
findReferences(Worklist, Visited, Edges, EdgeIndexMap);
|
|
}
|
|
|
|
void LazyCallGraph::Node::insertEdgeInternal(Function &Target, Edge::Kind EK) {
|
|
if (Node *N = G->lookup(Target))
|
|
return insertEdgeInternal(*N, EK);
|
|
|
|
EdgeIndexMap.insert({&Target, Edges.size()});
|
|
Edges.emplace_back(Target, EK);
|
|
}
|
|
|
|
void LazyCallGraph::Node::insertEdgeInternal(Node &TargetN, Edge::Kind EK) {
|
|
EdgeIndexMap.insert({&TargetN.getFunction(), Edges.size()});
|
|
Edges.emplace_back(TargetN, EK);
|
|
}
|
|
|
|
void LazyCallGraph::Node::setEdgeKind(Function &TargetF, Edge::Kind EK) {
|
|
Edges[EdgeIndexMap.find(&TargetF)->second].setKind(EK);
|
|
}
|
|
|
|
void LazyCallGraph::Node::removeEdgeInternal(Function &Target) {
|
|
auto IndexMapI = EdgeIndexMap.find(&Target);
|
|
assert(IndexMapI != EdgeIndexMap.end() &&
|
|
"Target not in the edge set for this caller?");
|
|
|
|
Edges[IndexMapI->second] = Edge();
|
|
EdgeIndexMap.erase(IndexMapI);
|
|
}
|
|
|
|
void LazyCallGraph::Node::dump() const {
|
|
dbgs() << *this << '\n';
|
|
}
|
|
|
|
LazyCallGraph::LazyCallGraph(Module &M) : NextDFSNumber(0) {
|
|
DEBUG(dbgs() << "Building CG for module: " << M.getModuleIdentifier()
|
|
<< "\n");
|
|
for (Function &F : M)
|
|
if (!F.isDeclaration() && !F.hasLocalLinkage())
|
|
if (EntryIndexMap.insert({&F, EntryEdges.size()}).second) {
|
|
DEBUG(dbgs() << " Adding '" << F.getName()
|
|
<< "' to entry set of the graph.\n");
|
|
EntryEdges.emplace_back(F, Edge::Ref);
|
|
}
|
|
|
|
// Now add entry nodes for functions reachable via initializers to globals.
|
|
SmallVector<Constant *, 16> Worklist;
|
|
SmallPtrSet<Constant *, 16> Visited;
|
|
for (GlobalVariable &GV : M.globals())
|
|
if (GV.hasInitializer())
|
|
if (Visited.insert(GV.getInitializer()).second)
|
|
Worklist.push_back(GV.getInitializer());
|
|
|
|
DEBUG(dbgs() << " Adding functions referenced by global initializers to the "
|
|
"entry set.\n");
|
|
findReferences(Worklist, Visited, EntryEdges, EntryIndexMap);
|
|
|
|
for (const Edge &E : EntryEdges)
|
|
RefSCCEntryNodes.push_back(&E.getFunction());
|
|
}
|
|
|
|
LazyCallGraph::LazyCallGraph(LazyCallGraph &&G)
|
|
: BPA(std::move(G.BPA)), NodeMap(std::move(G.NodeMap)),
|
|
EntryEdges(std::move(G.EntryEdges)),
|
|
EntryIndexMap(std::move(G.EntryIndexMap)), SCCBPA(std::move(G.SCCBPA)),
|
|
SCCMap(std::move(G.SCCMap)), LeafRefSCCs(std::move(G.LeafRefSCCs)),
|
|
DFSStack(std::move(G.DFSStack)),
|
|
RefSCCEntryNodes(std::move(G.RefSCCEntryNodes)),
|
|
NextDFSNumber(G.NextDFSNumber) {
|
|
updateGraphPtrs();
|
|
}
|
|
|
|
LazyCallGraph &LazyCallGraph::operator=(LazyCallGraph &&G) {
|
|
BPA = std::move(G.BPA);
|
|
NodeMap = std::move(G.NodeMap);
|
|
EntryEdges = std::move(G.EntryEdges);
|
|
EntryIndexMap = std::move(G.EntryIndexMap);
|
|
SCCBPA = std::move(G.SCCBPA);
|
|
SCCMap = std::move(G.SCCMap);
|
|
LeafRefSCCs = std::move(G.LeafRefSCCs);
|
|
DFSStack = std::move(G.DFSStack);
|
|
RefSCCEntryNodes = std::move(G.RefSCCEntryNodes);
|
|
NextDFSNumber = G.NextDFSNumber;
|
|
updateGraphPtrs();
|
|
return *this;
|
|
}
|
|
|
|
void LazyCallGraph::SCC::dump() const {
|
|
dbgs() << *this << '\n';
|
|
}
|
|
|
|
#ifndef NDEBUG
|
|
void LazyCallGraph::SCC::verify() {
|
|
assert(OuterRefSCC && "Can't have a null RefSCC!");
|
|
assert(!Nodes.empty() && "Can't have an empty SCC!");
|
|
|
|
for (Node *N : Nodes) {
|
|
assert(N && "Can't have a null node!");
|
|
assert(OuterRefSCC->G->lookupSCC(*N) == this &&
|
|
"Node does not map to this SCC!");
|
|
assert(N->DFSNumber == -1 &&
|
|
"Must set DFS numbers to -1 when adding a node to an SCC!");
|
|
assert(N->LowLink == -1 &&
|
|
"Must set low link to -1 when adding a node to an SCC!");
|
|
for (Edge &E : *N)
|
|
assert(E.getNode() && "Can't have an edge to a raw function!");
|
|
}
|
|
}
|
|
#endif
|
|
|
|
LazyCallGraph::RefSCC::RefSCC(LazyCallGraph &G) : G(&G) {}
|
|
|
|
void LazyCallGraph::RefSCC::dump() const {
|
|
dbgs() << *this << '\n';
|
|
}
|
|
|
|
#ifndef NDEBUG
|
|
void LazyCallGraph::RefSCC::verify() {
|
|
assert(G && "Can't have a null graph!");
|
|
assert(!SCCs.empty() && "Can't have an empty SCC!");
|
|
|
|
// Verify basic properties of the SCCs.
|
|
for (SCC *C : SCCs) {
|
|
assert(C && "Can't have a null SCC!");
|
|
C->verify();
|
|
assert(&C->getOuterRefSCC() == this &&
|
|
"SCC doesn't think it is inside this RefSCC!");
|
|
}
|
|
|
|
// Check that our indices map correctly.
|
|
for (auto &SCCIndexPair : SCCIndices) {
|
|
SCC *C = SCCIndexPair.first;
|
|
int i = SCCIndexPair.second;
|
|
assert(C && "Can't have a null SCC in the indices!");
|
|
assert(SCCs[i] == C && "Index doesn't point to SCC!");
|
|
}
|
|
|
|
// Check that the SCCs are in fact in post-order.
|
|
for (int i = 0, Size = SCCs.size(); i < Size; ++i) {
|
|
SCC &SourceSCC = *SCCs[i];
|
|
for (Node &N : SourceSCC)
|
|
for (Edge &E : N) {
|
|
if (!E.isCall())
|
|
continue;
|
|
SCC &TargetSCC = *G->lookupSCC(*E.getNode());
|
|
if (&TargetSCC.getOuterRefSCC() == this) {
|
|
assert(SCCIndices.find(&TargetSCC)->second <= i &&
|
|
"Edge between SCCs violates post-order relationship.");
|
|
continue;
|
|
}
|
|
assert(TargetSCC.getOuterRefSCC().Parents.count(this) &&
|
|
"Edge to a RefSCC missing us in its parent set.");
|
|
}
|
|
}
|
|
}
|
|
#endif
|
|
|
|
bool LazyCallGraph::RefSCC::isDescendantOf(const RefSCC &C) const {
|
|
// Walk up the parents of this SCC and verify that we eventually find C.
|
|
SmallVector<const RefSCC *, 4> AncestorWorklist;
|
|
AncestorWorklist.push_back(this);
|
|
do {
|
|
const RefSCC *AncestorC = AncestorWorklist.pop_back_val();
|
|
if (AncestorC->isChildOf(C))
|
|
return true;
|
|
for (const RefSCC *ParentC : AncestorC->Parents)
|
|
AncestorWorklist.push_back(ParentC);
|
|
} while (!AncestorWorklist.empty());
|
|
|
|
return false;
|
|
}
|
|
|
|
SmallVector<LazyCallGraph::SCC *, 1>
|
|
LazyCallGraph::RefSCC::switchInternalEdgeToCall(Node &SourceN, Node &TargetN) {
|
|
assert(!SourceN[TargetN].isCall() && "Must start with a ref edge!");
|
|
|
|
SmallVector<SCC *, 1> DeletedSCCs;
|
|
|
|
SCC &SourceSCC = *G->lookupSCC(SourceN);
|
|
SCC &TargetSCC = *G->lookupSCC(TargetN);
|
|
|
|
// If the two nodes are already part of the same SCC, we're also done as
|
|
// we've just added more connectivity.
|
|
if (&SourceSCC == &TargetSCC) {
|
|
SourceN.setEdgeKind(TargetN.getFunction(), Edge::Call);
|
|
#ifndef NDEBUG
|
|
// Check that the RefSCC is still valid.
|
|
verify();
|
|
#endif
|
|
return DeletedSCCs;
|
|
}
|
|
|
|
// At this point we leverage the postorder list of SCCs to detect when the
|
|
// insertion of an edge changes the SCC structure in any way.
|
|
//
|
|
// First and foremost, we can eliminate the need for any changes when the
|
|
// edge is toward the beginning of the postorder sequence because all edges
|
|
// flow in that direction already. Thus adding a new one cannot form a cycle.
|
|
int SourceIdx = SCCIndices[&SourceSCC];
|
|
int TargetIdx = SCCIndices[&TargetSCC];
|
|
if (TargetIdx < SourceIdx) {
|
|
SourceN.setEdgeKind(TargetN.getFunction(), Edge::Call);
|
|
#ifndef NDEBUG
|
|
// Check that the RefSCC is still valid.
|
|
verify();
|
|
#endif
|
|
return DeletedSCCs;
|
|
}
|
|
|
|
// When we do have an edge from an earlier SCC to a later SCC in the
|
|
// postorder sequence, all of the SCCs which may be impacted are in the
|
|
// closed range of those two within the postorder sequence. The algorithm to
|
|
// restore the state is as follows:
|
|
//
|
|
// 1) Starting from the source SCC, construct a set of SCCs which reach the
|
|
// source SCC consisting of just the source SCC. Then scan toward the
|
|
// target SCC in postorder and for each SCC, if it has an edge to an SCC
|
|
// in the set, add it to the set. Otherwise, the source SCC is not
|
|
// a successor, move it in the postorder sequence to immediately before
|
|
// the source SCC, shifting the source SCC and all SCCs in the set one
|
|
// position toward the target SCC. Stop scanning after processing the
|
|
// target SCC.
|
|
// 2) If the source SCC is now past the target SCC in the postorder sequence,
|
|
// and thus the new edge will flow toward the start, we are done.
|
|
// 3) Otherwise, starting from the target SCC, walk all edges which reach an
|
|
// SCC between the source and the target, and add them to the set of
|
|
// connected SCCs, then recurse through them. Once a complete set of the
|
|
// SCCs the target connects to is known, hoist the remaining SCCs between
|
|
// the source and the target to be above the target. Note that there is no
|
|
// need to process the source SCC, it is already known to connect.
|
|
// 4) At this point, all of the SCCs in the closed range between the source
|
|
// SCC and the target SCC in the postorder sequence are connected,
|
|
// including the target SCC and the source SCC. Inserting the edge from
|
|
// the source SCC to the target SCC will form a cycle out of precisely
|
|
// these SCCs. Thus we can merge all of the SCCs in this closed range into
|
|
// a single SCC.
|
|
//
|
|
// This process has various important properties:
|
|
// - Only mutates the SCCs when adding the edge actually changes the SCC
|
|
// structure.
|
|
// - Never mutates SCCs which are unaffected by the change.
|
|
// - Updates the postorder sequence to correctly satisfy the postorder
|
|
// constraint after the edge is inserted.
|
|
// - Only reorders SCCs in the closed postorder sequence from the source to
|
|
// the target, so easy to bound how much has changed even in the ordering.
|
|
// - Big-O is the number of edges in the closed postorder range of SCCs from
|
|
// source to target.
|
|
|
|
assert(SourceIdx < TargetIdx && "Cannot have equal indices here!");
|
|
SmallPtrSet<SCC *, 4> ConnectedSet;
|
|
|
|
// Compute the SCCs which (transitively) reach the source.
|
|
ConnectedSet.insert(&SourceSCC);
|
|
auto IsConnected = [&](SCC &C) {
|
|
for (Node &N : C)
|
|
for (Edge &E : N.calls()) {
|
|
assert(E.getNode() && "Must have formed a node within an SCC!");
|
|
if (ConnectedSet.count(G->lookupSCC(*E.getNode())))
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
};
|
|
|
|
for (SCC *C :
|
|
make_range(SCCs.begin() + SourceIdx + 1, SCCs.begin() + TargetIdx + 1))
|
|
if (IsConnected(*C))
|
|
ConnectedSet.insert(C);
|
|
|
|
// Partition the SCCs in this part of the port-order sequence so only SCCs
|
|
// connecting to the source remain between it and the target. This is
|
|
// a benign partition as it preserves postorder.
|
|
auto SourceI = std::stable_partition(
|
|
SCCs.begin() + SourceIdx, SCCs.begin() + TargetIdx + 1,
|
|
[&ConnectedSet](SCC *C) { return !ConnectedSet.count(C); });
|
|
for (int i = SourceIdx, e = TargetIdx + 1; i < e; ++i)
|
|
SCCIndices.find(SCCs[i])->second = i;
|
|
|
|
// If the target doesn't connect to the source, then we've corrected the
|
|
// post-order and there are no cycles formed.
|
|
if (!ConnectedSet.count(&TargetSCC)) {
|
|
assert(SourceI > (SCCs.begin() + SourceIdx) &&
|
|
"Must have moved the source to fix the post-order.");
|
|
assert(*std::prev(SourceI) == &TargetSCC &&
|
|
"Last SCC to move should have bene the target.");
|
|
SourceN.setEdgeKind(TargetN.getFunction(), Edge::Call);
|
|
#ifndef NDEBUG
|
|
verify();
|
|
#endif
|
|
return DeletedSCCs;
|
|
}
|
|
|
|
assert(SCCs[TargetIdx] == &TargetSCC &&
|
|
"Should not have moved target if connected!");
|
|
SourceIdx = SourceI - SCCs.begin();
|
|
|
|
#ifndef NDEBUG
|
|
// Check that the RefSCC is still valid.
|
|
verify();
|
|
#endif
|
|
|
|
// See whether there are any remaining intervening SCCs between the source
|
|
// and target. If so we need to make sure they all are reachable form the
|
|
// target.
|
|
if (SourceIdx + 1 < TargetIdx) {
|
|
// Use a normal worklist to find which SCCs the target connects to. We still
|
|
// bound the search based on the range in the postorder list we care about,
|
|
// but because this is forward connectivity we just "recurse" through the
|
|
// edges.
|
|
ConnectedSet.clear();
|
|
ConnectedSet.insert(&TargetSCC);
|
|
SmallVector<SCC *, 4> Worklist;
|
|
Worklist.push_back(&TargetSCC);
|
|
do {
|
|
SCC &C = *Worklist.pop_back_val();
|
|
for (Node &N : C)
|
|
for (Edge &E : N) {
|
|
assert(E.getNode() && "Must have formed a node within an SCC!");
|
|
if (!E.isCall())
|
|
continue;
|
|
SCC &EdgeC = *G->lookupSCC(*E.getNode());
|
|
if (&EdgeC.getOuterRefSCC() != this)
|
|
// Not in this RefSCC...
|
|
continue;
|
|
if (SCCIndices.find(&EdgeC)->second <= SourceIdx)
|
|
// Not in the postorder sequence between source and target.
|
|
continue;
|
|
|
|
if (ConnectedSet.insert(&EdgeC).second)
|
|
Worklist.push_back(&EdgeC);
|
|
}
|
|
} while (!Worklist.empty());
|
|
|
|
// Partition SCCs so that only SCCs reached from the target remain between
|
|
// the source and the target. This preserves postorder.
|
|
auto TargetI = std::stable_partition(
|
|
SCCs.begin() + SourceIdx + 1, SCCs.begin() + TargetIdx + 1,
|
|
[&ConnectedSet](SCC *C) { return ConnectedSet.count(C); });
|
|
for (int i = SourceIdx + 1, e = TargetIdx + 1; i < e; ++i)
|
|
SCCIndices.find(SCCs[i])->second = i;
|
|
TargetIdx = std::prev(TargetI) - SCCs.begin();
|
|
assert(SCCs[TargetIdx] == &TargetSCC &&
|
|
"Should always end with the target!");
|
|
|
|
#ifndef NDEBUG
|
|
// Check that the RefSCC is still valid.
|
|
verify();
|
|
#endif
|
|
}
|
|
|
|
// At this point, we know that connecting source to target forms a cycle
|
|
// because target connects back to source, and we know that all of the SCCs
|
|
// between the source and target in the postorder sequence participate in that
|
|
// cycle. This means that we need to merge all of these SCCs into a single
|
|
// result SCC.
|
|
//
|
|
// NB: We merge into the target because all of these functions were already
|
|
// reachable from the target, meaning any SCC-wide properties deduced about it
|
|
// other than the set of functions within it will not have changed.
|
|
auto MergeRange =
|
|
make_range(SCCs.begin() + SourceIdx, SCCs.begin() + TargetIdx);
|
|
for (SCC *C : MergeRange) {
|
|
assert(C != &TargetSCC &&
|
|
"We merge *into* the target and shouldn't process it here!");
|
|
SCCIndices.erase(C);
|
|
TargetSCC.Nodes.append(C->Nodes.begin(), C->Nodes.end());
|
|
for (Node *N : C->Nodes)
|
|
G->SCCMap[N] = &TargetSCC;
|
|
C->clear();
|
|
DeletedSCCs.push_back(C);
|
|
}
|
|
|
|
// Erase the merged SCCs from the list and update the indices of the
|
|
// remaining SCCs.
|
|
int IndexOffset = MergeRange.end() - MergeRange.begin();
|
|
auto EraseEnd = SCCs.erase(MergeRange.begin(), MergeRange.end());
|
|
for (SCC *C : make_range(EraseEnd, SCCs.end()))
|
|
SCCIndices[C] -= IndexOffset;
|
|
|
|
// Now that the SCC structure is finalized, flip the kind to call.
|
|
SourceN.setEdgeKind(TargetN.getFunction(), Edge::Call);
|
|
|
|
#ifndef NDEBUG
|
|
// And we're done! Verify in debug builds that the RefSCC is coherent.
|
|
verify();
|
|
#endif
|
|
return DeletedSCCs;
|
|
}
|
|
|
|
void LazyCallGraph::RefSCC::switchInternalEdgeToRef(Node &SourceN,
|
|
Node &TargetN) {
|
|
assert(SourceN[TargetN].isCall() && "Must start with a call edge!");
|
|
|
|
SCC &SourceSCC = *G->lookupSCC(SourceN);
|
|
SCC &TargetSCC = *G->lookupSCC(TargetN);
|
|
|
|
assert(&SourceSCC.getOuterRefSCC() == this &&
|
|
"Source must be in this RefSCC.");
|
|
assert(&TargetSCC.getOuterRefSCC() == this &&
|
|
"Target must be in this RefSCC.");
|
|
|
|
// Set the edge kind.
|
|
SourceN.setEdgeKind(TargetN.getFunction(), Edge::Ref);
|
|
|
|
// If this call edge is just connecting two separate SCCs within this RefSCC,
|
|
// there is nothing to do.
|
|
if (&SourceSCC != &TargetSCC) {
|
|
#ifndef NDEBUG
|
|
// Check that the RefSCC is still valid.
|
|
verify();
|
|
#endif
|
|
return;
|
|
}
|
|
|
|
// Otherwise we are removing a call edge from a single SCC. This may break
|
|
// the cycle. In order to compute the new set of SCCs, we need to do a small
|
|
// DFS over the nodes within the SCC to form any sub-cycles that remain as
|
|
// distinct SCCs and compute a postorder over the resulting SCCs.
|
|
//
|
|
// However, we specially handle the target node. The target node is known to
|
|
// reach all other nodes in the original SCC by definition. This means that
|
|
// we want the old SCC to be replaced with an SCC contaning that node as it
|
|
// will be the root of whatever SCC DAG results from the DFS. Assumptions
|
|
// about an SCC such as the set of functions called will continue to hold,
|
|
// etc.
|
|
|
|
SCC &OldSCC = TargetSCC;
|
|
SmallVector<std::pair<Node *, call_edge_iterator>, 16> DFSStack;
|
|
SmallVector<Node *, 16> PendingSCCStack;
|
|
SmallVector<SCC *, 4> NewSCCs;
|
|
|
|
// Prepare the nodes for a fresh DFS.
|
|
SmallVector<Node *, 16> Worklist;
|
|
Worklist.swap(OldSCC.Nodes);
|
|
for (Node *N : Worklist) {
|
|
N->DFSNumber = N->LowLink = 0;
|
|
G->SCCMap.erase(N);
|
|
}
|
|
|
|
// Force the target node to be in the old SCC. This also enables us to take
|
|
// a very significant short-cut in the standard Tarjan walk to re-form SCCs
|
|
// below: whenever we build an edge that reaches the target node, we know
|
|
// that the target node eventually connects back to all other nodes in our
|
|
// walk. As a consequence, we can detect and handle participants in that
|
|
// cycle without walking all the edges that form this connection, and instead
|
|
// by relying on the fundamental guarantee coming into this operation (all
|
|
// nodes are reachable from the target due to previously forming an SCC).
|
|
TargetN.DFSNumber = TargetN.LowLink = -1;
|
|
OldSCC.Nodes.push_back(&TargetN);
|
|
G->SCCMap[&TargetN] = &OldSCC;
|
|
|
|
// Scan down the stack and DFS across the call edges.
|
|
for (Node *RootN : Worklist) {
|
|
assert(DFSStack.empty() &&
|
|
"Cannot begin a new root with a non-empty DFS stack!");
|
|
assert(PendingSCCStack.empty() &&
|
|
"Cannot begin a new root with pending nodes for an SCC!");
|
|
|
|
// Skip any nodes we've already reached in the DFS.
|
|
if (RootN->DFSNumber != 0) {
|
|
assert(RootN->DFSNumber == -1 &&
|
|
"Shouldn't have any mid-DFS root nodes!");
|
|
continue;
|
|
}
|
|
|
|
RootN->DFSNumber = RootN->LowLink = 1;
|
|
int NextDFSNumber = 2;
|
|
|
|
DFSStack.push_back({RootN, RootN->call_begin()});
|
|
do {
|
|
Node *N;
|
|
call_edge_iterator I;
|
|
std::tie(N, I) = DFSStack.pop_back_val();
|
|
auto E = N->call_end();
|
|
while (I != E) {
|
|
Node &ChildN = *I->getNode();
|
|
if (ChildN.DFSNumber == 0) {
|
|
// We haven't yet visited this child, so descend, pushing the current
|
|
// node onto the stack.
|
|
DFSStack.push_back({N, I});
|
|
|
|
assert(!G->SCCMap.count(&ChildN) &&
|
|
"Found a node with 0 DFS number but already in an SCC!");
|
|
ChildN.DFSNumber = ChildN.LowLink = NextDFSNumber++;
|
|
N = &ChildN;
|
|
I = N->call_begin();
|
|
E = N->call_end();
|
|
continue;
|
|
}
|
|
|
|
// Check for the child already being part of some component.
|
|
if (ChildN.DFSNumber == -1) {
|
|
if (G->lookupSCC(ChildN) == &OldSCC) {
|
|
// If the child is part of the old SCC, we know that it can reach
|
|
// every other node, so we have formed a cycle. Pull the entire DFS
|
|
// and pending stacks into it. See the comment above about setting
|
|
// up the old SCC for why we do this.
|
|
int OldSize = OldSCC.size();
|
|
OldSCC.Nodes.push_back(N);
|
|
OldSCC.Nodes.append(PendingSCCStack.begin(), PendingSCCStack.end());
|
|
PendingSCCStack.clear();
|
|
while (!DFSStack.empty())
|
|
OldSCC.Nodes.push_back(DFSStack.pop_back_val().first);
|
|
for (Node &N : make_range(OldSCC.begin() + OldSize, OldSCC.end())) {
|
|
N.DFSNumber = N.LowLink = -1;
|
|
G->SCCMap[&N] = &OldSCC;
|
|
}
|
|
N = nullptr;
|
|
break;
|
|
}
|
|
|
|
// If the child has already been added to some child component, it
|
|
// couldn't impact the low-link of this parent because it isn't
|
|
// connected, and thus its low-link isn't relevant so skip it.
|
|
++I;
|
|
continue;
|
|
}
|
|
|
|
// Track the lowest linked child as the lowest link for this node.
|
|
assert(ChildN.LowLink > 0 && "Must have a positive low-link number!");
|
|
if (ChildN.LowLink < N->LowLink)
|
|
N->LowLink = ChildN.LowLink;
|
|
|
|
// Move to the next edge.
|
|
++I;
|
|
}
|
|
if (!N)
|
|
// Cleared the DFS early, start another round.
|
|
break;
|
|
|
|
// We've finished processing N and its descendents, put it on our pending
|
|
// SCC stack to eventually get merged into an SCC of nodes.
|
|
PendingSCCStack.push_back(N);
|
|
|
|
// If this node is linked to some lower entry, continue walking up the
|
|
// stack.
|
|
if (N->LowLink != N->DFSNumber)
|
|
continue;
|
|
|
|
// Otherwise, we've completed an SCC. Append it to our post order list of
|
|
// SCCs.
|
|
int RootDFSNumber = N->DFSNumber;
|
|
// Find the range of the node stack by walking down until we pass the
|
|
// root DFS number.
|
|
auto SCCNodes = make_range(
|
|
PendingSCCStack.rbegin(),
|
|
std::find_if(PendingSCCStack.rbegin(), PendingSCCStack.rend(),
|
|
[RootDFSNumber](Node *N) {
|
|
return N->DFSNumber < RootDFSNumber;
|
|
}));
|
|
|
|
// Form a new SCC out of these nodes and then clear them off our pending
|
|
// stack.
|
|
NewSCCs.push_back(G->createSCC(*this, SCCNodes));
|
|
for (Node &N : *NewSCCs.back()) {
|
|
N.DFSNumber = N.LowLink = -1;
|
|
G->SCCMap[&N] = NewSCCs.back();
|
|
}
|
|
PendingSCCStack.erase(SCCNodes.end().base(), PendingSCCStack.end());
|
|
} while (!DFSStack.empty());
|
|
}
|
|
|
|
// Insert the remaining SCCs before the old one. The old SCC can reach all
|
|
// other SCCs we form because it contains the target node of the removed edge
|
|
// of the old SCC. This means that we will have edges into all of the new
|
|
// SCCs, which means the old one must come last for postorder.
|
|
int OldIdx = SCCIndices[&OldSCC];
|
|
SCCs.insert(SCCs.begin() + OldIdx, NewSCCs.begin(), NewSCCs.end());
|
|
|
|
// Update the mapping from SCC* to index to use the new SCC*s, and remove the
|
|
// old SCC from the mapping.
|
|
for (int Idx = OldIdx, Size = SCCs.size(); Idx < Size; ++Idx)
|
|
SCCIndices[SCCs[Idx]] = Idx;
|
|
|
|
#ifndef NDEBUG
|
|
// We're done. Check the validity on our way out.
|
|
verify();
|
|
#endif
|
|
}
|
|
|
|
void LazyCallGraph::RefSCC::switchOutgoingEdgeToCall(Node &SourceN,
|
|
Node &TargetN) {
|
|
assert(!SourceN[TargetN].isCall() && "Must start with a ref edge!");
|
|
|
|
assert(G->lookupRefSCC(SourceN) == this && "Source must be in this RefSCC.");
|
|
assert(G->lookupRefSCC(TargetN) != this &&
|
|
"Target must not be in this RefSCC.");
|
|
assert(G->lookupRefSCC(TargetN)->isDescendantOf(*this) &&
|
|
"Target must be a descendant of the Source.");
|
|
|
|
// Edges between RefSCCs are the same regardless of call or ref, so we can
|
|
// just flip the edge here.
|
|
SourceN.setEdgeKind(TargetN.getFunction(), Edge::Call);
|
|
|
|
#ifndef NDEBUG
|
|
// Check that the RefSCC is still valid.
|
|
verify();
|
|
#endif
|
|
}
|
|
|
|
void LazyCallGraph::RefSCC::switchOutgoingEdgeToRef(Node &SourceN,
|
|
Node &TargetN) {
|
|
assert(SourceN[TargetN].isCall() && "Must start with a call edge!");
|
|
|
|
assert(G->lookupRefSCC(SourceN) == this && "Source must be in this RefSCC.");
|
|
assert(G->lookupRefSCC(TargetN) != this &&
|
|
"Target must not be in this RefSCC.");
|
|
assert(G->lookupRefSCC(TargetN)->isDescendantOf(*this) &&
|
|
"Target must be a descendant of the Source.");
|
|
|
|
// Edges between RefSCCs are the same regardless of call or ref, so we can
|
|
// just flip the edge here.
|
|
SourceN.setEdgeKind(TargetN.getFunction(), Edge::Ref);
|
|
|
|
#ifndef NDEBUG
|
|
// Check that the RefSCC is still valid.
|
|
verify();
|
|
#endif
|
|
}
|
|
|
|
void LazyCallGraph::RefSCC::insertInternalRefEdge(Node &SourceN,
|
|
Node &TargetN) {
|
|
assert(G->lookupRefSCC(SourceN) == this && "Source must be in this RefSCC.");
|
|
assert(G->lookupRefSCC(TargetN) == this && "Target must be in this RefSCC.");
|
|
|
|
SourceN.insertEdgeInternal(TargetN, Edge::Ref);
|
|
|
|
#ifndef NDEBUG
|
|
// Check that the RefSCC is still valid.
|
|
verify();
|
|
#endif
|
|
}
|
|
|
|
void LazyCallGraph::RefSCC::insertOutgoingEdge(Node &SourceN, Node &TargetN,
|
|
Edge::Kind EK) {
|
|
// First insert it into the caller.
|
|
SourceN.insertEdgeInternal(TargetN, EK);
|
|
|
|
assert(G->lookupRefSCC(SourceN) == this && "Source must be in this RefSCC.");
|
|
|
|
RefSCC &TargetC = *G->lookupRefSCC(TargetN);
|
|
assert(&TargetC != this && "Target must not be in this RefSCC.");
|
|
assert(TargetC.isDescendantOf(*this) &&
|
|
"Target must be a descendant of the Source.");
|
|
|
|
// The only change required is to add this SCC to the parent set of the
|
|
// callee.
|
|
TargetC.Parents.insert(this);
|
|
|
|
#ifndef NDEBUG
|
|
// Check that the RefSCC is still valid.
|
|
verify();
|
|
#endif
|
|
}
|
|
|
|
SmallVector<LazyCallGraph::RefSCC *, 1>
|
|
LazyCallGraph::RefSCC::insertIncomingRefEdge(Node &SourceN, Node &TargetN) {
|
|
assert(G->lookupRefSCC(TargetN) == this && "Target must be in this SCC.");
|
|
|
|
// We store the RefSCCs found to be connected in postorder so that we can use
|
|
// that when merging. We also return this to the caller to allow them to
|
|
// invalidate information pertaining to these RefSCCs.
|
|
SmallVector<RefSCC *, 1> Connected;
|
|
|
|
RefSCC &SourceC = *G->lookupRefSCC(SourceN);
|
|
assert(&SourceC != this && "Source must not be in this SCC.");
|
|
assert(SourceC.isDescendantOf(*this) &&
|
|
"Source must be a descendant of the Target.");
|
|
|
|
// The algorithm we use for merging SCCs based on the cycle introduced here
|
|
// is to walk the RefSCC inverted DAG formed by the parent sets. The inverse
|
|
// graph has the same cycle properties as the actual DAG of the RefSCCs, and
|
|
// when forming RefSCCs lazily by a DFS, the bottom of the graph won't exist
|
|
// in many cases which should prune the search space.
|
|
//
|
|
// FIXME: We can get this pruning behavior even after the incremental RefSCC
|
|
// formation by leaving behind (conservative) DFS numberings in the nodes,
|
|
// and pruning the search with them. These would need to be cleverly updated
|
|
// during the removal of intra-SCC edges, but could be preserved
|
|
// conservatively.
|
|
//
|
|
// FIXME: This operation currently creates ordering stability problems
|
|
// because we don't use stably ordered containers for the parent SCCs.
|
|
|
|
// The set of RefSCCs that are connected to the parent, and thus will
|
|
// participate in the merged connected component.
|
|
SmallPtrSet<RefSCC *, 8> ConnectedSet;
|
|
ConnectedSet.insert(this);
|
|
|
|
// We build up a DFS stack of the parents chains.
|
|
SmallVector<std::pair<RefSCC *, parent_iterator>, 8> DFSStack;
|
|
SmallPtrSet<RefSCC *, 8> Visited;
|
|
int ConnectedDepth = -1;
|
|
DFSStack.push_back({&SourceC, SourceC.parent_begin()});
|
|
do {
|
|
auto DFSPair = DFSStack.pop_back_val();
|
|
RefSCC *C = DFSPair.first;
|
|
parent_iterator I = DFSPair.second;
|
|
auto E = C->parent_end();
|
|
|
|
while (I != E) {
|
|
RefSCC &Parent = *I++;
|
|
|
|
// If we have already processed this parent SCC, skip it, and remember
|
|
// whether it was connected so we don't have to check the rest of the
|
|
// stack. This also handles when we reach a child of the 'this' SCC (the
|
|
// callee) which terminates the search.
|
|
if (ConnectedSet.count(&Parent)) {
|
|
assert(ConnectedDepth < (int)DFSStack.size() &&
|
|
"Cannot have a connected depth greater than the DFS depth!");
|
|
ConnectedDepth = DFSStack.size();
|
|
continue;
|
|
}
|
|
if (Visited.count(&Parent))
|
|
continue;
|
|
|
|
// We fully explore the depth-first space, adding nodes to the connected
|
|
// set only as we pop them off, so "recurse" by rotating to the parent.
|
|
DFSStack.push_back({C, I});
|
|
C = &Parent;
|
|
I = C->parent_begin();
|
|
E = C->parent_end();
|
|
}
|
|
|
|
// If we've found a connection anywhere below this point on the stack (and
|
|
// thus up the parent graph from the caller), the current node needs to be
|
|
// added to the connected set now that we've processed all of its parents.
|
|
if ((int)DFSStack.size() == ConnectedDepth) {
|
|
--ConnectedDepth; // We're finished with this connection.
|
|
bool Inserted = ConnectedSet.insert(C).second;
|
|
(void)Inserted;
|
|
assert(Inserted && "Cannot insert a refSCC multiple times!");
|
|
Connected.push_back(C);
|
|
} else {
|
|
// Otherwise remember that its parents don't ever connect.
|
|
assert(ConnectedDepth < (int)DFSStack.size() &&
|
|
"Cannot have a connected depth greater than the DFS depth!");
|
|
Visited.insert(C);
|
|
}
|
|
} while (!DFSStack.empty());
|
|
|
|
// Now that we have identified all of the SCCs which need to be merged into
|
|
// a connected set with the inserted edge, merge all of them into this SCC.
|
|
// We walk the newly connected RefSCCs in the reverse postorder of the parent
|
|
// DAG walk above and merge in each of their SCC postorder lists. This
|
|
// ensures a merged postorder SCC list.
|
|
SmallVector<SCC *, 16> MergedSCCs;
|
|
int SCCIndex = 0;
|
|
for (RefSCC *C : reverse(Connected)) {
|
|
assert(C != this &&
|
|
"This RefSCC should terminate the DFS without being reached.");
|
|
|
|
// Merge the parents which aren't part of the merge into the our parents.
|
|
for (RefSCC *ParentC : C->Parents)
|
|
if (!ConnectedSet.count(ParentC))
|
|
Parents.insert(ParentC);
|
|
C->Parents.clear();
|
|
|
|
// Walk the inner SCCs to update their up-pointer and walk all the edges to
|
|
// update any parent sets.
|
|
// FIXME: We should try to find a way to avoid this (rather expensive) edge
|
|
// walk by updating the parent sets in some other manner.
|
|
for (SCC &InnerC : *C) {
|
|
InnerC.OuterRefSCC = this;
|
|
SCCIndices[&InnerC] = SCCIndex++;
|
|
for (Node &N : InnerC) {
|
|
G->SCCMap[&N] = &InnerC;
|
|
for (Edge &E : N) {
|
|
assert(E.getNode() &&
|
|
"Cannot have a null node within a visited SCC!");
|
|
RefSCC &ChildRC = *G->lookupRefSCC(*E.getNode());
|
|
if (ConnectedSet.count(&ChildRC))
|
|
continue;
|
|
ChildRC.Parents.erase(C);
|
|
ChildRC.Parents.insert(this);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Now merge in the SCCs. We can actually move here so try to reuse storage
|
|
// the first time through.
|
|
if (MergedSCCs.empty())
|
|
MergedSCCs = std::move(C->SCCs);
|
|
else
|
|
MergedSCCs.append(C->SCCs.begin(), C->SCCs.end());
|
|
C->SCCs.clear();
|
|
}
|
|
|
|
// Finally append our original SCCs to the merged list and move it into
|
|
// place.
|
|
for (SCC &InnerC : *this)
|
|
SCCIndices[&InnerC] = SCCIndex++;
|
|
MergedSCCs.append(SCCs.begin(), SCCs.end());
|
|
SCCs = std::move(MergedSCCs);
|
|
|
|
// At this point we have a merged RefSCC with a post-order SCCs list, just
|
|
// connect the nodes to form the new edge.
|
|
SourceN.insertEdgeInternal(TargetN, Edge::Ref);
|
|
|
|
#ifndef NDEBUG
|
|
// Check that the RefSCC is still valid.
|
|
verify();
|
|
#endif
|
|
|
|
// We return the list of SCCs which were merged so that callers can
|
|
// invalidate any data they have associated with those SCCs. Note that these
|
|
// SCCs are no longer in an interesting state (they are totally empty) but
|
|
// the pointers will remain stable for the life of the graph itself.
|
|
return Connected;
|
|
}
|
|
|
|
void LazyCallGraph::RefSCC::removeOutgoingEdge(Node &SourceN, Node &TargetN) {
|
|
assert(G->lookupRefSCC(SourceN) == this &&
|
|
"The source must be a member of this RefSCC.");
|
|
|
|
RefSCC &TargetRC = *G->lookupRefSCC(TargetN);
|
|
assert(&TargetRC != this && "The target must not be a member of this RefSCC");
|
|
|
|
assert(std::find(G->LeafRefSCCs.begin(), G->LeafRefSCCs.end(), this) ==
|
|
G->LeafRefSCCs.end() &&
|
|
"Cannot have a leaf RefSCC source.");
|
|
|
|
// First remove it from the node.
|
|
SourceN.removeEdgeInternal(TargetN.getFunction());
|
|
|
|
bool HasOtherEdgeToChildRC = false;
|
|
bool HasOtherChildRC = false;
|
|
for (SCC *InnerC : SCCs) {
|
|
for (Node &N : *InnerC) {
|
|
for (Edge &E : N) {
|
|
assert(E.getNode() && "Cannot have a missing node in a visited SCC!");
|
|
RefSCC &OtherChildRC = *G->lookupRefSCC(*E.getNode());
|
|
if (&OtherChildRC == &TargetRC) {
|
|
HasOtherEdgeToChildRC = true;
|
|
break;
|
|
}
|
|
if (&OtherChildRC != this)
|
|
HasOtherChildRC = true;
|
|
}
|
|
if (HasOtherEdgeToChildRC)
|
|
break;
|
|
}
|
|
if (HasOtherEdgeToChildRC)
|
|
break;
|
|
}
|
|
// Because the SCCs form a DAG, deleting such an edge cannot change the set
|
|
// of SCCs in the graph. However, it may cut an edge of the SCC DAG, making
|
|
// the source SCC no longer connected to the target SCC. If so, we need to
|
|
// update the target SCC's map of its parents.
|
|
if (!HasOtherEdgeToChildRC) {
|
|
bool Removed = TargetRC.Parents.erase(this);
|
|
(void)Removed;
|
|
assert(Removed &&
|
|
"Did not find the source SCC in the target SCC's parent list!");
|
|
|
|
// It may orphan an SCC if it is the last edge reaching it, but that does
|
|
// not violate any invariants of the graph.
|
|
if (TargetRC.Parents.empty())
|
|
DEBUG(dbgs() << "LCG: Update removing " << SourceN.getFunction().getName()
|
|
<< " -> " << TargetN.getFunction().getName()
|
|
<< " edge orphaned the callee's SCC!\n");
|
|
|
|
// It may make the Source SCC a leaf SCC.
|
|
if (!HasOtherChildRC)
|
|
G->LeafRefSCCs.push_back(this);
|
|
}
|
|
}
|
|
|
|
SmallVector<LazyCallGraph::RefSCC *, 1>
|
|
LazyCallGraph::RefSCC::removeInternalRefEdge(Node &SourceN, Node &TargetN) {
|
|
assert(!SourceN[TargetN].isCall() &&
|
|
"Cannot remove a call edge, it must first be made a ref edge");
|
|
|
|
// First remove the actual edge.
|
|
SourceN.removeEdgeInternal(TargetN.getFunction());
|
|
|
|
// We return a list of the resulting *new* RefSCCs in post-order.
|
|
SmallVector<RefSCC *, 1> Result;
|
|
|
|
// Direct recursion doesn't impact the SCC graph at all.
|
|
if (&SourceN == &TargetN)
|
|
return Result;
|
|
|
|
// We build somewhat synthetic new RefSCCs by providing a postorder mapping
|
|
// for each inner SCC. We also store these associated with *nodes* rather
|
|
// than SCCs because this saves a round-trip through the node->SCC map and in
|
|
// the common case, SCCs are small. We will verify that we always give the
|
|
// same number to every node in the SCC such that these are equivalent.
|
|
const int RootPostOrderNumber = 0;
|
|
int PostOrderNumber = RootPostOrderNumber + 1;
|
|
SmallDenseMap<Node *, int> PostOrderMapping;
|
|
|
|
// Every node in the target SCC can already reach every node in this RefSCC
|
|
// (by definition). It is the only node we know will stay inside this RefSCC.
|
|
// Everything which transitively reaches Target will also remain in the
|
|
// RefSCC. We handle this by pre-marking that the nodes in the target SCC map
|
|
// back to the root post order number.
|
|
//
|
|
// This also enables us to take a very significant short-cut in the standard
|
|
// Tarjan walk to re-form RefSCCs below: whenever we build an edge that
|
|
// references the target node, we know that the target node eventually
|
|
// references all other nodes in our walk. As a consequence, we can detect
|
|
// and handle participants in that cycle without walking all the edges that
|
|
// form the connections, and instead by relying on the fundamental guarantee
|
|
// coming into this operation.
|
|
SCC &TargetC = *G->lookupSCC(TargetN);
|
|
for (Node &N : TargetC)
|
|
PostOrderMapping[&N] = RootPostOrderNumber;
|
|
|
|
// Reset all the other nodes to prepare for a DFS over them, and add them to
|
|
// our worklist.
|
|
SmallVector<Node *, 8> Worklist;
|
|
for (SCC *C : SCCs) {
|
|
if (C == &TargetC)
|
|
continue;
|
|
|
|
for (Node &N : *C)
|
|
N.DFSNumber = N.LowLink = 0;
|
|
|
|
Worklist.append(C->Nodes.begin(), C->Nodes.end());
|
|
}
|
|
|
|
auto MarkNodeForSCCNumber = [&PostOrderMapping](Node &N, int Number) {
|
|
N.DFSNumber = N.LowLink = -1;
|
|
PostOrderMapping[&N] = Number;
|
|
};
|
|
|
|
SmallVector<std::pair<Node *, edge_iterator>, 4> DFSStack;
|
|
SmallVector<Node *, 4> PendingRefSCCStack;
|
|
do {
|
|
assert(DFSStack.empty() &&
|
|
"Cannot begin a new root with a non-empty DFS stack!");
|
|
assert(PendingRefSCCStack.empty() &&
|
|
"Cannot begin a new root with pending nodes for an SCC!");
|
|
|
|
Node *RootN = Worklist.pop_back_val();
|
|
// Skip any nodes we've already reached in the DFS.
|
|
if (RootN->DFSNumber != 0) {
|
|
assert(RootN->DFSNumber == -1 &&
|
|
"Shouldn't have any mid-DFS root nodes!");
|
|
continue;
|
|
}
|
|
|
|
RootN->DFSNumber = RootN->LowLink = 1;
|
|
int NextDFSNumber = 2;
|
|
|
|
DFSStack.push_back({RootN, RootN->begin()});
|
|
do {
|
|
Node *N;
|
|
edge_iterator I;
|
|
std::tie(N, I) = DFSStack.pop_back_val();
|
|
auto E = N->end();
|
|
|
|
assert(N->DFSNumber != 0 && "We should always assign a DFS number "
|
|
"before processing a node.");
|
|
|
|
while (I != E) {
|
|
Node &ChildN = I->getNode(*G);
|
|
if (ChildN.DFSNumber == 0) {
|
|
// Mark that we should start at this child when next this node is the
|
|
// top of the stack. We don't start at the next child to ensure this
|
|
// child's lowlink is reflected.
|
|
DFSStack.push_back({N, I});
|
|
|
|
// Continue, resetting to the child node.
|
|
ChildN.LowLink = ChildN.DFSNumber = NextDFSNumber++;
|
|
N = &ChildN;
|
|
I = ChildN.begin();
|
|
E = ChildN.end();
|
|
continue;
|
|
}
|
|
if (ChildN.DFSNumber == -1) {
|
|
// Check if this edge's target node connects to the deleted edge's
|
|
// target node. If so, we know that every node connected will end up
|
|
// in this RefSCC, so collapse the entire current stack into the root
|
|
// slot in our SCC numbering. See above for the motivation of
|
|
// optimizing the target connected nodes in this way.
|
|
auto PostOrderI = PostOrderMapping.find(&ChildN);
|
|
if (PostOrderI != PostOrderMapping.end() &&
|
|
PostOrderI->second == RootPostOrderNumber) {
|
|
MarkNodeForSCCNumber(*N, RootPostOrderNumber);
|
|
while (!PendingRefSCCStack.empty())
|
|
MarkNodeForSCCNumber(*PendingRefSCCStack.pop_back_val(),
|
|
RootPostOrderNumber);
|
|
while (!DFSStack.empty())
|
|
MarkNodeForSCCNumber(*DFSStack.pop_back_val().first,
|
|
RootPostOrderNumber);
|
|
// Ensure we break all the way out of the enclosing loop.
|
|
N = nullptr;
|
|
break;
|
|
}
|
|
|
|
// If this child isn't currently in this RefSCC, no need to process
|
|
// it.
|
|
// However, we do need to remove this RefSCC from its RefSCC's parent
|
|
// set.
|
|
RefSCC &ChildRC = *G->lookupRefSCC(ChildN);
|
|
ChildRC.Parents.erase(this);
|
|
++I;
|
|
continue;
|
|
}
|
|
|
|
// Track the lowest link of the children, if any are still in the stack.
|
|
// Any child not on the stack will have a LowLink of -1.
|
|
assert(ChildN.LowLink != 0 &&
|
|
"Low-link must not be zero with a non-zero DFS number.");
|
|
if (ChildN.LowLink >= 0 && ChildN.LowLink < N->LowLink)
|
|
N->LowLink = ChildN.LowLink;
|
|
++I;
|
|
}
|
|
if (!N)
|
|
// We short-circuited this node.
|
|
break;
|
|
|
|
// We've finished processing N and its descendents, put it on our pending
|
|
// stack to eventually get merged into a RefSCC.
|
|
PendingRefSCCStack.push_back(N);
|
|
|
|
// If this node is linked to some lower entry, continue walking up the
|
|
// stack.
|
|
if (N->LowLink != N->DFSNumber) {
|
|
assert(!DFSStack.empty() &&
|
|
"We never found a viable root for a RefSCC to pop off!");
|
|
continue;
|
|
}
|
|
|
|
// Otherwise, form a new RefSCC from the top of the pending node stack.
|
|
int RootDFSNumber = N->DFSNumber;
|
|
// Find the range of the node stack by walking down until we pass the
|
|
// root DFS number.
|
|
auto RefSCCNodes = make_range(
|
|
PendingRefSCCStack.rbegin(),
|
|
std::find_if(PendingRefSCCStack.rbegin(), PendingRefSCCStack.rend(),
|
|
[RootDFSNumber](Node *N) {
|
|
return N->DFSNumber < RootDFSNumber;
|
|
}));
|
|
|
|
// Mark the postorder number for these nodes and clear them off the
|
|
// stack. We'll use the postorder number to pull them into RefSCCs at the
|
|
// end. FIXME: Fuse with the loop above.
|
|
int RefSCCNumber = PostOrderNumber++;
|
|
for (Node *N : RefSCCNodes)
|
|
MarkNodeForSCCNumber(*N, RefSCCNumber);
|
|
|
|
PendingRefSCCStack.erase(RefSCCNodes.end().base(),
|
|
PendingRefSCCStack.end());
|
|
} while (!DFSStack.empty());
|
|
|
|
assert(DFSStack.empty() && "Didn't flush the entire DFS stack!");
|
|
assert(PendingRefSCCStack.empty() && "Didn't flush all pending nodes!");
|
|
} while (!Worklist.empty());
|
|
|
|
// We now have a post-order numbering for RefSCCs and a mapping from each
|
|
// node in this RefSCC to its final RefSCC. We create each new RefSCC node
|
|
// (re-using this RefSCC node for the root) and build a radix-sort style map
|
|
// from postorder number to the RefSCC. We then append SCCs to each of these
|
|
// RefSCCs in the order they occured in the original SCCs container.
|
|
for (int i = 1; i < PostOrderNumber; ++i)
|
|
Result.push_back(G->createRefSCC(*G));
|
|
|
|
for (SCC *C : SCCs) {
|
|
auto PostOrderI = PostOrderMapping.find(&*C->begin());
|
|
assert(PostOrderI != PostOrderMapping.end() &&
|
|
"Cannot have missing mappings for nodes!");
|
|
int SCCNumber = PostOrderI->second;
|
|
#ifndef NDEBUG
|
|
for (Node &N : *C)
|
|
assert(PostOrderMapping.find(&N)->second == SCCNumber &&
|
|
"Cannot have different numbers for nodes in the same SCC!");
|
|
#endif
|
|
if (SCCNumber == 0)
|
|
// The root node is handled separately by removing the SCCs.
|
|
continue;
|
|
|
|
RefSCC &RC = *Result[SCCNumber - 1];
|
|
int SCCIndex = RC.SCCs.size();
|
|
RC.SCCs.push_back(C);
|
|
SCCIndices[C] = SCCIndex;
|
|
C->OuterRefSCC = &RC;
|
|
}
|
|
|
|
// FIXME: We re-walk the edges in each RefSCC to establish whether it is
|
|
// a leaf and connect it to the rest of the graph's parents lists. This is
|
|
// really wasteful. We should instead do this during the DFS to avoid yet
|
|
// another edge walk.
|
|
for (RefSCC *RC : Result)
|
|
G->connectRefSCC(*RC);
|
|
|
|
// Now erase all but the root's SCCs.
|
|
SCCs.erase(std::remove_if(SCCs.begin(), SCCs.end(),
|
|
[&](SCC *C) {
|
|
return PostOrderMapping.lookup(&*C->begin()) !=
|
|
RootPostOrderNumber;
|
|
}),
|
|
SCCs.end());
|
|
|
|
#ifndef NDEBUG
|
|
// Now we need to reconnect the current (root) SCC to the graph. We do this
|
|
// manually because we can special case our leaf handling and detect errors.
|
|
bool IsLeaf = true;
|
|
#endif
|
|
for (SCC *C : SCCs)
|
|
for (Node &N : *C) {
|
|
for (Edge &E : N) {
|
|
assert(E.getNode() && "Cannot have a missing node in a visited SCC!");
|
|
RefSCC &ChildRC = *G->lookupRefSCC(*E.getNode());
|
|
if (&ChildRC == this)
|
|
continue;
|
|
ChildRC.Parents.insert(this);
|
|
#ifndef NDEBUG
|
|
IsLeaf = false;
|
|
#endif
|
|
}
|
|
}
|
|
#ifndef NDEBUG
|
|
if (!Result.empty())
|
|
assert(!IsLeaf && "This SCC cannot be a leaf as we have split out new "
|
|
"SCCs by removing this edge.");
|
|
if (!std::any_of(G->LeafRefSCCs.begin(), G->LeafRefSCCs.end(),
|
|
[&](RefSCC *C) { return C == this; }))
|
|
assert(!IsLeaf && "This SCC cannot be a leaf as it already had child "
|
|
"SCCs before we removed this edge.");
|
|
#endif
|
|
// If this SCC stopped being a leaf through this edge removal, remove it from
|
|
// the leaf SCC list. Note that this DTRT in the case where this was never
|
|
// a leaf.
|
|
// FIXME: As LeafRefSCCs could be very large, we might want to not walk the
|
|
// entire list if this RefSCC wasn't a leaf before the edge removal.
|
|
if (!Result.empty())
|
|
G->LeafRefSCCs.erase(
|
|
std::remove(G->LeafRefSCCs.begin(), G->LeafRefSCCs.end(), this),
|
|
G->LeafRefSCCs.end());
|
|
|
|
// Return the new list of SCCs.
|
|
return Result;
|
|
}
|
|
|
|
void LazyCallGraph::insertEdge(Node &SourceN, Function &Target, Edge::Kind EK) {
|
|
assert(SCCMap.empty() && DFSStack.empty() &&
|
|
"This method cannot be called after SCCs have been formed!");
|
|
|
|
return SourceN.insertEdgeInternal(Target, EK);
|
|
}
|
|
|
|
void LazyCallGraph::removeEdge(Node &SourceN, Function &Target) {
|
|
assert(SCCMap.empty() && DFSStack.empty() &&
|
|
"This method cannot be called after SCCs have been formed!");
|
|
|
|
return SourceN.removeEdgeInternal(Target);
|
|
}
|
|
|
|
LazyCallGraph::Node &LazyCallGraph::insertInto(Function &F, Node *&MappedN) {
|
|
return *new (MappedN = BPA.Allocate()) Node(*this, F);
|
|
}
|
|
|
|
void LazyCallGraph::updateGraphPtrs() {
|
|
// Process all nodes updating the graph pointers.
|
|
{
|
|
SmallVector<Node *, 16> Worklist;
|
|
for (Edge &E : EntryEdges)
|
|
if (Node *EntryN = E.getNode())
|
|
Worklist.push_back(EntryN);
|
|
|
|
while (!Worklist.empty()) {
|
|
Node *N = Worklist.pop_back_val();
|
|
N->G = this;
|
|
for (Edge &E : N->Edges)
|
|
if (Node *TargetN = E.getNode())
|
|
Worklist.push_back(TargetN);
|
|
}
|
|
}
|
|
|
|
// Process all SCCs updating the graph pointers.
|
|
{
|
|
SmallVector<RefSCC *, 16> Worklist(LeafRefSCCs.begin(), LeafRefSCCs.end());
|
|
|
|
while (!Worklist.empty()) {
|
|
RefSCC &C = *Worklist.pop_back_val();
|
|
C.G = this;
|
|
for (RefSCC &ParentC : C.parents())
|
|
Worklist.push_back(&ParentC);
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Build the internal SCCs for a RefSCC from a sequence of nodes.
|
|
///
|
|
/// Appends the SCCs to the provided vector and updates the map with their
|
|
/// indices. Both the vector and map must be empty when passed into this
|
|
/// routine.
|
|
void LazyCallGraph::buildSCCs(RefSCC &RC, node_stack_range Nodes) {
|
|
assert(RC.SCCs.empty() && "Already built SCCs!");
|
|
assert(RC.SCCIndices.empty() && "Already mapped SCC indices!");
|
|
|
|
for (Node *N : Nodes) {
|
|
assert(N->LowLink >= (*Nodes.begin())->LowLink &&
|
|
"We cannot have a low link in an SCC lower than its root on the "
|
|
"stack!");
|
|
|
|
// This node will go into the next RefSCC, clear out its DFS and low link
|
|
// as we scan.
|
|
N->DFSNumber = N->LowLink = 0;
|
|
}
|
|
|
|
// Each RefSCC contains a DAG of the call SCCs. To build these, we do
|
|
// a direct walk of the call edges using Tarjan's algorithm. We reuse the
|
|
// internal storage as we won't need it for the outer graph's DFS any longer.
|
|
|
|
SmallVector<std::pair<Node *, call_edge_iterator>, 16> DFSStack;
|
|
SmallVector<Node *, 16> PendingSCCStack;
|
|
|
|
// Scan down the stack and DFS across the call edges.
|
|
for (Node *RootN : Nodes) {
|
|
assert(DFSStack.empty() &&
|
|
"Cannot begin a new root with a non-empty DFS stack!");
|
|
assert(PendingSCCStack.empty() &&
|
|
"Cannot begin a new root with pending nodes for an SCC!");
|
|
|
|
// Skip any nodes we've already reached in the DFS.
|
|
if (RootN->DFSNumber != 0) {
|
|
assert(RootN->DFSNumber == -1 &&
|
|
"Shouldn't have any mid-DFS root nodes!");
|
|
continue;
|
|
}
|
|
|
|
RootN->DFSNumber = RootN->LowLink = 1;
|
|
int NextDFSNumber = 2;
|
|
|
|
DFSStack.push_back({RootN, RootN->call_begin()});
|
|
do {
|
|
Node *N;
|
|
call_edge_iterator I;
|
|
std::tie(N, I) = DFSStack.pop_back_val();
|
|
auto E = N->call_end();
|
|
while (I != E) {
|
|
Node &ChildN = *I->getNode();
|
|
if (ChildN.DFSNumber == 0) {
|
|
// We haven't yet visited this child, so descend, pushing the current
|
|
// node onto the stack.
|
|
DFSStack.push_back({N, I});
|
|
|
|
assert(!lookupSCC(ChildN) &&
|
|
"Found a node with 0 DFS number but already in an SCC!");
|
|
ChildN.DFSNumber = ChildN.LowLink = NextDFSNumber++;
|
|
N = &ChildN;
|
|
I = N->call_begin();
|
|
E = N->call_end();
|
|
continue;
|
|
}
|
|
|
|
// If the child has already been added to some child component, it
|
|
// couldn't impact the low-link of this parent because it isn't
|
|
// connected, and thus its low-link isn't relevant so skip it.
|
|
if (ChildN.DFSNumber == -1) {
|
|
++I;
|
|
continue;
|
|
}
|
|
|
|
// Track the lowest linked child as the lowest link for this node.
|
|
assert(ChildN.LowLink > 0 && "Must have a positive low-link number!");
|
|
if (ChildN.LowLink < N->LowLink)
|
|
N->LowLink = ChildN.LowLink;
|
|
|
|
// Move to the next edge.
|
|
++I;
|
|
}
|
|
|
|
// We've finished processing N and its descendents, put it on our pending
|
|
// SCC stack to eventually get merged into an SCC of nodes.
|
|
PendingSCCStack.push_back(N);
|
|
|
|
// If this node is linked to some lower entry, continue walking up the
|
|
// stack.
|
|
if (N->LowLink != N->DFSNumber)
|
|
continue;
|
|
|
|
// Otherwise, we've completed an SCC. Append it to our post order list of
|
|
// SCCs.
|
|
int RootDFSNumber = N->DFSNumber;
|
|
// Find the range of the node stack by walking down until we pass the
|
|
// root DFS number.
|
|
auto SCCNodes = make_range(
|
|
PendingSCCStack.rbegin(),
|
|
std::find_if(PendingSCCStack.rbegin(), PendingSCCStack.rend(),
|
|
[RootDFSNumber](Node *N) {
|
|
return N->DFSNumber < RootDFSNumber;
|
|
}));
|
|
// Form a new SCC out of these nodes and then clear them off our pending
|
|
// stack.
|
|
RC.SCCs.push_back(createSCC(RC, SCCNodes));
|
|
for (Node &N : *RC.SCCs.back()) {
|
|
N.DFSNumber = N.LowLink = -1;
|
|
SCCMap[&N] = RC.SCCs.back();
|
|
}
|
|
PendingSCCStack.erase(SCCNodes.end().base(), PendingSCCStack.end());
|
|
} while (!DFSStack.empty());
|
|
}
|
|
|
|
// Wire up the SCC indices.
|
|
for (int i = 0, Size = RC.SCCs.size(); i < Size; ++i)
|
|
RC.SCCIndices[RC.SCCs[i]] = i;
|
|
}
|
|
|
|
// FIXME: We should move callers of this to embed the parent linking and leaf
|
|
// tracking into their DFS in order to remove a full walk of all edges.
|
|
void LazyCallGraph::connectRefSCC(RefSCC &RC) {
|
|
// Walk all edges in the RefSCC (this remains linear as we only do this once
|
|
// when we build the RefSCC) to connect it to the parent sets of its
|
|
// children.
|
|
bool IsLeaf = true;
|
|
for (SCC &C : RC)
|
|
for (Node &N : C)
|
|
for (Edge &E : N) {
|
|
assert(E.getNode() &&
|
|
"Cannot have a missing node in a visited part of the graph!");
|
|
RefSCC &ChildRC = *lookupRefSCC(*E.getNode());
|
|
if (&ChildRC == &RC)
|
|
continue;
|
|
ChildRC.Parents.insert(&RC);
|
|
IsLeaf = false;
|
|
}
|
|
|
|
// For the SCCs where we fine no child SCCs, add them to the leaf list.
|
|
if (IsLeaf)
|
|
LeafRefSCCs.push_back(&RC);
|
|
}
|
|
|
|
LazyCallGraph::RefSCC *LazyCallGraph::getNextRefSCCInPostOrder() {
|
|
if (DFSStack.empty()) {
|
|
Node *N;
|
|
do {
|
|
// If we've handled all candidate entry nodes to the SCC forest, we're
|
|
// done.
|
|
if (RefSCCEntryNodes.empty())
|
|
return nullptr;
|
|
|
|
N = &get(*RefSCCEntryNodes.pop_back_val());
|
|
} while (N->DFSNumber != 0);
|
|
|
|
// Found a new root, begin the DFS here.
|
|
N->LowLink = N->DFSNumber = 1;
|
|
NextDFSNumber = 2;
|
|
DFSStack.push_back({N, N->begin()});
|
|
}
|
|
|
|
for (;;) {
|
|
Node *N;
|
|
edge_iterator I;
|
|
std::tie(N, I) = DFSStack.pop_back_val();
|
|
|
|
assert(N->DFSNumber > 0 && "We should always assign a DFS number "
|
|
"before placing a node onto the stack.");
|
|
|
|
auto E = N->end();
|
|
while (I != E) {
|
|
Node &ChildN = I->getNode(*this);
|
|
if (ChildN.DFSNumber == 0) {
|
|
// We haven't yet visited this child, so descend, pushing the current
|
|
// node onto the stack.
|
|
DFSStack.push_back({N, N->begin()});
|
|
|
|
assert(!SCCMap.count(&ChildN) &&
|
|
"Found a node with 0 DFS number but already in an SCC!");
|
|
ChildN.LowLink = ChildN.DFSNumber = NextDFSNumber++;
|
|
N = &ChildN;
|
|
I = N->begin();
|
|
E = N->end();
|
|
continue;
|
|
}
|
|
|
|
// If the child has already been added to some child component, it
|
|
// couldn't impact the low-link of this parent because it isn't
|
|
// connected, and thus its low-link isn't relevant so skip it.
|
|
if (ChildN.DFSNumber == -1) {
|
|
++I;
|
|
continue;
|
|
}
|
|
|
|
// Track the lowest linked child as the lowest link for this node.
|
|
assert(ChildN.LowLink > 0 && "Must have a positive low-link number!");
|
|
if (ChildN.LowLink < N->LowLink)
|
|
N->LowLink = ChildN.LowLink;
|
|
|
|
// Move to the next edge.
|
|
++I;
|
|
}
|
|
|
|
// We've finished processing N and its descendents, put it on our pending
|
|
// SCC stack to eventually get merged into an SCC of nodes.
|
|
PendingRefSCCStack.push_back(N);
|
|
|
|
// If this node is linked to some lower entry, continue walking up the
|
|
// stack.
|
|
if (N->LowLink != N->DFSNumber) {
|
|
assert(!DFSStack.empty() &&
|
|
"We never found a viable root for an SCC to pop off!");
|
|
continue;
|
|
}
|
|
|
|
// Otherwise, form a new RefSCC from the top of the pending node stack.
|
|
int RootDFSNumber = N->DFSNumber;
|
|
// Find the range of the node stack by walking down until we pass the
|
|
// root DFS number.
|
|
auto RefSCCNodes = node_stack_range(
|
|
PendingRefSCCStack.rbegin(),
|
|
std::find_if(
|
|
PendingRefSCCStack.rbegin(), PendingRefSCCStack.rend(),
|
|
[RootDFSNumber](Node *N) { return N->DFSNumber < RootDFSNumber; }));
|
|
// Form a new RefSCC out of these nodes and then clear them off our pending
|
|
// stack.
|
|
RefSCC *NewRC = createRefSCC(*this);
|
|
buildSCCs(*NewRC, RefSCCNodes);
|
|
connectRefSCC(*NewRC);
|
|
PendingRefSCCStack.erase(RefSCCNodes.end().base(),
|
|
PendingRefSCCStack.end());
|
|
|
|
// We return the new node here. This essentially suspends the DFS walk
|
|
// until another RefSCC is requested.
|
|
return NewRC;
|
|
}
|
|
}
|
|
|
|
char LazyCallGraphAnalysis::PassID;
|
|
|
|
LazyCallGraphPrinterPass::LazyCallGraphPrinterPass(raw_ostream &OS) : OS(OS) {}
|
|
|
|
static void printNode(raw_ostream &OS, LazyCallGraph::Node &N) {
|
|
OS << " Edges in function: " << N.getFunction().getName() << "\n";
|
|
for (const LazyCallGraph::Edge &E : N)
|
|
OS << " " << (E.isCall() ? "call" : "ref ") << " -> "
|
|
<< E.getFunction().getName() << "\n";
|
|
|
|
OS << "\n";
|
|
}
|
|
|
|
static void printSCC(raw_ostream &OS, LazyCallGraph::SCC &C) {
|
|
ptrdiff_t Size = std::distance(C.begin(), C.end());
|
|
OS << " SCC with " << Size << " functions:\n";
|
|
|
|
for (LazyCallGraph::Node &N : C)
|
|
OS << " " << N.getFunction().getName() << "\n";
|
|
}
|
|
|
|
static void printRefSCC(raw_ostream &OS, LazyCallGraph::RefSCC &C) {
|
|
ptrdiff_t Size = std::distance(C.begin(), C.end());
|
|
OS << " RefSCC with " << Size << " call SCCs:\n";
|
|
|
|
for (LazyCallGraph::SCC &InnerC : C)
|
|
printSCC(OS, InnerC);
|
|
|
|
OS << "\n";
|
|
}
|
|
|
|
PreservedAnalyses LazyCallGraphPrinterPass::run(Module &M,
|
|
ModuleAnalysisManager &AM) {
|
|
LazyCallGraph &G = AM.getResult<LazyCallGraphAnalysis>(M);
|
|
|
|
OS << "Printing the call graph for module: " << M.getModuleIdentifier()
|
|
<< "\n\n";
|
|
|
|
for (Function &F : M)
|
|
printNode(OS, G.get(F));
|
|
|
|
for (LazyCallGraph::RefSCC &C : G.postorder_ref_sccs())
|
|
printRefSCC(OS, C);
|
|
|
|
return PreservedAnalyses::all();
|
|
}
|
|
|
|
LazyCallGraphDOTPrinterPass::LazyCallGraphDOTPrinterPass(raw_ostream &OS)
|
|
: OS(OS) {}
|
|
|
|
static void printNodeDOT(raw_ostream &OS, LazyCallGraph::Node &N) {
|
|
std::string Name = "\"" + DOT::EscapeString(N.getFunction().getName()) + "\"";
|
|
|
|
for (const LazyCallGraph::Edge &E : N) {
|
|
OS << " " << Name << " -> \""
|
|
<< DOT::EscapeString(E.getFunction().getName()) << "\"";
|
|
if (!E.isCall()) // It is a ref edge.
|
|
OS << " [style=dashed,label=\"ref\"]";
|
|
OS << ";\n";
|
|
}
|
|
|
|
OS << "\n";
|
|
}
|
|
|
|
PreservedAnalyses LazyCallGraphDOTPrinterPass::run(Module &M,
|
|
ModuleAnalysisManager &AM) {
|
|
LazyCallGraph &G = AM.getResult<LazyCallGraphAnalysis>(M);
|
|
|
|
OS << "digraph \"" << DOT::EscapeString(M.getModuleIdentifier()) << "\" {\n";
|
|
|
|
for (Function &F : M)
|
|
printNodeDOT(OS, G.get(F));
|
|
|
|
OS << "}\n";
|
|
|
|
return PreservedAnalyses::all();
|
|
}
|