freebsd-nq/module/icp/io/sha1_mod.c
Mark Wright 56d8d8ace4 Linux 4.14 compat: CONFIG_GCC_PLUGIN_RANDSTRUCT
Fix build errors with gcc 7.2.0 on Gentoo with kernel 4.14
built with CONFIG_GCC_PLUGIN_RANDSTRUCT=y such as:

module/nvpair/nvpair.c:2810:2:error:
positional initialization of field in ?struct? declared with
'designated_init' attribute [-Werror=designated-init]
  nvs_native_nvlist,
  ^~~~~~~~~~~~~~~~~

Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Mark Wright <gienah@gentoo.org>
Closes #5390 
Closes #6903
2017-11-28 17:33:48 -06:00

1240 lines
33 KiB
C

/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright 2010 Sun Microsystems, Inc. All rights reserved.
* Use is subject to license terms.
*/
#include <sys/zfs_context.h>
#include <sys/modctl.h>
#include <sys/crypto/common.h>
#include <sys/crypto/spi.h>
#include <sha1/sha1.h>
#include <sha1/sha1_impl.h>
/*
* The sha1 module is created with two modlinkages:
* - a modlmisc that allows consumers to directly call the entry points
* SHA1Init, SHA1Update, and SHA1Final.
* - a modlcrypto that allows the module to register with the Kernel
* Cryptographic Framework (KCF) as a software provider for the SHA1
* mechanisms.
*/
static struct modlcrypto modlcrypto = {
&mod_cryptoops,
"SHA1 Kernel SW Provider 1.1"
};
static struct modlinkage modlinkage = {
MODREV_1, { &modlcrypto, NULL }
};
/*
* Macros to access the SHA1 or SHA1-HMAC contexts from a context passed
* by KCF to one of the entry points.
*/
#define PROV_SHA1_CTX(ctx) ((sha1_ctx_t *)(ctx)->cc_provider_private)
#define PROV_SHA1_HMAC_CTX(ctx) ((sha1_hmac_ctx_t *)(ctx)->cc_provider_private)
/* to extract the digest length passed as mechanism parameter */
#define PROV_SHA1_GET_DIGEST_LEN(m, len) { \
if (IS_P2ALIGNED((m)->cm_param, sizeof (ulong_t))) \
(len) = (uint32_t)*((ulong_t *)(void *)mechanism->cm_param); \
else { \
ulong_t tmp_ulong; \
bcopy((m)->cm_param, &tmp_ulong, sizeof (ulong_t)); \
(len) = (uint32_t)tmp_ulong; \
} \
}
#define PROV_SHA1_DIGEST_KEY(ctx, key, len, digest) { \
SHA1Init(ctx); \
SHA1Update(ctx, key, len); \
SHA1Final(digest, ctx); \
}
/*
* Mechanism info structure passed to KCF during registration.
*/
static crypto_mech_info_t sha1_mech_info_tab[] = {
/* SHA1 */
{SUN_CKM_SHA1, SHA1_MECH_INFO_TYPE,
CRYPTO_FG_DIGEST | CRYPTO_FG_DIGEST_ATOMIC,
0, 0, CRYPTO_KEYSIZE_UNIT_IN_BITS},
/* SHA1-HMAC */
{SUN_CKM_SHA1_HMAC, SHA1_HMAC_MECH_INFO_TYPE,
CRYPTO_FG_MAC | CRYPTO_FG_MAC_ATOMIC,
SHA1_HMAC_MIN_KEY_LEN, SHA1_HMAC_MAX_KEY_LEN,
CRYPTO_KEYSIZE_UNIT_IN_BYTES},
/* SHA1-HMAC GENERAL */
{SUN_CKM_SHA1_HMAC_GENERAL, SHA1_HMAC_GEN_MECH_INFO_TYPE,
CRYPTO_FG_MAC | CRYPTO_FG_MAC_ATOMIC,
SHA1_HMAC_MIN_KEY_LEN, SHA1_HMAC_MAX_KEY_LEN,
CRYPTO_KEYSIZE_UNIT_IN_BYTES}
};
static void sha1_provider_status(crypto_provider_handle_t, uint_t *);
static crypto_control_ops_t sha1_control_ops = {
sha1_provider_status
};
static int sha1_digest_init(crypto_ctx_t *, crypto_mechanism_t *,
crypto_req_handle_t);
static int sha1_digest(crypto_ctx_t *, crypto_data_t *, crypto_data_t *,
crypto_req_handle_t);
static int sha1_digest_update(crypto_ctx_t *, crypto_data_t *,
crypto_req_handle_t);
static int sha1_digest_final(crypto_ctx_t *, crypto_data_t *,
crypto_req_handle_t);
static int sha1_digest_atomic(crypto_provider_handle_t, crypto_session_id_t,
crypto_mechanism_t *, crypto_data_t *, crypto_data_t *,
crypto_req_handle_t);
static crypto_digest_ops_t sha1_digest_ops = {
.digest_init = sha1_digest_init,
.digest = sha1_digest,
.digest_update = sha1_digest_update,
.digest_key = NULL,
.digest_final = sha1_digest_final,
.digest_atomic = sha1_digest_atomic
};
static int sha1_mac_init(crypto_ctx_t *, crypto_mechanism_t *, crypto_key_t *,
crypto_spi_ctx_template_t, crypto_req_handle_t);
static int sha1_mac_update(crypto_ctx_t *, crypto_data_t *,
crypto_req_handle_t);
static int sha1_mac_final(crypto_ctx_t *, crypto_data_t *, crypto_req_handle_t);
static int sha1_mac_atomic(crypto_provider_handle_t, crypto_session_id_t,
crypto_mechanism_t *, crypto_key_t *, crypto_data_t *, crypto_data_t *,
crypto_spi_ctx_template_t, crypto_req_handle_t);
static int sha1_mac_verify_atomic(crypto_provider_handle_t, crypto_session_id_t,
crypto_mechanism_t *, crypto_key_t *, crypto_data_t *, crypto_data_t *,
crypto_spi_ctx_template_t, crypto_req_handle_t);
static crypto_mac_ops_t sha1_mac_ops = {
.mac_init = sha1_mac_init,
.mac = NULL,
.mac_update = sha1_mac_update,
.mac_final = sha1_mac_final,
.mac_atomic = sha1_mac_atomic,
.mac_verify_atomic = sha1_mac_verify_atomic
};
static int sha1_create_ctx_template(crypto_provider_handle_t,
crypto_mechanism_t *, crypto_key_t *, crypto_spi_ctx_template_t *,
size_t *, crypto_req_handle_t);
static int sha1_free_context(crypto_ctx_t *);
static crypto_ctx_ops_t sha1_ctx_ops = {
.create_ctx_template = sha1_create_ctx_template,
.free_context = sha1_free_context
};
static crypto_ops_t sha1_crypto_ops = {{{{{
&sha1_control_ops,
&sha1_digest_ops,
NULL,
&sha1_mac_ops,
NULL,
NULL,
NULL,
NULL,
NULL,
NULL,
NULL,
NULL,
NULL,
&sha1_ctx_ops,
}}}}};
static crypto_provider_info_t sha1_prov_info = {{{{
CRYPTO_SPI_VERSION_1,
"SHA1 Software Provider",
CRYPTO_SW_PROVIDER,
NULL,
&sha1_crypto_ops,
sizeof (sha1_mech_info_tab)/sizeof (crypto_mech_info_t),
sha1_mech_info_tab
}}}};
static crypto_kcf_provider_handle_t sha1_prov_handle = 0;
int
sha1_mod_init(void)
{
int ret;
if ((ret = mod_install(&modlinkage)) != 0)
return (ret);
/*
* Register with KCF. If the registration fails, log an
* error but do not uninstall the module, since the functionality
* provided by misc/sha1 should still be available.
*/
if ((ret = crypto_register_provider(&sha1_prov_info,
&sha1_prov_handle)) != CRYPTO_SUCCESS)
cmn_err(CE_WARN, "sha1 _init: "
"crypto_register_provider() failed (0x%x)", ret);
return (0);
}
int
sha1_mod_fini(void)
{
int ret;
if (sha1_prov_handle != 0) {
if ((ret = crypto_unregister_provider(sha1_prov_handle)) !=
CRYPTO_SUCCESS) {
cmn_err(CE_WARN,
"sha1 _fini: crypto_unregister_provider() "
"failed (0x%x)", ret);
return (EBUSY);
}
sha1_prov_handle = 0;
}
return (mod_remove(&modlinkage));
}
/*
* KCF software provider control entry points.
*/
/* ARGSUSED */
static void
sha1_provider_status(crypto_provider_handle_t provider, uint_t *status)
{
*status = CRYPTO_PROVIDER_READY;
}
/*
* KCF software provider digest entry points.
*/
static int
sha1_digest_init(crypto_ctx_t *ctx, crypto_mechanism_t *mechanism,
crypto_req_handle_t req)
{
if (mechanism->cm_type != SHA1_MECH_INFO_TYPE)
return (CRYPTO_MECHANISM_INVALID);
/*
* Allocate and initialize SHA1 context.
*/
ctx->cc_provider_private = kmem_alloc(sizeof (sha1_ctx_t),
crypto_kmflag(req));
if (ctx->cc_provider_private == NULL)
return (CRYPTO_HOST_MEMORY);
PROV_SHA1_CTX(ctx)->sc_mech_type = SHA1_MECH_INFO_TYPE;
SHA1Init(&PROV_SHA1_CTX(ctx)->sc_sha1_ctx);
return (CRYPTO_SUCCESS);
}
/*
* Helper SHA1 digest update function for uio data.
*/
static int
sha1_digest_update_uio(SHA1_CTX *sha1_ctx, crypto_data_t *data)
{
off_t offset = data->cd_offset;
size_t length = data->cd_length;
uint_t vec_idx;
size_t cur_len;
/* we support only kernel buffer */
if (data->cd_uio->uio_segflg != UIO_SYSSPACE)
return (CRYPTO_ARGUMENTS_BAD);
/*
* Jump to the first iovec containing data to be
* digested.
*/
for (vec_idx = 0; vec_idx < data->cd_uio->uio_iovcnt &&
offset >= data->cd_uio->uio_iov[vec_idx].iov_len;
offset -= data->cd_uio->uio_iov[vec_idx++].iov_len)
;
if (vec_idx == data->cd_uio->uio_iovcnt) {
/*
* The caller specified an offset that is larger than the
* total size of the buffers it provided.
*/
return (CRYPTO_DATA_LEN_RANGE);
}
/*
* Now do the digesting on the iovecs.
*/
while (vec_idx < data->cd_uio->uio_iovcnt && length > 0) {
cur_len = MIN(data->cd_uio->uio_iov[vec_idx].iov_len -
offset, length);
SHA1Update(sha1_ctx,
(uint8_t *)data->cd_uio->uio_iov[vec_idx].iov_base + offset,
cur_len);
length -= cur_len;
vec_idx++;
offset = 0;
}
if (vec_idx == data->cd_uio->uio_iovcnt && length > 0) {
/*
* The end of the specified iovec's was reached but
* the length requested could not be processed, i.e.
* The caller requested to digest more data than it provided.
*/
return (CRYPTO_DATA_LEN_RANGE);
}
return (CRYPTO_SUCCESS);
}
/*
* Helper SHA1 digest final function for uio data.
* digest_len is the length of the desired digest. If digest_len
* is smaller than the default SHA1 digest length, the caller
* must pass a scratch buffer, digest_scratch, which must
* be at least SHA1_DIGEST_LENGTH bytes.
*/
static int
sha1_digest_final_uio(SHA1_CTX *sha1_ctx, crypto_data_t *digest,
ulong_t digest_len, uchar_t *digest_scratch)
{
off_t offset = digest->cd_offset;
uint_t vec_idx;
/* we support only kernel buffer */
if (digest->cd_uio->uio_segflg != UIO_SYSSPACE)
return (CRYPTO_ARGUMENTS_BAD);
/*
* Jump to the first iovec containing ptr to the digest to
* be returned.
*/
for (vec_idx = 0; offset >= digest->cd_uio->uio_iov[vec_idx].iov_len &&
vec_idx < digest->cd_uio->uio_iovcnt;
offset -= digest->cd_uio->uio_iov[vec_idx++].iov_len)
;
if (vec_idx == digest->cd_uio->uio_iovcnt) {
/*
* The caller specified an offset that is
* larger than the total size of the buffers
* it provided.
*/
return (CRYPTO_DATA_LEN_RANGE);
}
if (offset + digest_len <=
digest->cd_uio->uio_iov[vec_idx].iov_len) {
/*
* The computed SHA1 digest will fit in the current
* iovec.
*/
if (digest_len != SHA1_DIGEST_LENGTH) {
/*
* The caller requested a short digest. Digest
* into a scratch buffer and return to
* the user only what was requested.
*/
SHA1Final(digest_scratch, sha1_ctx);
bcopy(digest_scratch, (uchar_t *)digest->
cd_uio->uio_iov[vec_idx].iov_base + offset,
digest_len);
} else {
SHA1Final((uchar_t *)digest->
cd_uio->uio_iov[vec_idx].iov_base + offset,
sha1_ctx);
}
} else {
/*
* The computed digest will be crossing one or more iovec's.
* This is bad performance-wise but we need to support it.
* Allocate a small scratch buffer on the stack and
* copy it piece meal to the specified digest iovec's.
*/
uchar_t digest_tmp[SHA1_DIGEST_LENGTH];
off_t scratch_offset = 0;
size_t length = digest_len;
size_t cur_len;
SHA1Final(digest_tmp, sha1_ctx);
while (vec_idx < digest->cd_uio->uio_iovcnt && length > 0) {
cur_len = MIN(digest->cd_uio->uio_iov[vec_idx].iov_len -
offset, length);
bcopy(digest_tmp + scratch_offset,
digest->cd_uio->uio_iov[vec_idx].iov_base + offset,
cur_len);
length -= cur_len;
vec_idx++;
scratch_offset += cur_len;
offset = 0;
}
if (vec_idx == digest->cd_uio->uio_iovcnt && length > 0) {
/*
* The end of the specified iovec's was reached but
* the length requested could not be processed, i.e.
* The caller requested to digest more data than it
* provided.
*/
return (CRYPTO_DATA_LEN_RANGE);
}
}
return (CRYPTO_SUCCESS);
}
/* ARGSUSED */
static int
sha1_digest(crypto_ctx_t *ctx, crypto_data_t *data, crypto_data_t *digest,
crypto_req_handle_t req)
{
int ret = CRYPTO_SUCCESS;
ASSERT(ctx->cc_provider_private != NULL);
/*
* We need to just return the length needed to store the output.
* We should not destroy the context for the following cases.
*/
if ((digest->cd_length == 0) ||
(digest->cd_length < SHA1_DIGEST_LENGTH)) {
digest->cd_length = SHA1_DIGEST_LENGTH;
return (CRYPTO_BUFFER_TOO_SMALL);
}
/*
* Do the SHA1 update on the specified input data.
*/
switch (data->cd_format) {
case CRYPTO_DATA_RAW:
SHA1Update(&PROV_SHA1_CTX(ctx)->sc_sha1_ctx,
(uint8_t *)data->cd_raw.iov_base + data->cd_offset,
data->cd_length);
break;
case CRYPTO_DATA_UIO:
ret = sha1_digest_update_uio(&PROV_SHA1_CTX(ctx)->sc_sha1_ctx,
data);
break;
default:
ret = CRYPTO_ARGUMENTS_BAD;
}
if (ret != CRYPTO_SUCCESS) {
/* the update failed, free context and bail */
kmem_free(ctx->cc_provider_private, sizeof (sha1_ctx_t));
ctx->cc_provider_private = NULL;
digest->cd_length = 0;
return (ret);
}
/*
* Do a SHA1 final, must be done separately since the digest
* type can be different than the input data type.
*/
switch (digest->cd_format) {
case CRYPTO_DATA_RAW:
SHA1Final((unsigned char *)digest->cd_raw.iov_base +
digest->cd_offset, &PROV_SHA1_CTX(ctx)->sc_sha1_ctx);
break;
case CRYPTO_DATA_UIO:
ret = sha1_digest_final_uio(&PROV_SHA1_CTX(ctx)->sc_sha1_ctx,
digest, SHA1_DIGEST_LENGTH, NULL);
break;
default:
ret = CRYPTO_ARGUMENTS_BAD;
}
/* all done, free context and return */
if (ret == CRYPTO_SUCCESS) {
digest->cd_length = SHA1_DIGEST_LENGTH;
} else {
digest->cd_length = 0;
}
kmem_free(ctx->cc_provider_private, sizeof (sha1_ctx_t));
ctx->cc_provider_private = NULL;
return (ret);
}
/* ARGSUSED */
static int
sha1_digest_update(crypto_ctx_t *ctx, crypto_data_t *data,
crypto_req_handle_t req)
{
int ret = CRYPTO_SUCCESS;
ASSERT(ctx->cc_provider_private != NULL);
/*
* Do the SHA1 update on the specified input data.
*/
switch (data->cd_format) {
case CRYPTO_DATA_RAW:
SHA1Update(&PROV_SHA1_CTX(ctx)->sc_sha1_ctx,
(uint8_t *)data->cd_raw.iov_base + data->cd_offset,
data->cd_length);
break;
case CRYPTO_DATA_UIO:
ret = sha1_digest_update_uio(&PROV_SHA1_CTX(ctx)->sc_sha1_ctx,
data);
break;
default:
ret = CRYPTO_ARGUMENTS_BAD;
}
return (ret);
}
/* ARGSUSED */
static int
sha1_digest_final(crypto_ctx_t *ctx, crypto_data_t *digest,
crypto_req_handle_t req)
{
int ret = CRYPTO_SUCCESS;
ASSERT(ctx->cc_provider_private != NULL);
/*
* We need to just return the length needed to store the output.
* We should not destroy the context for the following cases.
*/
if ((digest->cd_length == 0) ||
(digest->cd_length < SHA1_DIGEST_LENGTH)) {
digest->cd_length = SHA1_DIGEST_LENGTH;
return (CRYPTO_BUFFER_TOO_SMALL);
}
/*
* Do a SHA1 final.
*/
switch (digest->cd_format) {
case CRYPTO_DATA_RAW:
SHA1Final((unsigned char *)digest->cd_raw.iov_base +
digest->cd_offset, &PROV_SHA1_CTX(ctx)->sc_sha1_ctx);
break;
case CRYPTO_DATA_UIO:
ret = sha1_digest_final_uio(&PROV_SHA1_CTX(ctx)->sc_sha1_ctx,
digest, SHA1_DIGEST_LENGTH, NULL);
break;
default:
ret = CRYPTO_ARGUMENTS_BAD;
}
/* all done, free context and return */
if (ret == CRYPTO_SUCCESS) {
digest->cd_length = SHA1_DIGEST_LENGTH;
} else {
digest->cd_length = 0;
}
kmem_free(ctx->cc_provider_private, sizeof (sha1_ctx_t));
ctx->cc_provider_private = NULL;
return (ret);
}
/* ARGSUSED */
static int
sha1_digest_atomic(crypto_provider_handle_t provider,
crypto_session_id_t session_id, crypto_mechanism_t *mechanism,
crypto_data_t *data, crypto_data_t *digest,
crypto_req_handle_t req)
{
int ret = CRYPTO_SUCCESS;
SHA1_CTX sha1_ctx;
if (mechanism->cm_type != SHA1_MECH_INFO_TYPE)
return (CRYPTO_MECHANISM_INVALID);
/*
* Do the SHA1 init.
*/
SHA1Init(&sha1_ctx);
/*
* Do the SHA1 update on the specified input data.
*/
switch (data->cd_format) {
case CRYPTO_DATA_RAW:
SHA1Update(&sha1_ctx,
(uint8_t *)data->cd_raw.iov_base + data->cd_offset,
data->cd_length);
break;
case CRYPTO_DATA_UIO:
ret = sha1_digest_update_uio(&sha1_ctx, data);
break;
default:
ret = CRYPTO_ARGUMENTS_BAD;
}
if (ret != CRYPTO_SUCCESS) {
/* the update failed, bail */
digest->cd_length = 0;
return (ret);
}
/*
* Do a SHA1 final, must be done separately since the digest
* type can be different than the input data type.
*/
switch (digest->cd_format) {
case CRYPTO_DATA_RAW:
SHA1Final((unsigned char *)digest->cd_raw.iov_base +
digest->cd_offset, &sha1_ctx);
break;
case CRYPTO_DATA_UIO:
ret = sha1_digest_final_uio(&sha1_ctx, digest,
SHA1_DIGEST_LENGTH, NULL);
break;
default:
ret = CRYPTO_ARGUMENTS_BAD;
}
if (ret == CRYPTO_SUCCESS) {
digest->cd_length = SHA1_DIGEST_LENGTH;
} else {
digest->cd_length = 0;
}
return (ret);
}
/*
* KCF software provider mac entry points.
*
* SHA1 HMAC is: SHA1(key XOR opad, SHA1(key XOR ipad, text))
*
* Init:
* The initialization routine initializes what we denote
* as the inner and outer contexts by doing
* - for inner context: SHA1(key XOR ipad)
* - for outer context: SHA1(key XOR opad)
*
* Update:
* Each subsequent SHA1 HMAC update will result in an
* update of the inner context with the specified data.
*
* Final:
* The SHA1 HMAC final will do a SHA1 final operation on the
* inner context, and the resulting digest will be used
* as the data for an update on the outer context. Last
* but not least, a SHA1 final on the outer context will
* be performed to obtain the SHA1 HMAC digest to return
* to the user.
*/
/*
* Initialize a SHA1-HMAC context.
*/
static void
sha1_mac_init_ctx(sha1_hmac_ctx_t *ctx, void *keyval, uint_t length_in_bytes)
{
uint32_t ipad[SHA1_HMAC_INTS_PER_BLOCK];
uint32_t opad[SHA1_HMAC_INTS_PER_BLOCK];
uint_t i;
bzero(ipad, SHA1_HMAC_BLOCK_SIZE);
bzero(opad, SHA1_HMAC_BLOCK_SIZE);
bcopy(keyval, ipad, length_in_bytes);
bcopy(keyval, opad, length_in_bytes);
/* XOR key with ipad (0x36) and opad (0x5c) */
for (i = 0; i < SHA1_HMAC_INTS_PER_BLOCK; i++) {
ipad[i] ^= 0x36363636;
opad[i] ^= 0x5c5c5c5c;
}
/* perform SHA1 on ipad */
SHA1Init(&ctx->hc_icontext);
SHA1Update(&ctx->hc_icontext, (uint8_t *)ipad, SHA1_HMAC_BLOCK_SIZE);
/* perform SHA1 on opad */
SHA1Init(&ctx->hc_ocontext);
SHA1Update(&ctx->hc_ocontext, (uint8_t *)opad, SHA1_HMAC_BLOCK_SIZE);
}
/*
*/
static int
sha1_mac_init(crypto_ctx_t *ctx, crypto_mechanism_t *mechanism,
crypto_key_t *key, crypto_spi_ctx_template_t ctx_template,
crypto_req_handle_t req)
{
int ret = CRYPTO_SUCCESS;
uint_t keylen_in_bytes = CRYPTO_BITS2BYTES(key->ck_length);
if (mechanism->cm_type != SHA1_HMAC_MECH_INFO_TYPE &&
mechanism->cm_type != SHA1_HMAC_GEN_MECH_INFO_TYPE)
return (CRYPTO_MECHANISM_INVALID);
/* Add support for key by attributes (RFE 4706552) */
if (key->ck_format != CRYPTO_KEY_RAW)
return (CRYPTO_ARGUMENTS_BAD);
ctx->cc_provider_private = kmem_alloc(sizeof (sha1_hmac_ctx_t),
crypto_kmflag(req));
if (ctx->cc_provider_private == NULL)
return (CRYPTO_HOST_MEMORY);
if (ctx_template != NULL) {
/* reuse context template */
bcopy(ctx_template, PROV_SHA1_HMAC_CTX(ctx),
sizeof (sha1_hmac_ctx_t));
} else {
/* no context template, compute context */
if (keylen_in_bytes > SHA1_HMAC_BLOCK_SIZE) {
uchar_t digested_key[SHA1_DIGEST_LENGTH];
sha1_hmac_ctx_t *hmac_ctx = ctx->cc_provider_private;
/*
* Hash the passed-in key to get a smaller key.
* The inner context is used since it hasn't been
* initialized yet.
*/
PROV_SHA1_DIGEST_KEY(&hmac_ctx->hc_icontext,
key->ck_data, keylen_in_bytes, digested_key);
sha1_mac_init_ctx(PROV_SHA1_HMAC_CTX(ctx),
digested_key, SHA1_DIGEST_LENGTH);
} else {
sha1_mac_init_ctx(PROV_SHA1_HMAC_CTX(ctx),
key->ck_data, keylen_in_bytes);
}
}
/*
* Get the mechanism parameters, if applicable.
*/
PROV_SHA1_HMAC_CTX(ctx)->hc_mech_type = mechanism->cm_type;
if (mechanism->cm_type == SHA1_HMAC_GEN_MECH_INFO_TYPE) {
if (mechanism->cm_param == NULL ||
mechanism->cm_param_len != sizeof (ulong_t))
ret = CRYPTO_MECHANISM_PARAM_INVALID;
PROV_SHA1_GET_DIGEST_LEN(mechanism,
PROV_SHA1_HMAC_CTX(ctx)->hc_digest_len);
if (PROV_SHA1_HMAC_CTX(ctx)->hc_digest_len >
SHA1_DIGEST_LENGTH)
ret = CRYPTO_MECHANISM_PARAM_INVALID;
}
if (ret != CRYPTO_SUCCESS) {
bzero(ctx->cc_provider_private, sizeof (sha1_hmac_ctx_t));
kmem_free(ctx->cc_provider_private, sizeof (sha1_hmac_ctx_t));
ctx->cc_provider_private = NULL;
}
return (ret);
}
/* ARGSUSED */
static int
sha1_mac_update(crypto_ctx_t *ctx, crypto_data_t *data, crypto_req_handle_t req)
{
int ret = CRYPTO_SUCCESS;
ASSERT(ctx->cc_provider_private != NULL);
/*
* Do a SHA1 update of the inner context using the specified
* data.
*/
switch (data->cd_format) {
case CRYPTO_DATA_RAW:
SHA1Update(&PROV_SHA1_HMAC_CTX(ctx)->hc_icontext,
(uint8_t *)data->cd_raw.iov_base + data->cd_offset,
data->cd_length);
break;
case CRYPTO_DATA_UIO:
ret = sha1_digest_update_uio(
&PROV_SHA1_HMAC_CTX(ctx)->hc_icontext, data);
break;
default:
ret = CRYPTO_ARGUMENTS_BAD;
}
return (ret);
}
/* ARGSUSED */
static int
sha1_mac_final(crypto_ctx_t *ctx, crypto_data_t *mac, crypto_req_handle_t req)
{
int ret = CRYPTO_SUCCESS;
uchar_t digest[SHA1_DIGEST_LENGTH];
uint32_t digest_len = SHA1_DIGEST_LENGTH;
ASSERT(ctx->cc_provider_private != NULL);
if (PROV_SHA1_HMAC_CTX(ctx)->hc_mech_type ==
SHA1_HMAC_GEN_MECH_INFO_TYPE)
digest_len = PROV_SHA1_HMAC_CTX(ctx)->hc_digest_len;
/*
* We need to just return the length needed to store the output.
* We should not destroy the context for the following cases.
*/
if ((mac->cd_length == 0) || (mac->cd_length < digest_len)) {
mac->cd_length = digest_len;
return (CRYPTO_BUFFER_TOO_SMALL);
}
/*
* Do a SHA1 final on the inner context.
*/
SHA1Final(digest, &PROV_SHA1_HMAC_CTX(ctx)->hc_icontext);
/*
* Do a SHA1 update on the outer context, feeding the inner
* digest as data.
*/
SHA1Update(&PROV_SHA1_HMAC_CTX(ctx)->hc_ocontext, digest,
SHA1_DIGEST_LENGTH);
/*
* Do a SHA1 final on the outer context, storing the computing
* digest in the users buffer.
*/
switch (mac->cd_format) {
case CRYPTO_DATA_RAW:
if (digest_len != SHA1_DIGEST_LENGTH) {
/*
* The caller requested a short digest. Digest
* into a scratch buffer and return to
* the user only what was requested.
*/
SHA1Final(digest,
&PROV_SHA1_HMAC_CTX(ctx)->hc_ocontext);
bcopy(digest, (unsigned char *)mac->cd_raw.iov_base +
mac->cd_offset, digest_len);
} else {
SHA1Final((unsigned char *)mac->cd_raw.iov_base +
mac->cd_offset,
&PROV_SHA1_HMAC_CTX(ctx)->hc_ocontext);
}
break;
case CRYPTO_DATA_UIO:
ret = sha1_digest_final_uio(
&PROV_SHA1_HMAC_CTX(ctx)->hc_ocontext, mac,
digest_len, digest);
break;
default:
ret = CRYPTO_ARGUMENTS_BAD;
}
if (ret == CRYPTO_SUCCESS) {
mac->cd_length = digest_len;
} else {
mac->cd_length = 0;
}
bzero(ctx->cc_provider_private, sizeof (sha1_hmac_ctx_t));
kmem_free(ctx->cc_provider_private, sizeof (sha1_hmac_ctx_t));
ctx->cc_provider_private = NULL;
return (ret);
}
#define SHA1_MAC_UPDATE(data, ctx, ret) { \
switch (data->cd_format) { \
case CRYPTO_DATA_RAW: \
SHA1Update(&(ctx).hc_icontext, \
(uint8_t *)data->cd_raw.iov_base + \
data->cd_offset, data->cd_length); \
break; \
case CRYPTO_DATA_UIO: \
ret = sha1_digest_update_uio(&(ctx).hc_icontext, data); \
break; \
default: \
ret = CRYPTO_ARGUMENTS_BAD; \
} \
}
/* ARGSUSED */
static int
sha1_mac_atomic(crypto_provider_handle_t provider,
crypto_session_id_t session_id, crypto_mechanism_t *mechanism,
crypto_key_t *key, crypto_data_t *data, crypto_data_t *mac,
crypto_spi_ctx_template_t ctx_template, crypto_req_handle_t req)
{
int ret = CRYPTO_SUCCESS;
uchar_t digest[SHA1_DIGEST_LENGTH];
sha1_hmac_ctx_t sha1_hmac_ctx;
uint32_t digest_len = SHA1_DIGEST_LENGTH;
uint_t keylen_in_bytes = CRYPTO_BITS2BYTES(key->ck_length);
if (mechanism->cm_type != SHA1_HMAC_MECH_INFO_TYPE &&
mechanism->cm_type != SHA1_HMAC_GEN_MECH_INFO_TYPE)
return (CRYPTO_MECHANISM_INVALID);
/* Add support for key by attributes (RFE 4706552) */
if (key->ck_format != CRYPTO_KEY_RAW)
return (CRYPTO_ARGUMENTS_BAD);
if (ctx_template != NULL) {
/* reuse context template */
bcopy(ctx_template, &sha1_hmac_ctx, sizeof (sha1_hmac_ctx_t));
} else {
/* no context template, initialize context */
if (keylen_in_bytes > SHA1_HMAC_BLOCK_SIZE) {
/*
* Hash the passed-in key to get a smaller key.
* The inner context is used since it hasn't been
* initialized yet.
*/
PROV_SHA1_DIGEST_KEY(&sha1_hmac_ctx.hc_icontext,
key->ck_data, keylen_in_bytes, digest);
sha1_mac_init_ctx(&sha1_hmac_ctx, digest,
SHA1_DIGEST_LENGTH);
} else {
sha1_mac_init_ctx(&sha1_hmac_ctx, key->ck_data,
keylen_in_bytes);
}
}
/* get the mechanism parameters, if applicable */
if (mechanism->cm_type == SHA1_HMAC_GEN_MECH_INFO_TYPE) {
if (mechanism->cm_param == NULL ||
mechanism->cm_param_len != sizeof (ulong_t)) {
ret = CRYPTO_MECHANISM_PARAM_INVALID;
goto bail;
}
PROV_SHA1_GET_DIGEST_LEN(mechanism, digest_len);
if (digest_len > SHA1_DIGEST_LENGTH) {
ret = CRYPTO_MECHANISM_PARAM_INVALID;
goto bail;
}
}
/* do a SHA1 update of the inner context using the specified data */
SHA1_MAC_UPDATE(data, sha1_hmac_ctx, ret);
if (ret != CRYPTO_SUCCESS)
/* the update failed, free context and bail */
goto bail;
/*
* Do a SHA1 final on the inner context.
*/
SHA1Final(digest, &sha1_hmac_ctx.hc_icontext);
/*
* Do an SHA1 update on the outer context, feeding the inner
* digest as data.
*/
SHA1Update(&sha1_hmac_ctx.hc_ocontext, digest, SHA1_DIGEST_LENGTH);
/*
* Do a SHA1 final on the outer context, storing the computed
* digest in the users buffer.
*/
switch (mac->cd_format) {
case CRYPTO_DATA_RAW:
if (digest_len != SHA1_DIGEST_LENGTH) {
/*
* The caller requested a short digest. Digest
* into a scratch buffer and return to
* the user only what was requested.
*/
SHA1Final(digest, &sha1_hmac_ctx.hc_ocontext);
bcopy(digest, (unsigned char *)mac->cd_raw.iov_base +
mac->cd_offset, digest_len);
} else {
SHA1Final((unsigned char *)mac->cd_raw.iov_base +
mac->cd_offset, &sha1_hmac_ctx.hc_ocontext);
}
break;
case CRYPTO_DATA_UIO:
ret = sha1_digest_final_uio(&sha1_hmac_ctx.hc_ocontext, mac,
digest_len, digest);
break;
default:
ret = CRYPTO_ARGUMENTS_BAD;
}
if (ret == CRYPTO_SUCCESS) {
mac->cd_length = digest_len;
} else {
mac->cd_length = 0;
}
/* Extra paranoia: zeroize the context on the stack */
bzero(&sha1_hmac_ctx, sizeof (sha1_hmac_ctx_t));
return (ret);
bail:
bzero(&sha1_hmac_ctx, sizeof (sha1_hmac_ctx_t));
mac->cd_length = 0;
return (ret);
}
/* ARGSUSED */
static int
sha1_mac_verify_atomic(crypto_provider_handle_t provider,
crypto_session_id_t session_id, crypto_mechanism_t *mechanism,
crypto_key_t *key, crypto_data_t *data, crypto_data_t *mac,
crypto_spi_ctx_template_t ctx_template, crypto_req_handle_t req)
{
int ret = CRYPTO_SUCCESS;
uchar_t digest[SHA1_DIGEST_LENGTH];
sha1_hmac_ctx_t sha1_hmac_ctx;
uint32_t digest_len = SHA1_DIGEST_LENGTH;
uint_t keylen_in_bytes = CRYPTO_BITS2BYTES(key->ck_length);
if (mechanism->cm_type != SHA1_HMAC_MECH_INFO_TYPE &&
mechanism->cm_type != SHA1_HMAC_GEN_MECH_INFO_TYPE)
return (CRYPTO_MECHANISM_INVALID);
/* Add support for key by attributes (RFE 4706552) */
if (key->ck_format != CRYPTO_KEY_RAW)
return (CRYPTO_ARGUMENTS_BAD);
if (ctx_template != NULL) {
/* reuse context template */
bcopy(ctx_template, &sha1_hmac_ctx, sizeof (sha1_hmac_ctx_t));
} else {
/* no context template, initialize context */
if (keylen_in_bytes > SHA1_HMAC_BLOCK_SIZE) {
/*
* Hash the passed-in key to get a smaller key.
* The inner context is used since it hasn't been
* initialized yet.
*/
PROV_SHA1_DIGEST_KEY(&sha1_hmac_ctx.hc_icontext,
key->ck_data, keylen_in_bytes, digest);
sha1_mac_init_ctx(&sha1_hmac_ctx, digest,
SHA1_DIGEST_LENGTH);
} else {
sha1_mac_init_ctx(&sha1_hmac_ctx, key->ck_data,
keylen_in_bytes);
}
}
/* get the mechanism parameters, if applicable */
if (mechanism->cm_type == SHA1_HMAC_GEN_MECH_INFO_TYPE) {
if (mechanism->cm_param == NULL ||
mechanism->cm_param_len != sizeof (ulong_t)) {
ret = CRYPTO_MECHANISM_PARAM_INVALID;
goto bail;
}
PROV_SHA1_GET_DIGEST_LEN(mechanism, digest_len);
if (digest_len > SHA1_DIGEST_LENGTH) {
ret = CRYPTO_MECHANISM_PARAM_INVALID;
goto bail;
}
}
if (mac->cd_length != digest_len) {
ret = CRYPTO_INVALID_MAC;
goto bail;
}
/* do a SHA1 update of the inner context using the specified data */
SHA1_MAC_UPDATE(data, sha1_hmac_ctx, ret);
if (ret != CRYPTO_SUCCESS)
/* the update failed, free context and bail */
goto bail;
/* do a SHA1 final on the inner context */
SHA1Final(digest, &sha1_hmac_ctx.hc_icontext);
/*
* Do an SHA1 update on the outer context, feeding the inner
* digest as data.
*/
SHA1Update(&sha1_hmac_ctx.hc_ocontext, digest, SHA1_DIGEST_LENGTH);
/*
* Do a SHA1 final on the outer context, storing the computed
* digest in the users buffer.
*/
SHA1Final(digest, &sha1_hmac_ctx.hc_ocontext);
/*
* Compare the computed digest against the expected digest passed
* as argument.
*/
switch (mac->cd_format) {
case CRYPTO_DATA_RAW:
if (bcmp(digest, (unsigned char *)mac->cd_raw.iov_base +
mac->cd_offset, digest_len) != 0)
ret = CRYPTO_INVALID_MAC;
break;
case CRYPTO_DATA_UIO: {
off_t offset = mac->cd_offset;
uint_t vec_idx;
off_t scratch_offset = 0;
size_t length = digest_len;
size_t cur_len;
/* we support only kernel buffer */
if (mac->cd_uio->uio_segflg != UIO_SYSSPACE)
return (CRYPTO_ARGUMENTS_BAD);
/* jump to the first iovec containing the expected digest */
for (vec_idx = 0;
offset >= mac->cd_uio->uio_iov[vec_idx].iov_len &&
vec_idx < mac->cd_uio->uio_iovcnt;
offset -= mac->cd_uio->uio_iov[vec_idx++].iov_len)
;
if (vec_idx == mac->cd_uio->uio_iovcnt) {
/*
* The caller specified an offset that is
* larger than the total size of the buffers
* it provided.
*/
ret = CRYPTO_DATA_LEN_RANGE;
break;
}
/* do the comparison of computed digest vs specified one */
while (vec_idx < mac->cd_uio->uio_iovcnt && length > 0) {
cur_len = MIN(mac->cd_uio->uio_iov[vec_idx].iov_len -
offset, length);
if (bcmp(digest + scratch_offset,
mac->cd_uio->uio_iov[vec_idx].iov_base + offset,
cur_len) != 0) {
ret = CRYPTO_INVALID_MAC;
break;
}
length -= cur_len;
vec_idx++;
scratch_offset += cur_len;
offset = 0;
}
break;
}
default:
ret = CRYPTO_ARGUMENTS_BAD;
}
bzero(&sha1_hmac_ctx, sizeof (sha1_hmac_ctx_t));
return (ret);
bail:
bzero(&sha1_hmac_ctx, sizeof (sha1_hmac_ctx_t));
mac->cd_length = 0;
return (ret);
}
/*
* KCF software provider context management entry points.
*/
/* ARGSUSED */
static int
sha1_create_ctx_template(crypto_provider_handle_t provider,
crypto_mechanism_t *mechanism, crypto_key_t *key,
crypto_spi_ctx_template_t *ctx_template, size_t *ctx_template_size,
crypto_req_handle_t req)
{
sha1_hmac_ctx_t *sha1_hmac_ctx_tmpl;
uint_t keylen_in_bytes = CRYPTO_BITS2BYTES(key->ck_length);
if ((mechanism->cm_type != SHA1_HMAC_MECH_INFO_TYPE) &&
(mechanism->cm_type != SHA1_HMAC_GEN_MECH_INFO_TYPE)) {
return (CRYPTO_MECHANISM_INVALID);
}
/* Add support for key by attributes (RFE 4706552) */
if (key->ck_format != CRYPTO_KEY_RAW)
return (CRYPTO_ARGUMENTS_BAD);
/*
* Allocate and initialize SHA1 context.
*/
sha1_hmac_ctx_tmpl = kmem_alloc(sizeof (sha1_hmac_ctx_t),
crypto_kmflag(req));
if (sha1_hmac_ctx_tmpl == NULL)
return (CRYPTO_HOST_MEMORY);
if (keylen_in_bytes > SHA1_HMAC_BLOCK_SIZE) {
uchar_t digested_key[SHA1_DIGEST_LENGTH];
/*
* Hash the passed-in key to get a smaller key.
* The inner context is used since it hasn't been
* initialized yet.
*/
PROV_SHA1_DIGEST_KEY(&sha1_hmac_ctx_tmpl->hc_icontext,
key->ck_data, keylen_in_bytes, digested_key);
sha1_mac_init_ctx(sha1_hmac_ctx_tmpl, digested_key,
SHA1_DIGEST_LENGTH);
} else {
sha1_mac_init_ctx(sha1_hmac_ctx_tmpl, key->ck_data,
keylen_in_bytes);
}
sha1_hmac_ctx_tmpl->hc_mech_type = mechanism->cm_type;
*ctx_template = (crypto_spi_ctx_template_t)sha1_hmac_ctx_tmpl;
*ctx_template_size = sizeof (sha1_hmac_ctx_t);
return (CRYPTO_SUCCESS);
}
static int
sha1_free_context(crypto_ctx_t *ctx)
{
uint_t ctx_len;
sha1_mech_type_t mech_type;
if (ctx->cc_provider_private == NULL)
return (CRYPTO_SUCCESS);
/*
* We have to free either SHA1 or SHA1-HMAC contexts, which
* have different lengths.
*/
mech_type = PROV_SHA1_CTX(ctx)->sc_mech_type;
if (mech_type == SHA1_MECH_INFO_TYPE)
ctx_len = sizeof (sha1_ctx_t);
else {
ASSERT(mech_type == SHA1_HMAC_MECH_INFO_TYPE ||
mech_type == SHA1_HMAC_GEN_MECH_INFO_TYPE);
ctx_len = sizeof (sha1_hmac_ctx_t);
}
bzero(ctx->cc_provider_private, ctx_len);
kmem_free(ctx->cc_provider_private, ctx_len);
ctx->cc_provider_private = NULL;
return (CRYPTO_SUCCESS);
}