0957b409a9
Disabled by default, used by loader and sbin/veriexec Reviewed by: emaste Sponsored by: Juniper Networks Differential Revision: D16334
2059 lines
39 KiB
C
2059 lines
39 KiB
C
/*
|
|
* Copyright (c) 2016 Thomas Pornin <pornin@bolet.org>
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining
|
|
* a copy of this software and associated documentation files (the
|
|
* "Software"), to deal in the Software without restriction, including
|
|
* without limitation the rights to use, copy, modify, merge, publish,
|
|
* distribute, sublicense, and/or sell copies of the Software, and to
|
|
* permit persons to whom the Software is furnished to do so, subject to
|
|
* the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice shall be
|
|
* included in all copies or substantial portions of the Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
|
|
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
|
|
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
|
|
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
|
|
* BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
|
|
* ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
|
|
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
|
* SOFTWARE.
|
|
*/
|
|
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
#include <stdint.h>
|
|
|
|
#ifdef _WIN32
|
|
#include <windows.h>
|
|
#else
|
|
#include <unistd.h>
|
|
#endif
|
|
|
|
#include "bearssl.h"
|
|
|
|
#define STR(x) STR_(x)
|
|
#define STR_(x) #x
|
|
#ifdef SRCDIRNAME
|
|
#define DIRNAME STR(SRCDIRNAME) "/test/x509"
|
|
#else
|
|
#define DIRNAME "test/x509"
|
|
#endif
|
|
#define CONFFILE DIRNAME "/alltests.txt"
|
|
#define DEFAULT_TIME "2016-08-30T18:00:00Z"
|
|
|
|
static void *
|
|
xmalloc(size_t len)
|
|
{
|
|
void *buf;
|
|
|
|
if (len == 0) {
|
|
return NULL;
|
|
}
|
|
buf = malloc(len);
|
|
if (buf == NULL) {
|
|
fprintf(stderr, "error: cannot allocate %lu byte(s)\n",
|
|
(unsigned long)len);
|
|
exit(EXIT_FAILURE);
|
|
}
|
|
return buf;
|
|
}
|
|
|
|
static void
|
|
xfree(void *buf)
|
|
{
|
|
if (buf != NULL) {
|
|
free(buf);
|
|
}
|
|
}
|
|
|
|
static char *
|
|
xstrdup(const char *name)
|
|
{
|
|
size_t n;
|
|
char *s;
|
|
|
|
if (name == NULL) {
|
|
return NULL;
|
|
}
|
|
n = strlen(name) + 1;
|
|
s = xmalloc(n);
|
|
memcpy(s, name, n);
|
|
return s;
|
|
}
|
|
|
|
typedef struct {
|
|
char *buf;
|
|
size_t ptr, len;
|
|
} string_builder;
|
|
|
|
static string_builder *
|
|
SB_new(void)
|
|
{
|
|
string_builder *sb;
|
|
|
|
sb = xmalloc(sizeof *sb);
|
|
sb->len = 8;
|
|
sb->buf = xmalloc(sb->len);
|
|
sb->ptr = 0;
|
|
return sb;
|
|
}
|
|
|
|
static void
|
|
SB_expand(string_builder *sb, size_t extra_len)
|
|
{
|
|
size_t nlen;
|
|
char *nbuf;
|
|
|
|
if (extra_len < (sb->len - sb->ptr)) {
|
|
return;
|
|
}
|
|
nlen = sb->len << 1;
|
|
if (extra_len > (nlen - sb->ptr)) {
|
|
nlen = sb->ptr + extra_len;
|
|
}
|
|
nbuf = xmalloc(nlen);
|
|
memcpy(nbuf, sb->buf, sb->ptr);
|
|
xfree(sb->buf);
|
|
sb->buf = nbuf;
|
|
sb->len = nlen;
|
|
}
|
|
|
|
static void
|
|
SB_append_char(string_builder *sb, int c)
|
|
{
|
|
SB_expand(sb, 1);
|
|
sb->buf[sb->ptr ++] = c;
|
|
}
|
|
|
|
/* unused
|
|
static void
|
|
SB_append_string(string_builder *sb, const char *s)
|
|
{
|
|
size_t n;
|
|
|
|
n = strlen(s);
|
|
SB_expand(sb, n);
|
|
memcpy(sb->buf + sb->ptr, s, n);
|
|
sb->ptr += n;
|
|
}
|
|
*/
|
|
|
|
/* unused
|
|
static char *
|
|
SB_to_string(string_builder *sb)
|
|
{
|
|
char *s;
|
|
|
|
s = xmalloc(sb->ptr + 1);
|
|
memcpy(s, sb->buf, sb->ptr);
|
|
s[sb->ptr] = 0;
|
|
return s;
|
|
}
|
|
*/
|
|
|
|
static char *
|
|
SB_contents(string_builder *sb)
|
|
{
|
|
return sb->buf;
|
|
}
|
|
|
|
static size_t
|
|
SB_length(string_builder *sb)
|
|
{
|
|
return sb->ptr;
|
|
}
|
|
|
|
static void
|
|
SB_set_length(string_builder *sb, size_t len)
|
|
{
|
|
if (sb->ptr < len) {
|
|
SB_expand(sb, len - sb->ptr);
|
|
memset(sb->buf + sb->ptr, ' ', len - sb->ptr);
|
|
}
|
|
sb->ptr = len;
|
|
}
|
|
|
|
static void
|
|
SB_reset(string_builder *sb)
|
|
{
|
|
SB_set_length(sb, 0);
|
|
}
|
|
|
|
static void
|
|
SB_free(string_builder *sb)
|
|
{
|
|
xfree(sb->buf);
|
|
xfree(sb);
|
|
}
|
|
|
|
typedef struct ht_elt_ {
|
|
char *name;
|
|
void *value;
|
|
struct ht_elt_ *next;
|
|
} ht_elt;
|
|
|
|
typedef struct {
|
|
size_t size;
|
|
ht_elt **buckets;
|
|
size_t num_buckets;
|
|
} HT;
|
|
|
|
static HT *
|
|
HT_new(void)
|
|
{
|
|
HT *ht;
|
|
size_t u;
|
|
|
|
ht = xmalloc(sizeof *ht);
|
|
ht->size = 0;
|
|
ht->num_buckets = 8;
|
|
ht->buckets = xmalloc(ht->num_buckets * sizeof(ht_elt *));
|
|
for (u = 0; u < ht->num_buckets; u ++) {
|
|
ht->buckets[u] = NULL;
|
|
}
|
|
return ht;
|
|
}
|
|
|
|
static uint32_t
|
|
hash_string(const char *name)
|
|
{
|
|
uint32_t hc;
|
|
|
|
hc = 0;
|
|
while (*name) {
|
|
int x;
|
|
|
|
hc = (hc << 5) - hc;
|
|
x = *(const unsigned char *)name;
|
|
if (x >= 'A' && x <= 'Z') {
|
|
x += 'a' - 'A';
|
|
}
|
|
hc += (uint32_t)x;
|
|
name ++;
|
|
}
|
|
return hc;
|
|
}
|
|
|
|
static int
|
|
eqstring(const char *s1, const char *s2)
|
|
{
|
|
while (*s1 && *s2) {
|
|
int x1, x2;
|
|
|
|
x1 = *(const unsigned char *)s1;
|
|
x2 = *(const unsigned char *)s2;
|
|
if (x1 >= 'A' && x1 <= 'Z') {
|
|
x1 += 'a' - 'A';
|
|
}
|
|
if (x2 >= 'A' && x2 <= 'Z') {
|
|
x2 += 'a' - 'A';
|
|
}
|
|
if (x1 != x2) {
|
|
return 0;
|
|
}
|
|
s1 ++;
|
|
s2 ++;
|
|
}
|
|
return !(*s1 || *s2);
|
|
}
|
|
|
|
static void
|
|
HT_expand(HT *ht)
|
|
{
|
|
size_t n, n2, u;
|
|
ht_elt **new_buckets;
|
|
|
|
n = ht->num_buckets;
|
|
n2 = n << 1;
|
|
new_buckets = xmalloc(n2 * sizeof *new_buckets);
|
|
for (u = 0; u < n2; u ++) {
|
|
new_buckets[u] = NULL;
|
|
}
|
|
for (u = 0; u < n; u ++) {
|
|
ht_elt *e, *f;
|
|
|
|
f = NULL;
|
|
for (e = ht->buckets[u]; e != NULL; e = f) {
|
|
uint32_t hc;
|
|
size_t v;
|
|
|
|
hc = hash_string(e->name);
|
|
v = (size_t)(hc & ((uint32_t)n2 - 1));
|
|
f = e->next;
|
|
e->next = new_buckets[v];
|
|
new_buckets[v] = e;
|
|
}
|
|
}
|
|
xfree(ht->buckets);
|
|
ht->buckets = new_buckets;
|
|
ht->num_buckets = n2;
|
|
}
|
|
|
|
static void *
|
|
HT_put(HT *ht, const char *name, void *value)
|
|
{
|
|
uint32_t hc;
|
|
size_t k;
|
|
ht_elt *e, **prev;
|
|
|
|
hc = hash_string(name);
|
|
k = (size_t)(hc & ((uint32_t)ht->num_buckets - 1));
|
|
prev = &ht->buckets[k];
|
|
e = *prev;
|
|
while (e != NULL) {
|
|
if (eqstring(name, e->name)) {
|
|
void *old_value;
|
|
|
|
old_value = e->value;
|
|
if (value == NULL) {
|
|
*prev = e->next;
|
|
xfree(e->name);
|
|
xfree(e);
|
|
ht->size --;
|
|
} else {
|
|
e->value = value;
|
|
}
|
|
return old_value;
|
|
}
|
|
prev = &e->next;
|
|
e = *prev;
|
|
}
|
|
if (value != NULL) {
|
|
e = xmalloc(sizeof *e);
|
|
e->name = xstrdup(name);
|
|
e->value = value;
|
|
e->next = ht->buckets[k];
|
|
ht->buckets[k] = e;
|
|
ht->size ++;
|
|
if (ht->size > ht->num_buckets) {
|
|
HT_expand(ht);
|
|
}
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
/* unused
|
|
static void *
|
|
HT_remove(HT *ht, const char *name)
|
|
{
|
|
return HT_put(ht, name, NULL);
|
|
}
|
|
*/
|
|
|
|
static void *
|
|
HT_get(const HT *ht, const char *name)
|
|
{
|
|
uint32_t hc;
|
|
size_t k;
|
|
ht_elt *e;
|
|
|
|
hc = hash_string(name);
|
|
k = (size_t)(hc & ((uint32_t)ht->num_buckets - 1));
|
|
for (e = ht->buckets[k]; e != NULL; e = e->next) {
|
|
if (eqstring(name, e->name)) {
|
|
return e->value;
|
|
}
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
static void
|
|
HT_clear(HT *ht, void (*free_value)(void *value))
|
|
{
|
|
size_t u;
|
|
|
|
for (u = 0; u < ht->num_buckets; u ++) {
|
|
ht_elt *e, *f;
|
|
|
|
f = NULL;
|
|
for (e = ht->buckets[u]; e != NULL; e = f) {
|
|
f = e->next;
|
|
xfree(e->name);
|
|
if (free_value != 0) {
|
|
free_value(e->value);
|
|
}
|
|
xfree(e);
|
|
}
|
|
ht->buckets[u] = NULL;
|
|
}
|
|
ht->size = 0;
|
|
}
|
|
|
|
static void
|
|
HT_free(HT *ht, void (*free_value)(void *value))
|
|
{
|
|
HT_clear(ht, free_value);
|
|
xfree(ht->buckets);
|
|
xfree(ht);
|
|
}
|
|
|
|
/* unused
|
|
static size_t
|
|
HT_size(HT *ht)
|
|
{
|
|
return ht->size;
|
|
}
|
|
*/
|
|
|
|
static unsigned char *
|
|
read_all(FILE *f, size_t *len)
|
|
{
|
|
unsigned char *buf;
|
|
size_t ptr, blen;
|
|
|
|
blen = 1024;
|
|
buf = xmalloc(blen);
|
|
ptr = 0;
|
|
for (;;) {
|
|
size_t rlen;
|
|
|
|
if (ptr == blen) {
|
|
unsigned char *buf2;
|
|
|
|
blen <<= 1;
|
|
buf2 = xmalloc(blen);
|
|
memcpy(buf2, buf, ptr);
|
|
xfree(buf);
|
|
buf = buf2;
|
|
}
|
|
rlen = fread(buf + ptr, 1, blen - ptr, f);
|
|
if (rlen == 0) {
|
|
unsigned char *buf3;
|
|
|
|
buf3 = xmalloc(ptr);
|
|
memcpy(buf3, buf, ptr);
|
|
xfree(buf);
|
|
*len = ptr;
|
|
return buf3;
|
|
}
|
|
ptr += rlen;
|
|
}
|
|
}
|
|
|
|
static unsigned char *
|
|
read_file(const char *name, size_t *len)
|
|
{
|
|
FILE *f;
|
|
unsigned char *buf;
|
|
|
|
#ifdef DIRNAME
|
|
char *dname;
|
|
|
|
dname = xmalloc(strlen(DIRNAME) + strlen(name) + 2);
|
|
sprintf(dname, "%s/%s", DIRNAME, name);
|
|
name = dname;
|
|
#endif
|
|
f = fopen(name, "rb");
|
|
if (f == NULL) {
|
|
fprintf(stderr, "could not open file '%s'\n", name);
|
|
exit(EXIT_FAILURE);
|
|
}
|
|
buf = read_all(f, len);
|
|
if (ferror(f)) {
|
|
fprintf(stderr, "read error on file '%s'\n", name);
|
|
exit(EXIT_FAILURE);
|
|
}
|
|
fclose(f);
|
|
#ifdef DIRNAME
|
|
xfree(dname);
|
|
#endif
|
|
return buf;
|
|
}
|
|
|
|
static int
|
|
parse_dec(const char *s, unsigned len, int *val)
|
|
{
|
|
int acc;
|
|
|
|
acc = 0;
|
|
while (len -- > 0) {
|
|
int c;
|
|
|
|
c = *s ++;
|
|
if (c >= '0' && c <= '9') {
|
|
acc = (acc * 10) + (c - '0');
|
|
} else {
|
|
return -1;
|
|
}
|
|
}
|
|
*val = acc;
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
parse_choice(const char *s, const char *acceptable)
|
|
{
|
|
int c;
|
|
|
|
c = *s;
|
|
while (*acceptable) {
|
|
if (c == *acceptable ++) {
|
|
return 0;
|
|
}
|
|
}
|
|
return -1;
|
|
}
|
|
|
|
static int
|
|
month_length(int year, int month)
|
|
{
|
|
static const int base_month_length[] = {
|
|
31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
|
|
};
|
|
|
|
int x;
|
|
|
|
x = base_month_length[month - 1];
|
|
if (month == 2 && year % 4 == 0
|
|
&& (year % 100 != 0 || year % 400 == 0))
|
|
{
|
|
x ++;
|
|
}
|
|
return x;
|
|
}
|
|
|
|
/*
|
|
* Convert a time string to a days+seconds count. Returned value is 0
|
|
* on success, -1 on error.
|
|
*/
|
|
static int
|
|
string_to_time(const char *s, uint32_t *days, uint32_t *seconds)
|
|
{
|
|
int year, month, day, hour, minute, second;
|
|
int day_of_year, leaps, i;
|
|
|
|
if (parse_dec(s, 4, &year) < 0) {
|
|
return -1;
|
|
}
|
|
s += 4;
|
|
if (parse_choice(s ++, "-:/ ") < 0) {
|
|
return -1;
|
|
}
|
|
if (parse_dec(s, 2, &month) < 0) {
|
|
return -1;
|
|
}
|
|
s += 2;
|
|
if (parse_choice(s ++, "-:/ ") < 0) {
|
|
return -1;
|
|
}
|
|
if (parse_dec(s, 2, &day) < 0) {
|
|
return -1;
|
|
}
|
|
s += 2;
|
|
if (parse_choice(s ++, " T") < 0) {
|
|
return -1;
|
|
}
|
|
if (parse_dec(s, 2, &hour) < 0) {
|
|
return -1;
|
|
}
|
|
s += 2;
|
|
if (parse_choice(s ++, "-:/ ") < 0) {
|
|
return -1;
|
|
}
|
|
if (parse_dec(s, 2, &minute) < 0) {
|
|
return -1;
|
|
}
|
|
s += 2;
|
|
if (parse_choice(s ++, "-:/ ") < 0) {
|
|
return -1;
|
|
}
|
|
if (parse_dec(s, 2, &second) < 0) {
|
|
return -1;
|
|
}
|
|
s += 2;
|
|
if (*s == '.') {
|
|
while (*s && *s >= '0' && *s <= '9') {
|
|
s ++;
|
|
}
|
|
}
|
|
if (*s) {
|
|
if (*s ++ != 'Z') {
|
|
return -1;
|
|
}
|
|
if (*s) {
|
|
return -1;
|
|
}
|
|
}
|
|
|
|
if (month < 1 || month > 12) {
|
|
return -1;
|
|
}
|
|
day_of_year = 0;
|
|
for (i = 1; i < month; i ++) {
|
|
day_of_year += month_length(year, i);
|
|
}
|
|
if (day < 1 || day > month_length(year, month)) {
|
|
return -1;
|
|
}
|
|
day_of_year += (day - 1);
|
|
leaps = (year + 3) / 4 - (year + 99) / 100 + (year + 399) / 400;
|
|
|
|
if (hour > 23 || minute > 59 || second > 60) {
|
|
return -1;
|
|
}
|
|
*days = (uint32_t)year * 365 + (uint32_t)leaps + day_of_year;
|
|
*seconds = (uint32_t)hour * 3600 + minute * 60 + second;
|
|
return 0;
|
|
}
|
|
|
|
static FILE *conf;
|
|
static int conf_delayed_char;
|
|
static long conf_linenum;
|
|
static string_builder *line_builder;
|
|
static long current_linenum;
|
|
|
|
static void
|
|
conf_init(const char *fname)
|
|
{
|
|
conf = fopen(fname, "r");
|
|
if (conf == NULL) {
|
|
fprintf(stderr, "could not open file '%s'\n", fname);
|
|
exit(EXIT_FAILURE);
|
|
}
|
|
conf_delayed_char = -1;
|
|
conf_linenum = 1;
|
|
line_builder = SB_new();
|
|
}
|
|
|
|
static void
|
|
conf_close(void)
|
|
{
|
|
if (conf != NULL) {
|
|
if (ferror(conf)) {
|
|
fprintf(stderr, "read error on configuration file\n");
|
|
exit(EXIT_FAILURE);
|
|
}
|
|
fclose(conf);
|
|
conf = NULL;
|
|
}
|
|
if (line_builder != NULL) {
|
|
SB_free(line_builder);
|
|
line_builder = NULL;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Get next character from the config file.
|
|
*/
|
|
static int
|
|
conf_next_low(void)
|
|
{
|
|
int x;
|
|
|
|
x = conf_delayed_char;
|
|
if (x >= 0) {
|
|
conf_delayed_char = -1;
|
|
} else {
|
|
x = fgetc(conf);
|
|
if (x == EOF) {
|
|
x = -1;
|
|
}
|
|
}
|
|
if (x == '\r') {
|
|
x = fgetc(conf);
|
|
if (x == EOF) {
|
|
x = -1;
|
|
}
|
|
if (x != '\n') {
|
|
conf_delayed_char = x;
|
|
x = '\n';
|
|
}
|
|
}
|
|
if (x == '\n') {
|
|
conf_linenum ++;
|
|
}
|
|
return x;
|
|
}
|
|
|
|
static int
|
|
is_ws(int x)
|
|
{
|
|
return x <= 32;
|
|
}
|
|
|
|
static int
|
|
is_name_char(int c)
|
|
{
|
|
return (c >= 'A' && c <= 'Z')
|
|
|| (c >= 'a' && c <= 'z')
|
|
|| (c >= '0' && c <= '9')
|
|
|| (c == '_' || c == '-' || c == '.');
|
|
}
|
|
|
|
/*
|
|
* Read a complete line. This handles line continuation; empty lines and
|
|
* comment lines are skipped; leading and trailing whitespace is removed.
|
|
* Returned value is 0 (line read) or -1 (no line, EOF reached). The line
|
|
* contents are accumulated in the line_builder.
|
|
*/
|
|
static int
|
|
conf_next_line(void)
|
|
{
|
|
for (;;) {
|
|
int c;
|
|
int lcwb;
|
|
|
|
SB_reset(line_builder);
|
|
|
|
/*
|
|
* Get first non-whitespace character. This skips empty
|
|
* lines. Comment lines (first non-whitespace character
|
|
* is a semicolon) are also skipped.
|
|
*/
|
|
for (;;) {
|
|
c = conf_next_low();
|
|
if (c < 0) {
|
|
return -1;
|
|
}
|
|
if (is_ws(c)) {
|
|
continue;
|
|
}
|
|
if (c == ';') {
|
|
for (;;) {
|
|
c = conf_next_low();
|
|
if (c < 0) {
|
|
return -1;
|
|
}
|
|
if (c == '\n') {
|
|
break;
|
|
}
|
|
}
|
|
continue;
|
|
}
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* Read up the remaining of the line. The line continuation
|
|
* sequence (final backslash) is detected and processed.
|
|
*/
|
|
current_linenum = conf_linenum;
|
|
lcwb = (c == '\\');
|
|
SB_append_char(line_builder, c);
|
|
for (;;) {
|
|
c = conf_next_low();
|
|
if (c < 0) {
|
|
break;
|
|
}
|
|
if (lcwb) {
|
|
if (c == '\n') {
|
|
SB_set_length(line_builder,
|
|
SB_length(line_builder) - 1);
|
|
}
|
|
lcwb = 0;
|
|
continue;
|
|
}
|
|
if (c == '\n') {
|
|
break;
|
|
} else if (c == '\\') {
|
|
lcwb = 1;
|
|
}
|
|
SB_append_char(line_builder, c);
|
|
}
|
|
|
|
/*
|
|
* Remove trailing whitespace (if any).
|
|
*/
|
|
for (;;) {
|
|
size_t u;
|
|
|
|
u = SB_length(line_builder);
|
|
if (u == 0 || !is_ws(
|
|
SB_contents(line_builder)[u - 1]))
|
|
{
|
|
break;
|
|
}
|
|
SB_set_length(line_builder, u - 1);
|
|
}
|
|
|
|
/*
|
|
* We might end up with a totally empty line (in case there
|
|
* was a line continuation but nothing else), in which case
|
|
* we must loop.
|
|
*/
|
|
if (SB_length(line_builder) > 0) {
|
|
return 0;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Test whether the current line is a section header. If yes, then the
|
|
* header name is extracted, and returned as a newly allocated string.
|
|
* Otherwise, NULL is returned.
|
|
*/
|
|
static char *
|
|
parse_header_name(void)
|
|
{
|
|
char *buf, *name;
|
|
size_t u, v, w, len;
|
|
|
|
buf = SB_contents(line_builder);
|
|
len = SB_length(line_builder);
|
|
if (len < 2 || buf[0] != '[' || buf[len - 1] != ']') {
|
|
return NULL;
|
|
}
|
|
u = 1;
|
|
v = len - 1;
|
|
while (u < v && is_ws(buf[u])) {
|
|
u ++;
|
|
}
|
|
while (u < v && is_ws(buf[v - 1])) {
|
|
v --;
|
|
}
|
|
if (u == v) {
|
|
return NULL;
|
|
}
|
|
for (w = u; w < v; w ++) {
|
|
if (!is_name_char(buf[w])) {
|
|
return NULL;
|
|
}
|
|
}
|
|
len = v - u;
|
|
name = xmalloc(len + 1);
|
|
memcpy(name, buf + u, len);
|
|
name[len] = 0;
|
|
return name;
|
|
}
|
|
|
|
/*
|
|
* Parse the current line as a 'name = value' pair. The pair is pushed into
|
|
* the provided hash table. On error (including a duplicate key name),
|
|
* this function returns -1; otherwise, it returns 0.
|
|
*/
|
|
static int
|
|
parse_keyvalue(HT *d)
|
|
{
|
|
char *buf, *name, *value;
|
|
size_t u, len;
|
|
|
|
buf = SB_contents(line_builder);
|
|
len = SB_length(line_builder);
|
|
for (u = 0; u < len; u ++) {
|
|
if (!is_name_char(buf[u])) {
|
|
break;
|
|
}
|
|
}
|
|
if (u == 0) {
|
|
return -1;
|
|
}
|
|
name = xmalloc(u + 1);
|
|
memcpy(name, buf, u);
|
|
name[u] = 0;
|
|
if (HT_get(d, name) != NULL) {
|
|
xfree(name);
|
|
return -1;
|
|
}
|
|
while (u < len && is_ws(buf[u])) {
|
|
u ++;
|
|
}
|
|
if (u >= len || buf[u] != '=') {
|
|
xfree(name);
|
|
return -1;
|
|
}
|
|
u ++;
|
|
while (u < len && is_ws(buf[u])) {
|
|
u ++;
|
|
}
|
|
value = xmalloc(len - u + 1);
|
|
memcpy(value, buf + u, len - u);
|
|
value[len - u] = 0;
|
|
HT_put(d, name, value);
|
|
xfree(name);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Public keys, indexed by name. Elements are pointers to br_x509_pkey
|
|
* structures.
|
|
*/
|
|
static HT *keys;
|
|
|
|
/*
|
|
* Trust anchors, indexed by name. Elements are pointers to
|
|
* test_trust_anchor structures.
|
|
*/
|
|
static HT *trust_anchors;
|
|
|
|
typedef struct {
|
|
unsigned char *dn;
|
|
size_t dn_len;
|
|
unsigned flags;
|
|
char *key_name;
|
|
} test_trust_anchor;
|
|
|
|
/*
|
|
* Test case: trust anchors, certificates (file names), key type and
|
|
* usage, expected status and EE public key.
|
|
*/
|
|
typedef struct {
|
|
char *name;
|
|
char **ta_names;
|
|
char **cert_names;
|
|
char *servername;
|
|
unsigned key_type_usage;
|
|
unsigned status;
|
|
char *ee_key_name;
|
|
unsigned hashes;
|
|
uint32_t days, seconds;
|
|
} test_case;
|
|
|
|
static test_case *all_chains;
|
|
static size_t all_chains_ptr, all_chains_len;
|
|
|
|
static void
|
|
free_key(void *value)
|
|
{
|
|
br_x509_pkey *pk;
|
|
|
|
pk = value;
|
|
switch (pk->key_type) {
|
|
case BR_KEYTYPE_RSA:
|
|
xfree((void *)pk->key.rsa.n);
|
|
xfree((void *)pk->key.rsa.e);
|
|
break;
|
|
case BR_KEYTYPE_EC:
|
|
xfree((void *)pk->key.ec.q);
|
|
break;
|
|
default:
|
|
fprintf(stderr, "unknown key type: %d\n", pk->key_type);
|
|
exit(EXIT_FAILURE);
|
|
break;
|
|
}
|
|
xfree(pk);
|
|
}
|
|
|
|
static void
|
|
free_trust_anchor(void *value)
|
|
{
|
|
test_trust_anchor *ttc;
|
|
|
|
ttc = value;
|
|
xfree(ttc->dn);
|
|
xfree(ttc->key_name);
|
|
xfree(ttc);
|
|
}
|
|
|
|
static void
|
|
free_test_case_contents(test_case *tc)
|
|
{
|
|
size_t u;
|
|
|
|
xfree(tc->name);
|
|
for (u = 0; tc->ta_names[u]; u ++) {
|
|
xfree(tc->ta_names[u]);
|
|
}
|
|
xfree(tc->ta_names);
|
|
for (u = 0; tc->cert_names[u]; u ++) {
|
|
xfree(tc->cert_names[u]);
|
|
}
|
|
xfree(tc->cert_names);
|
|
xfree(tc->servername);
|
|
xfree(tc->ee_key_name);
|
|
}
|
|
|
|
static char *
|
|
get_value(char *objtype, HT *objdata, long linenum, char *name)
|
|
{
|
|
char *value;
|
|
|
|
value = HT_get(objdata, name);
|
|
if (value == NULL) {
|
|
fprintf(stderr,
|
|
"missing property '%s' in section '%s' (line %ld)\n",
|
|
name, objtype, linenum);
|
|
exit(EXIT_FAILURE);
|
|
}
|
|
return value;
|
|
}
|
|
|
|
static unsigned char *
|
|
parse_hex(const char *name, long linenum, const char *value, size_t *len)
|
|
{
|
|
unsigned char *buf;
|
|
|
|
buf = NULL;
|
|
for (;;) {
|
|
size_t u, ptr;
|
|
int acc, z;
|
|
|
|
ptr = 0;
|
|
acc = 0;
|
|
z = 0;
|
|
for (u = 0; value[u]; u ++) {
|
|
int c;
|
|
|
|
c = value[u];
|
|
if (c >= '0' && c <= '9') {
|
|
c -= '0';
|
|
} else if (c >= 'A' && c <= 'F') {
|
|
c -= 'A' - 10;
|
|
} else if (c >= 'a' && c <= 'f') {
|
|
c -= 'a' - 10;
|
|
} else if (c == ' ' || c == ':') {
|
|
continue;
|
|
} else {
|
|
fprintf(stderr, "invalid hexadecimal character"
|
|
" in '%s' (line %ld)\n",
|
|
name, linenum);
|
|
exit(EXIT_FAILURE);
|
|
}
|
|
if (z) {
|
|
if (buf != NULL) {
|
|
buf[ptr] = (acc << 4) + c;
|
|
}
|
|
ptr ++;
|
|
} else {
|
|
acc = c;
|
|
}
|
|
z = !z;
|
|
}
|
|
if (z) {
|
|
fprintf(stderr, "invalid hexadecimal value (partial"
|
|
" byte) in '%s' (line %ld)\n",
|
|
name, linenum);
|
|
exit(EXIT_FAILURE);
|
|
}
|
|
if (buf == NULL) {
|
|
buf = xmalloc(ptr);
|
|
} else {
|
|
*len = ptr;
|
|
return buf;
|
|
}
|
|
}
|
|
}
|
|
|
|
static char **
|
|
split_names(const char *value)
|
|
{
|
|
char **names;
|
|
size_t len;
|
|
|
|
names = NULL;
|
|
len = strlen(value);
|
|
for (;;) {
|
|
size_t u, ptr;
|
|
|
|
ptr = 0;
|
|
u = 0;
|
|
while (u < len) {
|
|
size_t v;
|
|
|
|
while (u < len && is_ws(value[u])) {
|
|
u ++;
|
|
}
|
|
v = u;
|
|
while (v < len && !is_ws(value[v])) {
|
|
v ++;
|
|
}
|
|
if (v > u) {
|
|
if (names != NULL) {
|
|
char *name;
|
|
|
|
name = xmalloc(v - u + 1);
|
|
memcpy(name, value + u, v - u);
|
|
name[v - u] = 0;
|
|
names[ptr] = name;
|
|
}
|
|
ptr ++;
|
|
}
|
|
u = v;
|
|
}
|
|
if (names == NULL) {
|
|
names = xmalloc((ptr + 1) * sizeof *names);
|
|
} else {
|
|
names[ptr] = NULL;
|
|
return names;
|
|
}
|
|
}
|
|
}
|
|
|
|
static int
|
|
string_to_hash(const char *name)
|
|
{
|
|
char tmp[20];
|
|
size_t u, v;
|
|
|
|
for (u = 0, v = 0; name[u]; u ++) {
|
|
int c;
|
|
|
|
c = name[u];
|
|
if ((c >= '0' && c <= '9')
|
|
|| (c >= 'A' && c <= 'Z')
|
|
|| (c >= 'a' && c <= 'z'))
|
|
{
|
|
tmp[v ++] = c;
|
|
if (v == sizeof tmp) {
|
|
return -1;
|
|
}
|
|
}
|
|
}
|
|
tmp[v] = 0;
|
|
if (eqstring(tmp, "md5")) {
|
|
return br_md5_ID;
|
|
} else if (eqstring(tmp, "sha1")) {
|
|
return br_sha1_ID;
|
|
} else if (eqstring(tmp, "sha224")) {
|
|
return br_sha224_ID;
|
|
} else if (eqstring(tmp, "sha256")) {
|
|
return br_sha256_ID;
|
|
} else if (eqstring(tmp, "sha384")) {
|
|
return br_sha384_ID;
|
|
} else if (eqstring(tmp, "sha512")) {
|
|
return br_sha512_ID;
|
|
} else {
|
|
return -1;
|
|
}
|
|
}
|
|
|
|
static int
|
|
string_to_curve(const char *name)
|
|
{
|
|
char tmp[20];
|
|
size_t u, v;
|
|
|
|
for (u = 0, v = 0; name[u]; u ++) {
|
|
int c;
|
|
|
|
c = name[u];
|
|
if ((c >= '0' && c <= '9')
|
|
|| (c >= 'A' && c <= 'Z')
|
|
|| (c >= 'a' && c <= 'z'))
|
|
{
|
|
tmp[v ++] = c;
|
|
if (v == sizeof tmp) {
|
|
return -1;
|
|
}
|
|
}
|
|
}
|
|
tmp[v] = 0;
|
|
if (eqstring(tmp, "p256") || eqstring(tmp, "secp256r1")) {
|
|
return BR_EC_secp256r1;
|
|
} else if (eqstring(tmp, "p384") || eqstring(tmp, "secp384r1")) {
|
|
return BR_EC_secp384r1;
|
|
} else if (eqstring(tmp, "p521") || eqstring(tmp, "secp521r1")) {
|
|
return BR_EC_secp521r1;
|
|
} else {
|
|
return -1;
|
|
}
|
|
}
|
|
|
|
static void
|
|
parse_object(char *objtype, HT *objdata, long linenum)
|
|
{
|
|
char *name;
|
|
|
|
name = get_value(objtype, objdata, linenum, "name");
|
|
if (eqstring(objtype, "key")) {
|
|
char *stype;
|
|
br_x509_pkey *pk;
|
|
|
|
stype = get_value(objtype, objdata, linenum, "type");
|
|
pk = xmalloc(sizeof *pk);
|
|
if (eqstring(stype, "RSA")) {
|
|
char *sn, *se;
|
|
|
|
sn = get_value(objtype, objdata, linenum, "n");
|
|
se = get_value(objtype, objdata, linenum, "e");
|
|
pk->key_type = BR_KEYTYPE_RSA;
|
|
pk->key.rsa.n = parse_hex("modulus", linenum,
|
|
sn, &pk->key.rsa.nlen);
|
|
pk->key.rsa.e = parse_hex("exponent", linenum,
|
|
se, &pk->key.rsa.elen);
|
|
} else if (eqstring(stype, "EC")) {
|
|
char *sc, *sq;
|
|
int curve;
|
|
|
|
sc = get_value(objtype, objdata, linenum, "curve");
|
|
sq = get_value(objtype, objdata, linenum, "q");
|
|
curve = string_to_curve(sc);
|
|
if (curve < 0) {
|
|
fprintf(stderr, "unknown curve name: '%s'"
|
|
" (line %ld)\n", sc, linenum);
|
|
exit(EXIT_FAILURE);
|
|
}
|
|
pk->key_type = BR_KEYTYPE_EC;
|
|
pk->key.ec.curve = curve;
|
|
pk->key.ec.q = parse_hex("public point", linenum,
|
|
sq, &pk->key.ec.qlen);
|
|
} else {
|
|
fprintf(stderr, "unknown key type '%s' (line %ld)\n",
|
|
stype, linenum);
|
|
exit(EXIT_FAILURE);
|
|
}
|
|
if (HT_put(keys, name, pk) != NULL) {
|
|
fprintf(stderr, "duplicate key: '%s' (line %ld)\n",
|
|
name, linenum);
|
|
exit(EXIT_FAILURE);
|
|
}
|
|
} else if (eqstring(objtype, "anchor")) {
|
|
char *dnfile, *kname, *tatype;
|
|
test_trust_anchor *tta;
|
|
|
|
dnfile = get_value(objtype, objdata, linenum, "DN_file");
|
|
kname = get_value(objtype, objdata, linenum, "key");
|
|
tatype = get_value(objtype, objdata, linenum, "type");
|
|
tta = xmalloc(sizeof *tta);
|
|
tta->dn = read_file(dnfile, &tta->dn_len);
|
|
tta->key_name = xstrdup(kname);
|
|
if (eqstring(tatype, "CA")) {
|
|
tta->flags = BR_X509_TA_CA;
|
|
} else if (eqstring(tatype, "EE")) {
|
|
tta->flags = 0;
|
|
} else {
|
|
fprintf(stderr,
|
|
"unknown trust anchor type: '%s' (line %ld)\n",
|
|
tatype, linenum);
|
|
}
|
|
if (HT_put(trust_anchors, name, tta) != NULL) {
|
|
fprintf(stderr,
|
|
"duplicate trust anchor: '%s' (line %ld)\n",
|
|
name, linenum);
|
|
exit(EXIT_FAILURE);
|
|
}
|
|
} else if (eqstring(objtype, "chain")) {
|
|
test_case tc;
|
|
char *ktype, *kusage, *sstatus, *shashes, *stime;
|
|
|
|
ktype = get_value(objtype, objdata, linenum, "keytype");
|
|
kusage = get_value(objtype, objdata, linenum, "keyusage");
|
|
sstatus = get_value(objtype, objdata, linenum, "status");
|
|
tc.name = xstrdup(name);
|
|
tc.ta_names = split_names(
|
|
get_value(objtype, objdata, linenum, "anchors"));
|
|
tc.cert_names = split_names(
|
|
get_value(objtype, objdata, linenum, "chain"));
|
|
tc.servername = xstrdup(HT_get(objdata, "servername"));
|
|
if (eqstring(ktype, "RSA")) {
|
|
tc.key_type_usage = BR_KEYTYPE_RSA;
|
|
} else if (eqstring(ktype, "EC")) {
|
|
tc.key_type_usage = BR_KEYTYPE_EC;
|
|
} else {
|
|
fprintf(stderr,
|
|
"unknown key type: '%s' (line %ld)\n",
|
|
ktype, linenum);
|
|
exit(EXIT_FAILURE);
|
|
}
|
|
if (eqstring(kusage, "KEYX")) {
|
|
tc.key_type_usage |= BR_KEYTYPE_KEYX;
|
|
} else if (eqstring(kusage, "SIGN")) {
|
|
tc.key_type_usage |= BR_KEYTYPE_SIGN;
|
|
} else {
|
|
fprintf(stderr,
|
|
"unknown key usage: '%s' (line %ld)\n",
|
|
kusage, linenum);
|
|
exit(EXIT_FAILURE);
|
|
}
|
|
tc.status = (unsigned)atoi(sstatus);
|
|
if (tc.status == 0) {
|
|
tc.ee_key_name = xstrdup(
|
|
get_value(objtype, objdata, linenum, "eekey"));
|
|
} else {
|
|
tc.ee_key_name = NULL;
|
|
}
|
|
shashes = HT_get(objdata, "hashes");
|
|
if (shashes == NULL) {
|
|
tc.hashes = (unsigned)-1;
|
|
} else {
|
|
char **hns;
|
|
size_t u;
|
|
|
|
tc.hashes = 0;
|
|
hns = split_names(shashes);
|
|
for (u = 0;; u ++) {
|
|
char *hn;
|
|
int id;
|
|
|
|
hn = hns[u];
|
|
if (hn == NULL) {
|
|
break;
|
|
}
|
|
id = string_to_hash(hn);
|
|
if (id < 0) {
|
|
fprintf(stderr,
|
|
"unknown hash function '%s'"
|
|
" (line %ld)\n", hn, linenum);
|
|
exit(EXIT_FAILURE);
|
|
}
|
|
tc.hashes |= (unsigned)1 << id;
|
|
xfree(hn);
|
|
}
|
|
xfree(hns);
|
|
}
|
|
stime = HT_get(objdata, "time");
|
|
if (stime == NULL) {
|
|
stime = DEFAULT_TIME;
|
|
}
|
|
if (string_to_time(stime, &tc.days, &tc.seconds) < 0) {
|
|
fprintf(stderr, "invalid time string '%s' (line %ld)\n",
|
|
stime, linenum);
|
|
exit(EXIT_FAILURE);
|
|
}
|
|
if (all_chains_ptr == all_chains_len) {
|
|
if (all_chains_len == 0) {
|
|
all_chains_len = 8;
|
|
all_chains = xmalloc(
|
|
all_chains_len * sizeof *all_chains);
|
|
} else {
|
|
test_case *ntc;
|
|
size_t nlen;
|
|
|
|
nlen = all_chains_len << 1;
|
|
ntc = xmalloc(nlen * sizeof *ntc);
|
|
memcpy(ntc, all_chains,
|
|
all_chains_len * sizeof *all_chains);
|
|
xfree(all_chains);
|
|
all_chains = ntc;
|
|
all_chains_len = nlen;
|
|
}
|
|
}
|
|
all_chains[all_chains_ptr ++] = tc;
|
|
} else {
|
|
fprintf(stderr, "unknown section type '%s' (line %ld)\n",
|
|
objtype, linenum);
|
|
exit(EXIT_FAILURE);
|
|
}
|
|
}
|
|
|
|
static void
|
|
process_conf_file(const char *fname)
|
|
{
|
|
char *objtype;
|
|
HT *objdata;
|
|
long objlinenum;
|
|
|
|
keys = HT_new();
|
|
trust_anchors = HT_new();
|
|
all_chains = NULL;
|
|
all_chains_ptr = 0;
|
|
all_chains_len = 0;
|
|
conf_init(fname);
|
|
objtype = NULL;
|
|
objdata = HT_new();
|
|
objlinenum = 0;
|
|
for (;;) {
|
|
char *hname;
|
|
|
|
if (conf_next_line() < 0) {
|
|
break;
|
|
}
|
|
hname = parse_header_name();
|
|
if (hname != NULL) {
|
|
if (objtype != NULL) {
|
|
parse_object(objtype, objdata, objlinenum);
|
|
HT_clear(objdata, xfree);
|
|
xfree(objtype);
|
|
}
|
|
objtype = hname;
|
|
objlinenum = current_linenum;
|
|
continue;
|
|
}
|
|
if (objtype == NULL) {
|
|
fprintf(stderr, "no current section (line %ld)\n",
|
|
current_linenum);
|
|
exit(EXIT_FAILURE);
|
|
}
|
|
if (parse_keyvalue(objdata) < 0) {
|
|
fprintf(stderr, "wrong configuration, line %ld\n",
|
|
current_linenum);
|
|
exit(EXIT_FAILURE);
|
|
}
|
|
}
|
|
if (objtype != NULL) {
|
|
parse_object(objtype, objdata, objlinenum);
|
|
xfree(objtype);
|
|
}
|
|
HT_free(objdata, xfree);
|
|
conf_close();
|
|
}
|
|
|
|
static const struct {
|
|
int id;
|
|
const br_hash_class *impl;
|
|
} hash_impls[] = {
|
|
{ br_md5_ID, &br_md5_vtable },
|
|
{ br_sha1_ID, &br_sha1_vtable },
|
|
{ br_sha224_ID, &br_sha224_vtable },
|
|
{ br_sha256_ID, &br_sha256_vtable },
|
|
{ br_sha384_ID, &br_sha384_vtable },
|
|
{ br_sha512_ID, &br_sha512_vtable },
|
|
{ 0, NULL }
|
|
};
|
|
|
|
typedef struct {
|
|
unsigned char *data;
|
|
size_t len;
|
|
} blob;
|
|
|
|
static int
|
|
eqbigint(const unsigned char *b1, size_t b1_len,
|
|
const unsigned char *b2, size_t b2_len)
|
|
{
|
|
while (b1_len > 0 && *b1 == 0) {
|
|
b1 ++;
|
|
b1_len --;
|
|
}
|
|
while (b2_len > 0 && *b2 == 0) {
|
|
b2 ++;
|
|
b2_len --;
|
|
}
|
|
return b1_len == b2_len && memcmp(b1, b2, b1_len) == 0;
|
|
}
|
|
|
|
static int
|
|
eqpkey(const br_x509_pkey *pk1, const br_x509_pkey *pk2)
|
|
{
|
|
if (pk1 == pk2) {
|
|
return 1;
|
|
}
|
|
if (pk1 == NULL || pk2 == NULL) {
|
|
return 0;
|
|
}
|
|
if (pk1->key_type != pk2->key_type) {
|
|
return 0;
|
|
}
|
|
switch (pk1->key_type) {
|
|
case BR_KEYTYPE_RSA:
|
|
return eqbigint(pk1->key.rsa.n, pk1->key.rsa.nlen,
|
|
pk2->key.rsa.n, pk2->key.rsa.nlen)
|
|
&& eqbigint(pk1->key.rsa.e, pk1->key.rsa.elen,
|
|
pk2->key.rsa.e, pk2->key.rsa.elen);
|
|
case BR_KEYTYPE_EC:
|
|
return pk1->key.ec.curve == pk2->key.ec.curve
|
|
&& pk1->key.ec.qlen == pk2->key.ec.qlen
|
|
&& memcmp(pk1->key.ec.q,
|
|
pk2->key.ec.q, pk1->key.ec.qlen) == 0;
|
|
default:
|
|
fprintf(stderr, "unknown key type: %d\n", pk1->key_type);
|
|
exit(EXIT_FAILURE);
|
|
break;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static size_t max_dp_usage;
|
|
static size_t max_rp_usage;
|
|
|
|
static void
|
|
run_test_case(test_case *tc)
|
|
{
|
|
br_x509_minimal_context ctx;
|
|
br_x509_trust_anchor *anchors;
|
|
size_t num_anchors;
|
|
size_t u;
|
|
const br_hash_class *dnhash;
|
|
size_t num_certs;
|
|
blob *certs;
|
|
br_x509_pkey *ee_pkey_ref;
|
|
const br_x509_pkey *ee_pkey;
|
|
unsigned usages;
|
|
unsigned status;
|
|
|
|
printf("%s: ", tc->name);
|
|
fflush(stdout);
|
|
|
|
/*
|
|
* Get the hash function to use for hashing DN. We can use just
|
|
* any supported hash function, but for the elegance of things,
|
|
* we will use one of the hash function implementations
|
|
* supported for this test case (with SHA-1 as fallback).
|
|
*/
|
|
dnhash = &br_sha1_vtable;
|
|
for (u = 0; hash_impls[u].id; u ++) {
|
|
if ((tc->hashes & ((unsigned)1 << (hash_impls[u].id))) != 0) {
|
|
dnhash = hash_impls[u].impl;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Get trust anchors.
|
|
*/
|
|
for (num_anchors = 0; tc->ta_names[num_anchors]; num_anchors ++);
|
|
anchors = xmalloc(num_anchors * sizeof *anchors);
|
|
for (u = 0; tc->ta_names[u]; u ++) {
|
|
test_trust_anchor *tta;
|
|
br_x509_pkey *tak;
|
|
|
|
tta = HT_get(trust_anchors, tc->ta_names[u]);
|
|
if (tta == NULL) {
|
|
fprintf(stderr, "no such trust anchor: '%s'\n",
|
|
tc->ta_names[u]);
|
|
exit(EXIT_FAILURE);
|
|
}
|
|
tak = HT_get(keys, tta->key_name);
|
|
if (tak == NULL) {
|
|
fprintf(stderr, "no such public key: '%s'\n",
|
|
tta->key_name);
|
|
exit(EXIT_FAILURE);
|
|
}
|
|
anchors[u].dn.data = tta->dn;
|
|
anchors[u].dn.len = tta->dn_len;
|
|
anchors[u].flags = tta->flags;
|
|
anchors[u].pkey = *tak;
|
|
}
|
|
|
|
/*
|
|
* Read all relevant certificates.
|
|
*/
|
|
for (num_certs = 0; tc->cert_names[num_certs]; num_certs ++);
|
|
certs = xmalloc(num_certs * sizeof *certs);
|
|
for (u = 0; u < num_certs; u ++) {
|
|
certs[u].data = read_file(tc->cert_names[u], &certs[u].len);
|
|
}
|
|
|
|
/*
|
|
* Get expected EE public key (if any).
|
|
*/
|
|
if (tc->ee_key_name == NULL) {
|
|
ee_pkey_ref = NULL;
|
|
} else {
|
|
ee_pkey_ref = HT_get(keys, tc->ee_key_name);
|
|
if (ee_pkey_ref == NULL) {
|
|
fprintf(stderr, "no such public key: '%s'\n",
|
|
tc->ee_key_name);
|
|
exit(EXIT_FAILURE);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Initialise the engine.
|
|
*/
|
|
br_x509_minimal_init(&ctx, dnhash, anchors, num_anchors);
|
|
for (u = 0; hash_impls[u].id; u ++) {
|
|
int id;
|
|
|
|
id = hash_impls[u].id;
|
|
if ((tc->hashes & ((unsigned)1 << id)) != 0) {
|
|
br_x509_minimal_set_hash(&ctx, id, hash_impls[u].impl);
|
|
}
|
|
}
|
|
br_x509_minimal_set_rsa(&ctx, br_rsa_pkcs1_vrfy_get_default());
|
|
br_x509_minimal_set_ecdsa(&ctx,
|
|
br_ec_get_default(), br_ecdsa_vrfy_asn1_get_default());
|
|
|
|
/*
|
|
* Set the validation date.
|
|
*/
|
|
br_x509_minimal_set_time(&ctx, tc->days, tc->seconds);
|
|
|
|
/*
|
|
* Put "canaries" to detect actual stack usage.
|
|
*/
|
|
for (u = 0; u < (sizeof ctx.dp_stack) / sizeof(uint32_t); u ++) {
|
|
ctx.dp_stack[u] = 0xA7C083FE;
|
|
}
|
|
for (u = 0; u < (sizeof ctx.rp_stack) / sizeof(uint32_t); u ++) {
|
|
ctx.rp_stack[u] = 0xA7C083FE;
|
|
}
|
|
|
|
/*
|
|
* Run the engine. We inject certificates by chunks of 100 bytes
|
|
* in order to exercise the coroutine API.
|
|
*/
|
|
ctx.vtable->start_chain(&ctx.vtable, tc->servername);
|
|
for (u = 0; u < num_certs; u ++) {
|
|
size_t v;
|
|
|
|
ctx.vtable->start_cert(&ctx.vtable, certs[u].len);
|
|
v = 0;
|
|
while (v < certs[u].len) {
|
|
size_t w;
|
|
|
|
w = certs[u].len - v;
|
|
if (w > 100) {
|
|
w = 100;
|
|
}
|
|
ctx.vtable->append(&ctx.vtable, certs[u].data + v, w);
|
|
v += w;
|
|
}
|
|
ctx.vtable->end_cert(&ctx.vtable);
|
|
}
|
|
status = ctx.vtable->end_chain(&ctx.vtable);
|
|
ee_pkey = ctx.vtable->get_pkey(&ctx.vtable, &usages);
|
|
|
|
/*
|
|
* Check key type and usage.
|
|
*/
|
|
if (ee_pkey != NULL) {
|
|
unsigned ktu;
|
|
|
|
ktu = ee_pkey->key_type | usages;
|
|
if (tc->key_type_usage != (ktu & tc->key_type_usage)) {
|
|
fprintf(stderr, "wrong key type + usage"
|
|
" (expected 0x%02X, got 0x%02X)\n",
|
|
tc->key_type_usage, ktu);
|
|
exit(EXIT_FAILURE);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Check results. Note that we may still get a public key if
|
|
* the path is "not trusted" (but otherwise fine).
|
|
*/
|
|
if (status != tc->status) {
|
|
fprintf(stderr, "wrong status (got %d, expected %d)\n",
|
|
status, tc->status);
|
|
exit(EXIT_FAILURE);
|
|
}
|
|
if (status == BR_ERR_X509_NOT_TRUSTED) {
|
|
ee_pkey = NULL;
|
|
}
|
|
if (!eqpkey(ee_pkey, ee_pkey_ref)) {
|
|
fprintf(stderr, "wrong EE public key\n");
|
|
exit(EXIT_FAILURE);
|
|
}
|
|
|
|
/*
|
|
* Check stack usage.
|
|
*/
|
|
for (u = (sizeof ctx.dp_stack) / sizeof(uint32_t); u > 0; u --) {
|
|
if (ctx.dp_stack[u - 1] != 0xA7C083FE) {
|
|
if (max_dp_usage < u) {
|
|
max_dp_usage = u;
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
for (u = (sizeof ctx.rp_stack) / sizeof(uint32_t); u > 0; u --) {
|
|
if (ctx.rp_stack[u - 1] != 0xA7C083FE) {
|
|
if (max_rp_usage < u) {
|
|
max_rp_usage = u;
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Release everything.
|
|
*/
|
|
for (u = 0; u < num_certs; u ++) {
|
|
xfree(certs[u].data);
|
|
}
|
|
xfree(certs);
|
|
xfree(anchors);
|
|
printf("OK\n");
|
|
}
|
|
|
|
/*
|
|
* A custom structure for tests, synchronised with the test certificate
|
|
* names.crt.
|
|
*
|
|
* If num is 1 or more, then this is a DN element with OID '1.1.1.1.num'.
|
|
* If num is -1 or less, then this is a SAN element of type -num.
|
|
* If num is 0, then this is a SAN element of type OtherName with
|
|
* OID 1.3.6.1.4.1.311.20.2.3 (Microsoft UPN).
|
|
*/
|
|
typedef struct {
|
|
int num;
|
|
int status;
|
|
const char *expected;
|
|
} name_element_test;
|
|
|
|
static name_element_test names_ref[] = {
|
|
/* === DN tests === */
|
|
{
|
|
/* [12] 66:6f:6f */
|
|
1, 1, "foo"
|
|
},
|
|
{
|
|
/* [12] 62:61:72 */
|
|
1, 1, "bar"
|
|
},
|
|
{
|
|
/* [18] 31:32:33:34 */
|
|
2, 1, "1234"
|
|
},
|
|
{
|
|
/* [19] 66:6f:6f */
|
|
3, 1, "foo"
|
|
},
|
|
{
|
|
/* [20] 66:6f:6f */
|
|
4, 1, "foo"
|
|
},
|
|
{
|
|
/* [22] 66:6f:6f */
|
|
5, 1, "foo"
|
|
},
|
|
{
|
|
/* [30] 00:66:00:6f:00:6f */
|
|
6, 1, "foo"
|
|
},
|
|
{
|
|
/* [30] fe:ff:00:66:00:6f:00:6f */
|
|
7, 1, "foo"
|
|
},
|
|
{
|
|
/* [30] ff:fe:66:00:6f:00:6f:00 */
|
|
8, 1, "foo"
|
|
},
|
|
{
|
|
/* [20] 63:61:66:e9 */
|
|
9, 1, "caf\xC3\xA9"
|
|
},
|
|
{
|
|
/* [12] 63:61:66:c3:a9 */
|
|
10, 1, "caf\xC3\xA9"
|
|
},
|
|
{
|
|
/* [12] 63:61:66:e0:83:a9 */
|
|
11, -1, NULL
|
|
},
|
|
{
|
|
/* [12] 63:61:66:e3:90:8c */
|
|
12, 1, "caf\xE3\x90\x8C"
|
|
},
|
|
{
|
|
/* [30] 00:63:00:61:00:66:34:0c */
|
|
13, 1, "caf\xE3\x90\x8C"
|
|
},
|
|
{
|
|
/* [12] 63:61:66:c3 */
|
|
14, -1, NULL
|
|
},
|
|
{
|
|
/* [30] d8:42:df:f4:00:67:00:6f */
|
|
15, 1, "\xF0\xA0\xAF\xB4go"
|
|
},
|
|
{
|
|
/* [30] 00:66:d8:42 */
|
|
16, -1, NULL
|
|
},
|
|
{
|
|
/* [30] d8:42:00:66 */
|
|
17, -1, NULL
|
|
},
|
|
{
|
|
/* [30] df:f4:00:66 */
|
|
18, -1, NULL
|
|
},
|
|
{
|
|
/* [12] 66:00:6f */
|
|
19, -1, NULL
|
|
},
|
|
{
|
|
/* [30] 00:00:34:0c */
|
|
20, -1, NULL
|
|
},
|
|
{
|
|
/* [30] 34:0c:00:00:00:66 */
|
|
21, -1, NULL
|
|
},
|
|
{
|
|
/* [12] ef:bb:bf:66:6f:6f */
|
|
22, 1, "foo"
|
|
},
|
|
{
|
|
/* [30] 00:66:ff:fe:00:6f */
|
|
23, -1, NULL
|
|
},
|
|
{
|
|
/* [30] 00:66:ff:fd:00:6f */
|
|
24, 1, "f\xEF\xBF\xBDo"
|
|
},
|
|
|
|
/* === Value not found in the DN === */
|
|
{
|
|
127, 0, NULL
|
|
},
|
|
|
|
/* === SAN tests === */
|
|
{
|
|
/* SAN OtherName (Microsoft UPN) */
|
|
0, 1, "foo@bar.com"
|
|
},
|
|
{
|
|
/* SAN rfc822Name */
|
|
-1, 1, "bar@foo.com"
|
|
},
|
|
{
|
|
/* SAN dNSName */
|
|
-2, 1, "example.com"
|
|
},
|
|
{
|
|
/* SAN dNSName */
|
|
-2, 1, "www.example.com"
|
|
},
|
|
{
|
|
/* uniformResourceIdentifier */
|
|
-6, 1, "http://www.example.com/"
|
|
}
|
|
};
|
|
|
|
static void
|
|
free_name_elements(br_name_element *elts, size_t num)
|
|
{
|
|
size_t u;
|
|
|
|
for (u = 0; u < num; u ++) {
|
|
xfree((void *)elts[u].oid);
|
|
xfree(elts[u].buf);
|
|
}
|
|
xfree(elts);
|
|
}
|
|
|
|
static void
|
|
test_name_extraction(void)
|
|
{
|
|
unsigned char *data;
|
|
size_t len;
|
|
br_x509_minimal_context ctx;
|
|
uint32_t days, seconds;
|
|
size_t u;
|
|
unsigned status;
|
|
br_name_element *names;
|
|
size_t num_names;
|
|
int good;
|
|
|
|
printf("Name extraction: ");
|
|
fflush(stdout);
|
|
data = read_file("names.crt", &len);
|
|
br_x509_minimal_init(&ctx, &br_sha256_vtable, NULL, 0);
|
|
for (u = 0; hash_impls[u].id; u ++) {
|
|
int id;
|
|
|
|
id = hash_impls[u].id;
|
|
br_x509_minimal_set_hash(&ctx, id, hash_impls[u].impl);
|
|
}
|
|
br_x509_minimal_set_rsa(&ctx, br_rsa_pkcs1_vrfy_get_default());
|
|
br_x509_minimal_set_ecdsa(&ctx,
|
|
br_ec_get_default(), br_ecdsa_vrfy_asn1_get_default());
|
|
string_to_time(DEFAULT_TIME, &days, &seconds);
|
|
br_x509_minimal_set_time(&ctx, days, seconds);
|
|
|
|
num_names = (sizeof names_ref) / (sizeof names_ref[0]);
|
|
names = xmalloc(num_names * sizeof *names);
|
|
for (u = 0; u < num_names; u ++) {
|
|
int num;
|
|
unsigned char *oid;
|
|
|
|
num = names_ref[u].num;
|
|
if (num > 0) {
|
|
oid = xmalloc(5);
|
|
oid[0] = 4;
|
|
oid[1] = 0x29;
|
|
oid[2] = 0x01;
|
|
oid[3] = 0x01;
|
|
oid[4] = num;
|
|
} else if (num == 0) {
|
|
oid = xmalloc(13);
|
|
oid[0] = 0x00;
|
|
oid[1] = 0x00;
|
|
oid[2] = 0x0A;
|
|
oid[3] = 0x2B;
|
|
oid[4] = 0x06;
|
|
oid[5] = 0x01;
|
|
oid[6] = 0x04;
|
|
oid[7] = 0x01;
|
|
oid[8] = 0x82;
|
|
oid[9] = 0x37;
|
|
oid[10] = 0x14;
|
|
oid[11] = 0x02;
|
|
oid[12] = 0x03;
|
|
} else {
|
|
oid = xmalloc(2);
|
|
oid[0] = 0x00;
|
|
oid[1] = -num;
|
|
}
|
|
names[u].oid = oid;
|
|
names[u].buf = xmalloc(256);
|
|
names[u].len = 256;
|
|
}
|
|
br_x509_minimal_set_name_elements(&ctx, names, num_names);
|
|
|
|
/*
|
|
* Put "canaries" to detect actual stack usage.
|
|
*/
|
|
for (u = 0; u < (sizeof ctx.dp_stack) / sizeof(uint32_t); u ++) {
|
|
ctx.dp_stack[u] = 0xA7C083FE;
|
|
}
|
|
for (u = 0; u < (sizeof ctx.rp_stack) / sizeof(uint32_t); u ++) {
|
|
ctx.rp_stack[u] = 0xA7C083FE;
|
|
}
|
|
|
|
/*
|
|
* Run the engine. Since we set no trust anchor, we expect a status
|
|
* of "not trusted".
|
|
*/
|
|
ctx.vtable->start_chain(&ctx.vtable, NULL);
|
|
ctx.vtable->start_cert(&ctx.vtable, len);
|
|
ctx.vtable->append(&ctx.vtable, data, len);
|
|
ctx.vtable->end_cert(&ctx.vtable);
|
|
status = ctx.vtable->end_chain(&ctx.vtable);
|
|
if (status != BR_ERR_X509_NOT_TRUSTED) {
|
|
fprintf(stderr, "wrong status: %u\n", status);
|
|
exit(EXIT_FAILURE);
|
|
}
|
|
|
|
/*
|
|
* Check stack usage.
|
|
*/
|
|
for (u = (sizeof ctx.dp_stack) / sizeof(uint32_t); u > 0; u --) {
|
|
if (ctx.dp_stack[u - 1] != 0xA7C083FE) {
|
|
if (max_dp_usage < u) {
|
|
max_dp_usage = u;
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
for (u = (sizeof ctx.rp_stack) / sizeof(uint32_t); u > 0; u --) {
|
|
if (ctx.rp_stack[u - 1] != 0xA7C083FE) {
|
|
if (max_rp_usage < u) {
|
|
max_rp_usage = u;
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
|
|
good = 1;
|
|
for (u = 0; u < num_names; u ++) {
|
|
if (names[u].status != names_ref[u].status) {
|
|
printf("ERR: name %u (id=%d): status=%d, expected=%d\n",
|
|
(unsigned)u, names_ref[u].num,
|
|
names[u].status, names_ref[u].status);
|
|
if (names[u].status > 0) {
|
|
unsigned char *p;
|
|
|
|
printf(" obtained:");
|
|
p = (unsigned char *)names[u].buf;
|
|
while (*p) {
|
|
printf(" %02X", *p ++);
|
|
}
|
|
printf("\n");
|
|
}
|
|
good = 0;
|
|
continue;
|
|
}
|
|
if (names_ref[u].expected == NULL) {
|
|
if (names[u].buf[0] != 0) {
|
|
printf("ERR: name %u not zero-terminated\n",
|
|
(unsigned)u);
|
|
good = 0;
|
|
continue;
|
|
}
|
|
} else {
|
|
if (strcmp(names[u].buf, names_ref[u].expected) != 0) {
|
|
unsigned char *p;
|
|
|
|
printf("ERR: name %u (id=%d): wrong value\n",
|
|
(unsigned)u, names_ref[u].num);
|
|
printf(" expected:");
|
|
p = (unsigned char *)names_ref[u].expected;
|
|
while (*p) {
|
|
printf(" %02X", *p ++);
|
|
}
|
|
printf("\n");
|
|
printf(" obtained:");
|
|
p = (unsigned char *)names[u].buf;
|
|
while (*p) {
|
|
printf(" %02X", *p ++);
|
|
}
|
|
printf("\n");
|
|
good = 0;
|
|
continue;
|
|
}
|
|
}
|
|
}
|
|
if (!good) {
|
|
exit(EXIT_FAILURE);
|
|
}
|
|
|
|
/*
|
|
for (u = 0; u < num_names; u ++) {
|
|
printf("%u: (%d)", (unsigned)u, names[u].status);
|
|
if (names[u].status > 0) {
|
|
size_t v;
|
|
|
|
for (v = 0; names[u].buf[v]; v ++) {
|
|
printf(" %02x", names[u].buf[v]);
|
|
}
|
|
}
|
|
printf("\n");
|
|
}
|
|
*/
|
|
|
|
xfree(data);
|
|
free_name_elements(names, num_names);
|
|
printf("OK\n");
|
|
}
|
|
|
|
int
|
|
main(int argc, const char *argv[])
|
|
{
|
|
size_t u;
|
|
|
|
#ifdef SRCDIRNAME
|
|
/*
|
|
* We want to change the current directory to that of the
|
|
* executable, so that test files are reliably located. We
|
|
* do that only if SRCDIRNAME is defined (old Makefile would
|
|
* not do that).
|
|
*/
|
|
if (argc >= 1) {
|
|
const char *arg, *c;
|
|
|
|
arg = argv[0];
|
|
for (c = arg + strlen(arg);; c --) {
|
|
int sep, r;
|
|
|
|
#ifdef _WIN32
|
|
sep = (*c == '/') || (*c == '\\');
|
|
#else
|
|
sep = (*c == '/');
|
|
#endif
|
|
if (sep) {
|
|
size_t len;
|
|
char *dn;
|
|
|
|
len = 1 + (c - arg);
|
|
dn = xmalloc(len + 1);
|
|
memcpy(dn, arg, len);
|
|
dn[len] = 0;
|
|
#ifdef _WIN32
|
|
r = _chdir(dn);
|
|
#else
|
|
r = chdir(dn);
|
|
#endif
|
|
if (r != 0) {
|
|
fprintf(stderr, "warning: could not"
|
|
" set directory to '%s'\n", dn);
|
|
}
|
|
xfree(dn);
|
|
break;
|
|
}
|
|
if (c == arg) {
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
#else
|
|
(void)argc;
|
|
(void)argv;
|
|
#endif
|
|
|
|
process_conf_file(CONFFILE);
|
|
|
|
max_dp_usage = 0;
|
|
max_rp_usage = 0;
|
|
for (u = 0; u < all_chains_ptr; u ++) {
|
|
run_test_case(&all_chains[u]);
|
|
}
|
|
test_name_extraction();
|
|
|
|
printf("Maximum data stack usage: %u\n", (unsigned)max_dp_usage);
|
|
printf("Maximum return stack usage: %u\n", (unsigned)max_rp_usage);
|
|
|
|
HT_free(keys, free_key);
|
|
HT_free(trust_anchors, free_trust_anchor);
|
|
for (u = 0; u < all_chains_ptr; u ++) {
|
|
free_test_case_contents(&all_chains[u]);
|
|
}
|
|
xfree(all_chains);
|
|
|
|
return 0;
|
|
}
|