freebsd-nq/sys/i386/i386/sys_machdep.c
John Baldwin ed95805e90 Remove support for Xen PV domU kernels. Support for HVM domU kernels
remains.  Xen is planning to phase out support for PV upstream since it
is harder to maintain and has more overhead.  Modern x86 CPUs include
virtualization extensions that support HVM guests instead of PV guests.
In addition, the PV code was i386 only and not as well maintained recently
as the HVM code.
- Remove the i386-only NATIVE option that was used to disable certain
  components for PV kernels.  These components are now standard as they
  are on amd64.
- Remove !XENHVM bits from PV drivers.
- Remove various shims required for XEN (e.g. PT_UPDATES_FLUSH, LOAD_CR3,
  etc.)
- Remove duplicate copy of <xen/features.h>.
- Remove unused, i386-only xenstored.h.

Differential Revision:	https://reviews.freebsd.org/D2362
Reviewed by:	royger
Tested by:	royger (i386/amd64 HVM domU and amd64 PVH dom0)
Relnotes:	yes
2015-04-30 15:48:48 +00:00

794 lines
20 KiB
C

/*-
* Copyright (c) 1990 The Regents of the University of California.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* from: @(#)sys_machdep.c 5.5 (Berkeley) 1/19/91
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include "opt_capsicum.h"
#include "opt_kstack_pages.h"
#include <sys/param.h>
#include <sys/capsicum.h>
#include <sys/systm.h>
#include <sys/lock.h>
#include <sys/malloc.h>
#include <sys/mutex.h>
#include <sys/priv.h>
#include <sys/proc.h>
#include <sys/smp.h>
#include <sys/sysproto.h>
#include <vm/vm.h>
#include <vm/pmap.h>
#include <vm/vm_map.h>
#include <vm/vm_extern.h>
#include <machine/cpu.h>
#include <machine/pcb.h>
#include <machine/pcb_ext.h>
#include <machine/proc.h>
#include <machine/sysarch.h>
#include <security/audit/audit.h>
#include <vm/vm_kern.h> /* for kernel_map */
#define MAX_LD 8192
#define LD_PER_PAGE 512
#define NEW_MAX_LD(num) ((num + LD_PER_PAGE) & ~(LD_PER_PAGE-1))
#define SIZE_FROM_LARGEST_LD(num) (NEW_MAX_LD(num) << 3)
#define NULL_LDT_BASE ((caddr_t)NULL)
#ifdef SMP
static void set_user_ldt_rv(struct vmspace *vmsp);
#endif
static int i386_set_ldt_data(struct thread *, int start, int num,
union descriptor *descs);
static int i386_ldt_grow(struct thread *td, int len);
#ifndef _SYS_SYSPROTO_H_
struct sysarch_args {
int op;
char *parms;
};
#endif
int
sysarch(td, uap)
struct thread *td;
register struct sysarch_args *uap;
{
int error;
union descriptor *lp;
union {
struct i386_ldt_args largs;
struct i386_ioperm_args iargs;
struct i386_get_xfpustate xfpu;
} kargs;
uint32_t base;
struct segment_descriptor sd, *sdp;
AUDIT_ARG_CMD(uap->op);
#ifdef CAPABILITY_MODE
/*
* When adding new operations, add a new case statement here to
* explicitly indicate whether or not the operation is safe to
* perform in capability mode.
*/
if (IN_CAPABILITY_MODE(td)) {
switch (uap->op) {
case I386_GET_LDT:
case I386_SET_LDT:
case I386_GET_IOPERM:
case I386_GET_FSBASE:
case I386_SET_FSBASE:
case I386_GET_GSBASE:
case I386_SET_GSBASE:
case I386_GET_XFPUSTATE:
break;
case I386_SET_IOPERM:
default:
#ifdef KTRACE
if (KTRPOINT(td, KTR_CAPFAIL))
ktrcapfail(CAPFAIL_SYSCALL, NULL, NULL);
#endif
return (ECAPMODE);
}
}
#endif
switch (uap->op) {
case I386_GET_IOPERM:
case I386_SET_IOPERM:
if ((error = copyin(uap->parms, &kargs.iargs,
sizeof(struct i386_ioperm_args))) != 0)
return (error);
break;
case I386_GET_LDT:
case I386_SET_LDT:
if ((error = copyin(uap->parms, &kargs.largs,
sizeof(struct i386_ldt_args))) != 0)
return (error);
if (kargs.largs.num > MAX_LD || kargs.largs.num <= 0)
return (EINVAL);
break;
case I386_GET_XFPUSTATE:
if ((error = copyin(uap->parms, &kargs.xfpu,
sizeof(struct i386_get_xfpustate))) != 0)
return (error);
break;
default:
break;
}
switch(uap->op) {
case I386_GET_LDT:
error = i386_get_ldt(td, &kargs.largs);
break;
case I386_SET_LDT:
if (kargs.largs.descs != NULL) {
lp = (union descriptor *)malloc(
kargs.largs.num * sizeof(union descriptor),
M_TEMP, M_WAITOK);
error = copyin(kargs.largs.descs, lp,
kargs.largs.num * sizeof(union descriptor));
if (error == 0)
error = i386_set_ldt(td, &kargs.largs, lp);
free(lp, M_TEMP);
} else {
error = i386_set_ldt(td, &kargs.largs, NULL);
}
break;
case I386_GET_IOPERM:
error = i386_get_ioperm(td, &kargs.iargs);
if (error == 0)
error = copyout(&kargs.iargs, uap->parms,
sizeof(struct i386_ioperm_args));
break;
case I386_SET_IOPERM:
error = i386_set_ioperm(td, &kargs.iargs);
break;
case I386_VM86:
error = vm86_sysarch(td, uap->parms);
break;
case I386_GET_FSBASE:
sdp = &td->td_pcb->pcb_fsd;
base = sdp->sd_hibase << 24 | sdp->sd_lobase;
error = copyout(&base, uap->parms, sizeof(base));
break;
case I386_SET_FSBASE:
error = copyin(uap->parms, &base, sizeof(base));
if (!error) {
/*
* Construct a descriptor and store it in the pcb for
* the next context switch. Also store it in the gdt
* so that the load of tf_fs into %fs will activate it
* at return to userland.
*/
sd.sd_lobase = base & 0xffffff;
sd.sd_hibase = (base >> 24) & 0xff;
sd.sd_lolimit = 0xffff; /* 4GB limit, wraps around */
sd.sd_hilimit = 0xf;
sd.sd_type = SDT_MEMRWA;
sd.sd_dpl = SEL_UPL;
sd.sd_p = 1;
sd.sd_xx = 0;
sd.sd_def32 = 1;
sd.sd_gran = 1;
critical_enter();
td->td_pcb->pcb_fsd = sd;
PCPU_GET(fsgs_gdt)[0] = sd;
critical_exit();
td->td_frame->tf_fs = GSEL(GUFS_SEL, SEL_UPL);
}
break;
case I386_GET_GSBASE:
sdp = &td->td_pcb->pcb_gsd;
base = sdp->sd_hibase << 24 | sdp->sd_lobase;
error = copyout(&base, uap->parms, sizeof(base));
break;
case I386_SET_GSBASE:
error = copyin(uap->parms, &base, sizeof(base));
if (!error) {
/*
* Construct a descriptor and store it in the pcb for
* the next context switch. Also store it in the gdt
* because we have to do a load_gs() right now.
*/
sd.sd_lobase = base & 0xffffff;
sd.sd_hibase = (base >> 24) & 0xff;
sd.sd_lolimit = 0xffff; /* 4GB limit, wraps around */
sd.sd_hilimit = 0xf;
sd.sd_type = SDT_MEMRWA;
sd.sd_dpl = SEL_UPL;
sd.sd_p = 1;
sd.sd_xx = 0;
sd.sd_def32 = 1;
sd.sd_gran = 1;
critical_enter();
td->td_pcb->pcb_gsd = sd;
PCPU_GET(fsgs_gdt)[1] = sd;
critical_exit();
load_gs(GSEL(GUGS_SEL, SEL_UPL));
}
break;
case I386_GET_XFPUSTATE:
if (kargs.xfpu.len > cpu_max_ext_state_size -
sizeof(union savefpu))
return (EINVAL);
npxgetregs(td);
error = copyout((char *)(get_pcb_user_save_td(td) + 1),
kargs.xfpu.addr, kargs.xfpu.len);
break;
default:
error = EINVAL;
break;
}
return (error);
}
int
i386_extend_pcb(struct thread *td)
{
int i, offset;
u_long *addr;
struct pcb_ext *ext;
struct soft_segment_descriptor ssd = {
0, /* segment base address (overwritten) */
ctob(IOPAGES + 1) - 1, /* length */
SDT_SYS386TSS, /* segment type */
0, /* priority level */
1, /* descriptor present */
0, 0,
0, /* default 32 size */
0 /* granularity */
};
ext = (struct pcb_ext *)kmem_malloc(kernel_arena, ctob(IOPAGES+1),
M_WAITOK | M_ZERO);
/* -16 is so we can convert a trapframe into vm86trapframe inplace */
ext->ext_tss.tss_esp0 = td->td_kstack + ctob(KSTACK_PAGES) -
sizeof(struct pcb) - 16;
ext->ext_tss.tss_ss0 = GSEL(GDATA_SEL, SEL_KPL);
/*
* The last byte of the i/o map must be followed by an 0xff byte.
* We arbitrarily allocate 16 bytes here, to keep the starting
* address on a doubleword boundary.
*/
offset = PAGE_SIZE - 16;
ext->ext_tss.tss_ioopt =
(offset - ((unsigned)&ext->ext_tss - (unsigned)ext)) << 16;
ext->ext_iomap = (caddr_t)ext + offset;
ext->ext_vm86.vm86_intmap = (caddr_t)ext + offset - 32;
addr = (u_long *)ext->ext_vm86.vm86_intmap;
for (i = 0; i < (ctob(IOPAGES) + 32 + 16) / sizeof(u_long); i++)
*addr++ = ~0;
ssd.ssd_base = (unsigned)&ext->ext_tss;
ssd.ssd_limit -= ((unsigned)&ext->ext_tss - (unsigned)ext);
ssdtosd(&ssd, &ext->ext_tssd);
KASSERT(td == curthread, ("giving TSS to !curthread"));
KASSERT(td->td_pcb->pcb_ext == 0, ("already have a TSS!"));
/* Switch to the new TSS. */
critical_enter();
td->td_pcb->pcb_ext = ext;
PCPU_SET(private_tss, 1);
*PCPU_GET(tss_gdt) = ext->ext_tssd;
ltr(GSEL(GPROC0_SEL, SEL_KPL));
critical_exit();
return 0;
}
int
i386_set_ioperm(td, uap)
struct thread *td;
struct i386_ioperm_args *uap;
{
int i, error;
char *iomap;
if ((error = priv_check(td, PRIV_IO)) != 0)
return (error);
if ((error = securelevel_gt(td->td_ucred, 0)) != 0)
return (error);
/*
* XXX
* While this is restricted to root, we should probably figure out
* whether any other driver is using this i/o address, as so not to
* cause confusion. This probably requires a global 'usage registry'.
*/
if (td->td_pcb->pcb_ext == 0)
if ((error = i386_extend_pcb(td)) != 0)
return (error);
iomap = (char *)td->td_pcb->pcb_ext->ext_iomap;
if (uap->start + uap->length > IOPAGES * PAGE_SIZE * NBBY)
return (EINVAL);
for (i = uap->start; i < uap->start + uap->length; i++) {
if (uap->enable)
iomap[i >> 3] &= ~(1 << (i & 7));
else
iomap[i >> 3] |= (1 << (i & 7));
}
return (error);
}
int
i386_get_ioperm(td, uap)
struct thread *td;
struct i386_ioperm_args *uap;
{
int i, state;
char *iomap;
if (uap->start >= IOPAGES * PAGE_SIZE * NBBY)
return (EINVAL);
if (td->td_pcb->pcb_ext == 0) {
uap->length = 0;
goto done;
}
iomap = (char *)td->td_pcb->pcb_ext->ext_iomap;
i = uap->start;
state = (iomap[i >> 3] >> (i & 7)) & 1;
uap->enable = !state;
uap->length = 1;
for (i = uap->start + 1; i < IOPAGES * PAGE_SIZE * NBBY; i++) {
if (state != ((iomap[i >> 3] >> (i & 7)) & 1))
break;
uap->length++;
}
done:
return (0);
}
/*
* Update the GDT entry pointing to the LDT to point to the LDT of the
* current process. Manage dt_lock holding/unholding autonomously.
*/
void
set_user_ldt(struct mdproc *mdp)
{
struct proc_ldt *pldt;
int dtlocked;
dtlocked = 0;
if (!mtx_owned(&dt_lock)) {
mtx_lock_spin(&dt_lock);
dtlocked = 1;
}
pldt = mdp->md_ldt;
#ifdef SMP
gdt[PCPU_GET(cpuid) * NGDT + GUSERLDT_SEL].sd = pldt->ldt_sd;
#else
gdt[GUSERLDT_SEL].sd = pldt->ldt_sd;
#endif
lldt(GSEL(GUSERLDT_SEL, SEL_KPL));
PCPU_SET(currentldt, GSEL(GUSERLDT_SEL, SEL_KPL));
if (dtlocked)
mtx_unlock_spin(&dt_lock);
}
#ifdef SMP
static void
set_user_ldt_rv(struct vmspace *vmsp)
{
struct thread *td;
td = curthread;
if (vmsp != td->td_proc->p_vmspace)
return;
set_user_ldt(&td->td_proc->p_md);
}
#endif
/*
* dt_lock must be held. Returns with dt_lock held.
*/
struct proc_ldt *
user_ldt_alloc(struct mdproc *mdp, int len)
{
struct proc_ldt *pldt, *new_ldt;
mtx_assert(&dt_lock, MA_OWNED);
mtx_unlock_spin(&dt_lock);
new_ldt = malloc(sizeof(struct proc_ldt),
M_SUBPROC, M_WAITOK);
new_ldt->ldt_len = len = NEW_MAX_LD(len);
new_ldt->ldt_base = (caddr_t)kmem_malloc(kernel_arena,
len * sizeof(union descriptor), M_WAITOK);
new_ldt->ldt_refcnt = 1;
new_ldt->ldt_active = 0;
mtx_lock_spin(&dt_lock);
gdt_segs[GUSERLDT_SEL].ssd_base = (unsigned)new_ldt->ldt_base;
gdt_segs[GUSERLDT_SEL].ssd_limit = len * sizeof(union descriptor) - 1;
ssdtosd(&gdt_segs[GUSERLDT_SEL], &new_ldt->ldt_sd);
if ((pldt = mdp->md_ldt) != NULL) {
if (len > pldt->ldt_len)
len = pldt->ldt_len;
bcopy(pldt->ldt_base, new_ldt->ldt_base,
len * sizeof(union descriptor));
} else
bcopy(ldt, new_ldt->ldt_base, sizeof(ldt));
return (new_ldt);
}
/*
* Must be called with dt_lock held. Returns with dt_lock unheld.
*/
void
user_ldt_free(struct thread *td)
{
struct mdproc *mdp = &td->td_proc->p_md;
struct proc_ldt *pldt;
mtx_assert(&dt_lock, MA_OWNED);
if ((pldt = mdp->md_ldt) == NULL) {
mtx_unlock_spin(&dt_lock);
return;
}
if (td == curthread) {
lldt(_default_ldt);
PCPU_SET(currentldt, _default_ldt);
}
mdp->md_ldt = NULL;
user_ldt_deref(pldt);
}
void
user_ldt_deref(struct proc_ldt *pldt)
{
mtx_assert(&dt_lock, MA_OWNED);
if (--pldt->ldt_refcnt == 0) {
mtx_unlock_spin(&dt_lock);
kmem_free(kernel_arena, (vm_offset_t)pldt->ldt_base,
pldt->ldt_len * sizeof(union descriptor));
free(pldt, M_SUBPROC);
} else
mtx_unlock_spin(&dt_lock);
}
/*
* Note for the authors of compat layers (linux, etc): copyout() in
* the function below is not a problem since it presents data in
* arch-specific format (i.e. i386-specific in this case), not in
* the OS-specific one.
*/
int
i386_get_ldt(td, uap)
struct thread *td;
struct i386_ldt_args *uap;
{
int error = 0;
struct proc_ldt *pldt;
int nldt, num;
union descriptor *lp;
#ifdef DEBUG
printf("i386_get_ldt: start=%d num=%d descs=%p\n",
uap->start, uap->num, (void *)uap->descs);
#endif
mtx_lock_spin(&dt_lock);
if ((pldt = td->td_proc->p_md.md_ldt) != NULL) {
nldt = pldt->ldt_len;
lp = &((union descriptor *)(pldt->ldt_base))[uap->start];
mtx_unlock_spin(&dt_lock);
num = min(uap->num, nldt);
} else {
mtx_unlock_spin(&dt_lock);
nldt = sizeof(ldt)/sizeof(ldt[0]);
num = min(uap->num, nldt);
lp = &ldt[uap->start];
}
if ((uap->start > (unsigned int)nldt) ||
((unsigned int)num > (unsigned int)nldt) ||
((unsigned int)(uap->start + num) > (unsigned int)nldt))
return(EINVAL);
error = copyout(lp, uap->descs, num * sizeof(union descriptor));
if (!error)
td->td_retval[0] = num;
return(error);
}
int
i386_set_ldt(td, uap, descs)
struct thread *td;
struct i386_ldt_args *uap;
union descriptor *descs;
{
int error = 0, i;
int largest_ld;
struct mdproc *mdp = &td->td_proc->p_md;
struct proc_ldt *pldt;
union descriptor *dp;
#ifdef DEBUG
printf("i386_set_ldt: start=%d num=%d descs=%p\n",
uap->start, uap->num, (void *)uap->descs);
#endif
if (descs == NULL) {
/* Free descriptors */
if (uap->start == 0 && uap->num == 0) {
/*
* Treat this as a special case, so userland needn't
* know magic number NLDT.
*/
uap->start = NLDT;
uap->num = MAX_LD - NLDT;
}
if (uap->num == 0)
return (EINVAL);
mtx_lock_spin(&dt_lock);
if ((pldt = mdp->md_ldt) == NULL ||
uap->start >= pldt->ldt_len) {
mtx_unlock_spin(&dt_lock);
return (0);
}
largest_ld = uap->start + uap->num;
if (largest_ld > pldt->ldt_len)
largest_ld = pldt->ldt_len;
i = largest_ld - uap->start;
bzero(&((union descriptor *)(pldt->ldt_base))[uap->start],
sizeof(union descriptor) * i);
mtx_unlock_spin(&dt_lock);
return (0);
}
if (!(uap->start == LDT_AUTO_ALLOC && uap->num == 1)) {
/* verify range of descriptors to modify */
largest_ld = uap->start + uap->num;
if (uap->start >= MAX_LD || largest_ld > MAX_LD) {
return (EINVAL);
}
}
/* Check descriptors for access violations */
for (i = 0; i < uap->num; i++) {
dp = &descs[i];
switch (dp->sd.sd_type) {
case SDT_SYSNULL: /* system null */
dp->sd.sd_p = 0;
break;
case SDT_SYS286TSS: /* system 286 TSS available */
case SDT_SYSLDT: /* system local descriptor table */
case SDT_SYS286BSY: /* system 286 TSS busy */
case SDT_SYSTASKGT: /* system task gate */
case SDT_SYS286IGT: /* system 286 interrupt gate */
case SDT_SYS286TGT: /* system 286 trap gate */
case SDT_SYSNULL2: /* undefined by Intel */
case SDT_SYS386TSS: /* system 386 TSS available */
case SDT_SYSNULL3: /* undefined by Intel */
case SDT_SYS386BSY: /* system 386 TSS busy */
case SDT_SYSNULL4: /* undefined by Intel */
case SDT_SYS386IGT: /* system 386 interrupt gate */
case SDT_SYS386TGT: /* system 386 trap gate */
case SDT_SYS286CGT: /* system 286 call gate */
case SDT_SYS386CGT: /* system 386 call gate */
/* I can't think of any reason to allow a user proc
* to create a segment of these types. They are
* for OS use only.
*/
return (EACCES);
/*NOTREACHED*/
/* memory segment types */
case SDT_MEMEC: /* memory execute only conforming */
case SDT_MEMEAC: /* memory execute only accessed conforming */
case SDT_MEMERC: /* memory execute read conforming */
case SDT_MEMERAC: /* memory execute read accessed conforming */
/* Must be "present" if executable and conforming. */
if (dp->sd.sd_p == 0)
return (EACCES);
break;
case SDT_MEMRO: /* memory read only */
case SDT_MEMROA: /* memory read only accessed */
case SDT_MEMRW: /* memory read write */
case SDT_MEMRWA: /* memory read write accessed */
case SDT_MEMROD: /* memory read only expand dwn limit */
case SDT_MEMRODA: /* memory read only expand dwn lim accessed */
case SDT_MEMRWD: /* memory read write expand dwn limit */
case SDT_MEMRWDA: /* memory read write expand dwn lim acessed */
case SDT_MEME: /* memory execute only */
case SDT_MEMEA: /* memory execute only accessed */
case SDT_MEMER: /* memory execute read */
case SDT_MEMERA: /* memory execute read accessed */
break;
default:
return(EINVAL);
/*NOTREACHED*/
}
/* Only user (ring-3) descriptors may be present. */
if ((dp->sd.sd_p != 0) && (dp->sd.sd_dpl != SEL_UPL))
return (EACCES);
}
if (uap->start == LDT_AUTO_ALLOC && uap->num == 1) {
/* Allocate a free slot */
mtx_lock_spin(&dt_lock);
if ((pldt = mdp->md_ldt) == NULL) {
if ((error = i386_ldt_grow(td, NLDT + 1))) {
mtx_unlock_spin(&dt_lock);
return (error);
}
pldt = mdp->md_ldt;
}
again:
/*
* start scanning a bit up to leave room for NVidia and
* Wine, which still user the "Blat" method of allocation.
*/
dp = &((union descriptor *)(pldt->ldt_base))[NLDT];
for (i = NLDT; i < pldt->ldt_len; ++i) {
if (dp->sd.sd_type == SDT_SYSNULL)
break;
dp++;
}
if (i >= pldt->ldt_len) {
if ((error = i386_ldt_grow(td, pldt->ldt_len+1))) {
mtx_unlock_spin(&dt_lock);
return (error);
}
goto again;
}
uap->start = i;
error = i386_set_ldt_data(td, i, 1, descs);
mtx_unlock_spin(&dt_lock);
} else {
largest_ld = uap->start + uap->num;
mtx_lock_spin(&dt_lock);
if (!(error = i386_ldt_grow(td, largest_ld))) {
error = i386_set_ldt_data(td, uap->start, uap->num,
descs);
}
mtx_unlock_spin(&dt_lock);
}
if (error == 0)
td->td_retval[0] = uap->start;
return (error);
}
static int
i386_set_ldt_data(struct thread *td, int start, int num,
union descriptor *descs)
{
struct mdproc *mdp = &td->td_proc->p_md;
struct proc_ldt *pldt = mdp->md_ldt;
mtx_assert(&dt_lock, MA_OWNED);
/* Fill in range */
bcopy(descs,
&((union descriptor *)(pldt->ldt_base))[start],
num * sizeof(union descriptor));
return (0);
}
static int
i386_ldt_grow(struct thread *td, int len)
{
struct mdproc *mdp = &td->td_proc->p_md;
struct proc_ldt *new_ldt, *pldt;
caddr_t old_ldt_base = NULL_LDT_BASE;
int old_ldt_len = 0;
mtx_assert(&dt_lock, MA_OWNED);
if (len > MAX_LD)
return (ENOMEM);
if (len < NLDT + 1)
len = NLDT + 1;
/* Allocate a user ldt. */
if ((pldt = mdp->md_ldt) == NULL || len > pldt->ldt_len) {
new_ldt = user_ldt_alloc(mdp, len);
if (new_ldt == NULL)
return (ENOMEM);
pldt = mdp->md_ldt;
if (pldt != NULL) {
if (new_ldt->ldt_len <= pldt->ldt_len) {
/*
* We just lost the race for allocation, so
* free the new object and return.
*/
mtx_unlock_spin(&dt_lock);
kmem_free(kernel_arena,
(vm_offset_t)new_ldt->ldt_base,
new_ldt->ldt_len * sizeof(union descriptor));
free(new_ldt, M_SUBPROC);
mtx_lock_spin(&dt_lock);
return (0);
}
/*
* We have to substitute the current LDT entry for
* curproc with the new one since its size grew.
*/
old_ldt_base = pldt->ldt_base;
old_ldt_len = pldt->ldt_len;
pldt->ldt_sd = new_ldt->ldt_sd;
pldt->ldt_base = new_ldt->ldt_base;
pldt->ldt_len = new_ldt->ldt_len;
} else
mdp->md_ldt = pldt = new_ldt;
#ifdef SMP
/*
* Signal other cpus to reload ldt. We need to unlock dt_lock
* here because other CPU will contest on it since their
* curthreads won't hold the lock and will block when trying
* to acquire it.
*/
mtx_unlock_spin(&dt_lock);
smp_rendezvous(NULL, (void (*)(void *))set_user_ldt_rv,
NULL, td->td_proc->p_vmspace);
#else
set_user_ldt(&td->td_proc->p_md);
mtx_unlock_spin(&dt_lock);
#endif
if (old_ldt_base != NULL_LDT_BASE) {
kmem_free(kernel_arena, (vm_offset_t)old_ldt_base,
old_ldt_len * sizeof(union descriptor));
free(new_ldt, M_SUBPROC);
}
mtx_lock_spin(&dt_lock);
}
return (0);
}