freebsd-nq/sys/dev/mpt/mpt_cam.c
2011-01-05 14:33:48 +00:00

5560 lines
149 KiB
C

/*-
* FreeBSD/CAM specific routines for LSI '909 FC adapters.
* FreeBSD Version.
*
* Copyright (c) 2000, 2001 by Greg Ansley
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice immediately at the beginning of the file, without modification,
* this list of conditions, and the following disclaimer.
* 2. The name of the author may not be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
* ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
/*-
* Copyright (c) 2002, 2006 by Matthew Jacob
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce at minimum a disclaimer
* substantially similar to the "NO WARRANTY" disclaimer below
* ("Disclaimer") and any redistribution must be conditioned upon including
* a substantially similar Disclaimer requirement for further binary
* redistribution.
* 3. Neither the names of the above listed copyright holders nor the names
* of any contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF THE COPYRIGHT
* OWNER OR CONTRIBUTOR IS ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* Support from Chris Ellsworth in order to make SAS adapters work
* is gratefully acknowledged.
*
* Support from LSI-Logic has also gone a great deal toward making this a
* workable subsystem and is gratefully acknowledged.
*/
/*-
* Copyright (c) 2004, Avid Technology, Inc. and its contributors.
* Copyright (c) 2005, WHEEL Sp. z o.o.
* Copyright (c) 2004, 2005 Justin T. Gibbs
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce at minimum a disclaimer
* substantially similar to the "NO WARRANTY" disclaimer below
* ("Disclaimer") and any redistribution must be conditioned upon including
* a substantially similar Disclaimer requirement for further binary
* redistribution.
* 3. Neither the names of the above listed copyright holders nor the names
* of any contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF THE COPYRIGHT
* OWNER OR CONTRIBUTOR IS ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <dev/mpt/mpt.h>
#include <dev/mpt/mpt_cam.h>
#include <dev/mpt/mpt_raid.h>
#include "dev/mpt/mpilib/mpi_ioc.h" /* XXX Fix Event Handling!!! */
#include "dev/mpt/mpilib/mpi_init.h"
#include "dev/mpt/mpilib/mpi_targ.h"
#include "dev/mpt/mpilib/mpi_fc.h"
#include "dev/mpt/mpilib/mpi_sas.h"
#if __FreeBSD_version >= 500000
#include <sys/sysctl.h>
#endif
#include <sys/callout.h>
#include <sys/kthread.h>
#if __FreeBSD_version >= 700025
#ifndef CAM_NEW_TRAN_CODE
#define CAM_NEW_TRAN_CODE 1
#endif
#endif
static void mpt_poll(struct cam_sim *);
static timeout_t mpt_timeout;
static void mpt_action(struct cam_sim *, union ccb *);
static int
mpt_get_spi_settings(struct mpt_softc *, struct ccb_trans_settings *);
static void mpt_setwidth(struct mpt_softc *, int, int);
static void mpt_setsync(struct mpt_softc *, int, int, int);
static int mpt_update_spi_config(struct mpt_softc *, int);
static void mpt_calc_geometry(struct ccb_calc_geometry *ccg, int extended);
static mpt_reply_handler_t mpt_scsi_reply_handler;
static mpt_reply_handler_t mpt_scsi_tmf_reply_handler;
static mpt_reply_handler_t mpt_fc_els_reply_handler;
static int mpt_scsi_reply_frame_handler(struct mpt_softc *, request_t *,
MSG_DEFAULT_REPLY *);
static int mpt_bus_reset(struct mpt_softc *, target_id_t, lun_id_t, int);
static int mpt_fc_reset_link(struct mpt_softc *, int);
static int mpt_spawn_recovery_thread(struct mpt_softc *mpt);
static void mpt_terminate_recovery_thread(struct mpt_softc *mpt);
static void mpt_recovery_thread(void *arg);
static void mpt_recover_commands(struct mpt_softc *mpt);
static int mpt_scsi_send_tmf(struct mpt_softc *, u_int, u_int, u_int,
u_int, u_int, u_int, int);
static void mpt_fc_post_els(struct mpt_softc *mpt, request_t *, int);
static void mpt_post_target_command(struct mpt_softc *, request_t *, int);
static int mpt_add_els_buffers(struct mpt_softc *mpt);
static int mpt_add_target_commands(struct mpt_softc *mpt);
static int mpt_enable_lun(struct mpt_softc *, target_id_t, lun_id_t);
static int mpt_disable_lun(struct mpt_softc *, target_id_t, lun_id_t);
static void mpt_target_start_io(struct mpt_softc *, union ccb *);
static cam_status mpt_abort_target_ccb(struct mpt_softc *, union ccb *);
static int mpt_abort_target_cmd(struct mpt_softc *, request_t *);
static void mpt_scsi_tgt_status(struct mpt_softc *, union ccb *, request_t *,
uint8_t, uint8_t const *);
static void
mpt_scsi_tgt_tsk_mgmt(struct mpt_softc *, request_t *, mpt_task_mgmt_t,
tgt_resource_t *, int);
static void mpt_tgt_dump_tgt_state(struct mpt_softc *, request_t *);
static void mpt_tgt_dump_req_state(struct mpt_softc *, request_t *);
static mpt_reply_handler_t mpt_scsi_tgt_reply_handler;
static mpt_reply_handler_t mpt_sata_pass_reply_handler;
static uint32_t scsi_io_handler_id = MPT_HANDLER_ID_NONE;
static uint32_t scsi_tmf_handler_id = MPT_HANDLER_ID_NONE;
static uint32_t fc_els_handler_id = MPT_HANDLER_ID_NONE;
static uint32_t sata_pass_handler_id = MPT_HANDLER_ID_NONE;
static mpt_probe_handler_t mpt_cam_probe;
static mpt_attach_handler_t mpt_cam_attach;
static mpt_enable_handler_t mpt_cam_enable;
static mpt_ready_handler_t mpt_cam_ready;
static mpt_event_handler_t mpt_cam_event;
static mpt_reset_handler_t mpt_cam_ioc_reset;
static mpt_detach_handler_t mpt_cam_detach;
static struct mpt_personality mpt_cam_personality =
{
.name = "mpt_cam",
.probe = mpt_cam_probe,
.attach = mpt_cam_attach,
.enable = mpt_cam_enable,
.ready = mpt_cam_ready,
.event = mpt_cam_event,
.reset = mpt_cam_ioc_reset,
.detach = mpt_cam_detach,
};
DECLARE_MPT_PERSONALITY(mpt_cam, SI_ORDER_SECOND);
MODULE_DEPEND(mpt_cam, cam, 1, 1, 1);
int mpt_enable_sata_wc = -1;
TUNABLE_INT("hw.mpt.enable_sata_wc", &mpt_enable_sata_wc);
int
mpt_cam_probe(struct mpt_softc *mpt)
{
int role;
/*
* Only attach to nodes that support the initiator or target role
* (or want to) or have RAID physical devices that need CAM pass-thru
* support.
*/
if (mpt->do_cfg_role) {
role = mpt->cfg_role;
} else {
role = mpt->role;
}
if ((role & (MPT_ROLE_TARGET|MPT_ROLE_INITIATOR)) != 0 ||
(mpt->ioc_page2 != NULL && mpt->ioc_page2->MaxPhysDisks != 0)) {
return (0);
}
return (ENODEV);
}
int
mpt_cam_attach(struct mpt_softc *mpt)
{
struct cam_devq *devq;
mpt_handler_t handler;
int maxq;
int error;
MPT_LOCK(mpt);
TAILQ_INIT(&mpt->request_timeout_list);
maxq = (mpt->ioc_facts.GlobalCredits < MPT_MAX_REQUESTS(mpt))?
mpt->ioc_facts.GlobalCredits : MPT_MAX_REQUESTS(mpt);
handler.reply_handler = mpt_scsi_reply_handler;
error = mpt_register_handler(mpt, MPT_HANDLER_REPLY, handler,
&scsi_io_handler_id);
if (error != 0) {
MPT_UNLOCK(mpt);
goto cleanup;
}
handler.reply_handler = mpt_scsi_tmf_reply_handler;
error = mpt_register_handler(mpt, MPT_HANDLER_REPLY, handler,
&scsi_tmf_handler_id);
if (error != 0) {
MPT_UNLOCK(mpt);
goto cleanup;
}
/*
* If we're fibre channel and could support target mode, we register
* an ELS reply handler and give it resources.
*/
if (mpt->is_fc && (mpt->role & MPT_ROLE_TARGET) != 0) {
handler.reply_handler = mpt_fc_els_reply_handler;
error = mpt_register_handler(mpt, MPT_HANDLER_REPLY, handler,
&fc_els_handler_id);
if (error != 0) {
MPT_UNLOCK(mpt);
goto cleanup;
}
if (mpt_add_els_buffers(mpt) == FALSE) {
error = ENOMEM;
MPT_UNLOCK(mpt);
goto cleanup;
}
maxq -= mpt->els_cmds_allocated;
}
/*
* If we support target mode, we register a reply handler for it,
* but don't add command resources until we actually enable target
* mode.
*/
if (mpt->is_fc && (mpt->role & MPT_ROLE_TARGET) != 0) {
handler.reply_handler = mpt_scsi_tgt_reply_handler;
error = mpt_register_handler(mpt, MPT_HANDLER_REPLY, handler,
&mpt->scsi_tgt_handler_id);
if (error != 0) {
MPT_UNLOCK(mpt);
goto cleanup;
}
}
if (mpt->is_sas) {
handler.reply_handler = mpt_sata_pass_reply_handler;
error = mpt_register_handler(mpt, MPT_HANDLER_REPLY, handler,
&sata_pass_handler_id);
if (error != 0) {
MPT_UNLOCK(mpt);
goto cleanup;
}
}
/*
* We keep one request reserved for timeout TMF requests.
*/
mpt->tmf_req = mpt_get_request(mpt, FALSE);
if (mpt->tmf_req == NULL) {
mpt_prt(mpt, "Unable to allocate dedicated TMF request!\n");
error = ENOMEM;
MPT_UNLOCK(mpt);
goto cleanup;
}
/*
* Mark the request as free even though not on the free list.
* There is only one TMF request allowed to be outstanding at
* a time and the TMF routines perform their own allocation
* tracking using the standard state flags.
*/
mpt->tmf_req->state = REQ_STATE_FREE;
maxq--;
/*
* The rest of this is CAM foo, for which we need to drop our lock
*/
MPT_UNLOCK(mpt);
if (mpt_spawn_recovery_thread(mpt) != 0) {
mpt_prt(mpt, "Unable to spawn recovery thread!\n");
error = ENOMEM;
goto cleanup;
}
/*
* Create the device queue for our SIM(s).
*/
devq = cam_simq_alloc(maxq);
if (devq == NULL) {
mpt_prt(mpt, "Unable to allocate CAM SIMQ!\n");
error = ENOMEM;
goto cleanup;
}
/*
* Construct our SIM entry.
*/
mpt->sim =
mpt_sim_alloc(mpt_action, mpt_poll, "mpt", mpt, 1, maxq, devq);
if (mpt->sim == NULL) {
mpt_prt(mpt, "Unable to allocate CAM SIM!\n");
cam_simq_free(devq);
error = ENOMEM;
goto cleanup;
}
/*
* Register exactly this bus.
*/
MPT_LOCK(mpt);
if (mpt_xpt_bus_register(mpt->sim, mpt->dev, 0) != CAM_SUCCESS) {
mpt_prt(mpt, "Bus registration Failed!\n");
error = ENOMEM;
MPT_UNLOCK(mpt);
goto cleanup;
}
if (xpt_create_path(&mpt->path, NULL, cam_sim_path(mpt->sim),
CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD) != CAM_REQ_CMP) {
mpt_prt(mpt, "Unable to allocate Path!\n");
error = ENOMEM;
MPT_UNLOCK(mpt);
goto cleanup;
}
MPT_UNLOCK(mpt);
/*
* Only register a second bus for RAID physical
* devices if the controller supports RAID.
*/
if (mpt->ioc_page2 == NULL || mpt->ioc_page2->MaxPhysDisks == 0) {
return (0);
}
/*
* Create a "bus" to export all hidden disks to CAM.
*/
mpt->phydisk_sim =
mpt_sim_alloc(mpt_action, mpt_poll, "mpt", mpt, 1, maxq, devq);
if (mpt->phydisk_sim == NULL) {
mpt_prt(mpt, "Unable to allocate Physical Disk CAM SIM!\n");
error = ENOMEM;
goto cleanup;
}
/*
* Register this bus.
*/
MPT_LOCK(mpt);
if (mpt_xpt_bus_register(mpt->phydisk_sim, mpt->dev, 1) !=
CAM_SUCCESS) {
mpt_prt(mpt, "Physical Disk Bus registration Failed!\n");
error = ENOMEM;
MPT_UNLOCK(mpt);
goto cleanup;
}
if (xpt_create_path(&mpt->phydisk_path, NULL,
cam_sim_path(mpt->phydisk_sim),
CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD) != CAM_REQ_CMP) {
mpt_prt(mpt, "Unable to allocate Physical Disk Path!\n");
error = ENOMEM;
MPT_UNLOCK(mpt);
goto cleanup;
}
MPT_UNLOCK(mpt);
mpt_lprt(mpt, MPT_PRT_DEBUG, "attached cam\n");
return (0);
cleanup:
mpt_cam_detach(mpt);
return (error);
}
/*
* Read FC configuration information
*/
static int
mpt_read_config_info_fc(struct mpt_softc *mpt)
{
char *topology = NULL;
int rv;
rv = mpt_read_cfg_header(mpt, MPI_CONFIG_PAGETYPE_FC_PORT, 0,
0, &mpt->mpt_fcport_page0.Header, FALSE, 5000);
if (rv) {
return (-1);
}
mpt_lprt(mpt, MPT_PRT_DEBUG, "FC Port Page 0 Header: %x %x %x %x\n",
mpt->mpt_fcport_page0.Header.PageVersion,
mpt->mpt_fcport_page0.Header.PageLength,
mpt->mpt_fcport_page0.Header.PageNumber,
mpt->mpt_fcport_page0.Header.PageType);
rv = mpt_read_cur_cfg_page(mpt, 0, &mpt->mpt_fcport_page0.Header,
sizeof(mpt->mpt_fcport_page0), FALSE, 5000);
if (rv) {
mpt_prt(mpt, "failed to read FC Port Page 0\n");
return (-1);
}
mpt2host_config_page_fc_port_0(&mpt->mpt_fcport_page0);
mpt->mpt_fcport_speed = mpt->mpt_fcport_page0.CurrentSpeed;
switch (mpt->mpt_fcport_page0.Flags &
MPI_FCPORTPAGE0_FLAGS_ATTACH_TYPE_MASK) {
case MPI_FCPORTPAGE0_FLAGS_ATTACH_NO_INIT:
mpt->mpt_fcport_speed = 0;
topology = "<NO LOOP>";
break;
case MPI_FCPORTPAGE0_FLAGS_ATTACH_POINT_TO_POINT:
topology = "N-Port";
break;
case MPI_FCPORTPAGE0_FLAGS_ATTACH_PRIVATE_LOOP:
topology = "NL-Port";
break;
case MPI_FCPORTPAGE0_FLAGS_ATTACH_FABRIC_DIRECT:
topology = "F-Port";
break;
case MPI_FCPORTPAGE0_FLAGS_ATTACH_PUBLIC_LOOP:
topology = "FL-Port";
break;
default:
mpt->mpt_fcport_speed = 0;
topology = "?";
break;
}
mpt_lprt(mpt, MPT_PRT_INFO,
"FC Port Page 0: Topology <%s> WWNN 0x%08x%08x WWPN 0x%08x%08x "
"Speed %u-Gbit\n", topology,
mpt->mpt_fcport_page0.WWNN.High,
mpt->mpt_fcport_page0.WWNN.Low,
mpt->mpt_fcport_page0.WWPN.High,
mpt->mpt_fcport_page0.WWPN.Low,
mpt->mpt_fcport_speed);
#if __FreeBSD_version >= 500000
MPT_UNLOCK(mpt);
{
struct sysctl_ctx_list *ctx = device_get_sysctl_ctx(mpt->dev);
struct sysctl_oid *tree = device_get_sysctl_tree(mpt->dev);
snprintf(mpt->scinfo.fc.wwnn,
sizeof (mpt->scinfo.fc.wwnn), "0x%08x%08x",
mpt->mpt_fcport_page0.WWNN.High,
mpt->mpt_fcport_page0.WWNN.Low);
snprintf(mpt->scinfo.fc.wwpn,
sizeof (mpt->scinfo.fc.wwpn), "0x%08x%08x",
mpt->mpt_fcport_page0.WWPN.High,
mpt->mpt_fcport_page0.WWPN.Low);
SYSCTL_ADD_STRING(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
"wwnn", CTLFLAG_RD, mpt->scinfo.fc.wwnn, 0,
"World Wide Node Name");
SYSCTL_ADD_STRING(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
"wwpn", CTLFLAG_RD, mpt->scinfo.fc.wwpn, 0,
"World Wide Port Name");
}
MPT_LOCK(mpt);
#endif
return (0);
}
/*
* Set FC configuration information.
*/
static int
mpt_set_initial_config_fc(struct mpt_softc *mpt)
{
CONFIG_PAGE_FC_PORT_1 fc;
U32 fl;
int r, doit = 0;
int role;
r = mpt_read_cfg_header(mpt, MPI_CONFIG_PAGETYPE_FC_PORT, 1, 0,
&fc.Header, FALSE, 5000);
if (r) {
mpt_prt(mpt, "failed to read FC page 1 header\n");
return (mpt_fc_reset_link(mpt, 1));
}
r = mpt_read_cfg_page(mpt, MPI_CONFIG_ACTION_PAGE_READ_NVRAM, 0,
&fc.Header, sizeof (fc), FALSE, 5000);
if (r) {
mpt_prt(mpt, "failed to read FC page 1\n");
return (mpt_fc_reset_link(mpt, 1));
}
mpt2host_config_page_fc_port_1(&fc);
/*
* Check our flags to make sure we support the role we want.
*/
doit = 0;
role = 0;
fl = fc.Flags;
if (fl & MPI_FCPORTPAGE1_FLAGS_PROT_FCP_INIT) {
role |= MPT_ROLE_INITIATOR;
}
if (fl & MPI_FCPORTPAGE1_FLAGS_PROT_FCP_TARG) {
role |= MPT_ROLE_TARGET;
}
fl &= ~MPI_FCPORTPAGE1_FLAGS_PROT_MASK;
if (mpt->do_cfg_role == 0) {
role = mpt->cfg_role;
} else {
mpt->do_cfg_role = 0;
}
if (role != mpt->cfg_role) {
if (mpt->cfg_role & MPT_ROLE_INITIATOR) {
if ((role & MPT_ROLE_INITIATOR) == 0) {
mpt_prt(mpt, "adding initiator role\n");
fl |= MPI_FCPORTPAGE1_FLAGS_PROT_FCP_INIT;
doit++;
} else {
mpt_prt(mpt, "keeping initiator role\n");
}
} else if (role & MPT_ROLE_INITIATOR) {
mpt_prt(mpt, "removing initiator role\n");
doit++;
}
if (mpt->cfg_role & MPT_ROLE_TARGET) {
if ((role & MPT_ROLE_TARGET) == 0) {
mpt_prt(mpt, "adding target role\n");
fl |= MPI_FCPORTPAGE1_FLAGS_PROT_FCP_TARG;
doit++;
} else {
mpt_prt(mpt, "keeping target role\n");
}
} else if (role & MPT_ROLE_TARGET) {
mpt_prt(mpt, "removing target role\n");
doit++;
}
mpt->role = mpt->cfg_role;
}
if (fl & MPI_FCPORTPAGE1_FLAGS_PROT_FCP_TARG) {
if ((fl & MPI_FCPORTPAGE1_FLAGS_TARGET_MODE_OXID) == 0) {
mpt_prt(mpt, "adding OXID option\n");
fl |= MPI_FCPORTPAGE1_FLAGS_TARGET_MODE_OXID;
doit++;
}
}
if (doit) {
fc.Flags = fl;
host2mpt_config_page_fc_port_1(&fc);
r = mpt_write_cfg_page(mpt,
MPI_CONFIG_ACTION_PAGE_WRITE_NVRAM, 0, &fc.Header,
sizeof(fc), FALSE, 5000);
if (r != 0) {
mpt_prt(mpt, "failed to update NVRAM with changes\n");
return (0);
}
mpt_prt(mpt, "NOTE: NVRAM changes will not take "
"effect until next reboot or IOC reset\n");
}
return (0);
}
static int
mptsas_sas_io_unit_pg0(struct mpt_softc *mpt, struct mptsas_portinfo *portinfo)
{
ConfigExtendedPageHeader_t hdr;
struct mptsas_phyinfo *phyinfo;
SasIOUnitPage0_t *buffer;
int error, len, i;
error = mpt_read_extcfg_header(mpt, MPI_SASIOUNITPAGE0_PAGEVERSION,
0, 0, MPI_CONFIG_EXTPAGETYPE_SAS_IO_UNIT,
&hdr, 0, 10000);
if (error)
goto out;
if (hdr.ExtPageLength == 0) {
error = ENXIO;
goto out;
}
len = hdr.ExtPageLength * 4;
buffer = malloc(len, M_DEVBUF, M_NOWAIT|M_ZERO);
if (buffer == NULL) {
error = ENOMEM;
goto out;
}
error = mpt_read_extcfg_page(mpt, MPI_CONFIG_ACTION_PAGE_READ_CURRENT,
0, &hdr, buffer, len, 0, 10000);
if (error) {
free(buffer, M_DEVBUF);
goto out;
}
portinfo->num_phys = buffer->NumPhys;
portinfo->phy_info = malloc(sizeof(*portinfo->phy_info) *
portinfo->num_phys, M_DEVBUF, M_NOWAIT|M_ZERO);
if (portinfo->phy_info == NULL) {
free(buffer, M_DEVBUF);
error = ENOMEM;
goto out;
}
for (i = 0; i < portinfo->num_phys; i++) {
phyinfo = &portinfo->phy_info[i];
phyinfo->phy_num = i;
phyinfo->port_id = buffer->PhyData[i].Port;
phyinfo->negotiated_link_rate =
buffer->PhyData[i].NegotiatedLinkRate;
phyinfo->handle =
le16toh(buffer->PhyData[i].ControllerDevHandle);
}
free(buffer, M_DEVBUF);
out:
return (error);
}
static int
mptsas_sas_phy_pg0(struct mpt_softc *mpt, struct mptsas_phyinfo *phy_info,
uint32_t form, uint32_t form_specific)
{
ConfigExtendedPageHeader_t hdr;
SasPhyPage0_t *buffer;
int error;
error = mpt_read_extcfg_header(mpt, MPI_SASPHY0_PAGEVERSION, 0, 0,
MPI_CONFIG_EXTPAGETYPE_SAS_PHY, &hdr,
0, 10000);
if (error)
goto out;
if (hdr.ExtPageLength == 0) {
error = ENXIO;
goto out;
}
buffer = malloc(sizeof(SasPhyPage0_t), M_DEVBUF, M_NOWAIT|M_ZERO);
if (buffer == NULL) {
error = ENOMEM;
goto out;
}
error = mpt_read_extcfg_page(mpt, MPI_CONFIG_ACTION_PAGE_READ_CURRENT,
form + form_specific, &hdr, buffer,
sizeof(SasPhyPage0_t), 0, 10000);
if (error) {
free(buffer, M_DEVBUF);
goto out;
}
phy_info->hw_link_rate = buffer->HwLinkRate;
phy_info->programmed_link_rate = buffer->ProgrammedLinkRate;
phy_info->identify.dev_handle = le16toh(buffer->OwnerDevHandle);
phy_info->attached.dev_handle = le16toh(buffer->AttachedDevHandle);
free(buffer, M_DEVBUF);
out:
return (error);
}
static int
mptsas_sas_device_pg0(struct mpt_softc *mpt, struct mptsas_devinfo *device_info,
uint32_t form, uint32_t form_specific)
{
ConfigExtendedPageHeader_t hdr;
SasDevicePage0_t *buffer;
uint64_t sas_address;
int error = 0;
bzero(device_info, sizeof(*device_info));
error = mpt_read_extcfg_header(mpt, MPI_SASDEVICE0_PAGEVERSION, 0, 0,
MPI_CONFIG_EXTPAGETYPE_SAS_DEVICE,
&hdr, 0, 10000);
if (error)
goto out;
if (hdr.ExtPageLength == 0) {
error = ENXIO;
goto out;
}
buffer = malloc(sizeof(SasDevicePage0_t), M_DEVBUF, M_NOWAIT|M_ZERO);
if (buffer == NULL) {
error = ENOMEM;
goto out;
}
error = mpt_read_extcfg_page(mpt, MPI_CONFIG_ACTION_PAGE_READ_CURRENT,
form + form_specific, &hdr, buffer,
sizeof(SasDevicePage0_t), 0, 10000);
if (error) {
free(buffer, M_DEVBUF);
goto out;
}
device_info->dev_handle = le16toh(buffer->DevHandle);
device_info->parent_dev_handle = le16toh(buffer->ParentDevHandle);
device_info->enclosure_handle = le16toh(buffer->EnclosureHandle);
device_info->slot = le16toh(buffer->Slot);
device_info->phy_num = buffer->PhyNum;
device_info->physical_port = buffer->PhysicalPort;
device_info->target_id = buffer->TargetID;
device_info->bus = buffer->Bus;
bcopy(&buffer->SASAddress, &sas_address, sizeof(uint64_t));
device_info->sas_address = le64toh(sas_address);
device_info->device_info = le32toh(buffer->DeviceInfo);
free(buffer, M_DEVBUF);
out:
return (error);
}
/*
* Read SAS configuration information. Nothing to do yet.
*/
static int
mpt_read_config_info_sas(struct mpt_softc *mpt)
{
struct mptsas_portinfo *portinfo;
struct mptsas_phyinfo *phyinfo;
int error, i;
portinfo = malloc(sizeof(*portinfo), M_DEVBUF, M_NOWAIT|M_ZERO);
if (portinfo == NULL)
return (ENOMEM);
error = mptsas_sas_io_unit_pg0(mpt, portinfo);
if (error) {
free(portinfo, M_DEVBUF);
return (0);
}
for (i = 0; i < portinfo->num_phys; i++) {
phyinfo = &portinfo->phy_info[i];
error = mptsas_sas_phy_pg0(mpt, phyinfo,
(MPI_SAS_PHY_PGAD_FORM_PHY_NUMBER <<
MPI_SAS_PHY_PGAD_FORM_SHIFT), i);
if (error)
break;
error = mptsas_sas_device_pg0(mpt, &phyinfo->identify,
(MPI_SAS_DEVICE_PGAD_FORM_HANDLE <<
MPI_SAS_DEVICE_PGAD_FORM_SHIFT),
phyinfo->handle);
if (error)
break;
phyinfo->identify.phy_num = phyinfo->phy_num = i;
if (phyinfo->attached.dev_handle)
error = mptsas_sas_device_pg0(mpt,
&phyinfo->attached,
(MPI_SAS_DEVICE_PGAD_FORM_HANDLE <<
MPI_SAS_DEVICE_PGAD_FORM_SHIFT),
phyinfo->attached.dev_handle);
if (error)
break;
}
mpt->sas_portinfo = portinfo;
return (0);
}
static void
mptsas_set_sata_wc(struct mpt_softc *mpt, struct mptsas_devinfo *devinfo,
int enabled)
{
SataPassthroughRequest_t *pass;
request_t *req;
int error, status;
req = mpt_get_request(mpt, 0);
if (req == NULL)
return;
pass = req->req_vbuf;
bzero(pass, sizeof(SataPassthroughRequest_t));
pass->Function = MPI_FUNCTION_SATA_PASSTHROUGH;
pass->TargetID = devinfo->target_id;
pass->Bus = devinfo->bus;
pass->PassthroughFlags = 0;
pass->ConnectionRate = MPI_SATA_PT_REQ_CONNECT_RATE_NEGOTIATED;
pass->DataLength = 0;
pass->MsgContext = htole32(req->index | sata_pass_handler_id);
pass->CommandFIS[0] = 0x27;
pass->CommandFIS[1] = 0x80;
pass->CommandFIS[2] = 0xef;
pass->CommandFIS[3] = (enabled) ? 0x02 : 0x82;
pass->CommandFIS[7] = 0x40;
pass->CommandFIS[15] = 0x08;
mpt_check_doorbell(mpt);
mpt_send_cmd(mpt, req);
error = mpt_wait_req(mpt, req, REQ_STATE_DONE, REQ_STATE_DONE, 0,
10 * 1000);
if (error) {
mpt_free_request(mpt, req);
printf("error %d sending passthrough\n", error);
return;
}
status = le16toh(req->IOCStatus);
if (status != MPI_IOCSTATUS_SUCCESS) {
mpt_free_request(mpt, req);
printf("IOCSTATUS %d\n", status);
return;
}
mpt_free_request(mpt, req);
}
/*
* Set SAS configuration information. Nothing to do yet.
*/
static int
mpt_set_initial_config_sas(struct mpt_softc *mpt)
{
struct mptsas_phyinfo *phyinfo;
int i;
if ((mpt_enable_sata_wc != -1) && (mpt->sas_portinfo != NULL)) {
for (i = 0; i < mpt->sas_portinfo->num_phys; i++) {
phyinfo = &mpt->sas_portinfo->phy_info[i];
if (phyinfo->attached.dev_handle == 0)
continue;
if ((phyinfo->attached.device_info &
MPI_SAS_DEVICE_INFO_SATA_DEVICE) == 0)
continue;
if (bootverbose)
device_printf(mpt->dev,
"%sabling SATA WC on phy %d\n",
(mpt_enable_sata_wc) ? "En" : "Dis", i);
mptsas_set_sata_wc(mpt, &phyinfo->attached,
mpt_enable_sata_wc);
}
}
return (0);
}
static int
mpt_sata_pass_reply_handler(struct mpt_softc *mpt, request_t *req,
uint32_t reply_desc, MSG_DEFAULT_REPLY *reply_frame)
{
if (req != NULL) {
if (reply_frame != NULL) {
req->IOCStatus = le16toh(reply_frame->IOCStatus);
}
req->state &= ~REQ_STATE_QUEUED;
req->state |= REQ_STATE_DONE;
TAILQ_REMOVE(&mpt->request_pending_list, req, links);
if ((req->state & REQ_STATE_NEED_WAKEUP) != 0) {
wakeup(req);
} else if ((req->state & REQ_STATE_TIMEDOUT) != 0) {
/*
* Whew- we can free this request (late completion)
*/
mpt_free_request(mpt, req);
}
}
return (TRUE);
}
/*
* Read SCSI configuration information
*/
static int
mpt_read_config_info_spi(struct mpt_softc *mpt)
{
int rv, i;
rv = mpt_read_cfg_header(mpt, MPI_CONFIG_PAGETYPE_SCSI_PORT, 0, 0,
&mpt->mpt_port_page0.Header, FALSE, 5000);
if (rv) {
return (-1);
}
mpt_lprt(mpt, MPT_PRT_DEBUG, "SPI Port Page 0 Header: %x %x %x %x\n",
mpt->mpt_port_page0.Header.PageVersion,
mpt->mpt_port_page0.Header.PageLength,
mpt->mpt_port_page0.Header.PageNumber,
mpt->mpt_port_page0.Header.PageType);
rv = mpt_read_cfg_header(mpt, MPI_CONFIG_PAGETYPE_SCSI_PORT, 1, 0,
&mpt->mpt_port_page1.Header, FALSE, 5000);
if (rv) {
return (-1);
}
mpt_lprt(mpt, MPT_PRT_DEBUG, "SPI Port Page 1 Header: %x %x %x %x\n",
mpt->mpt_port_page1.Header.PageVersion,
mpt->mpt_port_page1.Header.PageLength,
mpt->mpt_port_page1.Header.PageNumber,
mpt->mpt_port_page1.Header.PageType);
rv = mpt_read_cfg_header(mpt, MPI_CONFIG_PAGETYPE_SCSI_PORT, 2, 0,
&mpt->mpt_port_page2.Header, FALSE, 5000);
if (rv) {
return (-1);
}
mpt_lprt(mpt, MPT_PRT_DEBUG, "SPI Port Page 2 Header: %x %x %x %x\n",
mpt->mpt_port_page2.Header.PageVersion,
mpt->mpt_port_page2.Header.PageLength,
mpt->mpt_port_page2.Header.PageNumber,
mpt->mpt_port_page2.Header.PageType);
for (i = 0; i < 16; i++) {
rv = mpt_read_cfg_header(mpt, MPI_CONFIG_PAGETYPE_SCSI_DEVICE,
0, i, &mpt->mpt_dev_page0[i].Header, FALSE, 5000);
if (rv) {
return (-1);
}
mpt_lprt(mpt, MPT_PRT_DEBUG,
"SPI Target %d Device Page 0 Header: %x %x %x %x\n", i,
mpt->mpt_dev_page0[i].Header.PageVersion,
mpt->mpt_dev_page0[i].Header.PageLength,
mpt->mpt_dev_page0[i].Header.PageNumber,
mpt->mpt_dev_page0[i].Header.PageType);
rv = mpt_read_cfg_header(mpt, MPI_CONFIG_PAGETYPE_SCSI_DEVICE,
1, i, &mpt->mpt_dev_page1[i].Header, FALSE, 5000);
if (rv) {
return (-1);
}
mpt_lprt(mpt, MPT_PRT_DEBUG,
"SPI Target %d Device Page 1 Header: %x %x %x %x\n", i,
mpt->mpt_dev_page1[i].Header.PageVersion,
mpt->mpt_dev_page1[i].Header.PageLength,
mpt->mpt_dev_page1[i].Header.PageNumber,
mpt->mpt_dev_page1[i].Header.PageType);
}
/*
* At this point, we don't *have* to fail. As long as we have
* valid config header information, we can (barely) lurch
* along.
*/
rv = mpt_read_cur_cfg_page(mpt, 0, &mpt->mpt_port_page0.Header,
sizeof(mpt->mpt_port_page0), FALSE, 5000);
if (rv) {
mpt_prt(mpt, "failed to read SPI Port Page 0\n");
} else {
mpt2host_config_page_scsi_port_0(&mpt->mpt_port_page0);
mpt_lprt(mpt, MPT_PRT_NEGOTIATION,
"SPI Port Page 0: Capabilities %x PhysicalInterface %x\n",
mpt->mpt_port_page0.Capabilities,
mpt->mpt_port_page0.PhysicalInterface);
}
rv = mpt_read_cur_cfg_page(mpt, 0, &mpt->mpt_port_page1.Header,
sizeof(mpt->mpt_port_page1), FALSE, 5000);
if (rv) {
mpt_prt(mpt, "failed to read SPI Port Page 1\n");
} else {
mpt2host_config_page_scsi_port_1(&mpt->mpt_port_page1);
mpt_lprt(mpt, MPT_PRT_DEBUG,
"SPI Port Page 1: Configuration %x OnBusTimerValue %x\n",
mpt->mpt_port_page1.Configuration,
mpt->mpt_port_page1.OnBusTimerValue);
}
rv = mpt_read_cur_cfg_page(mpt, 0, &mpt->mpt_port_page2.Header,
sizeof(mpt->mpt_port_page2), FALSE, 5000);
if (rv) {
mpt_prt(mpt, "failed to read SPI Port Page 2\n");
} else {
mpt_lprt(mpt, MPT_PRT_NEGOTIATION,
"Port Page 2: Flags %x Settings %x\n",
mpt->mpt_port_page2.PortFlags,
mpt->mpt_port_page2.PortSettings);
mpt2host_config_page_scsi_port_2(&mpt->mpt_port_page2);
for (i = 0; i < 16; i++) {
mpt_lprt(mpt, MPT_PRT_NEGOTIATION,
" Port Page 2 Tgt %d: timo %x SF %x Flags %x\n",
i, mpt->mpt_port_page2.DeviceSettings[i].Timeout,
mpt->mpt_port_page2.DeviceSettings[i].SyncFactor,
mpt->mpt_port_page2.DeviceSettings[i].DeviceFlags);
}
}
for (i = 0; i < 16; i++) {
rv = mpt_read_cur_cfg_page(mpt, i,
&mpt->mpt_dev_page0[i].Header, sizeof(*mpt->mpt_dev_page0),
FALSE, 5000);
if (rv) {
mpt_prt(mpt,
"cannot read SPI Target %d Device Page 0\n", i);
continue;
}
mpt2host_config_page_scsi_device_0(&mpt->mpt_dev_page0[i]);
mpt_lprt(mpt, MPT_PRT_NEGOTIATION,
"target %d page 0: Negotiated Params %x Information %x\n",
i, mpt->mpt_dev_page0[i].NegotiatedParameters,
mpt->mpt_dev_page0[i].Information);
rv = mpt_read_cur_cfg_page(mpt, i,
&mpt->mpt_dev_page1[i].Header, sizeof(*mpt->mpt_dev_page1),
FALSE, 5000);
if (rv) {
mpt_prt(mpt,
"cannot read SPI Target %d Device Page 1\n", i);
continue;
}
mpt2host_config_page_scsi_device_1(&mpt->mpt_dev_page1[i]);
mpt_lprt(mpt, MPT_PRT_NEGOTIATION,
"target %d page 1: Requested Params %x Configuration %x\n",
i, mpt->mpt_dev_page1[i].RequestedParameters,
mpt->mpt_dev_page1[i].Configuration);
}
return (0);
}
/*
* Validate SPI configuration information.
*
* In particular, validate SPI Port Page 1.
*/
static int
mpt_set_initial_config_spi(struct mpt_softc *mpt)
{
int error, i, pp1val;
mpt->mpt_disc_enable = 0xff;
mpt->mpt_tag_enable = 0;
pp1val = ((1 << mpt->mpt_ini_id) <<
MPI_SCSIPORTPAGE1_CFG_SHIFT_PORT_RESPONSE_ID) | mpt->mpt_ini_id;
if (mpt->mpt_port_page1.Configuration != pp1val) {
CONFIG_PAGE_SCSI_PORT_1 tmp;
mpt_prt(mpt, "SPI Port Page 1 Config value bad (%x)- should "
"be %x\n", mpt->mpt_port_page1.Configuration, pp1val);
tmp = mpt->mpt_port_page1;
tmp.Configuration = pp1val;
host2mpt_config_page_scsi_port_1(&tmp);
error = mpt_write_cur_cfg_page(mpt, 0,
&tmp.Header, sizeof(tmp), FALSE, 5000);
if (error) {
return (-1);
}
error = mpt_read_cur_cfg_page(mpt, 0,
&tmp.Header, sizeof(tmp), FALSE, 5000);
if (error) {
return (-1);
}
mpt2host_config_page_scsi_port_1(&tmp);
if (tmp.Configuration != pp1val) {
mpt_prt(mpt,
"failed to reset SPI Port Page 1 Config value\n");
return (-1);
}
mpt->mpt_port_page1 = tmp;
}
/*
* The purpose of this exercise is to get
* all targets back to async/narrow.
*
* We skip this step if the BIOS has already negotiated
* speeds with the targets.
*/
i = mpt->mpt_port_page2.PortSettings &
MPI_SCSIPORTPAGE2_PORT_MASK_NEGO_MASTER_SETTINGS;
if (i == MPI_SCSIPORTPAGE2_PORT_ALL_MASTER_SETTINGS) {
mpt_lprt(mpt, MPT_PRT_NEGOTIATION,
"honoring BIOS transfer negotiations\n");
} else {
for (i = 0; i < 16; i++) {
mpt->mpt_dev_page1[i].RequestedParameters = 0;
mpt->mpt_dev_page1[i].Configuration = 0;
(void) mpt_update_spi_config(mpt, i);
}
}
return (0);
}
int
mpt_cam_enable(struct mpt_softc *mpt)
{
int error;
MPT_LOCK(mpt);
error = EIO;
if (mpt->is_fc) {
if (mpt_read_config_info_fc(mpt)) {
goto out;
}
if (mpt_set_initial_config_fc(mpt)) {
goto out;
}
} else if (mpt->is_sas) {
if (mpt_read_config_info_sas(mpt)) {
goto out;
}
if (mpt_set_initial_config_sas(mpt)) {
goto out;
}
} else if (mpt->is_spi) {
if (mpt_read_config_info_spi(mpt)) {
goto out;
}
if (mpt_set_initial_config_spi(mpt)) {
goto out;
}
}
error = 0;
out:
MPT_UNLOCK(mpt);
return (error);
}
void
mpt_cam_ready(struct mpt_softc *mpt)
{
/*
* If we're in target mode, hang out resources now
* so we don't cause the world to hang talking to us.
*/
if (mpt->is_fc && (mpt->role & MPT_ROLE_TARGET)) {
/*
* Try to add some target command resources
*/
MPT_LOCK(mpt);
if (mpt_add_target_commands(mpt) == FALSE) {
mpt_prt(mpt, "failed to add target commands\n");
}
MPT_UNLOCK(mpt);
}
mpt->ready = 1;
}
void
mpt_cam_detach(struct mpt_softc *mpt)
{
mpt_handler_t handler;
MPT_LOCK(mpt);
mpt->ready = 0;
mpt_terminate_recovery_thread(mpt);
handler.reply_handler = mpt_scsi_reply_handler;
mpt_deregister_handler(mpt, MPT_HANDLER_REPLY, handler,
scsi_io_handler_id);
handler.reply_handler = mpt_scsi_tmf_reply_handler;
mpt_deregister_handler(mpt, MPT_HANDLER_REPLY, handler,
scsi_tmf_handler_id);
handler.reply_handler = mpt_fc_els_reply_handler;
mpt_deregister_handler(mpt, MPT_HANDLER_REPLY, handler,
fc_els_handler_id);
handler.reply_handler = mpt_scsi_tgt_reply_handler;
mpt_deregister_handler(mpt, MPT_HANDLER_REPLY, handler,
mpt->scsi_tgt_handler_id);
handler.reply_handler = mpt_sata_pass_reply_handler;
mpt_deregister_handler(mpt, MPT_HANDLER_REPLY, handler,
sata_pass_handler_id);
if (mpt->tmf_req != NULL) {
mpt->tmf_req->state = REQ_STATE_ALLOCATED;
mpt_free_request(mpt, mpt->tmf_req);
mpt->tmf_req = NULL;
}
if (mpt->sas_portinfo != NULL) {
free(mpt->sas_portinfo, M_DEVBUF);
mpt->sas_portinfo = NULL;
}
if (mpt->sim != NULL) {
xpt_free_path(mpt->path);
xpt_bus_deregister(cam_sim_path(mpt->sim));
cam_sim_free(mpt->sim, TRUE);
mpt->sim = NULL;
}
if (mpt->phydisk_sim != NULL) {
xpt_free_path(mpt->phydisk_path);
xpt_bus_deregister(cam_sim_path(mpt->phydisk_sim));
cam_sim_free(mpt->phydisk_sim, TRUE);
mpt->phydisk_sim = NULL;
}
MPT_UNLOCK(mpt);
}
/* This routine is used after a system crash to dump core onto the swap device.
*/
static void
mpt_poll(struct cam_sim *sim)
{
struct mpt_softc *mpt;
mpt = (struct mpt_softc *)cam_sim_softc(sim);
mpt_intr(mpt);
}
/*
* Watchdog timeout routine for SCSI requests.
*/
static void
mpt_timeout(void *arg)
{
union ccb *ccb;
struct mpt_softc *mpt;
request_t *req;
ccb = (union ccb *)arg;
mpt = ccb->ccb_h.ccb_mpt_ptr;
#if __FreeBSD_version < 500000
MPT_LOCK(mpt);
#endif
MPT_LOCK_ASSERT(mpt);
req = ccb->ccb_h.ccb_req_ptr;
mpt_prt(mpt, "request %p:%u timed out for ccb %p (req->ccb %p)\n", req,
req->serno, ccb, req->ccb);
/* XXX: WHAT ARE WE TRYING TO DO HERE? */
if ((req->state & REQ_STATE_QUEUED) == REQ_STATE_QUEUED) {
TAILQ_REMOVE(&mpt->request_pending_list, req, links);
TAILQ_INSERT_TAIL(&mpt->request_timeout_list, req, links);
req->state |= REQ_STATE_TIMEDOUT;
mpt_wakeup_recovery_thread(mpt);
}
#if __FreeBSD_version < 500000
MPT_UNLOCK(mpt);
#endif
}
/*
* Callback routine from "bus_dmamap_load" or, in simple cases, called directly.
*
* Takes a list of physical segments and builds the SGL for SCSI IO command
* and forwards the commard to the IOC after one last check that CAM has not
* aborted the transaction.
*/
static void
mpt_execute_req_a64(void *arg, bus_dma_segment_t *dm_segs, int nseg, int error)
{
request_t *req, *trq;
char *mpt_off;
union ccb *ccb;
struct mpt_softc *mpt;
int seg, first_lim;
uint32_t flags, nxt_off;
void *sglp = NULL;
MSG_REQUEST_HEADER *hdrp;
SGE_SIMPLE64 *se;
SGE_CHAIN64 *ce;
int istgt = 0;
req = (request_t *)arg;
ccb = req->ccb;
mpt = ccb->ccb_h.ccb_mpt_ptr;
req = ccb->ccb_h.ccb_req_ptr;
hdrp = req->req_vbuf;
mpt_off = req->req_vbuf;
if (error == 0 && ((uint32_t)nseg) >= mpt->max_seg_cnt) {
error = EFBIG;
}
if (error == 0) {
switch (hdrp->Function) {
case MPI_FUNCTION_SCSI_IO_REQUEST:
case MPI_FUNCTION_RAID_SCSI_IO_PASSTHROUGH:
istgt = 0;
sglp = &((PTR_MSG_SCSI_IO_REQUEST)hdrp)->SGL;
break;
case MPI_FUNCTION_TARGET_ASSIST:
istgt = 1;
sglp = &((PTR_MSG_TARGET_ASSIST_REQUEST)hdrp)->SGL;
break;
default:
mpt_prt(mpt, "bad fct 0x%x in mpt_execute_req_a64\n",
hdrp->Function);
error = EINVAL;
break;
}
}
if (error == 0 && ((uint32_t)nseg) >= mpt->max_seg_cnt) {
error = EFBIG;
mpt_prt(mpt, "segment count %d too large (max %u)\n",
nseg, mpt->max_seg_cnt);
}
bad:
if (error != 0) {
if (error != EFBIG && error != ENOMEM) {
mpt_prt(mpt, "mpt_execute_req_a64: err %d\n", error);
}
if ((ccb->ccb_h.status & CAM_STATUS_MASK) == CAM_REQ_INPROG) {
cam_status status;
mpt_freeze_ccb(ccb);
if (error == EFBIG) {
status = CAM_REQ_TOO_BIG;
} else if (error == ENOMEM) {
if (mpt->outofbeer == 0) {
mpt->outofbeer = 1;
xpt_freeze_simq(mpt->sim, 1);
mpt_lprt(mpt, MPT_PRT_DEBUG,
"FREEZEQ\n");
}
status = CAM_REQUEUE_REQ;
} else {
status = CAM_REQ_CMP_ERR;
}
mpt_set_ccb_status(ccb, status);
}
if (hdrp->Function == MPI_FUNCTION_TARGET_ASSIST) {
request_t *cmd_req =
MPT_TAG_2_REQ(mpt, ccb->csio.tag_id);
MPT_TGT_STATE(mpt, cmd_req)->state = TGT_STATE_IN_CAM;
MPT_TGT_STATE(mpt, cmd_req)->ccb = NULL;
MPT_TGT_STATE(mpt, cmd_req)->req = NULL;
}
ccb->ccb_h.status &= ~CAM_SIM_QUEUED;
KASSERT(ccb->ccb_h.status, ("zero ccb sts at %d\n", __LINE__));
xpt_done(ccb);
CAMLOCK_2_MPTLOCK(mpt);
mpt_free_request(mpt, req);
MPTLOCK_2_CAMLOCK(mpt);
return;
}
/*
* No data to transfer?
* Just make a single simple SGL with zero length.
*/
if (mpt->verbose >= MPT_PRT_DEBUG) {
int tidx = ((char *)sglp) - mpt_off;
memset(&mpt_off[tidx], 0xff, MPT_REQUEST_AREA - tidx);
}
if (nseg == 0) {
SGE_SIMPLE32 *se1 = (SGE_SIMPLE32 *) sglp;
MPI_pSGE_SET_FLAGS(se1,
(MPI_SGE_FLAGS_LAST_ELEMENT | MPI_SGE_FLAGS_END_OF_BUFFER |
MPI_SGE_FLAGS_SIMPLE_ELEMENT | MPI_SGE_FLAGS_END_OF_LIST));
se1->FlagsLength = htole32(se1->FlagsLength);
goto out;
}
flags = MPI_SGE_FLAGS_SIMPLE_ELEMENT | MPI_SGE_FLAGS_64_BIT_ADDRESSING;
if (istgt == 0) {
if ((ccb->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_OUT) {
flags |= MPI_SGE_FLAGS_HOST_TO_IOC;
}
} else {
if ((ccb->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_IN) {
flags |= MPI_SGE_FLAGS_HOST_TO_IOC;
}
}
if (!(ccb->ccb_h.flags & (CAM_SG_LIST_PHYS|CAM_DATA_PHYS))) {
bus_dmasync_op_t op;
if (istgt == 0) {
if ((ccb->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_IN) {
op = BUS_DMASYNC_PREREAD;
} else {
op = BUS_DMASYNC_PREWRITE;
}
} else {
if ((ccb->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_IN) {
op = BUS_DMASYNC_PREWRITE;
} else {
op = BUS_DMASYNC_PREREAD;
}
}
bus_dmamap_sync(mpt->buffer_dmat, req->dmap, op);
}
/*
* Okay, fill in what we can at the end of the command frame.
* If we have up to MPT_NSGL_FIRST, we can fit them all into
* the command frame.
*
* Otherwise, we fill up through MPT_NSGL_FIRST less one
* SIMPLE64 pointers and start doing CHAIN64 entries after
* that.
*/
if (nseg < MPT_NSGL_FIRST(mpt)) {
first_lim = nseg;
} else {
/*
* Leave room for CHAIN element
*/
first_lim = MPT_NSGL_FIRST(mpt) - 1;
}
se = (SGE_SIMPLE64 *) sglp;
for (seg = 0; seg < first_lim; seg++, se++, dm_segs++) {
uint32_t tf;
memset(se, 0, sizeof (*se));
se->Address.Low = htole32(dm_segs->ds_addr & 0xffffffff);
if (sizeof(bus_addr_t) > 4) {
se->Address.High =
htole32(((uint64_t)dm_segs->ds_addr) >> 32);
}
MPI_pSGE_SET_LENGTH(se, dm_segs->ds_len);
tf = flags;
if (seg == first_lim - 1) {
tf |= MPI_SGE_FLAGS_LAST_ELEMENT;
}
if (seg == nseg - 1) {
tf |= MPI_SGE_FLAGS_END_OF_LIST |
MPI_SGE_FLAGS_END_OF_BUFFER;
}
MPI_pSGE_SET_FLAGS(se, tf);
se->FlagsLength = htole32(se->FlagsLength);
}
if (seg == nseg) {
goto out;
}
/*
* Tell the IOC where to find the first chain element.
*/
hdrp->ChainOffset = ((char *)se - (char *)hdrp) >> 2;
nxt_off = MPT_RQSL(mpt);
trq = req;
/*
* Make up the rest of the data segments out of a chain element
* (contiained in the current request frame) which points to
* SIMPLE64 elements in the next request frame, possibly ending
* with *another* chain element (if there's more).
*/
while (seg < nseg) {
int this_seg_lim;
uint32_t tf, cur_off;
bus_addr_t chain_list_addr;
/*
* Point to the chain descriptor. Note that the chain
* descriptor is at the end of the *previous* list (whether
* chain or simple).
*/
ce = (SGE_CHAIN64 *) se;
/*
* Before we change our current pointer, make sure we won't
* overflow the request area with this frame. Note that we
* test against 'greater than' here as it's okay in this case
* to have next offset be just outside the request area.
*/
if ((nxt_off + MPT_RQSL(mpt)) > MPT_REQUEST_AREA) {
nxt_off = MPT_REQUEST_AREA;
goto next_chain;
}
/*
* Set our SGE element pointer to the beginning of the chain
* list and update our next chain list offset.
*/
se = (SGE_SIMPLE64 *) &mpt_off[nxt_off];
cur_off = nxt_off;
nxt_off += MPT_RQSL(mpt);
/*
* Now initialized the chain descriptor.
*/
memset(ce, 0, sizeof (*ce));
/*
* Get the physical address of the chain list.
*/
chain_list_addr = trq->req_pbuf;
chain_list_addr += cur_off;
if (sizeof (bus_addr_t) > 4) {
ce->Address.High =
htole32(((uint64_t)chain_list_addr) >> 32);
}
ce->Address.Low = htole32(chain_list_addr & 0xffffffff);
ce->Flags = MPI_SGE_FLAGS_CHAIN_ELEMENT |
MPI_SGE_FLAGS_64_BIT_ADDRESSING;
/*
* If we have more than a frame's worth of segments left,
* set up the chain list to have the last element be another
* chain descriptor.
*/
if ((nseg - seg) > MPT_NSGL(mpt)) {
this_seg_lim = seg + MPT_NSGL(mpt) - 1;
/*
* The length of the chain is the length in bytes of the
* number of segments plus the next chain element.
*
* The next chain descriptor offset is the length,
* in words, of the number of segments.
*/
ce->Length = (this_seg_lim - seg) *
sizeof (SGE_SIMPLE64);
ce->NextChainOffset = ce->Length >> 2;
ce->Length += sizeof (SGE_CHAIN64);
} else {
this_seg_lim = nseg;
ce->Length = (this_seg_lim - seg) *
sizeof (SGE_SIMPLE64);
}
ce->Length = htole16(ce->Length);
/*
* Fill in the chain list SGE elements with our segment data.
*
* If we're the last element in this chain list, set the last
* element flag. If we're the completely last element period,
* set the end of list and end of buffer flags.
*/
while (seg < this_seg_lim) {
memset(se, 0, sizeof (*se));
se->Address.Low = htole32(dm_segs->ds_addr &
0xffffffff);
if (sizeof (bus_addr_t) > 4) {
se->Address.High =
htole32(((uint64_t)dm_segs->ds_addr) >> 32);
}
MPI_pSGE_SET_LENGTH(se, dm_segs->ds_len);
tf = flags;
if (seg == this_seg_lim - 1) {
tf |= MPI_SGE_FLAGS_LAST_ELEMENT;
}
if (seg == nseg - 1) {
tf |= MPI_SGE_FLAGS_END_OF_LIST |
MPI_SGE_FLAGS_END_OF_BUFFER;
}
MPI_pSGE_SET_FLAGS(se, tf);
se->FlagsLength = htole32(se->FlagsLength);
se++;
seg++;
dm_segs++;
}
next_chain:
/*
* If we have more segments to do and we've used up all of
* the space in a request area, go allocate another one
* and chain to that.
*/
if (seg < nseg && nxt_off >= MPT_REQUEST_AREA) {
request_t *nrq;
CAMLOCK_2_MPTLOCK(mpt);
nrq = mpt_get_request(mpt, FALSE);
MPTLOCK_2_CAMLOCK(mpt);
if (nrq == NULL) {
error = ENOMEM;
goto bad;
}
/*
* Append the new request area on the tail of our list.
*/
if ((trq = req->chain) == NULL) {
req->chain = nrq;
} else {
while (trq->chain != NULL) {
trq = trq->chain;
}
trq->chain = nrq;
}
trq = nrq;
mpt_off = trq->req_vbuf;
if (mpt->verbose >= MPT_PRT_DEBUG) {
memset(mpt_off, 0xff, MPT_REQUEST_AREA);
}
nxt_off = 0;
}
}
out:
/*
* Last time we need to check if this CCB needs to be aborted.
*/
if ((ccb->ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_INPROG) {
if (hdrp->Function == MPI_FUNCTION_TARGET_ASSIST) {
request_t *cmd_req =
MPT_TAG_2_REQ(mpt, ccb->csio.tag_id);
MPT_TGT_STATE(mpt, cmd_req)->state = TGT_STATE_IN_CAM;
MPT_TGT_STATE(mpt, cmd_req)->ccb = NULL;
MPT_TGT_STATE(mpt, cmd_req)->req = NULL;
}
mpt_prt(mpt,
"mpt_execute_req_a64: I/O cancelled (status 0x%x)\n",
ccb->ccb_h.status & CAM_STATUS_MASK);
if (nseg && (ccb->ccb_h.flags & CAM_SG_LIST_PHYS) == 0) {
bus_dmamap_unload(mpt->buffer_dmat, req->dmap);
}
ccb->ccb_h.status &= ~CAM_SIM_QUEUED;
KASSERT(ccb->ccb_h.status, ("zero ccb sts at %d\n", __LINE__));
xpt_done(ccb);
CAMLOCK_2_MPTLOCK(mpt);
mpt_free_request(mpt, req);
MPTLOCK_2_CAMLOCK(mpt);
return;
}
ccb->ccb_h.status |= CAM_SIM_QUEUED;
if (ccb->ccb_h.timeout != CAM_TIME_INFINITY) {
mpt_req_timeout(req, (ccb->ccb_h.timeout * hz) / 1000,
mpt_timeout, ccb);
}
if (mpt->verbose > MPT_PRT_DEBUG) {
int nc = 0;
mpt_print_request(req->req_vbuf);
for (trq = req->chain; trq; trq = trq->chain) {
printf(" Additional Chain Area %d\n", nc++);
mpt_dump_sgl(trq->req_vbuf, 0);
}
}
if (hdrp->Function == MPI_FUNCTION_TARGET_ASSIST) {
request_t *cmd_req = MPT_TAG_2_REQ(mpt, ccb->csio.tag_id);
mpt_tgt_state_t *tgt = MPT_TGT_STATE(mpt, cmd_req);
#ifdef WE_TRUST_AUTO_GOOD_STATUS
if ((ccb->ccb_h.flags & CAM_SEND_STATUS) &&
csio->scsi_status == SCSI_STATUS_OK && tgt->resid == 0) {
tgt->state = TGT_STATE_MOVING_DATA_AND_STATUS;
} else {
tgt->state = TGT_STATE_MOVING_DATA;
}
#else
tgt->state = TGT_STATE_MOVING_DATA;
#endif
}
CAMLOCK_2_MPTLOCK(mpt);
mpt_send_cmd(mpt, req);
MPTLOCK_2_CAMLOCK(mpt);
}
static void
mpt_execute_req(void *arg, bus_dma_segment_t *dm_segs, int nseg, int error)
{
request_t *req, *trq;
char *mpt_off;
union ccb *ccb;
struct mpt_softc *mpt;
int seg, first_lim;
uint32_t flags, nxt_off;
void *sglp = NULL;
MSG_REQUEST_HEADER *hdrp;
SGE_SIMPLE32 *se;
SGE_CHAIN32 *ce;
int istgt = 0;
req = (request_t *)arg;
ccb = req->ccb;
mpt = ccb->ccb_h.ccb_mpt_ptr;
req = ccb->ccb_h.ccb_req_ptr;
hdrp = req->req_vbuf;
mpt_off = req->req_vbuf;
if (error == 0 && ((uint32_t)nseg) >= mpt->max_seg_cnt) {
error = EFBIG;
}
if (error == 0) {
switch (hdrp->Function) {
case MPI_FUNCTION_SCSI_IO_REQUEST:
case MPI_FUNCTION_RAID_SCSI_IO_PASSTHROUGH:
sglp = &((PTR_MSG_SCSI_IO_REQUEST)hdrp)->SGL;
break;
case MPI_FUNCTION_TARGET_ASSIST:
istgt = 1;
sglp = &((PTR_MSG_TARGET_ASSIST_REQUEST)hdrp)->SGL;
break;
default:
mpt_prt(mpt, "bad fct 0x%x in mpt_execute_req\n",
hdrp->Function);
error = EINVAL;
break;
}
}
if (error == 0 && ((uint32_t)nseg) >= mpt->max_seg_cnt) {
error = EFBIG;
mpt_prt(mpt, "segment count %d too large (max %u)\n",
nseg, mpt->max_seg_cnt);
}
bad:
if (error != 0) {
if (error != EFBIG && error != ENOMEM) {
mpt_prt(mpt, "mpt_execute_req: err %d\n", error);
}
if ((ccb->ccb_h.status & CAM_STATUS_MASK) == CAM_REQ_INPROG) {
cam_status status;
mpt_freeze_ccb(ccb);
if (error == EFBIG) {
status = CAM_REQ_TOO_BIG;
} else if (error == ENOMEM) {
if (mpt->outofbeer == 0) {
mpt->outofbeer = 1;
xpt_freeze_simq(mpt->sim, 1);
mpt_lprt(mpt, MPT_PRT_DEBUG,
"FREEZEQ\n");
}
status = CAM_REQUEUE_REQ;
} else {
status = CAM_REQ_CMP_ERR;
}
mpt_set_ccb_status(ccb, status);
}
if (hdrp->Function == MPI_FUNCTION_TARGET_ASSIST) {
request_t *cmd_req =
MPT_TAG_2_REQ(mpt, ccb->csio.tag_id);
MPT_TGT_STATE(mpt, cmd_req)->state = TGT_STATE_IN_CAM;
MPT_TGT_STATE(mpt, cmd_req)->ccb = NULL;
MPT_TGT_STATE(mpt, cmd_req)->req = NULL;
}
ccb->ccb_h.status &= ~CAM_SIM_QUEUED;
KASSERT(ccb->ccb_h.status, ("zero ccb sts at %d\n", __LINE__));
xpt_done(ccb);
CAMLOCK_2_MPTLOCK(mpt);
mpt_free_request(mpt, req);
MPTLOCK_2_CAMLOCK(mpt);
return;
}
/*
* No data to transfer?
* Just make a single simple SGL with zero length.
*/
if (mpt->verbose >= MPT_PRT_DEBUG) {
int tidx = ((char *)sglp) - mpt_off;
memset(&mpt_off[tidx], 0xff, MPT_REQUEST_AREA - tidx);
}
if (nseg == 0) {
SGE_SIMPLE32 *se1 = (SGE_SIMPLE32 *) sglp;
MPI_pSGE_SET_FLAGS(se1,
(MPI_SGE_FLAGS_LAST_ELEMENT | MPI_SGE_FLAGS_END_OF_BUFFER |
MPI_SGE_FLAGS_SIMPLE_ELEMENT | MPI_SGE_FLAGS_END_OF_LIST));
se1->FlagsLength = htole32(se1->FlagsLength);
goto out;
}
flags = MPI_SGE_FLAGS_SIMPLE_ELEMENT;
if (istgt == 0) {
if ((ccb->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_OUT) {
flags |= MPI_SGE_FLAGS_HOST_TO_IOC;
}
} else {
if ((ccb->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_IN) {
flags |= MPI_SGE_FLAGS_HOST_TO_IOC;
}
}
if (!(ccb->ccb_h.flags & (CAM_SG_LIST_PHYS|CAM_DATA_PHYS))) {
bus_dmasync_op_t op;
if (istgt) {
if ((ccb->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_IN) {
op = BUS_DMASYNC_PREREAD;
} else {
op = BUS_DMASYNC_PREWRITE;
}
} else {
if ((ccb->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_IN) {
op = BUS_DMASYNC_PREWRITE;
} else {
op = BUS_DMASYNC_PREREAD;
}
}
bus_dmamap_sync(mpt->buffer_dmat, req->dmap, op);
}
/*
* Okay, fill in what we can at the end of the command frame.
* If we have up to MPT_NSGL_FIRST, we can fit them all into
* the command frame.
*
* Otherwise, we fill up through MPT_NSGL_FIRST less one
* SIMPLE32 pointers and start doing CHAIN32 entries after
* that.
*/
if (nseg < MPT_NSGL_FIRST(mpt)) {
first_lim = nseg;
} else {
/*
* Leave room for CHAIN element
*/
first_lim = MPT_NSGL_FIRST(mpt) - 1;
}
se = (SGE_SIMPLE32 *) sglp;
for (seg = 0; seg < first_lim; seg++, se++, dm_segs++) {
uint32_t tf;
memset(se, 0,sizeof (*se));
se->Address = htole32(dm_segs->ds_addr);
MPI_pSGE_SET_LENGTH(se, dm_segs->ds_len);
tf = flags;
if (seg == first_lim - 1) {
tf |= MPI_SGE_FLAGS_LAST_ELEMENT;
}
if (seg == nseg - 1) {
tf |= MPI_SGE_FLAGS_END_OF_LIST |
MPI_SGE_FLAGS_END_OF_BUFFER;
}
MPI_pSGE_SET_FLAGS(se, tf);
se->FlagsLength = htole32(se->FlagsLength);
}
if (seg == nseg) {
goto out;
}
/*
* Tell the IOC where to find the first chain element.
*/
hdrp->ChainOffset = ((char *)se - (char *)hdrp) >> 2;
nxt_off = MPT_RQSL(mpt);
trq = req;
/*
* Make up the rest of the data segments out of a chain element
* (contiained in the current request frame) which points to
* SIMPLE32 elements in the next request frame, possibly ending
* with *another* chain element (if there's more).
*/
while (seg < nseg) {
int this_seg_lim;
uint32_t tf, cur_off;
bus_addr_t chain_list_addr;
/*
* Point to the chain descriptor. Note that the chain
* descriptor is at the end of the *previous* list (whether
* chain or simple).
*/
ce = (SGE_CHAIN32 *) se;
/*
* Before we change our current pointer, make sure we won't
* overflow the request area with this frame. Note that we
* test against 'greater than' here as it's okay in this case
* to have next offset be just outside the request area.
*/
if ((nxt_off + MPT_RQSL(mpt)) > MPT_REQUEST_AREA) {
nxt_off = MPT_REQUEST_AREA;
goto next_chain;
}
/*
* Set our SGE element pointer to the beginning of the chain
* list and update our next chain list offset.
*/
se = (SGE_SIMPLE32 *) &mpt_off[nxt_off];
cur_off = nxt_off;
nxt_off += MPT_RQSL(mpt);
/*
* Now initialized the chain descriptor.
*/
memset(ce, 0, sizeof (*ce));
/*
* Get the physical address of the chain list.
*/
chain_list_addr = trq->req_pbuf;
chain_list_addr += cur_off;
ce->Address = htole32(chain_list_addr);
ce->Flags = MPI_SGE_FLAGS_CHAIN_ELEMENT;
/*
* If we have more than a frame's worth of segments left,
* set up the chain list to have the last element be another
* chain descriptor.
*/
if ((nseg - seg) > MPT_NSGL(mpt)) {
this_seg_lim = seg + MPT_NSGL(mpt) - 1;
/*
* The length of the chain is the length in bytes of the
* number of segments plus the next chain element.
*
* The next chain descriptor offset is the length,
* in words, of the number of segments.
*/
ce->Length = (this_seg_lim - seg) *
sizeof (SGE_SIMPLE32);
ce->NextChainOffset = ce->Length >> 2;
ce->Length += sizeof (SGE_CHAIN32);
} else {
this_seg_lim = nseg;
ce->Length = (this_seg_lim - seg) *
sizeof (SGE_SIMPLE32);
}
ce->Length = htole16(ce->Length);
/*
* Fill in the chain list SGE elements with our segment data.
*
* If we're the last element in this chain list, set the last
* element flag. If we're the completely last element period,
* set the end of list and end of buffer flags.
*/
while (seg < this_seg_lim) {
memset(se, 0, sizeof (*se));
se->Address = htole32(dm_segs->ds_addr);
MPI_pSGE_SET_LENGTH(se, dm_segs->ds_len);
tf = flags;
if (seg == this_seg_lim - 1) {
tf |= MPI_SGE_FLAGS_LAST_ELEMENT;
}
if (seg == nseg - 1) {
tf |= MPI_SGE_FLAGS_END_OF_LIST |
MPI_SGE_FLAGS_END_OF_BUFFER;
}
MPI_pSGE_SET_FLAGS(se, tf);
se->FlagsLength = htole32(se->FlagsLength);
se++;
seg++;
dm_segs++;
}
next_chain:
/*
* If we have more segments to do and we've used up all of
* the space in a request area, go allocate another one
* and chain to that.
*/
if (seg < nseg && nxt_off >= MPT_REQUEST_AREA) {
request_t *nrq;
CAMLOCK_2_MPTLOCK(mpt);
nrq = mpt_get_request(mpt, FALSE);
MPTLOCK_2_CAMLOCK(mpt);
if (nrq == NULL) {
error = ENOMEM;
goto bad;
}
/*
* Append the new request area on the tail of our list.
*/
if ((trq = req->chain) == NULL) {
req->chain = nrq;
} else {
while (trq->chain != NULL) {
trq = trq->chain;
}
trq->chain = nrq;
}
trq = nrq;
mpt_off = trq->req_vbuf;
if (mpt->verbose >= MPT_PRT_DEBUG) {
memset(mpt_off, 0xff, MPT_REQUEST_AREA);
}
nxt_off = 0;
}
}
out:
/*
* Last time we need to check if this CCB needs to be aborted.
*/
if ((ccb->ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_INPROG) {
if (hdrp->Function == MPI_FUNCTION_TARGET_ASSIST) {
request_t *cmd_req =
MPT_TAG_2_REQ(mpt, ccb->csio.tag_id);
MPT_TGT_STATE(mpt, cmd_req)->state = TGT_STATE_IN_CAM;
MPT_TGT_STATE(mpt, cmd_req)->ccb = NULL;
MPT_TGT_STATE(mpt, cmd_req)->req = NULL;
}
mpt_prt(mpt,
"mpt_execute_req: I/O cancelled (status 0x%x)\n",
ccb->ccb_h.status & CAM_STATUS_MASK);
if (nseg && (ccb->ccb_h.flags & CAM_SG_LIST_PHYS) == 0) {
bus_dmamap_unload(mpt->buffer_dmat, req->dmap);
}
ccb->ccb_h.status &= ~CAM_SIM_QUEUED;
KASSERT(ccb->ccb_h.status, ("zero ccb sts at %d\n", __LINE__));
xpt_done(ccb);
CAMLOCK_2_MPTLOCK(mpt);
mpt_free_request(mpt, req);
MPTLOCK_2_CAMLOCK(mpt);
return;
}
ccb->ccb_h.status |= CAM_SIM_QUEUED;
if (ccb->ccb_h.timeout != CAM_TIME_INFINITY) {
mpt_req_timeout(req, (ccb->ccb_h.timeout * hz) / 1000,
mpt_timeout, ccb);
}
if (mpt->verbose > MPT_PRT_DEBUG) {
int nc = 0;
mpt_print_request(req->req_vbuf);
for (trq = req->chain; trq; trq = trq->chain) {
printf(" Additional Chain Area %d\n", nc++);
mpt_dump_sgl(trq->req_vbuf, 0);
}
}
if (hdrp->Function == MPI_FUNCTION_TARGET_ASSIST) {
request_t *cmd_req = MPT_TAG_2_REQ(mpt, ccb->csio.tag_id);
mpt_tgt_state_t *tgt = MPT_TGT_STATE(mpt, cmd_req);
#ifdef WE_TRUST_AUTO_GOOD_STATUS
if ((ccb->ccb_h.flags & CAM_SEND_STATUS) &&
csio->scsi_status == SCSI_STATUS_OK && tgt->resid == 0) {
tgt->state = TGT_STATE_MOVING_DATA_AND_STATUS;
} else {
tgt->state = TGT_STATE_MOVING_DATA;
}
#else
tgt->state = TGT_STATE_MOVING_DATA;
#endif
}
CAMLOCK_2_MPTLOCK(mpt);
mpt_send_cmd(mpt, req);
MPTLOCK_2_CAMLOCK(mpt);
}
static void
mpt_start(struct cam_sim *sim, union ccb *ccb)
{
request_t *req;
struct mpt_softc *mpt;
MSG_SCSI_IO_REQUEST *mpt_req;
struct ccb_scsiio *csio = &ccb->csio;
struct ccb_hdr *ccbh = &ccb->ccb_h;
bus_dmamap_callback_t *cb;
target_id_t tgt;
int raid_passthru;
/* Get the pointer for the physical addapter */
mpt = ccb->ccb_h.ccb_mpt_ptr;
raid_passthru = (sim == mpt->phydisk_sim);
CAMLOCK_2_MPTLOCK(mpt);
if ((req = mpt_get_request(mpt, FALSE)) == NULL) {
if (mpt->outofbeer == 0) {
mpt->outofbeer = 1;
xpt_freeze_simq(mpt->sim, 1);
mpt_lprt(mpt, MPT_PRT_DEBUG, "FREEZEQ\n");
}
ccb->ccb_h.status &= ~CAM_SIM_QUEUED;
mpt_set_ccb_status(ccb, CAM_REQUEUE_REQ);
MPTLOCK_2_CAMLOCK(mpt);
xpt_done(ccb);
return;
}
#ifdef INVARIANTS
mpt_req_not_spcl(mpt, req, "mpt_start", __LINE__);
#endif
MPTLOCK_2_CAMLOCK(mpt);
if (sizeof (bus_addr_t) > 4) {
cb = mpt_execute_req_a64;
} else {
cb = mpt_execute_req;
}
/*
* Link the ccb and the request structure so we can find
* the other knowing either the request or the ccb
*/
req->ccb = ccb;
ccb->ccb_h.ccb_req_ptr = req;
/* Now we build the command for the IOC */
mpt_req = req->req_vbuf;
memset(mpt_req, 0, sizeof (MSG_SCSI_IO_REQUEST));
mpt_req->Function = MPI_FUNCTION_SCSI_IO_REQUEST;
if (raid_passthru) {
mpt_req->Function = MPI_FUNCTION_RAID_SCSI_IO_PASSTHROUGH;
CAMLOCK_2_MPTLOCK(mpt);
if (mpt_map_physdisk(mpt, ccb, &tgt) != 0) {
MPTLOCK_2_CAMLOCK(mpt);
ccb->ccb_h.status &= ~CAM_SIM_QUEUED;
mpt_set_ccb_status(ccb, CAM_DEV_NOT_THERE);
xpt_done(ccb);
return;
}
MPTLOCK_2_CAMLOCK(mpt);
mpt_req->Bus = 0; /* we never set bus here */
} else {
tgt = ccb->ccb_h.target_id;
mpt_req->Bus = 0; /* XXX */
}
mpt_req->SenseBufferLength =
(csio->sense_len < MPT_SENSE_SIZE) ?
csio->sense_len : MPT_SENSE_SIZE;
/*
* We use the message context to find the request structure when we
* Get the command completion interrupt from the IOC.
*/
mpt_req->MsgContext = htole32(req->index | scsi_io_handler_id);
/* Which physical device to do the I/O on */
mpt_req->TargetID = tgt;
/* We assume a single level LUN type */
if (ccb->ccb_h.target_lun >= MPT_MAX_LUNS) {
mpt_req->LUN[0] = 0x40 | ((ccb->ccb_h.target_lun >> 8) & 0x3f);
mpt_req->LUN[1] = ccb->ccb_h.target_lun & 0xff;
} else {
mpt_req->LUN[1] = ccb->ccb_h.target_lun;
}
/* Set the direction of the transfer */
if ((ccb->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_IN) {
mpt_req->Control = MPI_SCSIIO_CONTROL_READ;
} else if ((ccb->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_OUT) {
mpt_req->Control = MPI_SCSIIO_CONTROL_WRITE;
} else {
mpt_req->Control = MPI_SCSIIO_CONTROL_NODATATRANSFER;
}
if ((ccb->ccb_h.flags & CAM_TAG_ACTION_VALID) != 0) {
switch(ccb->csio.tag_action) {
case MSG_HEAD_OF_Q_TAG:
mpt_req->Control |= MPI_SCSIIO_CONTROL_HEADOFQ;
break;
case MSG_ACA_TASK:
mpt_req->Control |= MPI_SCSIIO_CONTROL_ACAQ;
break;
case MSG_ORDERED_Q_TAG:
mpt_req->Control |= MPI_SCSIIO_CONTROL_ORDEREDQ;
break;
case MSG_SIMPLE_Q_TAG:
default:
mpt_req->Control |= MPI_SCSIIO_CONTROL_SIMPLEQ;
break;
}
} else {
if (mpt->is_fc || mpt->is_sas) {
mpt_req->Control |= MPI_SCSIIO_CONTROL_SIMPLEQ;
} else {
/* XXX No such thing for a target doing packetized. */
mpt_req->Control |= MPI_SCSIIO_CONTROL_UNTAGGED;
}
}
if (mpt->is_spi) {
if (ccb->ccb_h.flags & CAM_DIS_DISCONNECT) {
mpt_req->Control |= MPI_SCSIIO_CONTROL_NO_DISCONNECT;
}
}
mpt_req->Control = htole32(mpt_req->Control);
/* Copy the scsi command block into place */
if ((ccb->ccb_h.flags & CAM_CDB_POINTER) != 0) {
bcopy(csio->cdb_io.cdb_ptr, mpt_req->CDB, csio->cdb_len);
} else {
bcopy(csio->cdb_io.cdb_bytes, mpt_req->CDB, csio->cdb_len);
}
mpt_req->CDBLength = csio->cdb_len;
mpt_req->DataLength = htole32(csio->dxfer_len);
mpt_req->SenseBufferLowAddr = htole32(req->sense_pbuf);
/*
* Do a *short* print here if we're set to MPT_PRT_DEBUG
*/
if (mpt->verbose == MPT_PRT_DEBUG) {
U32 df;
mpt_prt(mpt, "mpt_start: %s op 0x%x ",
(mpt_req->Function == MPI_FUNCTION_SCSI_IO_REQUEST)?
"SCSI_IO_REQUEST" : "SCSI_IO_PASSTHRU", mpt_req->CDB[0]);
df = mpt_req->Control & MPI_SCSIIO_CONTROL_DATADIRECTION_MASK;
if (df != MPI_SCSIIO_CONTROL_NODATATRANSFER) {
mpt_prtc(mpt, "(%s %u byte%s ",
(df == MPI_SCSIIO_CONTROL_READ)?
"read" : "write", csio->dxfer_len,
(csio->dxfer_len == 1)? ")" : "s)");
}
mpt_prtc(mpt, "tgt %u lun %u req %p:%u\n", tgt,
ccb->ccb_h.target_lun, req, req->serno);
}
/*
* If we have any data to send with this command map it into bus space.
*/
if ((ccbh->flags & CAM_DIR_MASK) != CAM_DIR_NONE) {
if ((ccbh->flags & CAM_SCATTER_VALID) == 0) {
/*
* We've been given a pointer to a single buffer.
*/
if ((ccbh->flags & CAM_DATA_PHYS) == 0) {
/*
* Virtual address that needs to translated into
* one or more physical address ranges.
*/
int error;
int s = splsoftvm();
error = bus_dmamap_load(mpt->buffer_dmat,
req->dmap, csio->data_ptr, csio->dxfer_len,
cb, req, 0);
splx(s);
if (error == EINPROGRESS) {
/*
* So as to maintain ordering,
* freeze the controller queue
* until our mapping is
* returned.
*/
xpt_freeze_simq(mpt->sim, 1);
ccbh->status |= CAM_RELEASE_SIMQ;
}
} else {
/*
* We have been given a pointer to single
* physical buffer.
*/
struct bus_dma_segment seg;
seg.ds_addr =
(bus_addr_t)(vm_offset_t)csio->data_ptr;
seg.ds_len = csio->dxfer_len;
(*cb)(req, &seg, 1, 0);
}
} else {
/*
* We have been given a list of addresses.
* This case could be easily supported but they are not
* currently generated by the CAM subsystem so there
* is no point in wasting the time right now.
*/
struct bus_dma_segment *segs;
if ((ccbh->flags & CAM_SG_LIST_PHYS) == 0) {
(*cb)(req, NULL, 0, EFAULT);
} else {
/* Just use the segments provided */
segs = (struct bus_dma_segment *)csio->data_ptr;
(*cb)(req, segs, csio->sglist_cnt, 0);
}
}
} else {
(*cb)(req, NULL, 0, 0);
}
}
static int
mpt_bus_reset(struct mpt_softc *mpt, target_id_t tgt, lun_id_t lun,
int sleep_ok)
{
int error;
uint16_t status;
uint8_t response;
error = mpt_scsi_send_tmf(mpt,
(tgt != CAM_TARGET_WILDCARD || lun != CAM_LUN_WILDCARD) ?
MPI_SCSITASKMGMT_TASKTYPE_TARGET_RESET :
MPI_SCSITASKMGMT_TASKTYPE_RESET_BUS,
mpt->is_fc ? MPI_SCSITASKMGMT_MSGFLAGS_LIP_RESET_OPTION : 0,
0, /* XXX How do I get the channel ID? */
tgt != CAM_TARGET_WILDCARD ? tgt : 0,
lun != CAM_LUN_WILDCARD ? lun : 0,
0, sleep_ok);
if (error != 0) {
/*
* mpt_scsi_send_tmf hard resets on failure, so no
* need to do so here.
*/
mpt_prt(mpt,
"mpt_bus_reset: mpt_scsi_send_tmf returned %d\n", error);
return (EIO);
}
/* Wait for bus reset to be processed by the IOC. */
error = mpt_wait_req(mpt, mpt->tmf_req, REQ_STATE_DONE,
REQ_STATE_DONE, sleep_ok, 5000);
status = le16toh(mpt->tmf_req->IOCStatus);
response = mpt->tmf_req->ResponseCode;
mpt->tmf_req->state = REQ_STATE_FREE;
if (error) {
mpt_prt(mpt, "mpt_bus_reset: Reset timed-out. "
"Resetting controller.\n");
mpt_reset(mpt, TRUE);
return (ETIMEDOUT);
}
if ((status & MPI_IOCSTATUS_MASK) != MPI_IOCSTATUS_SUCCESS) {
mpt_prt(mpt, "mpt_bus_reset: TMF IOC Status 0x%x. "
"Resetting controller.\n", status);
mpt_reset(mpt, TRUE);
return (EIO);
}
if (response != MPI_SCSITASKMGMT_RSP_TM_SUCCEEDED &&
response != MPI_SCSITASKMGMT_RSP_TM_COMPLETE) {
mpt_prt(mpt, "mpt_bus_reset: TMF Response 0x%x. "
"Resetting controller.\n", response);
mpt_reset(mpt, TRUE);
return (EIO);
}
return (0);
}
static int
mpt_fc_reset_link(struct mpt_softc *mpt, int dowait)
{
int r = 0;
request_t *req;
PTR_MSG_FC_PRIMITIVE_SEND_REQUEST fc;
req = mpt_get_request(mpt, FALSE);
if (req == NULL) {
return (ENOMEM);
}
fc = req->req_vbuf;
memset(fc, 0, sizeof(*fc));
fc->SendFlags = MPI_FC_PRIM_SEND_FLAGS_RESET_LINK;
fc->Function = MPI_FUNCTION_FC_PRIMITIVE_SEND;
fc->MsgContext = htole32(req->index | fc_els_handler_id);
mpt_send_cmd(mpt, req);
if (dowait) {
r = mpt_wait_req(mpt, req, REQ_STATE_DONE,
REQ_STATE_DONE, FALSE, 60 * 1000);
if (r == 0) {
mpt_free_request(mpt, req);
}
}
return (r);
}
static int
mpt_cam_event(struct mpt_softc *mpt, request_t *req,
MSG_EVENT_NOTIFY_REPLY *msg)
{
uint32_t data0, data1;
data0 = le32toh(msg->Data[0]);
data1 = le32toh(msg->Data[1]);
switch(msg->Event & 0xFF) {
case MPI_EVENT_UNIT_ATTENTION:
mpt_prt(mpt, "UNIT ATTENTION: Bus: 0x%02x TargetID: 0x%02x\n",
(data0 >> 8) & 0xff, data0 & 0xff);
break;
case MPI_EVENT_IOC_BUS_RESET:
/* We generated a bus reset */
mpt_prt(mpt, "IOC Generated Bus Reset Port: %d\n",
(data0 >> 8) & 0xff);
xpt_async(AC_BUS_RESET, mpt->path, NULL);
break;
case MPI_EVENT_EXT_BUS_RESET:
/* Someone else generated a bus reset */
mpt_prt(mpt, "External Bus Reset Detected\n");
/*
* These replies don't return EventData like the MPI
* spec says they do
*/
xpt_async(AC_BUS_RESET, mpt->path, NULL);
break;
case MPI_EVENT_RESCAN:
#if __FreeBSD_version >= 600000
{
union ccb *ccb;
uint32_t pathid;
/*
* In general this means a device has been added to the loop.
*/
mpt_prt(mpt, "Rescan Port: %d\n", (data0 >> 8) & 0xff);
if (mpt->ready == 0) {
break;
}
if (mpt->phydisk_sim) {
pathid = cam_sim_path(mpt->phydisk_sim);
} else {
pathid = cam_sim_path(mpt->sim);
}
MPTLOCK_2_CAMLOCK(mpt);
/*
* Allocate a CCB, create a wildcard path for this bus,
* and schedule a rescan.
*/
ccb = xpt_alloc_ccb_nowait();
if (ccb == NULL) {
mpt_prt(mpt, "unable to alloc CCB for rescan\n");
CAMLOCK_2_MPTLOCK(mpt);
break;
}
if (xpt_create_path(&ccb->ccb_h.path, xpt_periph, pathid,
CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD) != CAM_REQ_CMP) {
CAMLOCK_2_MPTLOCK(mpt);
mpt_prt(mpt, "unable to create path for rescan\n");
xpt_free_ccb(ccb);
break;
}
xpt_rescan(ccb);
CAMLOCK_2_MPTLOCK(mpt);
break;
}
#else
mpt_prt(mpt, "Rescan Port: %d\n", (data0 >> 8) & 0xff);
break;
#endif
case MPI_EVENT_LINK_STATUS_CHANGE:
mpt_prt(mpt, "Port %d: LinkState: %s\n",
(data1 >> 8) & 0xff,
((data0 & 0xff) == 0)? "Failed" : "Active");
break;
case MPI_EVENT_LOOP_STATE_CHANGE:
switch ((data0 >> 16) & 0xff) {
case 0x01:
mpt_prt(mpt,
"Port 0x%x: FC LinkEvent: LIP(%02x,%02x) "
"(Loop Initialization)\n",
(data1 >> 8) & 0xff,
(data0 >> 8) & 0xff,
(data0 ) & 0xff);
switch ((data0 >> 8) & 0xff) {
case 0xF7:
if ((data0 & 0xff) == 0xF7) {
mpt_prt(mpt, "Device needs AL_PA\n");
} else {
mpt_prt(mpt, "Device %02x doesn't like "
"FC performance\n",
data0 & 0xFF);
}
break;
case 0xF8:
if ((data0 & 0xff) == 0xF7) {
mpt_prt(mpt, "Device had loop failure "
"at its receiver prior to acquiring"
" AL_PA\n");
} else {
mpt_prt(mpt, "Device %02x detected loop"
" failure at its receiver\n",
data0 & 0xFF);
}
break;
default:
mpt_prt(mpt, "Device %02x requests that device "
"%02x reset itself\n",
data0 & 0xFF,
(data0 >> 8) & 0xFF);
break;
}
break;
case 0x02:
mpt_prt(mpt, "Port 0x%x: FC LinkEvent: "
"LPE(%02x,%02x) (Loop Port Enable)\n",
(data1 >> 8) & 0xff, /* Port */
(data0 >> 8) & 0xff, /* Character 3 */
(data0 ) & 0xff /* Character 4 */);
break;
case 0x03:
mpt_prt(mpt, "Port 0x%x: FC LinkEvent: "
"LPB(%02x,%02x) (Loop Port Bypass)\n",
(data1 >> 8) & 0xff, /* Port */
(data0 >> 8) & 0xff, /* Character 3 */
(data0 ) & 0xff /* Character 4 */);
break;
default:
mpt_prt(mpt, "Port 0x%x: FC LinkEvent: Unknown "
"FC event (%02x %02x %02x)\n",
(data1 >> 8) & 0xff, /* Port */
(data0 >> 16) & 0xff, /* Event */
(data0 >> 8) & 0xff, /* Character 3 */
(data0 ) & 0xff /* Character 4 */);
}
break;
case MPI_EVENT_LOGOUT:
mpt_prt(mpt, "FC Logout Port: %d N_PortID: %02x\n",
(data1 >> 8) & 0xff, data0);
break;
case MPI_EVENT_QUEUE_FULL:
{
struct cam_sim *sim;
struct cam_path *tmppath;
struct ccb_relsim crs;
PTR_EVENT_DATA_QUEUE_FULL pqf;
lun_id_t lun_id;
pqf = (PTR_EVENT_DATA_QUEUE_FULL)msg->Data;
pqf->CurrentDepth = le16toh(pqf->CurrentDepth);
mpt_prt(mpt, "QUEUE FULL EVENT: Bus 0x%02x Target 0x%02x Depth "
"%d\n", pqf->Bus, pqf->TargetID, pqf->CurrentDepth);
if (mpt->phydisk_sim) {
sim = mpt->phydisk_sim;
} else {
sim = mpt->sim;
}
MPTLOCK_2_CAMLOCK(mpt);
for (lun_id = 0; lun_id < MPT_MAX_LUNS; lun_id++) {
if (xpt_create_path(&tmppath, NULL, cam_sim_path(sim),
pqf->TargetID, lun_id) != CAM_REQ_CMP) {
mpt_prt(mpt, "unable to create a path to send "
"XPT_REL_SIMQ");
CAMLOCK_2_MPTLOCK(mpt);
break;
}
xpt_setup_ccb(&crs.ccb_h, tmppath, 5);
crs.ccb_h.func_code = XPT_REL_SIMQ;
crs.ccb_h.flags = CAM_DEV_QFREEZE;
crs.release_flags = RELSIM_ADJUST_OPENINGS;
crs.openings = pqf->CurrentDepth - 1;
xpt_action((union ccb *)&crs);
if (crs.ccb_h.status != CAM_REQ_CMP) {
mpt_prt(mpt, "XPT_REL_SIMQ failed\n");
}
xpt_free_path(tmppath);
}
CAMLOCK_2_MPTLOCK(mpt);
break;
}
case MPI_EVENT_IR_RESYNC_UPDATE:
mpt_prt(mpt, "IR resync update %d completed\n",
(data0 >> 16) & 0xff);
break;
case MPI_EVENT_EVENT_CHANGE:
case MPI_EVENT_INTEGRATED_RAID:
case MPI_EVENT_SAS_DEVICE_STATUS_CHANGE:
case MPI_EVENT_SAS_SES:
break;
default:
mpt_lprt(mpt, MPT_PRT_WARN, "mpt_cam_event: 0x%x\n",
msg->Event & 0xFF);
return (0);
}
return (1);
}
/*
* Reply path for all SCSI I/O requests, called from our
* interrupt handler by extracting our handler index from
* the MsgContext field of the reply from the IOC.
*
* This routine is optimized for the common case of a
* completion without error. All exception handling is
* offloaded to non-inlined helper routines to minimize
* cache footprint.
*/
static int
mpt_scsi_reply_handler(struct mpt_softc *mpt, request_t *req,
uint32_t reply_desc, MSG_DEFAULT_REPLY *reply_frame)
{
MSG_SCSI_IO_REQUEST *scsi_req;
union ccb *ccb;
if (req->state == REQ_STATE_FREE) {
mpt_prt(mpt, "mpt_scsi_reply_handler: req already free\n");
return (TRUE);
}
scsi_req = (MSG_SCSI_IO_REQUEST *)req->req_vbuf;
ccb = req->ccb;
if (ccb == NULL) {
mpt_prt(mpt, "mpt_scsi_reply_handler: req %p:%u with no ccb\n",
req, req->serno);
return (TRUE);
}
mpt_req_untimeout(req, mpt_timeout, ccb);
ccb->ccb_h.status &= ~CAM_SIM_QUEUED;
if ((ccb->ccb_h.flags & CAM_DIR_MASK) != CAM_DIR_NONE) {
bus_dmasync_op_t op;
if ((ccb->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_IN)
op = BUS_DMASYNC_POSTREAD;
else
op = BUS_DMASYNC_POSTWRITE;
bus_dmamap_sync(mpt->buffer_dmat, req->dmap, op);
bus_dmamap_unload(mpt->buffer_dmat, req->dmap);
}
if (reply_frame == NULL) {
/*
* Context only reply, completion without error status.
*/
ccb->csio.resid = 0;
mpt_set_ccb_status(ccb, CAM_REQ_CMP);
ccb->csio.scsi_status = SCSI_STATUS_OK;
} else {
mpt_scsi_reply_frame_handler(mpt, req, reply_frame);
}
if (mpt->outofbeer) {
ccb->ccb_h.status |= CAM_RELEASE_SIMQ;
mpt->outofbeer = 0;
mpt_lprt(mpt, MPT_PRT_DEBUG, "THAWQ\n");
}
if (scsi_req->CDB[0] == INQUIRY && (scsi_req->CDB[1] & SI_EVPD) == 0) {
struct scsi_inquiry_data *iq =
(struct scsi_inquiry_data *)ccb->csio.data_ptr;
if (scsi_req->Function ==
MPI_FUNCTION_RAID_SCSI_IO_PASSTHROUGH) {
/*
* Fake out the device type so that only the
* pass-thru device will attach.
*/
iq->device &= ~0x1F;
iq->device |= T_NODEVICE;
}
}
if (mpt->verbose == MPT_PRT_DEBUG) {
mpt_prt(mpt, "mpt_scsi_reply_handler: %p:%u complete\n",
req, req->serno);
}
KASSERT(ccb->ccb_h.status, ("zero ccb sts at %d\n", __LINE__));
MPTLOCK_2_CAMLOCK(mpt);
xpt_done(ccb);
CAMLOCK_2_MPTLOCK(mpt);
if ((req->state & REQ_STATE_TIMEDOUT) == 0) {
TAILQ_REMOVE(&mpt->request_pending_list, req, links);
} else {
mpt_prt(mpt, "completing timedout/aborted req %p:%u\n",
req, req->serno);
TAILQ_REMOVE(&mpt->request_timeout_list, req, links);
}
KASSERT((req->state & REQ_STATE_NEED_WAKEUP) == 0,
("CCB req needed wakeup"));
#ifdef INVARIANTS
mpt_req_not_spcl(mpt, req, "mpt_scsi_reply_handler", __LINE__);
#endif
mpt_free_request(mpt, req);
return (TRUE);
}
static int
mpt_scsi_tmf_reply_handler(struct mpt_softc *mpt, request_t *req,
uint32_t reply_desc, MSG_DEFAULT_REPLY *reply_frame)
{
MSG_SCSI_TASK_MGMT_REPLY *tmf_reply;
KASSERT(req == mpt->tmf_req, ("TMF Reply not using mpt->tmf_req"));
#ifdef INVARIANTS
mpt_req_not_spcl(mpt, req, "mpt_scsi_tmf_reply_handler", __LINE__);
#endif
tmf_reply = (MSG_SCSI_TASK_MGMT_REPLY *)reply_frame;
/* Record IOC Status and Response Code of TMF for any waiters. */
req->IOCStatus = le16toh(tmf_reply->IOCStatus);
req->ResponseCode = tmf_reply->ResponseCode;
mpt_lprt(mpt, MPT_PRT_DEBUG, "TMF complete: req %p:%u status 0x%x\n",
req, req->serno, le16toh(tmf_reply->IOCStatus));
TAILQ_REMOVE(&mpt->request_pending_list, req, links);
if ((req->state & REQ_STATE_NEED_WAKEUP) != 0) {
req->state |= REQ_STATE_DONE;
wakeup(req);
} else {
mpt->tmf_req->state = REQ_STATE_FREE;
}
return (TRUE);
}
/*
* XXX: Move to definitions file
*/
#define ELS 0x22
#define FC4LS 0x32
#define ABTS 0x81
#define BA_ACC 0x84
#define LS_RJT 0x01
#define LS_ACC 0x02
#define PLOGI 0x03
#define LOGO 0x05
#define SRR 0x14
#define PRLI 0x20
#define PRLO 0x21
#define ADISC 0x52
#define RSCN 0x61
static void
mpt_fc_els_send_response(struct mpt_softc *mpt, request_t *req,
PTR_MSG_LINK_SERVICE_BUFFER_POST_REPLY rp, U8 length)
{
uint32_t fl;
MSG_LINK_SERVICE_RSP_REQUEST tmp;
PTR_MSG_LINK_SERVICE_RSP_REQUEST rsp;
/*
* We are going to reuse the ELS request to send this response back.
*/
rsp = &tmp;
memset(rsp, 0, sizeof(*rsp));
#ifdef USE_IMMEDIATE_LINK_DATA
/*
* Apparently the IMMEDIATE stuff doesn't seem to work.
*/
rsp->RspFlags = LINK_SERVICE_RSP_FLAGS_IMMEDIATE;
#endif
rsp->RspLength = length;
rsp->Function = MPI_FUNCTION_FC_LINK_SRVC_RSP;
rsp->MsgContext = htole32(req->index | fc_els_handler_id);
/*
* Copy over information from the original reply frame to
* it's correct place in the response.
*/
memcpy((U8 *)rsp + 0x0c, (U8 *)rp + 0x1c, 24);
/*
* And now copy back the temporary area to the original frame.
*/
memcpy(req->req_vbuf, rsp, sizeof (MSG_LINK_SERVICE_RSP_REQUEST));
rsp = req->req_vbuf;
#ifdef USE_IMMEDIATE_LINK_DATA
memcpy((U8 *)&rsp->SGL, &((U8 *)req->req_vbuf)[MPT_RQSL(mpt)], length);
#else
{
PTR_SGE_SIMPLE32 se = (PTR_SGE_SIMPLE32) &rsp->SGL;
bus_addr_t paddr = req->req_pbuf;
paddr += MPT_RQSL(mpt);
fl =
MPI_SGE_FLAGS_HOST_TO_IOC |
MPI_SGE_FLAGS_SIMPLE_ELEMENT |
MPI_SGE_FLAGS_LAST_ELEMENT |
MPI_SGE_FLAGS_END_OF_LIST |
MPI_SGE_FLAGS_END_OF_BUFFER;
fl <<= MPI_SGE_FLAGS_SHIFT;
fl |= (length);
se->FlagsLength = htole32(fl);
se->Address = htole32((uint32_t) paddr);
}
#endif
/*
* Send it on...
*/
mpt_send_cmd(mpt, req);
}
static int
mpt_fc_els_reply_handler(struct mpt_softc *mpt, request_t *req,
uint32_t reply_desc, MSG_DEFAULT_REPLY *reply_frame)
{
PTR_MSG_LINK_SERVICE_BUFFER_POST_REPLY rp =
(PTR_MSG_LINK_SERVICE_BUFFER_POST_REPLY) reply_frame;
U8 rctl;
U8 type;
U8 cmd;
U16 status = le16toh(reply_frame->IOCStatus);
U32 *elsbuf;
int ioindex;
int do_refresh = TRUE;
#ifdef INVARIANTS
KASSERT(mpt_req_on_free_list(mpt, req) == 0,
("fc_els_reply_handler: req %p:%u for function %x on freelist!",
req, req->serno, rp->Function));
if (rp->Function != MPI_FUNCTION_FC_PRIMITIVE_SEND) {
mpt_req_spcl(mpt, req, "fc_els_reply_handler", __LINE__);
} else {
mpt_req_not_spcl(mpt, req, "fc_els_reply_handler", __LINE__);
}
#endif
mpt_lprt(mpt, MPT_PRT_DEBUG,
"FC_ELS Complete: req %p:%u, reply %p function %x\n",
req, req->serno, reply_frame, reply_frame->Function);
if (status != MPI_IOCSTATUS_SUCCESS) {
mpt_prt(mpt, "ELS REPLY STATUS 0x%x for Function %x\n",
status, reply_frame->Function);
if (status == MPI_IOCSTATUS_INVALID_STATE) {
/*
* XXX: to get around shutdown issue
*/
mpt->disabled = 1;
return (TRUE);
}
return (TRUE);
}
/*
* If the function of a link service response, we recycle the
* response to be a refresh for a new link service request.
*
* The request pointer is bogus in this case and we have to fetch
* it based upon the TransactionContext.
*/
if (rp->Function == MPI_FUNCTION_FC_LINK_SRVC_RSP) {
/* Freddie Uncle Charlie Katie */
/* We don't get the IOINDEX as part of the Link Svc Rsp */
for (ioindex = 0; ioindex < mpt->els_cmds_allocated; ioindex++)
if (mpt->els_cmd_ptrs[ioindex] == req) {
break;
}
KASSERT(ioindex < mpt->els_cmds_allocated,
("can't find my mommie!"));
/* remove from active list as we're going to re-post it */
TAILQ_REMOVE(&mpt->request_pending_list, req, links);
req->state &= ~REQ_STATE_QUEUED;
req->state |= REQ_STATE_DONE;
mpt_fc_post_els(mpt, req, ioindex);
return (TRUE);
}
if (rp->Function == MPI_FUNCTION_FC_PRIMITIVE_SEND) {
/* remove from active list as we're done */
TAILQ_REMOVE(&mpt->request_pending_list, req, links);
req->state &= ~REQ_STATE_QUEUED;
req->state |= REQ_STATE_DONE;
if (req->state & REQ_STATE_TIMEDOUT) {
mpt_lprt(mpt, MPT_PRT_DEBUG,
"Sync Primitive Send Completed After Timeout\n");
mpt_free_request(mpt, req);
} else if ((req->state & REQ_STATE_NEED_WAKEUP) == 0) {
mpt_lprt(mpt, MPT_PRT_DEBUG,
"Async Primitive Send Complete\n");
mpt_free_request(mpt, req);
} else {
mpt_lprt(mpt, MPT_PRT_DEBUG,
"Sync Primitive Send Complete- Waking Waiter\n");
wakeup(req);
}
return (TRUE);
}
if (rp->Function != MPI_FUNCTION_FC_LINK_SRVC_BUF_POST) {
mpt_prt(mpt, "unexpected ELS_REPLY: Function 0x%x Flags %x "
"Length %d Message Flags %x\n", rp->Function, rp->Flags,
rp->MsgLength, rp->MsgFlags);
return (TRUE);
}
if (rp->MsgLength <= 5) {
/*
* This is just a ack of an original ELS buffer post
*/
mpt_lprt(mpt, MPT_PRT_DEBUG,
"RECV'd ACK of FC_ELS buf post %p:%u\n", req, req->serno);
return (TRUE);
}
rctl = (le32toh(rp->Rctl_Did) & MPI_FC_RCTL_MASK) >> MPI_FC_RCTL_SHIFT;
type = (le32toh(rp->Type_Fctl) & MPI_FC_TYPE_MASK) >> MPI_FC_TYPE_SHIFT;
elsbuf = &((U32 *)req->req_vbuf)[MPT_RQSL(mpt)/sizeof (U32)];
cmd = be32toh(elsbuf[0]) >> 24;
if (rp->Flags & MPI_LS_BUF_POST_REPLY_FLAG_NO_RSP_NEEDED) {
mpt_lprt(mpt, MPT_PRT_ALWAYS, "ELS_REPLY: response unneeded\n");
return (TRUE);
}
ioindex = le32toh(rp->TransactionContext);
req = mpt->els_cmd_ptrs[ioindex];
if (rctl == ELS && type == 1) {
switch (cmd) {
case PRLI:
/*
* Send back a PRLI ACC
*/
mpt_prt(mpt, "PRLI from 0x%08x%08x\n",
le32toh(rp->Wwn.PortNameHigh),
le32toh(rp->Wwn.PortNameLow));
elsbuf[0] = htobe32(0x02100014);
elsbuf[1] |= htobe32(0x00000100);
elsbuf[4] = htobe32(0x00000002);
if (mpt->role & MPT_ROLE_TARGET)
elsbuf[4] |= htobe32(0x00000010);
if (mpt->role & MPT_ROLE_INITIATOR)
elsbuf[4] |= htobe32(0x00000020);
/* remove from active list as we're done */
TAILQ_REMOVE(&mpt->request_pending_list, req, links);
req->state &= ~REQ_STATE_QUEUED;
req->state |= REQ_STATE_DONE;
mpt_fc_els_send_response(mpt, req, rp, 20);
do_refresh = FALSE;
break;
case PRLO:
memset(elsbuf, 0, 5 * (sizeof (U32)));
elsbuf[0] = htobe32(0x02100014);
elsbuf[1] = htobe32(0x08000100);
mpt_prt(mpt, "PRLO from 0x%08x%08x\n",
le32toh(rp->Wwn.PortNameHigh),
le32toh(rp->Wwn.PortNameLow));
/* remove from active list as we're done */
TAILQ_REMOVE(&mpt->request_pending_list, req, links);
req->state &= ~REQ_STATE_QUEUED;
req->state |= REQ_STATE_DONE;
mpt_fc_els_send_response(mpt, req, rp, 20);
do_refresh = FALSE;
break;
default:
mpt_prt(mpt, "ELS TYPE 1 COMMAND: %x\n", cmd);
break;
}
} else if (rctl == ABTS && type == 0) {
uint16_t rx_id = le16toh(rp->Rxid);
uint16_t ox_id = le16toh(rp->Oxid);
request_t *tgt_req = NULL;
mpt_prt(mpt,
"ELS: ABTS OX_ID 0x%x RX_ID 0x%x from 0x%08x%08x\n",
ox_id, rx_id, le32toh(rp->Wwn.PortNameHigh),
le32toh(rp->Wwn.PortNameLow));
if (rx_id >= mpt->mpt_max_tgtcmds) {
mpt_prt(mpt, "Bad RX_ID 0x%x\n", rx_id);
} else if (mpt->tgt_cmd_ptrs == NULL) {
mpt_prt(mpt, "No TGT CMD PTRS\n");
} else {
tgt_req = mpt->tgt_cmd_ptrs[rx_id];
}
if (tgt_req) {
mpt_tgt_state_t *tgt = MPT_TGT_STATE(mpt, tgt_req);
union ccb *ccb;
uint32_t ct_id;
/*
* Check to make sure we have the correct command
* The reply descriptor in the target state should
* should contain an IoIndex that should match the
* RX_ID.
*
* It'd be nice to have OX_ID to crosscheck with
* as well.
*/
ct_id = GET_IO_INDEX(tgt->reply_desc);
if (ct_id != rx_id) {
mpt_lprt(mpt, MPT_PRT_ERROR, "ABORT Mismatch: "
"RX_ID received=0x%x; RX_ID in cmd=0x%x\n",
rx_id, ct_id);
goto skip;
}
ccb = tgt->ccb;
if (ccb) {
mpt_prt(mpt,
"CCB (%p): lun %u flags %x status %x\n",
ccb, ccb->ccb_h.target_lun,
ccb->ccb_h.flags, ccb->ccb_h.status);
}
mpt_prt(mpt, "target state 0x%x resid %u xfrd %u rpwrd "
"%x nxfers %x\n", tgt->state,
tgt->resid, tgt->bytes_xfered, tgt->reply_desc,
tgt->nxfers);
skip:
if (mpt_abort_target_cmd(mpt, tgt_req)) {
mpt_prt(mpt, "unable to start TargetAbort\n");
}
} else {
mpt_prt(mpt, "no back pointer for RX_ID 0x%x\n", rx_id);
}
memset(elsbuf, 0, 5 * (sizeof (U32)));
elsbuf[0] = htobe32(0);
elsbuf[1] = htobe32((ox_id << 16) | rx_id);
elsbuf[2] = htobe32(0x000ffff);
/*
* Dork with the reply frame so that the reponse to it
* will be correct.
*/
rp->Rctl_Did += ((BA_ACC - ABTS) << MPI_FC_RCTL_SHIFT);
/* remove from active list as we're done */
TAILQ_REMOVE(&mpt->request_pending_list, req, links);
req->state &= ~REQ_STATE_QUEUED;
req->state |= REQ_STATE_DONE;
mpt_fc_els_send_response(mpt, req, rp, 12);
do_refresh = FALSE;
} else {
mpt_prt(mpt, "ELS: RCTL %x TYPE %x CMD %x\n", rctl, type, cmd);
}
if (do_refresh == TRUE) {
/* remove from active list as we're done */
TAILQ_REMOVE(&mpt->request_pending_list, req, links);
req->state &= ~REQ_STATE_QUEUED;
req->state |= REQ_STATE_DONE;
mpt_fc_post_els(mpt, req, ioindex);
}
return (TRUE);
}
/*
* Clean up all SCSI Initiator personality state in response
* to a controller reset.
*/
static void
mpt_cam_ioc_reset(struct mpt_softc *mpt, int type)
{
/*
* The pending list is already run down by
* the generic handler. Perform the same
* operation on the timed out request list.
*/
mpt_complete_request_chain(mpt, &mpt->request_timeout_list,
MPI_IOCSTATUS_INVALID_STATE);
/*
* XXX: We need to repost ELS and Target Command Buffers?
*/
/*
* Inform the XPT that a bus reset has occurred.
*/
xpt_async(AC_BUS_RESET, mpt->path, NULL);
}
/*
* Parse additional completion information in the reply
* frame for SCSI I/O requests.
*/
static int
mpt_scsi_reply_frame_handler(struct mpt_softc *mpt, request_t *req,
MSG_DEFAULT_REPLY *reply_frame)
{
union ccb *ccb;
MSG_SCSI_IO_REPLY *scsi_io_reply;
u_int ioc_status;
u_int sstate;
MPT_DUMP_REPLY_FRAME(mpt, reply_frame);
KASSERT(reply_frame->Function == MPI_FUNCTION_SCSI_IO_REQUEST
|| reply_frame->Function == MPI_FUNCTION_RAID_SCSI_IO_PASSTHROUGH,
("MPT SCSI I/O Handler called with incorrect reply type"));
KASSERT((reply_frame->MsgFlags & MPI_MSGFLAGS_CONTINUATION_REPLY) == 0,
("MPT SCSI I/O Handler called with continuation reply"));
scsi_io_reply = (MSG_SCSI_IO_REPLY *)reply_frame;
ioc_status = le16toh(scsi_io_reply->IOCStatus);
ioc_status &= MPI_IOCSTATUS_MASK;
sstate = scsi_io_reply->SCSIState;
ccb = req->ccb;
ccb->csio.resid =
ccb->csio.dxfer_len - le32toh(scsi_io_reply->TransferCount);
if ((sstate & MPI_SCSI_STATE_AUTOSENSE_VALID) != 0
&& (ccb->ccb_h.flags & (CAM_SENSE_PHYS | CAM_SENSE_PTR)) == 0) {
ccb->ccb_h.status |= CAM_AUTOSNS_VALID;
ccb->csio.sense_resid =
ccb->csio.sense_len - le32toh(scsi_io_reply->SenseCount);
bcopy(req->sense_vbuf, &ccb->csio.sense_data,
min(ccb->csio.sense_len,
le32toh(scsi_io_reply->SenseCount)));
}
if ((sstate & MPI_SCSI_STATE_QUEUE_TAG_REJECTED) != 0) {
/*
* Tag messages rejected, but non-tagged retry
* was successful.
XXXX
mpt_set_tags(mpt, devinfo, MPT_QUEUE_NONE);
*/
}
switch(ioc_status) {
case MPI_IOCSTATUS_SCSI_RESIDUAL_MISMATCH:
/*
* XXX
* Linux driver indicates that a zero
* transfer length with this error code
* indicates a CRC error.
*
* No need to swap the bytes for checking
* against zero.
*/
if (scsi_io_reply->TransferCount == 0) {
mpt_set_ccb_status(ccb, CAM_UNCOR_PARITY);
break;
}
/* FALLTHROUGH */
case MPI_IOCSTATUS_SCSI_DATA_UNDERRUN:
case MPI_IOCSTATUS_SUCCESS:
case MPI_IOCSTATUS_SCSI_RECOVERED_ERROR:
if ((sstate & MPI_SCSI_STATE_NO_SCSI_STATUS) != 0) {
/*
* Status was never returned for this transaction.
*/
mpt_set_ccb_status(ccb, CAM_UNEXP_BUSFREE);
} else if (scsi_io_reply->SCSIStatus != SCSI_STATUS_OK) {
ccb->csio.scsi_status = scsi_io_reply->SCSIStatus;
mpt_set_ccb_status(ccb, CAM_SCSI_STATUS_ERROR);
if ((sstate & MPI_SCSI_STATE_AUTOSENSE_FAILED) != 0)
mpt_set_ccb_status(ccb, CAM_AUTOSENSE_FAIL);
} else if ((sstate & MPI_SCSI_STATE_RESPONSE_INFO_VALID) != 0) {
/* XXX Handle SPI-Packet and FCP-2 reponse info. */
mpt_set_ccb_status(ccb, CAM_REQ_CMP_ERR);
} else
mpt_set_ccb_status(ccb, CAM_REQ_CMP);
break;
case MPI_IOCSTATUS_SCSI_DATA_OVERRUN:
mpt_set_ccb_status(ccb, CAM_DATA_RUN_ERR);
break;
case MPI_IOCSTATUS_SCSI_IO_DATA_ERROR:
mpt_set_ccb_status(ccb, CAM_UNCOR_PARITY);
break;
case MPI_IOCSTATUS_SCSI_DEVICE_NOT_THERE:
/*
* Since selection timeouts and "device really not
* there" are grouped into this error code, report
* selection timeout. Selection timeouts are
* typically retried before giving up on the device
* whereas "device not there" errors are considered
* unretryable.
*/
mpt_set_ccb_status(ccb, CAM_SEL_TIMEOUT);
break;
case MPI_IOCSTATUS_SCSI_PROTOCOL_ERROR:
mpt_set_ccb_status(ccb, CAM_SEQUENCE_FAIL);
break;
case MPI_IOCSTATUS_SCSI_INVALID_BUS:
mpt_set_ccb_status(ccb, CAM_PATH_INVALID);
break;
case MPI_IOCSTATUS_SCSI_INVALID_TARGETID:
mpt_set_ccb_status(ccb, CAM_TID_INVALID);
break;
case MPI_IOCSTATUS_SCSI_TASK_MGMT_FAILED:
ccb->ccb_h.status = CAM_UA_TERMIO;
break;
case MPI_IOCSTATUS_INVALID_STATE:
/*
* The IOC has been reset. Emulate a bus reset.
*/
/* FALLTHROUGH */
case MPI_IOCSTATUS_SCSI_EXT_TERMINATED:
ccb->ccb_h.status = CAM_SCSI_BUS_RESET;
break;
case MPI_IOCSTATUS_SCSI_TASK_TERMINATED:
case MPI_IOCSTATUS_SCSI_IOC_TERMINATED:
/*
* Don't clobber any timeout status that has
* already been set for this transaction. We
* want the SCSI layer to be able to differentiate
* between the command we aborted due to timeout
* and any innocent bystanders.
*/
if ((ccb->ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_INPROG)
break;
mpt_set_ccb_status(ccb, CAM_REQ_TERMIO);
break;
case MPI_IOCSTATUS_INSUFFICIENT_RESOURCES:
mpt_set_ccb_status(ccb, CAM_RESRC_UNAVAIL);
break;
case MPI_IOCSTATUS_BUSY:
mpt_set_ccb_status(ccb, CAM_BUSY);
break;
case MPI_IOCSTATUS_INVALID_FUNCTION:
case MPI_IOCSTATUS_INVALID_SGL:
case MPI_IOCSTATUS_INTERNAL_ERROR:
case MPI_IOCSTATUS_INVALID_FIELD:
default:
/* XXX
* Some of the above may need to kick
* of a recovery action!!!!
*/
ccb->ccb_h.status = CAM_UNREC_HBA_ERROR;
break;
}
if ((ccb->ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP) {
mpt_freeze_ccb(ccb);
}
return (TRUE);
}
static void
mpt_action(struct cam_sim *sim, union ccb *ccb)
{
struct mpt_softc *mpt;
struct ccb_trans_settings *cts;
target_id_t tgt;
lun_id_t lun;
int raid_passthru;
CAM_DEBUG(ccb->ccb_h.path, CAM_DEBUG_TRACE, ("mpt_action\n"));
mpt = (struct mpt_softc *)cam_sim_softc(sim);
raid_passthru = (sim == mpt->phydisk_sim);
MPT_LOCK_ASSERT(mpt);
tgt = ccb->ccb_h.target_id;
lun = ccb->ccb_h.target_lun;
if (raid_passthru &&
ccb->ccb_h.func_code != XPT_PATH_INQ &&
ccb->ccb_h.func_code != XPT_RESET_BUS &&
ccb->ccb_h.func_code != XPT_RESET_DEV) {
CAMLOCK_2_MPTLOCK(mpt);
if (mpt_map_physdisk(mpt, ccb, &tgt) != 0) {
MPTLOCK_2_CAMLOCK(mpt);
ccb->ccb_h.status &= ~CAM_SIM_QUEUED;
mpt_set_ccb_status(ccb, CAM_DEV_NOT_THERE);
xpt_done(ccb);
return;
}
MPTLOCK_2_CAMLOCK(mpt);
}
ccb->ccb_h.ccb_mpt_ptr = mpt;
switch (ccb->ccb_h.func_code) {
case XPT_SCSI_IO: /* Execute the requested I/O operation */
/*
* Do a couple of preliminary checks...
*/
if ((ccb->ccb_h.flags & CAM_CDB_POINTER) != 0) {
if ((ccb->ccb_h.flags & CAM_CDB_PHYS) != 0) {
ccb->ccb_h.status &= ~CAM_SIM_QUEUED;
mpt_set_ccb_status(ccb, CAM_REQ_INVALID);
break;
}
}
/* Max supported CDB length is 16 bytes */
/* XXX Unless we implement the new 32byte message type */
if (ccb->csio.cdb_len >
sizeof (((PTR_MSG_SCSI_IO_REQUEST)0)->CDB)) {
ccb->ccb_h.status &= ~CAM_SIM_QUEUED;
mpt_set_ccb_status(ccb, CAM_REQ_INVALID);
break;
}
#ifdef MPT_TEST_MULTIPATH
if (mpt->failure_id == ccb->ccb_h.target_id) {
ccb->ccb_h.status &= ~CAM_SIM_QUEUED;
mpt_set_ccb_status(ccb, CAM_SEL_TIMEOUT);
break;
}
#endif
ccb->csio.scsi_status = SCSI_STATUS_OK;
mpt_start(sim, ccb);
return;
case XPT_RESET_BUS:
if (raid_passthru) {
ccb->ccb_h.status &= ~CAM_SIM_QUEUED;
mpt_set_ccb_status(ccb, CAM_REQ_CMP);
break;
}
case XPT_RESET_DEV:
if (ccb->ccb_h.func_code == XPT_RESET_BUS) {
if (bootverbose) {
xpt_print(ccb->ccb_h.path, "reset bus\n");
}
} else {
xpt_print(ccb->ccb_h.path, "reset device\n");
}
CAMLOCK_2_MPTLOCK(mpt);
(void) mpt_bus_reset(mpt, tgt, lun, FALSE);
MPTLOCK_2_CAMLOCK(mpt);
/*
* mpt_bus_reset is always successful in that it
* will fall back to a hard reset should a bus
* reset attempt fail.
*/
ccb->ccb_h.status &= ~CAM_SIM_QUEUED;
mpt_set_ccb_status(ccb, CAM_REQ_CMP);
break;
case XPT_ABORT:
{
union ccb *accb = ccb->cab.abort_ccb;
CAMLOCK_2_MPTLOCK(mpt);
switch (accb->ccb_h.func_code) {
case XPT_ACCEPT_TARGET_IO:
case XPT_IMMED_NOTIFY:
ccb->ccb_h.status = mpt_abort_target_ccb(mpt, ccb);
break;
case XPT_CONT_TARGET_IO:
mpt_prt(mpt, "cannot abort active CTIOs yet\n");
ccb->ccb_h.status = CAM_UA_ABORT;
break;
case XPT_SCSI_IO:
ccb->ccb_h.status = CAM_UA_ABORT;
break;
default:
ccb->ccb_h.status = CAM_REQ_INVALID;
break;
}
MPTLOCK_2_CAMLOCK(mpt);
break;
}
#ifdef CAM_NEW_TRAN_CODE
#define IS_CURRENT_SETTINGS(c) ((c)->type == CTS_TYPE_CURRENT_SETTINGS)
#else
#define IS_CURRENT_SETTINGS(c) ((c)->flags & CCB_TRANS_CURRENT_SETTINGS)
#endif
#define DP_DISC_ENABLE 0x1
#define DP_DISC_DISABL 0x2
#define DP_DISC (DP_DISC_ENABLE|DP_DISC_DISABL)
#define DP_TQING_ENABLE 0x4
#define DP_TQING_DISABL 0x8
#define DP_TQING (DP_TQING_ENABLE|DP_TQING_DISABL)
#define DP_WIDE 0x10
#define DP_NARROW 0x20
#define DP_WIDTH (DP_WIDE|DP_NARROW)
#define DP_SYNC 0x40
case XPT_SET_TRAN_SETTINGS: /* Nexus Settings */
{
#ifdef CAM_NEW_TRAN_CODE
struct ccb_trans_settings_scsi *scsi;
struct ccb_trans_settings_spi *spi;
#endif
uint8_t dval;
u_int period;
u_int offset;
int i, j;
cts = &ccb->cts;
if (mpt->is_fc || mpt->is_sas) {
mpt_set_ccb_status(ccb, CAM_REQ_CMP);
break;
}
#ifdef CAM_NEW_TRAN_CODE
scsi = &cts->proto_specific.scsi;
spi = &cts->xport_specific.spi;
/*
* We can be called just to valid transport and proto versions
*/
if (scsi->valid == 0 && spi->valid == 0) {
mpt_set_ccb_status(ccb, CAM_REQ_CMP);
break;
}
#endif
/*
* Skip attempting settings on RAID volume disks.
* Other devices on the bus get the normal treatment.
*/
if (mpt->phydisk_sim && raid_passthru == 0 &&
mpt_is_raid_volume(mpt, tgt) != 0) {
mpt_lprt(mpt, MPT_PRT_NEGOTIATION,
"no transfer settings for RAID vols\n");
mpt_set_ccb_status(ccb, CAM_REQ_CMP);
break;
}
i = mpt->mpt_port_page2.PortSettings &
MPI_SCSIPORTPAGE2_PORT_MASK_NEGO_MASTER_SETTINGS;
j = mpt->mpt_port_page2.PortFlags &
MPI_SCSIPORTPAGE2_PORT_FLAGS_DV_MASK;
if (i == MPI_SCSIPORTPAGE2_PORT_ALL_MASTER_SETTINGS &&
j == MPI_SCSIPORTPAGE2_PORT_FLAGS_OFF_DV) {
mpt_lprt(mpt, MPT_PRT_ALWAYS,
"honoring BIOS transfer negotiations\n");
mpt_set_ccb_status(ccb, CAM_REQ_CMP);
break;
}
dval = 0;
period = 0;
offset = 0;
#ifndef CAM_NEW_TRAN_CODE
if ((cts->valid & CCB_TRANS_DISC_VALID) != 0) {
dval |= (cts->flags & CCB_TRANS_DISC_ENB) ?
DP_DISC_ENABLE : DP_DISC_DISABL;
}
if ((cts->valid & CCB_TRANS_TQ_VALID) != 0) {
dval |= (cts->flags & CCB_TRANS_TAG_ENB) ?
DP_TQING_ENABLE : DP_TQING_DISABL;
}
if ((cts->valid & CCB_TRANS_BUS_WIDTH_VALID) != 0) {
dval |= cts->bus_width ? DP_WIDE : DP_NARROW;
}
if ((cts->valid & CCB_TRANS_SYNC_RATE_VALID) &&
(cts->valid & CCB_TRANS_SYNC_OFFSET_VALID)) {
dval |= DP_SYNC;
period = cts->sync_period;
offset = cts->sync_offset;
}
#else
if ((spi->valid & CTS_SPI_VALID_DISC) != 0) {
dval |= ((spi->flags & CTS_SPI_FLAGS_DISC_ENB) != 0) ?
DP_DISC_ENABLE : DP_DISC_DISABL;
}
if ((scsi->valid & CTS_SCSI_VALID_TQ) != 0) {
dval |= ((scsi->flags & CTS_SCSI_FLAGS_TAG_ENB) != 0) ?
DP_TQING_ENABLE : DP_TQING_DISABL;
}
if ((spi->valid & CTS_SPI_VALID_BUS_WIDTH) != 0) {
dval |= (spi->bus_width == MSG_EXT_WDTR_BUS_16_BIT) ?
DP_WIDE : DP_NARROW;
}
if (spi->valid & CTS_SPI_VALID_SYNC_OFFSET) {
dval |= DP_SYNC;
offset = spi->sync_offset;
} else {
PTR_CONFIG_PAGE_SCSI_DEVICE_1 ptr =
&mpt->mpt_dev_page1[tgt];
offset = ptr->RequestedParameters;
offset &= MPI_SCSIDEVPAGE1_RP_MAX_SYNC_OFFSET_MASK;
offset >>= MPI_SCSIDEVPAGE1_RP_SHIFT_MAX_SYNC_OFFSET;
}
if (spi->valid & CTS_SPI_VALID_SYNC_RATE) {
dval |= DP_SYNC;
period = spi->sync_period;
} else {
PTR_CONFIG_PAGE_SCSI_DEVICE_1 ptr =
&mpt->mpt_dev_page1[tgt];
period = ptr->RequestedParameters;
period &= MPI_SCSIDEVPAGE1_RP_MIN_SYNC_PERIOD_MASK;
period >>= MPI_SCSIDEVPAGE1_RP_SHIFT_MIN_SYNC_PERIOD;
}
#endif
CAMLOCK_2_MPTLOCK(mpt);
if (dval & DP_DISC_ENABLE) {
mpt->mpt_disc_enable |= (1 << tgt);
} else if (dval & DP_DISC_DISABL) {
mpt->mpt_disc_enable &= ~(1 << tgt);
}
if (dval & DP_TQING_ENABLE) {
mpt->mpt_tag_enable |= (1 << tgt);
} else if (dval & DP_TQING_DISABL) {
mpt->mpt_tag_enable &= ~(1 << tgt);
}
if (dval & DP_WIDTH) {
mpt_setwidth(mpt, tgt, 1);
}
if (dval & DP_SYNC) {
mpt_setsync(mpt, tgt, period, offset);
}
if (dval == 0) {
MPTLOCK_2_CAMLOCK(mpt);
mpt_set_ccb_status(ccb, CAM_REQ_CMP);
break;
}
mpt_lprt(mpt, MPT_PRT_NEGOTIATION,
"set [%d]: 0x%x period 0x%x offset %d\n",
tgt, dval, period, offset);
if (mpt_update_spi_config(mpt, tgt)) {
mpt_set_ccb_status(ccb, CAM_REQ_CMP_ERR);
} else {
mpt_set_ccb_status(ccb, CAM_REQ_CMP);
}
MPTLOCK_2_CAMLOCK(mpt);
break;
}
case XPT_GET_TRAN_SETTINGS:
{
#ifdef CAM_NEW_TRAN_CODE
struct ccb_trans_settings_scsi *scsi;
cts = &ccb->cts;
cts->protocol = PROTO_SCSI;
if (mpt->is_fc) {
struct ccb_trans_settings_fc *fc =
&cts->xport_specific.fc;
cts->protocol_version = SCSI_REV_SPC;
cts->transport = XPORT_FC;
cts->transport_version = 0;
fc->valid = CTS_FC_VALID_SPEED;
fc->bitrate = 100000;
} else if (mpt->is_sas) {
struct ccb_trans_settings_sas *sas =
&cts->xport_specific.sas;
cts->protocol_version = SCSI_REV_SPC2;
cts->transport = XPORT_SAS;
cts->transport_version = 0;
sas->valid = CTS_SAS_VALID_SPEED;
sas->bitrate = 300000;
} else {
cts->protocol_version = SCSI_REV_2;
cts->transport = XPORT_SPI;
cts->transport_version = 2;
if (mpt_get_spi_settings(mpt, cts) != 0) {
mpt_set_ccb_status(ccb, CAM_REQ_CMP_ERR);
break;
}
}
scsi = &cts->proto_specific.scsi;
scsi->valid = CTS_SCSI_VALID_TQ;
scsi->flags = CTS_SCSI_FLAGS_TAG_ENB;
#else
cts = &ccb->cts;
if (mpt->is_fc) {
cts->flags = CCB_TRANS_TAG_ENB | CCB_TRANS_DISC_ENB;
cts->valid = CCB_TRANS_DISC_VALID | CCB_TRANS_TQ_VALID;
cts->bus_width = MSG_EXT_WDTR_BUS_8_BIT;
} else if (mpt->is_sas) {
cts->flags = CCB_TRANS_TAG_ENB | CCB_TRANS_DISC_ENB;
cts->valid = CCB_TRANS_DISC_VALID | CCB_TRANS_TQ_VALID;
cts->bus_width = MSG_EXT_WDTR_BUS_8_BIT;
} else if (mpt_get_spi_settings(mpt, cts) != 0) {
mpt_set_ccb_status(ccb, CAM_REQ_CMP_ERR);
break;
}
#endif
mpt_set_ccb_status(ccb, CAM_REQ_CMP);
break;
}
case XPT_CALC_GEOMETRY:
{
struct ccb_calc_geometry *ccg;
ccg = &ccb->ccg;
if (ccg->block_size == 0) {
ccb->ccb_h.status &= ~CAM_SIM_QUEUED;
mpt_set_ccb_status(ccb, CAM_REQ_INVALID);
break;
}
mpt_calc_geometry(ccg, /*extended*/1);
KASSERT(ccb->ccb_h.status, ("zero ccb sts at %d\n", __LINE__));
break;
}
case XPT_PATH_INQ: /* Path routing inquiry */
{
struct ccb_pathinq *cpi = &ccb->cpi;
cpi->version_num = 1;
cpi->target_sprt = 0;
cpi->hba_eng_cnt = 0;
cpi->max_target = mpt->port_facts[0].MaxDevices - 1;
cpi->maxio = (mpt->max_cam_seg_cnt - 1) * PAGE_SIZE;
/*
* FC cards report MAX_DEVICES of 512, but
* the MSG_SCSI_IO_REQUEST target id field
* is only 8 bits. Until we fix the driver
* to support 'channels' for bus overflow,
* just limit it.
*/
if (cpi->max_target > 255) {
cpi->max_target = 255;
}
/*
* VMware ESX reports > 16 devices and then dies when we probe.
*/
if (mpt->is_spi && cpi->max_target > 15) {
cpi->max_target = 15;
}
if (mpt->is_spi)
cpi->max_lun = 7;
else
cpi->max_lun = MPT_MAX_LUNS;
cpi->initiator_id = mpt->mpt_ini_id;
cpi->bus_id = cam_sim_bus(sim);
/*
* The base speed is the speed of the underlying connection.
*/
#ifdef CAM_NEW_TRAN_CODE
cpi->protocol = PROTO_SCSI;
if (mpt->is_fc) {
cpi->hba_misc = PIM_NOBUSRESET;
cpi->base_transfer_speed = 100000;
cpi->hba_inquiry = PI_TAG_ABLE;
cpi->transport = XPORT_FC;
cpi->transport_version = 0;
cpi->protocol_version = SCSI_REV_SPC;
} else if (mpt->is_sas) {
cpi->hba_misc = PIM_NOBUSRESET;
cpi->base_transfer_speed = 300000;
cpi->hba_inquiry = PI_TAG_ABLE;
cpi->transport = XPORT_SAS;
cpi->transport_version = 0;
cpi->protocol_version = SCSI_REV_SPC2;
} else {
cpi->hba_misc = PIM_SEQSCAN;
cpi->base_transfer_speed = 3300;
cpi->hba_inquiry = PI_SDTR_ABLE|PI_TAG_ABLE|PI_WIDE_16;
cpi->transport = XPORT_SPI;
cpi->transport_version = 2;
cpi->protocol_version = SCSI_REV_2;
}
#else
if (mpt->is_fc) {
cpi->hba_misc = PIM_NOBUSRESET;
cpi->base_transfer_speed = 100000;
cpi->hba_inquiry = PI_TAG_ABLE;
} else if (mpt->is_sas) {
cpi->hba_misc = PIM_NOBUSRESET;
cpi->base_transfer_speed = 300000;
cpi->hba_inquiry = PI_TAG_ABLE;
} else {
cpi->hba_misc = PIM_SEQSCAN;
cpi->base_transfer_speed = 3300;
cpi->hba_inquiry = PI_SDTR_ABLE|PI_TAG_ABLE|PI_WIDE_16;
}
#endif
/*
* We give our fake RAID passhtru bus a width that is MaxVolumes
* wide and restrict it to one lun.
*/
if (raid_passthru) {
cpi->max_target = mpt->ioc_page2->MaxPhysDisks - 1;
cpi->initiator_id = cpi->max_target + 1;
cpi->max_lun = 0;
}
if ((mpt->role & MPT_ROLE_INITIATOR) == 0) {
cpi->hba_misc |= PIM_NOINITIATOR;
}
if (mpt->is_fc && (mpt->role & MPT_ROLE_TARGET)) {
cpi->target_sprt =
PIT_PROCESSOR | PIT_DISCONNECT | PIT_TERM_IO;
} else {
cpi->target_sprt = 0;
}
strncpy(cpi->sim_vid, "FreeBSD", SIM_IDLEN);
strncpy(cpi->hba_vid, "LSI", HBA_IDLEN);
strncpy(cpi->dev_name, cam_sim_name(sim), DEV_IDLEN);
cpi->unit_number = cam_sim_unit(sim);
cpi->ccb_h.status = CAM_REQ_CMP;
break;
}
case XPT_EN_LUN: /* Enable LUN as a target */
{
int result;
CAMLOCK_2_MPTLOCK(mpt);
if (ccb->cel.enable)
result = mpt_enable_lun(mpt,
ccb->ccb_h.target_id, ccb->ccb_h.target_lun);
else
result = mpt_disable_lun(mpt,
ccb->ccb_h.target_id, ccb->ccb_h.target_lun);
MPTLOCK_2_CAMLOCK(mpt);
if (result == 0) {
mpt_set_ccb_status(ccb, CAM_REQ_CMP);
} else {
mpt_set_ccb_status(ccb, CAM_REQ_CMP_ERR);
}
break;
}
case XPT_NOTIFY_ACK: /* recycle notify ack */
case XPT_IMMED_NOTIFY: /* Add Immediate Notify Resource */
case XPT_ACCEPT_TARGET_IO: /* Add Accept Target IO Resource */
{
tgt_resource_t *trtp;
lun_id_t lun = ccb->ccb_h.target_lun;
ccb->ccb_h.sim_priv.entries[0].field = 0;
ccb->ccb_h.sim_priv.entries[1].ptr = mpt;
ccb->ccb_h.flags = 0;
if (lun == CAM_LUN_WILDCARD) {
if (ccb->ccb_h.target_id != CAM_TARGET_WILDCARD) {
mpt_set_ccb_status(ccb, CAM_REQ_INVALID);
break;
}
trtp = &mpt->trt_wildcard;
} else if (lun >= MPT_MAX_LUNS) {
mpt_set_ccb_status(ccb, CAM_REQ_INVALID);
break;
} else {
trtp = &mpt->trt[lun];
}
CAMLOCK_2_MPTLOCK(mpt);
if (ccb->ccb_h.func_code == XPT_ACCEPT_TARGET_IO) {
mpt_lprt(mpt, MPT_PRT_DEBUG1,
"Put FREE ATIO %p lun %d\n", ccb, lun);
STAILQ_INSERT_TAIL(&trtp->atios, &ccb->ccb_h,
sim_links.stqe);
} else if (ccb->ccb_h.func_code == XPT_IMMED_NOTIFY) {
mpt_lprt(mpt, MPT_PRT_DEBUG1,
"Put FREE INOT lun %d\n", lun);
STAILQ_INSERT_TAIL(&trtp->inots, &ccb->ccb_h,
sim_links.stqe);
} else {
mpt_lprt(mpt, MPT_PRT_ALWAYS, "Got Notify ACK\n");
}
mpt_set_ccb_status(ccb, CAM_REQ_INPROG);
MPTLOCK_2_CAMLOCK(mpt);
return;
}
case XPT_CONT_TARGET_IO:
CAMLOCK_2_MPTLOCK(mpt);
mpt_target_start_io(mpt, ccb);
MPTLOCK_2_CAMLOCK(mpt);
return;
default:
ccb->ccb_h.status = CAM_REQ_INVALID;
break;
}
xpt_done(ccb);
}
static int
mpt_get_spi_settings(struct mpt_softc *mpt, struct ccb_trans_settings *cts)
{
#ifdef CAM_NEW_TRAN_CODE
struct ccb_trans_settings_scsi *scsi = &cts->proto_specific.scsi;
struct ccb_trans_settings_spi *spi = &cts->xport_specific.spi;
#endif
target_id_t tgt;
uint32_t dval, pval, oval;
int rv;
if (IS_CURRENT_SETTINGS(cts) == 0) {
tgt = cts->ccb_h.target_id;
} else if (xpt_path_sim(cts->ccb_h.path) == mpt->phydisk_sim) {
if (mpt_map_physdisk(mpt, (union ccb *)cts, &tgt)) {
return (-1);
}
} else {
tgt = cts->ccb_h.target_id;
}
/*
* We aren't looking at Port Page 2 BIOS settings here-
* sometimes these have been known to be bogus XXX.
*
* For user settings, we pick the max from port page 0
*
* For current settings we read the current settings out from
* device page 0 for that target.
*/
if (IS_CURRENT_SETTINGS(cts)) {
CONFIG_PAGE_SCSI_DEVICE_0 tmp;
dval = 0;
CAMLOCK_2_MPTLOCK(mpt);
tmp = mpt->mpt_dev_page0[tgt];
rv = mpt_read_cur_cfg_page(mpt, tgt, &tmp.Header,
sizeof(tmp), FALSE, 5000);
if (rv) {
MPTLOCK_2_CAMLOCK(mpt);
mpt_prt(mpt, "can't get tgt %d config page 0\n", tgt);
return (rv);
}
mpt2host_config_page_scsi_device_0(&tmp);
MPTLOCK_2_CAMLOCK(mpt);
mpt_lprt(mpt, MPT_PRT_DEBUG,
"mpt_get_spi_settings[%d]: current NP %x Info %x\n", tgt,
tmp.NegotiatedParameters, tmp.Information);
dval |= (tmp.NegotiatedParameters & MPI_SCSIDEVPAGE0_NP_WIDE) ?
DP_WIDE : DP_NARROW;
dval |= (mpt->mpt_disc_enable & (1 << tgt)) ?
DP_DISC_ENABLE : DP_DISC_DISABL;
dval |= (mpt->mpt_tag_enable & (1 << tgt)) ?
DP_TQING_ENABLE : DP_TQING_DISABL;
oval = tmp.NegotiatedParameters;
oval &= MPI_SCSIDEVPAGE0_NP_NEG_SYNC_OFFSET_MASK;
oval >>= MPI_SCSIDEVPAGE0_NP_SHIFT_SYNC_OFFSET;
pval = tmp.NegotiatedParameters;
pval &= MPI_SCSIDEVPAGE0_NP_NEG_SYNC_PERIOD_MASK;
pval >>= MPI_SCSIDEVPAGE0_NP_SHIFT_SYNC_PERIOD;
mpt->mpt_dev_page0[tgt] = tmp;
} else {
dval = DP_WIDE|DP_DISC_ENABLE|DP_TQING_ENABLE|DP_SYNC;
oval = mpt->mpt_port_page0.Capabilities;
oval = MPI_SCSIPORTPAGE0_CAP_GET_MAX_SYNC_OFFSET(oval);
pval = mpt->mpt_port_page0.Capabilities;
pval = MPI_SCSIPORTPAGE0_CAP_GET_MIN_SYNC_PERIOD(pval);
}
#ifndef CAM_NEW_TRAN_CODE
cts->flags &= ~(CCB_TRANS_DISC_ENB|CCB_TRANS_TAG_ENB);
cts->valid = 0;
cts->sync_period = pval;
cts->sync_offset = oval;
cts->valid |= CCB_TRANS_SYNC_RATE_VALID;
cts->valid |= CCB_TRANS_SYNC_OFFSET_VALID;
cts->valid |= CCB_TRANS_BUS_WIDTH_VALID;
if (dval & DP_WIDE) {
cts->bus_width = MSG_EXT_WDTR_BUS_16_BIT;
} else {
cts->bus_width = MSG_EXT_WDTR_BUS_8_BIT;
}
if (cts->ccb_h.target_lun != CAM_LUN_WILDCARD) {
cts->valid |= CCB_TRANS_DISC_VALID | CCB_TRANS_TQ_VALID;
if (dval & DP_DISC_ENABLE) {
cts->flags |= CCB_TRANS_DISC_ENB;
}
if (dval & DP_TQING_ENABLE) {
cts->flags |= CCB_TRANS_TAG_ENB;
}
}
#else
spi->valid = 0;
scsi->valid = 0;
spi->flags = 0;
scsi->flags = 0;
spi->sync_offset = oval;
spi->sync_period = pval;
spi->valid |= CTS_SPI_VALID_SYNC_OFFSET;
spi->valid |= CTS_SPI_VALID_SYNC_RATE;
spi->valid |= CTS_SPI_VALID_BUS_WIDTH;
if (dval & DP_WIDE) {
spi->bus_width = MSG_EXT_WDTR_BUS_16_BIT;
} else {
spi->bus_width = MSG_EXT_WDTR_BUS_8_BIT;
}
if (cts->ccb_h.target_lun != CAM_LUN_WILDCARD) {
scsi->valid = CTS_SCSI_VALID_TQ;
if (dval & DP_TQING_ENABLE) {
scsi->flags |= CTS_SCSI_FLAGS_TAG_ENB;
}
spi->valid |= CTS_SPI_VALID_DISC;
if (dval & DP_DISC_ENABLE) {
spi->flags |= CTS_SPI_FLAGS_DISC_ENB;
}
}
#endif
mpt_lprt(mpt, MPT_PRT_NEGOTIATION,
"mpt_get_spi_settings[%d]: %s flags 0x%x per 0x%x off=%d\n", tgt,
IS_CURRENT_SETTINGS(cts)? "ACTIVE" : "NVRAM ", dval, pval, oval);
return (0);
}
static void
mpt_setwidth(struct mpt_softc *mpt, int tgt, int onoff)
{
PTR_CONFIG_PAGE_SCSI_DEVICE_1 ptr;
ptr = &mpt->mpt_dev_page1[tgt];
if (onoff) {
ptr->RequestedParameters |= MPI_SCSIDEVPAGE1_RP_WIDE;
} else {
ptr->RequestedParameters &= ~MPI_SCSIDEVPAGE1_RP_WIDE;
}
}
static void
mpt_setsync(struct mpt_softc *mpt, int tgt, int period, int offset)
{
PTR_CONFIG_PAGE_SCSI_DEVICE_1 ptr;
ptr = &mpt->mpt_dev_page1[tgt];
ptr->RequestedParameters &= ~MPI_SCSIDEVPAGE1_RP_MIN_SYNC_PERIOD_MASK;
ptr->RequestedParameters &= ~MPI_SCSIDEVPAGE1_RP_MAX_SYNC_OFFSET_MASK;
ptr->RequestedParameters &= ~MPI_SCSIDEVPAGE1_RP_DT;
ptr->RequestedParameters &= ~MPI_SCSIDEVPAGE1_RP_QAS;
ptr->RequestedParameters &= ~MPI_SCSIDEVPAGE1_RP_IU;
if (period == 0) {
return;
}
ptr->RequestedParameters |=
period << MPI_SCSIDEVPAGE1_RP_SHIFT_MIN_SYNC_PERIOD;
ptr->RequestedParameters |=
offset << MPI_SCSIDEVPAGE1_RP_SHIFT_MAX_SYNC_OFFSET;
if (period < 0xa) {
ptr->RequestedParameters |= MPI_SCSIDEVPAGE1_RP_DT;
}
if (period < 0x9) {
ptr->RequestedParameters |= MPI_SCSIDEVPAGE1_RP_QAS;
ptr->RequestedParameters |= MPI_SCSIDEVPAGE1_RP_IU;
}
}
static int
mpt_update_spi_config(struct mpt_softc *mpt, int tgt)
{
CONFIG_PAGE_SCSI_DEVICE_1 tmp;
int rv;
mpt_lprt(mpt, MPT_PRT_NEGOTIATION,
"mpt_update_spi_config[%d].page1: Requested Params 0x%08x\n",
tgt, mpt->mpt_dev_page1[tgt].RequestedParameters);
tmp = mpt->mpt_dev_page1[tgt];
host2mpt_config_page_scsi_device_1(&tmp);
rv = mpt_write_cur_cfg_page(mpt, tgt,
&tmp.Header, sizeof(tmp), FALSE, 5000);
if (rv) {
mpt_prt(mpt, "mpt_update_spi_config: write cur page failed\n");
return (-1);
}
return (0);
}
static void
mpt_calc_geometry(struct ccb_calc_geometry *ccg, int extended)
{
#if __FreeBSD_version >= 500000
cam_calc_geometry(ccg, extended);
#else
uint32_t size_mb;
uint32_t secs_per_cylinder;
if (ccg->block_size == 0) {
ccg->ccb_h.status = CAM_REQ_INVALID;
return;
}
size_mb = ccg->volume_size / ((1024L * 1024L) / ccg->block_size);
if (size_mb > 1024 && extended) {
ccg->heads = 255;
ccg->secs_per_track = 63;
} else {
ccg->heads = 64;
ccg->secs_per_track = 32;
}
secs_per_cylinder = ccg->heads * ccg->secs_per_track;
ccg->cylinders = ccg->volume_size / secs_per_cylinder;
ccg->ccb_h.status = CAM_REQ_CMP;
#endif
}
/****************************** Timeout Recovery ******************************/
static int
mpt_spawn_recovery_thread(struct mpt_softc *mpt)
{
int error;
error = mpt_kthread_create(mpt_recovery_thread, mpt,
&mpt->recovery_thread, /*flags*/0,
/*altstack*/0, "mpt_recovery%d", mpt->unit);
return (error);
}
static void
mpt_terminate_recovery_thread(struct mpt_softc *mpt)
{
if (mpt->recovery_thread == NULL) {
return;
}
mpt->shutdwn_recovery = 1;
wakeup(mpt);
/*
* Sleep on a slightly different location
* for this interlock just for added safety.
*/
mpt_sleep(mpt, &mpt->recovery_thread, PUSER, "thtrm", 0);
}
static void
mpt_recovery_thread(void *arg)
{
struct mpt_softc *mpt;
mpt = (struct mpt_softc *)arg;
MPT_LOCK(mpt);
for (;;) {
if (TAILQ_EMPTY(&mpt->request_timeout_list) != 0) {
if (mpt->shutdwn_recovery == 0) {
mpt_sleep(mpt, mpt, PUSER, "idle", 0);
}
}
if (mpt->shutdwn_recovery != 0) {
break;
}
mpt_recover_commands(mpt);
}
mpt->recovery_thread = NULL;
wakeup(&mpt->recovery_thread);
MPT_UNLOCK(mpt);
mpt_kthread_exit(0);
}
static int
mpt_scsi_send_tmf(struct mpt_softc *mpt, u_int type, u_int flags,
u_int channel, u_int target, u_int lun, u_int abort_ctx, int sleep_ok)
{
MSG_SCSI_TASK_MGMT *tmf_req;
int error;
/*
* Wait for any current TMF request to complete.
* We're only allowed to issue one TMF at a time.
*/
error = mpt_wait_req(mpt, mpt->tmf_req, REQ_STATE_FREE, REQ_STATE_FREE,
sleep_ok, MPT_TMF_MAX_TIMEOUT);
if (error != 0) {
mpt_reset(mpt, TRUE);
return (ETIMEDOUT);
}
mpt_assign_serno(mpt, mpt->tmf_req);
mpt->tmf_req->state = REQ_STATE_ALLOCATED|REQ_STATE_QUEUED;
tmf_req = (MSG_SCSI_TASK_MGMT *)mpt->tmf_req->req_vbuf;
memset(tmf_req, 0, sizeof(*tmf_req));
tmf_req->TargetID = target;
tmf_req->Bus = channel;
tmf_req->Function = MPI_FUNCTION_SCSI_TASK_MGMT;
tmf_req->TaskType = type;
tmf_req->MsgFlags = flags;
tmf_req->MsgContext =
htole32(mpt->tmf_req->index | scsi_tmf_handler_id);
if (lun > MPT_MAX_LUNS) {
tmf_req->LUN[0] = 0x40 | ((lun >> 8) & 0x3f);
tmf_req->LUN[1] = lun & 0xff;
} else {
tmf_req->LUN[1] = lun;
}
tmf_req->TaskMsgContext = abort_ctx;
mpt_lprt(mpt, MPT_PRT_DEBUG,
"Issuing TMF %p:%u with MsgContext of 0x%x\n", mpt->tmf_req,
mpt->tmf_req->serno, tmf_req->MsgContext);
if (mpt->verbose > MPT_PRT_DEBUG) {
mpt_print_request(tmf_req);
}
KASSERT(mpt_req_on_pending_list(mpt, mpt->tmf_req) == 0,
("mpt_scsi_send_tmf: tmf_req already on pending list"));
TAILQ_INSERT_HEAD(&mpt->request_pending_list, mpt->tmf_req, links);
error = mpt_send_handshake_cmd(mpt, sizeof(*tmf_req), tmf_req);
if (error != MPT_OK) {
TAILQ_REMOVE(&mpt->request_pending_list, mpt->tmf_req, links);
mpt->tmf_req->state = REQ_STATE_FREE;
mpt_reset(mpt, TRUE);
}
return (error);
}
/*
* When a command times out, it is placed on the requeust_timeout_list
* and we wake our recovery thread. The MPT-Fusion architecture supports
* only a single TMF operation at a time, so we serially abort/bdr, etc,
* the timedout transactions. The next TMF is issued either by the
* completion handler of the current TMF waking our recovery thread,
* or the TMF timeout handler causing a hard reset sequence.
*/
static void
mpt_recover_commands(struct mpt_softc *mpt)
{
request_t *req;
union ccb *ccb;
int error;
if (TAILQ_EMPTY(&mpt->request_timeout_list) != 0) {
/*
* No work to do- leave.
*/
mpt_prt(mpt, "mpt_recover_commands: no requests.\n");
return;
}
/*
* Flush any commands whose completion coincides with their timeout.
*/
mpt_intr(mpt);
if (TAILQ_EMPTY(&mpt->request_timeout_list) != 0) {
/*
* The timedout commands have already
* completed. This typically means
* that either the timeout value was on
* the hairy edge of what the device
* requires or - more likely - interrupts
* are not happening.
*/
mpt_prt(mpt, "Timedout requests already complete. "
"Interrupts may not be functioning.\n");
mpt_enable_ints(mpt);
return;
}
/*
* We have no visibility into the current state of the
* controller, so attempt to abort the commands in the
* order they timed-out. For initiator commands, we
* depend on the reply handler pulling requests off
* the timeout list.
*/
while ((req = TAILQ_FIRST(&mpt->request_timeout_list)) != NULL) {
uint16_t status;
uint8_t response;
MSG_REQUEST_HEADER *hdrp = req->req_vbuf;
mpt_prt(mpt, "attempting to abort req %p:%u function %x\n",
req, req->serno, hdrp->Function);
ccb = req->ccb;
if (ccb == NULL) {
mpt_prt(mpt, "null ccb in timed out request. "
"Resetting Controller.\n");
mpt_reset(mpt, TRUE);
continue;
}
mpt_set_ccb_status(ccb, CAM_CMD_TIMEOUT);
/*
* Check to see if this is not an initiator command and
* deal with it differently if it is.
*/
switch (hdrp->Function) {
case MPI_FUNCTION_SCSI_IO_REQUEST:
case MPI_FUNCTION_RAID_SCSI_IO_PASSTHROUGH:
break;
default:
/*
* XXX: FIX ME: need to abort target assists...
*/
mpt_prt(mpt, "just putting it back on the pend q\n");
TAILQ_REMOVE(&mpt->request_timeout_list, req, links);
TAILQ_INSERT_HEAD(&mpt->request_pending_list, req,
links);
continue;
}
error = mpt_scsi_send_tmf(mpt,
MPI_SCSITASKMGMT_TASKTYPE_ABORT_TASK,
0, 0, ccb->ccb_h.target_id, ccb->ccb_h.target_lun,
htole32(req->index | scsi_io_handler_id), TRUE);
if (error != 0) {
/*
* mpt_scsi_send_tmf hard resets on failure, so no
* need to do so here. Our queue should be emptied
* by the hard reset.
*/
continue;
}
error = mpt_wait_req(mpt, mpt->tmf_req, REQ_STATE_DONE,
REQ_STATE_DONE, TRUE, 500);
status = le16toh(mpt->tmf_req->IOCStatus);
response = mpt->tmf_req->ResponseCode;
mpt->tmf_req->state = REQ_STATE_FREE;
if (error != 0) {
/*
* If we've errored out,, reset the controller.
*/
mpt_prt(mpt, "mpt_recover_commands: abort timed-out. "
"Resetting controller\n");
mpt_reset(mpt, TRUE);
continue;
}
if ((status & MPI_IOCSTATUS_MASK) != MPI_IOCSTATUS_SUCCESS) {
mpt_prt(mpt, "mpt_recover_commands: IOC Status 0x%x. "
"Resetting controller.\n", status);
mpt_reset(mpt, TRUE);
continue;
}
if (response != MPI_SCSITASKMGMT_RSP_TM_SUCCEEDED &&
response != MPI_SCSITASKMGMT_RSP_TM_COMPLETE) {
mpt_prt(mpt, "mpt_recover_commands: TMF Response 0x%x. "
"Resetting controller.\n", response);
mpt_reset(mpt, TRUE);
continue;
}
mpt_prt(mpt, "abort of req %p:%u completed\n", req, req->serno);
}
}
/************************ Target Mode Support ****************************/
static void
mpt_fc_post_els(struct mpt_softc *mpt, request_t *req, int ioindex)
{
MSG_LINK_SERVICE_BUFFER_POST_REQUEST *fc;
PTR_SGE_TRANSACTION32 tep;
PTR_SGE_SIMPLE32 se;
bus_addr_t paddr;
uint32_t fl;
paddr = req->req_pbuf;
paddr += MPT_RQSL(mpt);
fc = req->req_vbuf;
memset(fc, 0, MPT_REQUEST_AREA);
fc->BufferCount = 1;
fc->Function = MPI_FUNCTION_FC_LINK_SRVC_BUF_POST;
fc->MsgContext = htole32(req->index | fc_els_handler_id);
/*
* Okay, set up ELS buffer pointers. ELS buffer pointers
* consist of a TE SGL element (with details length of zero)
* followed by a SIMPLE SGL element which holds the address
* of the buffer.
*/
tep = (PTR_SGE_TRANSACTION32) &fc->SGL;
tep->ContextSize = 4;
tep->Flags = 0;
tep->TransactionContext[0] = htole32(ioindex);
se = (PTR_SGE_SIMPLE32) &tep->TransactionDetails[0];
fl =
MPI_SGE_FLAGS_HOST_TO_IOC |
MPI_SGE_FLAGS_SIMPLE_ELEMENT |
MPI_SGE_FLAGS_LAST_ELEMENT |
MPI_SGE_FLAGS_END_OF_LIST |
MPI_SGE_FLAGS_END_OF_BUFFER;
fl <<= MPI_SGE_FLAGS_SHIFT;
fl |= (MPT_NRFM(mpt) - MPT_RQSL(mpt));
se->FlagsLength = htole32(fl);
se->Address = htole32((uint32_t) paddr);
mpt_lprt(mpt, MPT_PRT_DEBUG,
"add ELS index %d ioindex %d for %p:%u\n",
req->index, ioindex, req, req->serno);
KASSERT(((req->state & REQ_STATE_LOCKED) != 0),
("mpt_fc_post_els: request not locked"));
mpt_send_cmd(mpt, req);
}
static void
mpt_post_target_command(struct mpt_softc *mpt, request_t *req, int ioindex)
{
PTR_MSG_TARGET_CMD_BUFFER_POST_REQUEST fc;
PTR_CMD_BUFFER_DESCRIPTOR cb;
bus_addr_t paddr;
paddr = req->req_pbuf;
paddr += MPT_RQSL(mpt);
memset(req->req_vbuf, 0, MPT_REQUEST_AREA);
MPT_TGT_STATE(mpt, req)->state = TGT_STATE_LOADING;
fc = req->req_vbuf;
fc->BufferCount = 1;
fc->Function = MPI_FUNCTION_TARGET_CMD_BUFFER_POST;
fc->MsgContext = htole32(req->index | mpt->scsi_tgt_handler_id);
cb = &fc->Buffer[0];
cb->IoIndex = htole16(ioindex);
cb->u.PhysicalAddress32 = htole32((U32) paddr);
mpt_check_doorbell(mpt);
mpt_send_cmd(mpt, req);
}
static int
mpt_add_els_buffers(struct mpt_softc *mpt)
{
int i;
if (mpt->is_fc == 0) {
return (TRUE);
}
if (mpt->els_cmds_allocated) {
return (TRUE);
}
mpt->els_cmd_ptrs = malloc(MPT_MAX_ELS * sizeof (request_t *),
M_DEVBUF, M_NOWAIT | M_ZERO);
if (mpt->els_cmd_ptrs == NULL) {
return (FALSE);
}
/*
* Feed the chip some ELS buffer resources
*/
for (i = 0; i < MPT_MAX_ELS; i++) {
request_t *req = mpt_get_request(mpt, FALSE);
if (req == NULL) {
break;
}
req->state |= REQ_STATE_LOCKED;
mpt->els_cmd_ptrs[i] = req;
mpt_fc_post_els(mpt, req, i);
}
if (i == 0) {
mpt_prt(mpt, "unable to add ELS buffer resources\n");
free(mpt->els_cmd_ptrs, M_DEVBUF);
mpt->els_cmd_ptrs = NULL;
return (FALSE);
}
if (i != MPT_MAX_ELS) {
mpt_lprt(mpt, MPT_PRT_INFO,
"only added %d of %d ELS buffers\n", i, MPT_MAX_ELS);
}
mpt->els_cmds_allocated = i;
return(TRUE);
}
static int
mpt_add_target_commands(struct mpt_softc *mpt)
{
int i, max;
if (mpt->tgt_cmd_ptrs) {
return (TRUE);
}
max = MPT_MAX_REQUESTS(mpt) >> 1;
if (max > mpt->mpt_max_tgtcmds) {
max = mpt->mpt_max_tgtcmds;
}
mpt->tgt_cmd_ptrs =
malloc(max * sizeof (request_t *), M_DEVBUF, M_NOWAIT | M_ZERO);
if (mpt->tgt_cmd_ptrs == NULL) {
mpt_prt(mpt,
"mpt_add_target_commands: could not allocate cmd ptrs\n");
return (FALSE);
}
for (i = 0; i < max; i++) {
request_t *req;
req = mpt_get_request(mpt, FALSE);
if (req == NULL) {
break;
}
req->state |= REQ_STATE_LOCKED;
mpt->tgt_cmd_ptrs[i] = req;
mpt_post_target_command(mpt, req, i);
}
if (i == 0) {
mpt_lprt(mpt, MPT_PRT_ERROR, "could not add any target bufs\n");
free(mpt->tgt_cmd_ptrs, M_DEVBUF);
mpt->tgt_cmd_ptrs = NULL;
return (FALSE);
}
mpt->tgt_cmds_allocated = i;
if (i < max) {
mpt_lprt(mpt, MPT_PRT_INFO,
"added %d of %d target bufs\n", i, max);
}
return (i);
}
static int
mpt_enable_lun(struct mpt_softc *mpt, target_id_t tgt, lun_id_t lun)
{
if (tgt == CAM_TARGET_WILDCARD && lun == CAM_LUN_WILDCARD) {
mpt->twildcard = 1;
} else if (lun >= MPT_MAX_LUNS) {
return (EINVAL);
} else if (tgt != CAM_TARGET_WILDCARD && tgt != 0) {
return (EINVAL);
}
if (mpt->tenabled == 0) {
if (mpt->is_fc) {
(void) mpt_fc_reset_link(mpt, 0);
}
mpt->tenabled = 1;
}
if (lun == CAM_LUN_WILDCARD) {
mpt->trt_wildcard.enabled = 1;
} else {
mpt->trt[lun].enabled = 1;
}
return (0);
}
static int
mpt_disable_lun(struct mpt_softc *mpt, target_id_t tgt, lun_id_t lun)
{
int i;
if (tgt == CAM_TARGET_WILDCARD && lun == CAM_LUN_WILDCARD) {
mpt->twildcard = 0;
} else if (lun >= MPT_MAX_LUNS) {
return (EINVAL);
} else if (tgt != CAM_TARGET_WILDCARD && tgt != 0) {
return (EINVAL);
}
if (lun == CAM_LUN_WILDCARD) {
mpt->trt_wildcard.enabled = 0;
} else {
mpt->trt[lun].enabled = 0;
}
for (i = 0; i < MPT_MAX_LUNS; i++) {
if (mpt->trt[lun].enabled) {
break;
}
}
if (i == MPT_MAX_LUNS && mpt->twildcard == 0) {
if (mpt->is_fc) {
(void) mpt_fc_reset_link(mpt, 0);
}
mpt->tenabled = 0;
}
return (0);
}
/*
* Called with MPT lock held
*/
static void
mpt_target_start_io(struct mpt_softc *mpt, union ccb *ccb)
{
struct ccb_scsiio *csio = &ccb->csio;
request_t *cmd_req = MPT_TAG_2_REQ(mpt, csio->tag_id);
mpt_tgt_state_t *tgt = MPT_TGT_STATE(mpt, cmd_req);
switch (tgt->state) {
case TGT_STATE_IN_CAM:
break;
case TGT_STATE_MOVING_DATA:
mpt_set_ccb_status(ccb, CAM_REQUEUE_REQ);
xpt_freeze_simq(mpt->sim, 1);
ccb->ccb_h.status &= ~CAM_SIM_QUEUED;
tgt->ccb->ccb_h.status |= CAM_RELEASE_SIMQ;
MPTLOCK_2_CAMLOCK(mpt);
xpt_done(ccb);
CAMLOCK_2_MPTLOCK(mpt);
return;
default:
mpt_prt(mpt, "ccb %p flags 0x%x tag 0x%08x had bad request "
"starting I/O\n", ccb, csio->ccb_h.flags, csio->tag_id);
mpt_tgt_dump_req_state(mpt, cmd_req);
mpt_set_ccb_status(ccb, CAM_REQ_CMP_ERR);
MPTLOCK_2_CAMLOCK(mpt);
xpt_done(ccb);
CAMLOCK_2_MPTLOCK(mpt);
return;
}
if (csio->dxfer_len) {
bus_dmamap_callback_t *cb;
PTR_MSG_TARGET_ASSIST_REQUEST ta;
request_t *req;
KASSERT((ccb->ccb_h.flags & CAM_DIR_MASK) != CAM_DIR_NONE,
("dxfer_len %u but direction is NONE\n", csio->dxfer_len));
if ((req = mpt_get_request(mpt, FALSE)) == NULL) {
if (mpt->outofbeer == 0) {
mpt->outofbeer = 1;
xpt_freeze_simq(mpt->sim, 1);
mpt_lprt(mpt, MPT_PRT_DEBUG, "FREEZEQ\n");
}
ccb->ccb_h.status &= ~CAM_SIM_QUEUED;
mpt_set_ccb_status(ccb, CAM_REQUEUE_REQ);
MPTLOCK_2_CAMLOCK(mpt);
xpt_done(ccb);
CAMLOCK_2_MPTLOCK(mpt);
return;
}
ccb->ccb_h.status = CAM_SIM_QUEUED | CAM_REQ_INPROG;
if (sizeof (bus_addr_t) > 4) {
cb = mpt_execute_req_a64;
} else {
cb = mpt_execute_req;
}
req->ccb = ccb;
ccb->ccb_h.ccb_req_ptr = req;
/*
* Record the currently active ccb and the
* request for it in our target state area.
*/
tgt->ccb = ccb;
tgt->req = req;
memset(req->req_vbuf, 0, MPT_RQSL(mpt));
ta = req->req_vbuf;
if (mpt->is_sas) {
PTR_MPI_TARGET_SSP_CMD_BUFFER ssp =
cmd_req->req_vbuf;
ta->QueueTag = ssp->InitiatorTag;
} else if (mpt->is_spi) {
PTR_MPI_TARGET_SCSI_SPI_CMD_BUFFER sp =
cmd_req->req_vbuf;
ta->QueueTag = sp->Tag;
}
ta->Function = MPI_FUNCTION_TARGET_ASSIST;
ta->MsgContext = htole32(req->index | mpt->scsi_tgt_handler_id);
ta->ReplyWord = htole32(tgt->reply_desc);
if (csio->ccb_h.target_lun > MPT_MAX_LUNS) {
ta->LUN[0] =
0x40 | ((csio->ccb_h.target_lun >> 8) & 0x3f);
ta->LUN[1] = csio->ccb_h.target_lun & 0xff;
} else {
ta->LUN[1] = csio->ccb_h.target_lun;
}
ta->RelativeOffset = tgt->bytes_xfered;
ta->DataLength = ccb->csio.dxfer_len;
if (ta->DataLength > tgt->resid) {
ta->DataLength = tgt->resid;
}
/*
* XXX Should be done after data transfer completes?
*/
tgt->resid -= csio->dxfer_len;
tgt->bytes_xfered += csio->dxfer_len;
if ((ccb->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_IN) {
ta->TargetAssistFlags |=
TARGET_ASSIST_FLAGS_DATA_DIRECTION;
}
#ifdef WE_TRUST_AUTO_GOOD_STATUS
if ((ccb->ccb_h.flags & CAM_SEND_STATUS) &&
csio->scsi_status == SCSI_STATUS_OK && tgt->resid == 0) {
ta->TargetAssistFlags |=
TARGET_ASSIST_FLAGS_AUTO_STATUS;
}
#endif
tgt->state = TGT_STATE_SETTING_UP_FOR_DATA;
mpt_lprt(mpt, MPT_PRT_DEBUG,
"DATA_CCB %p tag %x %u bytes %u resid flg %x req %p:%u "
"nxtstate=%d\n", csio, csio->tag_id, csio->dxfer_len,
tgt->resid, ccb->ccb_h.flags, req, req->serno, tgt->state);
MPTLOCK_2_CAMLOCK(mpt);
if ((ccb->ccb_h.flags & CAM_SCATTER_VALID) == 0) {
if ((ccb->ccb_h.flags & CAM_DATA_PHYS) == 0) {
int error;
int s = splsoftvm();
error = bus_dmamap_load(mpt->buffer_dmat,
req->dmap, csio->data_ptr, csio->dxfer_len,
cb, req, 0);
splx(s);
if (error == EINPROGRESS) {
xpt_freeze_simq(mpt->sim, 1);
ccb->ccb_h.status |= CAM_RELEASE_SIMQ;
}
} else {
/*
* We have been given a pointer to single
* physical buffer.
*/
struct bus_dma_segment seg;
seg.ds_addr = (bus_addr_t)
(vm_offset_t)csio->data_ptr;
seg.ds_len = csio->dxfer_len;
(*cb)(req, &seg, 1, 0);
}
} else {
/*
* We have been given a list of addresses.
* This case could be easily supported but they are not
* currently generated by the CAM subsystem so there
* is no point in wasting the time right now.
*/
struct bus_dma_segment *sgs;
if ((ccb->ccb_h.flags & CAM_SG_LIST_PHYS) == 0) {
(*cb)(req, NULL, 0, EFAULT);
} else {
/* Just use the segments provided */
sgs = (struct bus_dma_segment *)csio->data_ptr;
(*cb)(req, sgs, csio->sglist_cnt, 0);
}
}
CAMLOCK_2_MPTLOCK(mpt);
} else {
uint8_t *sp = NULL, sense[MPT_SENSE_SIZE];
/*
* XXX: I don't know why this seems to happen, but
* XXX: completing the CCB seems to make things happy.
* XXX: This seems to happen if the initiator requests
* XXX: enough data that we have to do multiple CTIOs.
*/
if ((ccb->ccb_h.flags & CAM_SEND_STATUS) == 0) {
mpt_lprt(mpt, MPT_PRT_DEBUG,
"Meaningless STATUS CCB (%p): flags %x status %x "
"resid %d bytes_xfered %u\n", ccb, ccb->ccb_h.flags,
ccb->ccb_h.status, tgt->resid, tgt->bytes_xfered);
mpt_set_ccb_status(ccb, CAM_REQ_CMP);
ccb->ccb_h.status &= ~CAM_SIM_QUEUED;
MPTLOCK_2_CAMLOCK(mpt);
xpt_done(ccb);
CAMLOCK_2_MPTLOCK(mpt);
return;
}
if (ccb->ccb_h.flags & CAM_SEND_SENSE) {
sp = sense;
memcpy(sp, &csio->sense_data,
min(csio->sense_len, MPT_SENSE_SIZE));
}
mpt_scsi_tgt_status(mpt, ccb, cmd_req, csio->scsi_status, sp);
}
}
static void
mpt_scsi_tgt_local(struct mpt_softc *mpt, request_t *cmd_req,
uint32_t lun, int send, uint8_t *data, size_t length)
{
mpt_tgt_state_t *tgt;
PTR_MSG_TARGET_ASSIST_REQUEST ta;
SGE_SIMPLE32 *se;
uint32_t flags;
uint8_t *dptr;
bus_addr_t pptr;
request_t *req;
/*
* We enter with resid set to the data load for the command.
*/
tgt = MPT_TGT_STATE(mpt, cmd_req);
if (length == 0 || tgt->resid == 0) {
tgt->resid = 0;
mpt_scsi_tgt_status(mpt, NULL, cmd_req, 0, NULL);
return;
}
if ((req = mpt_get_request(mpt, FALSE)) == NULL) {
mpt_prt(mpt, "out of resources- dropping local response\n");
return;
}
tgt->is_local = 1;
memset(req->req_vbuf, 0, MPT_RQSL(mpt));
ta = req->req_vbuf;
if (mpt->is_sas) {
PTR_MPI_TARGET_SSP_CMD_BUFFER ssp = cmd_req->req_vbuf;
ta->QueueTag = ssp->InitiatorTag;
} else if (mpt->is_spi) {
PTR_MPI_TARGET_SCSI_SPI_CMD_BUFFER sp = cmd_req->req_vbuf;
ta->QueueTag = sp->Tag;
}
ta->Function = MPI_FUNCTION_TARGET_ASSIST;
ta->MsgContext = htole32(req->index | mpt->scsi_tgt_handler_id);
ta->ReplyWord = htole32(tgt->reply_desc);
if (lun > MPT_MAX_LUNS) {
ta->LUN[0] = 0x40 | ((lun >> 8) & 0x3f);
ta->LUN[1] = lun & 0xff;
} else {
ta->LUN[1] = lun;
}
ta->RelativeOffset = 0;
ta->DataLength = length;
dptr = req->req_vbuf;
dptr += MPT_RQSL(mpt);
pptr = req->req_pbuf;
pptr += MPT_RQSL(mpt);
memcpy(dptr, data, min(length, MPT_RQSL(mpt)));
se = (SGE_SIMPLE32 *) &ta->SGL[0];
memset(se, 0,sizeof (*se));
flags = MPI_SGE_FLAGS_SIMPLE_ELEMENT;
if (send) {
ta->TargetAssistFlags |= TARGET_ASSIST_FLAGS_DATA_DIRECTION;
flags |= MPI_SGE_FLAGS_HOST_TO_IOC;
}
se->Address = pptr;
MPI_pSGE_SET_LENGTH(se, length);
flags |= MPI_SGE_FLAGS_LAST_ELEMENT;
flags |= MPI_SGE_FLAGS_END_OF_LIST | MPI_SGE_FLAGS_END_OF_BUFFER;
MPI_pSGE_SET_FLAGS(se, flags);
tgt->ccb = NULL;
tgt->req = req;
tgt->resid -= length;
tgt->bytes_xfered = length;
#ifdef WE_TRUST_AUTO_GOOD_STATUS
tgt->state = TGT_STATE_MOVING_DATA_AND_STATUS;
#else
tgt->state = TGT_STATE_MOVING_DATA;
#endif
mpt_send_cmd(mpt, req);
}
/*
* Abort queued up CCBs
*/
static cam_status
mpt_abort_target_ccb(struct mpt_softc *mpt, union ccb *ccb)
{
struct mpt_hdr_stailq *lp;
struct ccb_hdr *srch;
int found = 0;
union ccb *accb = ccb->cab.abort_ccb;
tgt_resource_t *trtp;
mpt_lprt(mpt, MPT_PRT_DEBUG, "aborting ccb %p\n", accb);
if (ccb->ccb_h.target_lun == CAM_LUN_WILDCARD) {
trtp = &mpt->trt_wildcard;
} else {
trtp = &mpt->trt[ccb->ccb_h.target_lun];
}
if (accb->ccb_h.func_code == XPT_ACCEPT_TARGET_IO) {
lp = &trtp->atios;
} else if (accb->ccb_h.func_code == XPT_IMMED_NOTIFY) {
lp = &trtp->inots;
} else {
return (CAM_REQ_INVALID);
}
STAILQ_FOREACH(srch, lp, sim_links.stqe) {
if (srch == &accb->ccb_h) {
found = 1;
STAILQ_REMOVE(lp, srch, ccb_hdr, sim_links.stqe);
break;
}
}
if (found) {
accb->ccb_h.status = CAM_REQ_ABORTED;
xpt_done(accb);
return (CAM_REQ_CMP);
}
mpt_prt(mpt, "mpt_abort_tgt_ccb: CCB %p not found\n", ccb);
return (CAM_PATH_INVALID);
}
/*
* Ask the MPT to abort the current target command
*/
static int
mpt_abort_target_cmd(struct mpt_softc *mpt, request_t *cmd_req)
{
int error;
request_t *req;
PTR_MSG_TARGET_MODE_ABORT abtp;
req = mpt_get_request(mpt, FALSE);
if (req == NULL) {
return (-1);
}
abtp = req->req_vbuf;
memset(abtp, 0, sizeof (*abtp));
abtp->MsgContext = htole32(req->index | mpt->scsi_tgt_handler_id);
abtp->AbortType = TARGET_MODE_ABORT_TYPE_EXACT_IO;
abtp->Function = MPI_FUNCTION_TARGET_MODE_ABORT;
abtp->ReplyWord = htole32(MPT_TGT_STATE(mpt, cmd_req)->reply_desc);
error = 0;
if (mpt->is_fc || mpt->is_sas) {
mpt_send_cmd(mpt, req);
} else {
error = mpt_send_handshake_cmd(mpt, sizeof(*req), req);
}
return (error);
}
/*
* WE_TRUST_AUTO_GOOD_STATUS- I've found that setting
* TARGET_STATUS_SEND_FLAGS_AUTO_GOOD_STATUS leads the
* FC929 to set bogus FC_RSP fields (nonzero residuals
* but w/o RESID fields set). This causes QLogic initiators
* to think maybe that a frame was lost.
*
* WE_CAN_USE_AUTO_REPOST- we can't use AUTO_REPOST because
* we use allocated requests to do TARGET_ASSIST and we
* need to know when to release them.
*/
static void
mpt_scsi_tgt_status(struct mpt_softc *mpt, union ccb *ccb, request_t *cmd_req,
uint8_t status, uint8_t const *sense_data)
{
uint8_t *cmd_vbuf;
mpt_tgt_state_t *tgt;
PTR_MSG_TARGET_STATUS_SEND_REQUEST tp;
request_t *req;
bus_addr_t paddr;
int resplen = 0;
uint32_t fl;
cmd_vbuf = cmd_req->req_vbuf;
cmd_vbuf += MPT_RQSL(mpt);
tgt = MPT_TGT_STATE(mpt, cmd_req);
if ((req = mpt_get_request(mpt, FALSE)) == NULL) {
if (mpt->outofbeer == 0) {
mpt->outofbeer = 1;
xpt_freeze_simq(mpt->sim, 1);
mpt_lprt(mpt, MPT_PRT_DEBUG, "FREEZEQ\n");
}
if (ccb) {
ccb->ccb_h.status &= ~CAM_SIM_QUEUED;
mpt_set_ccb_status(ccb, CAM_REQUEUE_REQ);
MPTLOCK_2_CAMLOCK(mpt);
xpt_done(ccb);
CAMLOCK_2_MPTLOCK(mpt);
} else {
mpt_prt(mpt,
"could not allocate status request- dropping\n");
}
return;
}
req->ccb = ccb;
if (ccb) {
ccb->ccb_h.ccb_mpt_ptr = mpt;
ccb->ccb_h.ccb_req_ptr = req;
}
/*
* Record the currently active ccb, if any, and the
* request for it in our target state area.
*/
tgt->ccb = ccb;
tgt->req = req;
tgt->state = TGT_STATE_SENDING_STATUS;
tp = req->req_vbuf;
paddr = req->req_pbuf;
paddr += MPT_RQSL(mpt);
memset(tp, 0, sizeof (*tp));
tp->Function = MPI_FUNCTION_TARGET_STATUS_SEND;
if (mpt->is_fc) {
PTR_MPI_TARGET_FCP_CMD_BUFFER fc =
(PTR_MPI_TARGET_FCP_CMD_BUFFER) cmd_vbuf;
uint8_t *sts_vbuf;
uint32_t *rsp;
sts_vbuf = req->req_vbuf;
sts_vbuf += MPT_RQSL(mpt);
rsp = (uint32_t *) sts_vbuf;
memcpy(tp->LUN, fc->FcpLun, sizeof (tp->LUN));
/*
* The MPI_TARGET_FCP_RSP_BUFFER define is unfortunate.
* It has to be big-endian in memory and is organized
* in 32 bit words, which are much easier to deal with
* as words which are swizzled as needed.
*
* All we're filling here is the FC_RSP payload.
* We may just have the chip synthesize it if
* we have no residual and an OK status.
*
*/
memset(rsp, 0, sizeof (MPI_TARGET_FCP_RSP_BUFFER));
rsp[2] = status;
if (tgt->resid) {
rsp[2] |= 0x800; /* XXXX NEED MNEMONIC!!!! */
rsp[3] = htobe32(tgt->resid);
#ifdef WE_TRUST_AUTO_GOOD_STATUS
resplen = sizeof (MPI_TARGET_FCP_RSP_BUFFER);
#endif
}
if (status == SCSI_STATUS_CHECK_COND) {
int i;
rsp[2] |= 0x200; /* XXXX NEED MNEMONIC!!!! */
rsp[4] = htobe32(MPT_SENSE_SIZE);
if (sense_data) {
memcpy(&rsp[8], sense_data, MPT_SENSE_SIZE);
} else {
mpt_prt(mpt, "mpt_scsi_tgt_status: CHECK CONDI"
"TION but no sense data?\n");
memset(&rsp, 0, MPT_SENSE_SIZE);
}
for (i = 8; i < (8 + (MPT_SENSE_SIZE >> 2)); i++) {
rsp[i] = htobe32(rsp[i]);
}
#ifdef WE_TRUST_AUTO_GOOD_STATUS
resplen = sizeof (MPI_TARGET_FCP_RSP_BUFFER);
#endif
}
#ifndef WE_TRUST_AUTO_GOOD_STATUS
resplen = sizeof (MPI_TARGET_FCP_RSP_BUFFER);
#endif
rsp[2] = htobe32(rsp[2]);
} else if (mpt->is_sas) {
PTR_MPI_TARGET_SSP_CMD_BUFFER ssp =
(PTR_MPI_TARGET_SSP_CMD_BUFFER) cmd_vbuf;
memcpy(tp->LUN, ssp->LogicalUnitNumber, sizeof (tp->LUN));
} else {
PTR_MPI_TARGET_SCSI_SPI_CMD_BUFFER sp =
(PTR_MPI_TARGET_SCSI_SPI_CMD_BUFFER) cmd_vbuf;
tp->StatusCode = status;
tp->QueueTag = htole16(sp->Tag);
memcpy(tp->LUN, sp->LogicalUnitNumber, sizeof (tp->LUN));
}
tp->ReplyWord = htole32(tgt->reply_desc);
tp->MsgContext = htole32(req->index | mpt->scsi_tgt_handler_id);
#ifdef WE_CAN_USE_AUTO_REPOST
tp->MsgFlags = TARGET_STATUS_SEND_FLAGS_REPOST_CMD_BUFFER;
#endif
if (status == SCSI_STATUS_OK && resplen == 0) {
tp->MsgFlags |= TARGET_STATUS_SEND_FLAGS_AUTO_GOOD_STATUS;
} else {
tp->StatusDataSGE.u.Address32 = htole32((uint32_t) paddr);
fl =
MPI_SGE_FLAGS_HOST_TO_IOC |
MPI_SGE_FLAGS_SIMPLE_ELEMENT |
MPI_SGE_FLAGS_LAST_ELEMENT |
MPI_SGE_FLAGS_END_OF_LIST |
MPI_SGE_FLAGS_END_OF_BUFFER;
fl <<= MPI_SGE_FLAGS_SHIFT;
fl |= resplen;
tp->StatusDataSGE.FlagsLength = htole32(fl);
}
mpt_lprt(mpt, MPT_PRT_DEBUG,
"STATUS_CCB %p (wit%s sense) tag %x req %p:%u resid %u\n",
ccb, sense_data?"h" : "hout", ccb? ccb->csio.tag_id : -1, req,
req->serno, tgt->resid);
if (ccb) {
ccb->ccb_h.status = CAM_SIM_QUEUED | CAM_REQ_INPROG;
mpt_req_timeout(req, 60 * hz, mpt_timeout, ccb);
}
mpt_send_cmd(mpt, req);
}
static void
mpt_scsi_tgt_tsk_mgmt(struct mpt_softc *mpt, request_t *req, mpt_task_mgmt_t fc,
tgt_resource_t *trtp, int init_id)
{
struct ccb_immed_notify *inot;
mpt_tgt_state_t *tgt;
tgt = MPT_TGT_STATE(mpt, req);
inot = (struct ccb_immed_notify *) STAILQ_FIRST(&trtp->inots);
if (inot == NULL) {
mpt_lprt(mpt, MPT_PRT_WARN, "no INOTSs- sending back BSY\n");
mpt_scsi_tgt_status(mpt, NULL, req, SCSI_STATUS_BUSY, NULL);
return;
}
STAILQ_REMOVE_HEAD(&trtp->inots, sim_links.stqe);
mpt_lprt(mpt, MPT_PRT_DEBUG1,
"Get FREE INOT %p lun %d\n", inot, inot->ccb_h.target_lun);
memset(&inot->sense_data, 0, sizeof (inot->sense_data));
inot->sense_len = 0;
memset(inot->message_args, 0, sizeof (inot->message_args));
inot->initiator_id = init_id; /* XXX */
/*
* This is a somewhat grotesque attempt to map from task management
* to old style SCSI messages. God help us all.
*/
switch (fc) {
case MPT_ABORT_TASK_SET:
inot->message_args[0] = MSG_ABORT_TAG;
break;
case MPT_CLEAR_TASK_SET:
inot->message_args[0] = MSG_CLEAR_TASK_SET;
break;
case MPT_TARGET_RESET:
inot->message_args[0] = MSG_TARGET_RESET;
break;
case MPT_CLEAR_ACA:
inot->message_args[0] = MSG_CLEAR_ACA;
break;
case MPT_TERMINATE_TASK:
inot->message_args[0] = MSG_ABORT_TAG;
break;
default:
inot->message_args[0] = MSG_NOOP;
break;
}
tgt->ccb = (union ccb *) inot;
inot->ccb_h.status = CAM_MESSAGE_RECV|CAM_DEV_QFRZN;
MPTLOCK_2_CAMLOCK(mpt);
xpt_done((union ccb *)inot);
CAMLOCK_2_MPTLOCK(mpt);
}
static void
mpt_scsi_tgt_atio(struct mpt_softc *mpt, request_t *req, uint32_t reply_desc)
{
static uint8_t null_iqd[SHORT_INQUIRY_LENGTH] = {
0x7f, 0x00, 0x02, 0x02, 0x20, 0x00, 0x00, 0x32,
'F', 'R', 'E', 'E', 'B', 'S', 'D', ' ',
'L', 'S', 'I', '-', 'L', 'O', 'G', 'I',
'C', ' ', 'N', 'U', 'L', 'D', 'E', 'V',
'0', '0', '0', '1'
};
struct ccb_accept_tio *atiop;
lun_id_t lun;
int tag_action = 0;
mpt_tgt_state_t *tgt;
tgt_resource_t *trtp = NULL;
U8 *lunptr;
U8 *vbuf;
U16 itag;
U16 ioindex;
mpt_task_mgmt_t fct = MPT_NIL_TMT_VALUE;
uint8_t *cdbp;
/*
* First, DMA sync the received command-
* which is in the *request* * phys area.
*
* XXX: We could optimize this for a range
*/
bus_dmamap_sync(mpt->request_dmat, mpt->request_dmap,
BUS_DMASYNC_POSTREAD);
/*
* Stash info for the current command where we can get at it later.
*/
vbuf = req->req_vbuf;
vbuf += MPT_RQSL(mpt);
/*
* Get our state pointer set up.
*/
tgt = MPT_TGT_STATE(mpt, req);
if (tgt->state != TGT_STATE_LOADED) {
mpt_tgt_dump_req_state(mpt, req);
panic("bad target state in mpt_scsi_tgt_atio");
}
memset(tgt, 0, sizeof (mpt_tgt_state_t));
tgt->state = TGT_STATE_IN_CAM;
tgt->reply_desc = reply_desc;
ioindex = GET_IO_INDEX(reply_desc);
if (mpt->verbose >= MPT_PRT_DEBUG) {
mpt_dump_data(mpt, "mpt_scsi_tgt_atio response", vbuf,
max(sizeof (MPI_TARGET_FCP_CMD_BUFFER),
max(sizeof (MPI_TARGET_SSP_CMD_BUFFER),
sizeof (MPI_TARGET_SCSI_SPI_CMD_BUFFER))));
}
if (mpt->is_fc) {
PTR_MPI_TARGET_FCP_CMD_BUFFER fc;
fc = (PTR_MPI_TARGET_FCP_CMD_BUFFER) vbuf;
if (fc->FcpCntl[2]) {
/*
* Task Management Request
*/
switch (fc->FcpCntl[2]) {
case 0x2:
fct = MPT_ABORT_TASK_SET;
break;
case 0x4:
fct = MPT_CLEAR_TASK_SET;
break;
case 0x20:
fct = MPT_TARGET_RESET;
break;
case 0x40:
fct = MPT_CLEAR_ACA;
break;
case 0x80:
fct = MPT_TERMINATE_TASK;
break;
default:
mpt_prt(mpt, "CORRUPTED TASK MGMT BITS: 0x%x\n",
fc->FcpCntl[2]);
mpt_scsi_tgt_status(mpt, 0, req,
SCSI_STATUS_OK, 0);
return;
}
} else {
switch (fc->FcpCntl[1]) {
case 0:
tag_action = MSG_SIMPLE_Q_TAG;
break;
case 1:
tag_action = MSG_HEAD_OF_Q_TAG;
break;
case 2:
tag_action = MSG_ORDERED_Q_TAG;
break;
default:
/*
* Bah. Ignore Untagged Queing and ACA
*/
tag_action = MSG_SIMPLE_Q_TAG;
break;
}
}
tgt->resid = be32toh(fc->FcpDl);
cdbp = fc->FcpCdb;
lunptr = fc->FcpLun;
itag = be16toh(fc->OptionalOxid);
} else if (mpt->is_sas) {
PTR_MPI_TARGET_SSP_CMD_BUFFER ssp;
ssp = (PTR_MPI_TARGET_SSP_CMD_BUFFER) vbuf;
cdbp = ssp->CDB;
lunptr = ssp->LogicalUnitNumber;
itag = ssp->InitiatorTag;
} else {
PTR_MPI_TARGET_SCSI_SPI_CMD_BUFFER sp;
sp = (PTR_MPI_TARGET_SCSI_SPI_CMD_BUFFER) vbuf;
cdbp = sp->CDB;
lunptr = sp->LogicalUnitNumber;
itag = sp->Tag;
}
/*
* Generate a simple lun
*/
switch (lunptr[0] & 0xc0) {
case 0x40:
lun = ((lunptr[0] & 0x3f) << 8) | lunptr[1];
break;
case 0:
lun = lunptr[1];
break;
default:
mpt_lprt(mpt, MPT_PRT_ERROR, "cannot handle this type lun\n");
lun = 0xffff;
break;
}
/*
* Deal with non-enabled or bad luns here.
*/
if (lun >= MPT_MAX_LUNS || mpt->tenabled == 0 ||
mpt->trt[lun].enabled == 0) {
if (mpt->twildcard) {
trtp = &mpt->trt_wildcard;
} else if (fct == MPT_NIL_TMT_VALUE) {
/*
* In this case, we haven't got an upstream listener
* for either a specific lun or wildcard luns. We
* have to make some sensible response. For regular
* inquiry, just return some NOT HERE inquiry data.
* For VPD inquiry, report illegal field in cdb.
* For REQUEST SENSE, just return NO SENSE data.
* REPORT LUNS gets illegal command.
* All other commands get 'no such device'.
*/
uint8_t *sp, cond, buf[MPT_SENSE_SIZE];
size_t len;
memset(buf, 0, MPT_SENSE_SIZE);
cond = SCSI_STATUS_CHECK_COND;
buf[0] = 0xf0;
buf[2] = 0x5;
buf[7] = 0x8;
sp = buf;
tgt->tag_id = MPT_MAKE_TAGID(mpt, req, ioindex);
switch (cdbp[0]) {
case INQUIRY:
{
if (cdbp[1] != 0) {
buf[12] = 0x26;
buf[13] = 0x01;
break;
}
len = min(tgt->resid, cdbp[4]);
len = min(len, sizeof (null_iqd));
mpt_lprt(mpt, MPT_PRT_DEBUG,
"local inquiry %ld bytes\n", (long) len);
mpt_scsi_tgt_local(mpt, req, lun, 1,
null_iqd, len);
return;
}
case REQUEST_SENSE:
{
buf[2] = 0x0;
len = min(tgt->resid, cdbp[4]);
len = min(len, sizeof (buf));
mpt_lprt(mpt, MPT_PRT_DEBUG,
"local reqsense %ld bytes\n", (long) len);
mpt_scsi_tgt_local(mpt, req, lun, 1,
buf, len);
return;
}
case REPORT_LUNS:
mpt_lprt(mpt, MPT_PRT_DEBUG, "REPORT LUNS\n");
buf[12] = 0x26;
return;
default:
mpt_lprt(mpt, MPT_PRT_DEBUG,
"CMD 0x%x to unmanaged lun %u\n",
cdbp[0], lun);
buf[12] = 0x25;
break;
}
mpt_scsi_tgt_status(mpt, NULL, req, cond, sp);
return;
}
/* otherwise, leave trtp NULL */
} else {
trtp = &mpt->trt[lun];
}
/*
* Deal with any task management
*/
if (fct != MPT_NIL_TMT_VALUE) {
if (trtp == NULL) {
mpt_prt(mpt, "task mgmt function %x but no listener\n",
fct);
mpt_scsi_tgt_status(mpt, 0, req,
SCSI_STATUS_OK, 0);
} else {
mpt_scsi_tgt_tsk_mgmt(mpt, req, fct, trtp,
GET_INITIATOR_INDEX(reply_desc));
}
return;
}
atiop = (struct ccb_accept_tio *) STAILQ_FIRST(&trtp->atios);
if (atiop == NULL) {
mpt_lprt(mpt, MPT_PRT_WARN,
"no ATIOs for lun %u- sending back %s\n", lun,
mpt->tenabled? "QUEUE FULL" : "BUSY");
mpt_scsi_tgt_status(mpt, NULL, req,
mpt->tenabled? SCSI_STATUS_QUEUE_FULL : SCSI_STATUS_BUSY,
NULL);
return;
}
STAILQ_REMOVE_HEAD(&trtp->atios, sim_links.stqe);
mpt_lprt(mpt, MPT_PRT_DEBUG1,
"Get FREE ATIO %p lun %d\n", atiop, atiop->ccb_h.target_lun);
atiop->ccb_h.ccb_mpt_ptr = mpt;
atiop->ccb_h.status = CAM_CDB_RECVD;
atiop->ccb_h.target_lun = lun;
atiop->sense_len = 0;
atiop->init_id = GET_INITIATOR_INDEX(reply_desc);
atiop->cdb_len = mpt_cdblen(cdbp[0], 16);
memcpy(atiop->cdb_io.cdb_bytes, cdbp, atiop->cdb_len);
/*
* The tag we construct here allows us to find the
* original request that the command came in with.
*
* This way we don't have to depend on anything but the
* tag to find things when CCBs show back up from CAM.
*/
atiop->tag_id = MPT_MAKE_TAGID(mpt, req, ioindex);
tgt->tag_id = atiop->tag_id;
if (tag_action) {
atiop->tag_action = tag_action;
atiop->ccb_h.flags = CAM_TAG_ACTION_VALID;
}
if (mpt->verbose >= MPT_PRT_DEBUG) {
int i;
mpt_prt(mpt, "START_CCB %p for lun %u CDB=<", atiop,
atiop->ccb_h.target_lun);
for (i = 0; i < atiop->cdb_len; i++) {
mpt_prtc(mpt, "%02x%c", cdbp[i] & 0xff,
(i == (atiop->cdb_len - 1))? '>' : ' ');
}
mpt_prtc(mpt, " itag %x tag %x rdesc %x dl=%u\n",
itag, atiop->tag_id, tgt->reply_desc, tgt->resid);
}
MPTLOCK_2_CAMLOCK(mpt);
xpt_done((union ccb *)atiop);
CAMLOCK_2_MPTLOCK(mpt);
}
static void
mpt_tgt_dump_tgt_state(struct mpt_softc *mpt, request_t *req)
{
mpt_tgt_state_t *tgt = MPT_TGT_STATE(mpt, req);
mpt_prt(mpt, "req %p:%u tgt:rdesc 0x%x resid %u xfrd %u ccb %p treq %p "
"nx %d tag 0x%08x state=%d\n", req, req->serno, tgt->reply_desc,
tgt->resid, tgt->bytes_xfered, tgt->ccb, tgt->req, tgt->nxfers,
tgt->tag_id, tgt->state);
}
static void
mpt_tgt_dump_req_state(struct mpt_softc *mpt, request_t *req)
{
mpt_prt(mpt, "req %p:%u index %u (%x) state %x\n", req, req->serno,
req->index, req->index, req->state);
mpt_tgt_dump_tgt_state(mpt, req);
}
static int
mpt_scsi_tgt_reply_handler(struct mpt_softc *mpt, request_t *req,
uint32_t reply_desc, MSG_DEFAULT_REPLY *reply_frame)
{
int dbg;
union ccb *ccb;
U16 status;
if (reply_frame == NULL) {
/*
* Figure out what the state of the command is.
*/
mpt_tgt_state_t *tgt = MPT_TGT_STATE(mpt, req);
#ifdef INVARIANTS
mpt_req_spcl(mpt, req, "turbo scsi_tgt_reply", __LINE__);
if (tgt->req) {
mpt_req_not_spcl(mpt, tgt->req,
"turbo scsi_tgt_reply associated req", __LINE__);
}
#endif
switch(tgt->state) {
case TGT_STATE_LOADED:
/*
* This is a new command starting.
*/
mpt_scsi_tgt_atio(mpt, req, reply_desc);
break;
case TGT_STATE_MOVING_DATA:
{
uint8_t *sp = NULL, sense[MPT_SENSE_SIZE];
ccb = tgt->ccb;
if (tgt->req == NULL) {
panic("mpt: turbo target reply with null "
"associated request moving data");
/* NOTREACHED */
}
if (ccb == NULL) {
if (tgt->is_local == 0) {
panic("mpt: turbo target reply with "
"null associated ccb moving data");
/* NOTREACHED */
}
mpt_lprt(mpt, MPT_PRT_DEBUG,
"TARGET_ASSIST local done\n");
TAILQ_REMOVE(&mpt->request_pending_list,
tgt->req, links);
mpt_free_request(mpt, tgt->req);
tgt->req = NULL;
mpt_scsi_tgt_status(mpt, NULL, req,
0, NULL);
return (TRUE);
}
tgt->ccb = NULL;
tgt->nxfers++;
mpt_req_untimeout(req, mpt_timeout, ccb);
mpt_lprt(mpt, MPT_PRT_DEBUG,
"TARGET_ASSIST %p (req %p:%u) done tag 0x%x\n",
ccb, tgt->req, tgt->req->serno, ccb->csio.tag_id);
/*
* Free the Target Assist Request
*/
KASSERT(tgt->req->ccb == ccb,
("tgt->req %p:%u tgt->req->ccb %p", tgt->req,
tgt->req->serno, tgt->req->ccb));
TAILQ_REMOVE(&mpt->request_pending_list,
tgt->req, links);
mpt_free_request(mpt, tgt->req);
tgt->req = NULL;
/*
* Do we need to send status now? That is, are
* we done with all our data transfers?
*/
if ((ccb->ccb_h.flags & CAM_SEND_STATUS) == 0) {
mpt_set_ccb_status(ccb, CAM_REQ_CMP);
ccb->ccb_h.status &= ~CAM_SIM_QUEUED;
KASSERT(ccb->ccb_h.status,
("zero ccb sts at %d\n", __LINE__));
tgt->state = TGT_STATE_IN_CAM;
if (mpt->outofbeer) {
ccb->ccb_h.status |= CAM_RELEASE_SIMQ;
mpt->outofbeer = 0;
mpt_lprt(mpt, MPT_PRT_DEBUG, "THAWQ\n");
}
MPTLOCK_2_CAMLOCK(mpt);
xpt_done(ccb);
CAMLOCK_2_MPTLOCK(mpt);
break;
}
/*
* Otherwise, send status (and sense)
*/
if (ccb->ccb_h.flags & CAM_SEND_SENSE) {
sp = sense;
memcpy(sp, &ccb->csio.sense_data,
min(ccb->csio.sense_len, MPT_SENSE_SIZE));
}
mpt_scsi_tgt_status(mpt, ccb, req,
ccb->csio.scsi_status, sp);
break;
}
case TGT_STATE_SENDING_STATUS:
case TGT_STATE_MOVING_DATA_AND_STATUS:
{
int ioindex;
ccb = tgt->ccb;
if (tgt->req == NULL) {
panic("mpt: turbo target reply with null "
"associated request sending status");
/* NOTREACHED */
}
if (ccb) {
tgt->ccb = NULL;
if (tgt->state ==
TGT_STATE_MOVING_DATA_AND_STATUS) {
tgt->nxfers++;
}
mpt_req_untimeout(req, mpt_timeout, ccb);
if (ccb->ccb_h.flags & CAM_SEND_SENSE) {
ccb->ccb_h.status |= CAM_SENT_SENSE;
}
mpt_lprt(mpt, MPT_PRT_DEBUG,
"TARGET_STATUS tag %x sts %x flgs %x req "
"%p\n", ccb->csio.tag_id, ccb->ccb_h.status,
ccb->ccb_h.flags, tgt->req);
/*
* Free the Target Send Status Request
*/
KASSERT(tgt->req->ccb == ccb,
("tgt->req %p:%u tgt->req->ccb %p",
tgt->req, tgt->req->serno, tgt->req->ccb));
/*
* Notify CAM that we're done
*/
mpt_set_ccb_status(ccb, CAM_REQ_CMP);
ccb->ccb_h.status &= ~CAM_SIM_QUEUED;
KASSERT(ccb->ccb_h.status,
("ZERO ccb sts at %d\n", __LINE__));
tgt->ccb = NULL;
} else {
mpt_lprt(mpt, MPT_PRT_DEBUG,
"TARGET_STATUS non-CAM for req %p:%u\n",
tgt->req, tgt->req->serno);
}
TAILQ_REMOVE(&mpt->request_pending_list,
tgt->req, links);
mpt_free_request(mpt, tgt->req);
tgt->req = NULL;
/*
* And re-post the Command Buffer.
* This will reset the state.
*/
ioindex = GET_IO_INDEX(reply_desc);
TAILQ_REMOVE(&mpt->request_pending_list, req, links);
tgt->is_local = 0;
mpt_post_target_command(mpt, req, ioindex);
/*
* And post a done for anyone who cares
*/
if (ccb) {
if (mpt->outofbeer) {
ccb->ccb_h.status |= CAM_RELEASE_SIMQ;
mpt->outofbeer = 0;
mpt_lprt(mpt, MPT_PRT_DEBUG, "THAWQ\n");
}
MPTLOCK_2_CAMLOCK(mpt);
xpt_done(ccb);
CAMLOCK_2_MPTLOCK(mpt);
}
break;
}
case TGT_STATE_NIL: /* XXX This Never Happens XXX */
tgt->state = TGT_STATE_LOADED;
break;
default:
mpt_prt(mpt, "Unknown Target State 0x%x in Context "
"Reply Function\n", tgt->state);
}
return (TRUE);
}
status = le16toh(reply_frame->IOCStatus);
if (status != MPI_IOCSTATUS_SUCCESS) {
dbg = MPT_PRT_ERROR;
} else {
dbg = MPT_PRT_DEBUG1;
}
mpt_lprt(mpt, dbg,
"SCSI_TGT REPLY: req=%p:%u reply=%p func=%x IOCstatus 0x%x\n",
req, req->serno, reply_frame, reply_frame->Function, status);
switch (reply_frame->Function) {
case MPI_FUNCTION_TARGET_CMD_BUFFER_POST:
{
mpt_tgt_state_t *tgt;
#ifdef INVARIANTS
mpt_req_spcl(mpt, req, "tgt reply BUFFER POST", __LINE__);
#endif
if (status != MPI_IOCSTATUS_SUCCESS) {
/*
* XXX What to do?
*/
break;
}
tgt = MPT_TGT_STATE(mpt, req);
KASSERT(tgt->state == TGT_STATE_LOADING,
("bad state 0x%x on reply to buffer post\n", tgt->state));
mpt_assign_serno(mpt, req);
tgt->state = TGT_STATE_LOADED;
break;
}
case MPI_FUNCTION_TARGET_ASSIST:
#ifdef INVARIANTS
mpt_req_not_spcl(mpt, req, "tgt reply TARGET ASSIST", __LINE__);
#endif
mpt_prt(mpt, "target assist completion\n");
TAILQ_REMOVE(&mpt->request_pending_list, req, links);
mpt_free_request(mpt, req);
break;
case MPI_FUNCTION_TARGET_STATUS_SEND:
#ifdef INVARIANTS
mpt_req_not_spcl(mpt, req, "tgt reply STATUS SEND", __LINE__);
#endif
mpt_prt(mpt, "status send completion\n");
TAILQ_REMOVE(&mpt->request_pending_list, req, links);
mpt_free_request(mpt, req);
break;
case MPI_FUNCTION_TARGET_MODE_ABORT:
{
PTR_MSG_TARGET_MODE_ABORT_REPLY abtrp =
(PTR_MSG_TARGET_MODE_ABORT_REPLY) reply_frame;
PTR_MSG_TARGET_MODE_ABORT abtp =
(PTR_MSG_TARGET_MODE_ABORT) req->req_vbuf;
uint32_t cc = GET_IO_INDEX(le32toh(abtp->ReplyWord));
#ifdef INVARIANTS
mpt_req_not_spcl(mpt, req, "tgt reply TMODE ABORT", __LINE__);
#endif
mpt_prt(mpt, "ABORT RX_ID 0x%x Complete; status 0x%x cnt %u\n",
cc, le16toh(abtrp->IOCStatus), le32toh(abtrp->AbortCount));
TAILQ_REMOVE(&mpt->request_pending_list, req, links);
mpt_free_request(mpt, req);
break;
}
default:
mpt_prt(mpt, "Unknown Target Address Reply Function code: "
"0x%x\n", reply_frame->Function);
break;
}
return (TRUE);
}