Steven Hartland 5dd4da9f24 Remove forced timeout of in-flight commands from mfi_timeout.
While this prevents commands getting stuck forever there is no way to guarantee
that data from the command hasn't been committed to the device.

In addition older mfi firmware has a bug that would cause the controller to
frequently stall IO for over our timeout value, which when combined with
a forced timeout often resulted in panics in UFS; which would otherwise be
avoided when the command eventually completed if left alone.

For reference this timeout issue is resolved in Dell FW package 21.2.1-0000.
Fixed FW package version for none Dell controller will likely vary.

MFC after:	2 days
2013-07-01 17:57:22 +00:00

3804 lines
102 KiB
C

/*-
* Copyright (c) 2006 IronPort Systems
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
/*-
* Copyright (c) 2007 LSI Corp.
* Copyright (c) 2007 Rajesh Prabhakaran.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include "opt_compat.h"
#include "opt_mfi.h"
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/sysctl.h>
#include <sys/malloc.h>
#include <sys/kernel.h>
#include <sys/poll.h>
#include <sys/selinfo.h>
#include <sys/bus.h>
#include <sys/conf.h>
#include <sys/eventhandler.h>
#include <sys/rman.h>
#include <sys/bus_dma.h>
#include <sys/bio.h>
#include <sys/ioccom.h>
#include <sys/uio.h>
#include <sys/proc.h>
#include <sys/signalvar.h>
#include <sys/sysent.h>
#include <sys/taskqueue.h>
#include <machine/bus.h>
#include <machine/resource.h>
#include <dev/mfi/mfireg.h>
#include <dev/mfi/mfi_ioctl.h>
#include <dev/mfi/mfivar.h>
#include <sys/interrupt.h>
#include <sys/priority.h>
static int mfi_alloc_commands(struct mfi_softc *);
static int mfi_comms_init(struct mfi_softc *);
static int mfi_get_controller_info(struct mfi_softc *);
static int mfi_get_log_state(struct mfi_softc *,
struct mfi_evt_log_state **);
static int mfi_parse_entries(struct mfi_softc *, int, int);
static void mfi_data_cb(void *, bus_dma_segment_t *, int, int);
static void mfi_startup(void *arg);
static void mfi_intr(void *arg);
static void mfi_ldprobe(struct mfi_softc *sc);
static void mfi_syspdprobe(struct mfi_softc *sc);
static void mfi_handle_evt(void *context, int pending);
static int mfi_aen_register(struct mfi_softc *sc, int seq, int locale);
static void mfi_aen_complete(struct mfi_command *);
static int mfi_add_ld(struct mfi_softc *sc, int);
static void mfi_add_ld_complete(struct mfi_command *);
static int mfi_add_sys_pd(struct mfi_softc *sc, int);
static void mfi_add_sys_pd_complete(struct mfi_command *);
static struct mfi_command * mfi_bio_command(struct mfi_softc *);
static void mfi_bio_complete(struct mfi_command *);
static struct mfi_command *mfi_build_ldio(struct mfi_softc *,struct bio*);
static struct mfi_command *mfi_build_syspdio(struct mfi_softc *,struct bio*);
static int mfi_send_frame(struct mfi_softc *, struct mfi_command *);
static int mfi_std_send_frame(struct mfi_softc *, struct mfi_command *);
static int mfi_abort(struct mfi_softc *, struct mfi_command **);
static int mfi_linux_ioctl_int(struct cdev *, u_long, caddr_t, int, struct thread *);
static void mfi_timeout(void *);
static int mfi_user_command(struct mfi_softc *,
struct mfi_ioc_passthru *);
static void mfi_enable_intr_xscale(struct mfi_softc *sc);
static void mfi_enable_intr_ppc(struct mfi_softc *sc);
static int32_t mfi_read_fw_status_xscale(struct mfi_softc *sc);
static int32_t mfi_read_fw_status_ppc(struct mfi_softc *sc);
static int mfi_check_clear_intr_xscale(struct mfi_softc *sc);
static int mfi_check_clear_intr_ppc(struct mfi_softc *sc);
static void mfi_issue_cmd_xscale(struct mfi_softc *sc, bus_addr_t bus_add,
uint32_t frame_cnt);
static void mfi_issue_cmd_ppc(struct mfi_softc *sc, bus_addr_t bus_add,
uint32_t frame_cnt);
static int mfi_config_lock(struct mfi_softc *sc, uint32_t opcode);
static void mfi_config_unlock(struct mfi_softc *sc, int locked);
static int mfi_check_command_pre(struct mfi_softc *sc, struct mfi_command *cm);
static void mfi_check_command_post(struct mfi_softc *sc, struct mfi_command *cm);
static int mfi_check_for_sscd(struct mfi_softc *sc, struct mfi_command *cm);
SYSCTL_NODE(_hw, OID_AUTO, mfi, CTLFLAG_RD, 0, "MFI driver parameters");
static int mfi_event_locale = MFI_EVT_LOCALE_ALL;
TUNABLE_INT("hw.mfi.event_locale", &mfi_event_locale);
SYSCTL_INT(_hw_mfi, OID_AUTO, event_locale, CTLFLAG_RWTUN, &mfi_event_locale,
0, "event message locale");
static int mfi_event_class = MFI_EVT_CLASS_INFO;
TUNABLE_INT("hw.mfi.event_class", &mfi_event_class);
SYSCTL_INT(_hw_mfi, OID_AUTO, event_class, CTLFLAG_RWTUN, &mfi_event_class,
0, "event message class");
static int mfi_max_cmds = 128;
TUNABLE_INT("hw.mfi.max_cmds", &mfi_max_cmds);
SYSCTL_INT(_hw_mfi, OID_AUTO, max_cmds, CTLFLAG_RDTUN, &mfi_max_cmds,
0, "Max commands limit (-1 = controller limit)");
static int mfi_detect_jbod_change = 1;
TUNABLE_INT("hw.mfi.detect_jbod_change", &mfi_detect_jbod_change);
SYSCTL_INT(_hw_mfi, OID_AUTO, detect_jbod_change, CTLFLAG_RWTUN,
&mfi_detect_jbod_change, 0, "Detect a change to a JBOD");
int mfi_polled_cmd_timeout = MFI_POLL_TIMEOUT_SECS;
TUNABLE_INT("hw.mfi.polled_cmd_timeout", &mfi_polled_cmd_timeout);
SYSCTL_INT(_hw_mfi, OID_AUTO, polled_cmd_timeout, CTLFLAG_RWTUN,
&mfi_polled_cmd_timeout, 0,
"Polled command timeout - used for firmware flash etc (in seconds)");
static int mfi_cmd_timeout = MFI_CMD_TIMEOUT;
TUNABLE_INT("hw.mfi.cmd_timeout", &mfi_cmd_timeout);
SYSCTL_INT(_hw_mfi, OID_AUTO, cmd_timeout, CTLFLAG_RWTUN, &mfi_cmd_timeout,
0, "Command timeout (in seconds)");
/* Management interface */
static d_open_t mfi_open;
static d_close_t mfi_close;
static d_ioctl_t mfi_ioctl;
static d_poll_t mfi_poll;
static struct cdevsw mfi_cdevsw = {
.d_version = D_VERSION,
.d_flags = 0,
.d_open = mfi_open,
.d_close = mfi_close,
.d_ioctl = mfi_ioctl,
.d_poll = mfi_poll,
.d_name = "mfi",
};
MALLOC_DEFINE(M_MFIBUF, "mfibuf", "Buffers for the MFI driver");
#define MFI_INQ_LENGTH SHORT_INQUIRY_LENGTH
struct mfi_skinny_dma_info mfi_skinny;
static void
mfi_enable_intr_xscale(struct mfi_softc *sc)
{
MFI_WRITE4(sc, MFI_OMSK, 0x01);
}
static void
mfi_enable_intr_ppc(struct mfi_softc *sc)
{
if (sc->mfi_flags & MFI_FLAGS_1078) {
MFI_WRITE4(sc, MFI_ODCR0, 0xFFFFFFFF);
MFI_WRITE4(sc, MFI_OMSK, ~MFI_1078_EIM);
}
else if (sc->mfi_flags & MFI_FLAGS_GEN2) {
MFI_WRITE4(sc, MFI_ODCR0, 0xFFFFFFFF);
MFI_WRITE4(sc, MFI_OMSK, ~MFI_GEN2_EIM);
}
else if (sc->mfi_flags & MFI_FLAGS_SKINNY) {
MFI_WRITE4(sc, MFI_OMSK, ~0x00000001);
}
}
static int32_t
mfi_read_fw_status_xscale(struct mfi_softc *sc)
{
return MFI_READ4(sc, MFI_OMSG0);
}
static int32_t
mfi_read_fw_status_ppc(struct mfi_softc *sc)
{
return MFI_READ4(sc, MFI_OSP0);
}
static int
mfi_check_clear_intr_xscale(struct mfi_softc *sc)
{
int32_t status;
status = MFI_READ4(sc, MFI_OSTS);
if ((status & MFI_OSTS_INTR_VALID) == 0)
return 1;
MFI_WRITE4(sc, MFI_OSTS, status);
return 0;
}
static int
mfi_check_clear_intr_ppc(struct mfi_softc *sc)
{
int32_t status;
status = MFI_READ4(sc, MFI_OSTS);
if (sc->mfi_flags & MFI_FLAGS_1078) {
if (!(status & MFI_1078_RM)) {
return 1;
}
}
else if (sc->mfi_flags & MFI_FLAGS_GEN2) {
if (!(status & MFI_GEN2_RM)) {
return 1;
}
}
else if (sc->mfi_flags & MFI_FLAGS_SKINNY) {
if (!(status & MFI_SKINNY_RM)) {
return 1;
}
}
if (sc->mfi_flags & MFI_FLAGS_SKINNY)
MFI_WRITE4(sc, MFI_OSTS, status);
else
MFI_WRITE4(sc, MFI_ODCR0, status);
return 0;
}
static void
mfi_issue_cmd_xscale(struct mfi_softc *sc, bus_addr_t bus_add, uint32_t frame_cnt)
{
MFI_WRITE4(sc, MFI_IQP,(bus_add >>3)|frame_cnt);
}
static void
mfi_issue_cmd_ppc(struct mfi_softc *sc, bus_addr_t bus_add, uint32_t frame_cnt)
{
if (sc->mfi_flags & MFI_FLAGS_SKINNY) {
MFI_WRITE4(sc, MFI_IQPL, (bus_add | frame_cnt <<1)|1 );
MFI_WRITE4(sc, MFI_IQPH, 0x00000000);
} else {
MFI_WRITE4(sc, MFI_IQP, (bus_add | frame_cnt <<1)|1 );
}
}
int
mfi_transition_firmware(struct mfi_softc *sc)
{
uint32_t fw_state, cur_state;
int max_wait, i;
uint32_t cur_abs_reg_val = 0;
uint32_t prev_abs_reg_val = 0;
cur_abs_reg_val = sc->mfi_read_fw_status(sc);
fw_state = cur_abs_reg_val & MFI_FWSTATE_MASK;
while (fw_state != MFI_FWSTATE_READY) {
if (bootverbose)
device_printf(sc->mfi_dev, "Waiting for firmware to "
"become ready\n");
cur_state = fw_state;
switch (fw_state) {
case MFI_FWSTATE_FAULT:
device_printf(sc->mfi_dev, "Firmware fault\n");
return (ENXIO);
case MFI_FWSTATE_WAIT_HANDSHAKE:
if (sc->mfi_flags & MFI_FLAGS_SKINNY || sc->mfi_flags & MFI_FLAGS_TBOLT)
MFI_WRITE4(sc, MFI_SKINNY_IDB, MFI_FWINIT_CLEAR_HANDSHAKE);
else
MFI_WRITE4(sc, MFI_IDB, MFI_FWINIT_CLEAR_HANDSHAKE);
max_wait = MFI_RESET_WAIT_TIME;
break;
case MFI_FWSTATE_OPERATIONAL:
if (sc->mfi_flags & MFI_FLAGS_SKINNY || sc->mfi_flags & MFI_FLAGS_TBOLT)
MFI_WRITE4(sc, MFI_SKINNY_IDB, 7);
else
MFI_WRITE4(sc, MFI_IDB, MFI_FWINIT_READY);
max_wait = MFI_RESET_WAIT_TIME;
break;
case MFI_FWSTATE_UNDEFINED:
case MFI_FWSTATE_BB_INIT:
max_wait = MFI_RESET_WAIT_TIME;
break;
case MFI_FWSTATE_FW_INIT_2:
max_wait = MFI_RESET_WAIT_TIME;
break;
case MFI_FWSTATE_FW_INIT:
case MFI_FWSTATE_FLUSH_CACHE:
max_wait = MFI_RESET_WAIT_TIME;
break;
case MFI_FWSTATE_DEVICE_SCAN:
max_wait = MFI_RESET_WAIT_TIME; /* wait for 180 seconds */
prev_abs_reg_val = cur_abs_reg_val;
break;
case MFI_FWSTATE_BOOT_MESSAGE_PENDING:
if (sc->mfi_flags & MFI_FLAGS_SKINNY || sc->mfi_flags & MFI_FLAGS_TBOLT)
MFI_WRITE4(sc, MFI_SKINNY_IDB, MFI_FWINIT_HOTPLUG);
else
MFI_WRITE4(sc, MFI_IDB, MFI_FWINIT_HOTPLUG);
max_wait = MFI_RESET_WAIT_TIME;
break;
default:
device_printf(sc->mfi_dev, "Unknown firmware state %#x\n",
fw_state);
return (ENXIO);
}
for (i = 0; i < (max_wait * 10); i++) {
cur_abs_reg_val = sc->mfi_read_fw_status(sc);
fw_state = cur_abs_reg_val & MFI_FWSTATE_MASK;
if (fw_state == cur_state)
DELAY(100000);
else
break;
}
if (fw_state == MFI_FWSTATE_DEVICE_SCAN) {
/* Check the device scanning progress */
if (prev_abs_reg_val != cur_abs_reg_val) {
continue;
}
}
if (fw_state == cur_state) {
device_printf(sc->mfi_dev, "Firmware stuck in state "
"%#x\n", fw_state);
return (ENXIO);
}
}
return (0);
}
static void
mfi_addr_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
{
bus_addr_t *addr;
addr = arg;
*addr = segs[0].ds_addr;
}
int
mfi_attach(struct mfi_softc *sc)
{
uint32_t status;
int error, commsz, framessz, sensesz;
int frames, unit, max_fw_sge, max_fw_cmds;
uint32_t tb_mem_size = 0;
if (sc == NULL)
return EINVAL;
device_printf(sc->mfi_dev, "Megaraid SAS driver Ver %s \n",
MEGASAS_VERSION);
mtx_init(&sc->mfi_io_lock, "MFI I/O lock", NULL, MTX_DEF);
sx_init(&sc->mfi_config_lock, "MFI config");
TAILQ_INIT(&sc->mfi_ld_tqh);
TAILQ_INIT(&sc->mfi_syspd_tqh);
TAILQ_INIT(&sc->mfi_ld_pend_tqh);
TAILQ_INIT(&sc->mfi_syspd_pend_tqh);
TAILQ_INIT(&sc->mfi_evt_queue);
TASK_INIT(&sc->mfi_evt_task, 0, mfi_handle_evt, sc);
TASK_INIT(&sc->mfi_map_sync_task, 0, mfi_handle_map_sync, sc);
TAILQ_INIT(&sc->mfi_aen_pids);
TAILQ_INIT(&sc->mfi_cam_ccbq);
mfi_initq_free(sc);
mfi_initq_ready(sc);
mfi_initq_busy(sc);
mfi_initq_bio(sc);
sc->adpreset = 0;
sc->last_seq_num = 0;
sc->disableOnlineCtrlReset = 1;
sc->issuepend_done = 1;
sc->hw_crit_error = 0;
if (sc->mfi_flags & MFI_FLAGS_1064R) {
sc->mfi_enable_intr = mfi_enable_intr_xscale;
sc->mfi_read_fw_status = mfi_read_fw_status_xscale;
sc->mfi_check_clear_intr = mfi_check_clear_intr_xscale;
sc->mfi_issue_cmd = mfi_issue_cmd_xscale;
} else if (sc->mfi_flags & MFI_FLAGS_TBOLT) {
sc->mfi_enable_intr = mfi_tbolt_enable_intr_ppc;
sc->mfi_disable_intr = mfi_tbolt_disable_intr_ppc;
sc->mfi_read_fw_status = mfi_tbolt_read_fw_status_ppc;
sc->mfi_check_clear_intr = mfi_tbolt_check_clear_intr_ppc;
sc->mfi_issue_cmd = mfi_tbolt_issue_cmd_ppc;
sc->mfi_adp_reset = mfi_tbolt_adp_reset;
sc->mfi_tbolt = 1;
TAILQ_INIT(&sc->mfi_cmd_tbolt_tqh);
} else {
sc->mfi_enable_intr = mfi_enable_intr_ppc;
sc->mfi_read_fw_status = mfi_read_fw_status_ppc;
sc->mfi_check_clear_intr = mfi_check_clear_intr_ppc;
sc->mfi_issue_cmd = mfi_issue_cmd_ppc;
}
/* Before we get too far, see if the firmware is working */
if ((error = mfi_transition_firmware(sc)) != 0) {
device_printf(sc->mfi_dev, "Firmware not in READY state, "
"error %d\n", error);
return (ENXIO);
}
/* Start: LSIP200113393 */
if (bus_dma_tag_create( sc->mfi_parent_dmat, /* parent */
1, 0, /* algnmnt, boundary */
BUS_SPACE_MAXADDR_32BIT,/* lowaddr */
BUS_SPACE_MAXADDR, /* highaddr */
NULL, NULL, /* filter, filterarg */
MEGASAS_MAX_NAME*sizeof(bus_addr_t), /* maxsize */
1, /* msegments */
MEGASAS_MAX_NAME*sizeof(bus_addr_t), /* maxsegsize */
0, /* flags */
NULL, NULL, /* lockfunc, lockarg */
&sc->verbuf_h_dmat)) {
device_printf(sc->mfi_dev, "Cannot allocate verbuf_h_dmat DMA tag\n");
return (ENOMEM);
}
if (bus_dmamem_alloc(sc->verbuf_h_dmat, (void **)&sc->verbuf,
BUS_DMA_NOWAIT, &sc->verbuf_h_dmamap)) {
device_printf(sc->mfi_dev, "Cannot allocate verbuf_h_dmamap memory\n");
return (ENOMEM);
}
bzero(sc->verbuf, MEGASAS_MAX_NAME*sizeof(bus_addr_t));
bus_dmamap_load(sc->verbuf_h_dmat, sc->verbuf_h_dmamap,
sc->verbuf, MEGASAS_MAX_NAME*sizeof(bus_addr_t),
mfi_addr_cb, &sc->verbuf_h_busaddr, 0);
/* End: LSIP200113393 */
/*
* Get information needed for sizing the contiguous memory for the
* frame pool. Size down the sgl parameter since we know that
* we will never need more than what's required for MAXPHYS.
* It would be nice if these constants were available at runtime
* instead of compile time.
*/
status = sc->mfi_read_fw_status(sc);
max_fw_cmds = status & MFI_FWSTATE_MAXCMD_MASK;
if (mfi_max_cmds > 0 && mfi_max_cmds < max_fw_cmds) {
device_printf(sc->mfi_dev, "FW MaxCmds = %d, limiting to %d\n",
max_fw_cmds, mfi_max_cmds);
sc->mfi_max_fw_cmds = mfi_max_cmds;
} else {
sc->mfi_max_fw_cmds = max_fw_cmds;
}
max_fw_sge = (status & MFI_FWSTATE_MAXSGL_MASK) >> 16;
sc->mfi_max_sge = min(max_fw_sge, ((MFI_MAXPHYS / PAGE_SIZE) + 1));
/* ThunderBolt Support get the contiguous memory */
if (sc->mfi_flags & MFI_FLAGS_TBOLT) {
mfi_tbolt_init_globals(sc);
device_printf(sc->mfi_dev, "MaxCmd = %d, Drv MaxCmd = %d, "
"MaxSgl = %d, state = %#x\n", max_fw_cmds,
sc->mfi_max_fw_cmds, sc->mfi_max_sge, status);
tb_mem_size = mfi_tbolt_get_memory_requirement(sc);
if (bus_dma_tag_create( sc->mfi_parent_dmat, /* parent */
1, 0, /* algnmnt, boundary */
BUS_SPACE_MAXADDR_32BIT,/* lowaddr */
BUS_SPACE_MAXADDR, /* highaddr */
NULL, NULL, /* filter, filterarg */
tb_mem_size, /* maxsize */
1, /* msegments */
tb_mem_size, /* maxsegsize */
0, /* flags */
NULL, NULL, /* lockfunc, lockarg */
&sc->mfi_tb_dmat)) {
device_printf(sc->mfi_dev, "Cannot allocate comms DMA tag\n");
return (ENOMEM);
}
if (bus_dmamem_alloc(sc->mfi_tb_dmat, (void **)&sc->request_message_pool,
BUS_DMA_NOWAIT, &sc->mfi_tb_dmamap)) {
device_printf(sc->mfi_dev, "Cannot allocate comms memory\n");
return (ENOMEM);
}
bzero(sc->request_message_pool, tb_mem_size);
bus_dmamap_load(sc->mfi_tb_dmat, sc->mfi_tb_dmamap,
sc->request_message_pool, tb_mem_size, mfi_addr_cb, &sc->mfi_tb_busaddr, 0);
/* For ThunderBolt memory init */
if (bus_dma_tag_create( sc->mfi_parent_dmat, /* parent */
0x100, 0, /* alignmnt, boundary */
BUS_SPACE_MAXADDR_32BIT,/* lowaddr */
BUS_SPACE_MAXADDR, /* highaddr */
NULL, NULL, /* filter, filterarg */
MFI_FRAME_SIZE, /* maxsize */
1, /* msegments */
MFI_FRAME_SIZE, /* maxsegsize */
0, /* flags */
NULL, NULL, /* lockfunc, lockarg */
&sc->mfi_tb_init_dmat)) {
device_printf(sc->mfi_dev, "Cannot allocate init DMA tag\n");
return (ENOMEM);
}
if (bus_dmamem_alloc(sc->mfi_tb_init_dmat, (void **)&sc->mfi_tb_init,
BUS_DMA_NOWAIT, &sc->mfi_tb_init_dmamap)) {
device_printf(sc->mfi_dev, "Cannot allocate init memory\n");
return (ENOMEM);
}
bzero(sc->mfi_tb_init, MFI_FRAME_SIZE);
bus_dmamap_load(sc->mfi_tb_init_dmat, sc->mfi_tb_init_dmamap,
sc->mfi_tb_init, MFI_FRAME_SIZE, mfi_addr_cb,
&sc->mfi_tb_init_busaddr, 0);
if (mfi_tbolt_init_desc_pool(sc, sc->request_message_pool,
tb_mem_size)) {
device_printf(sc->mfi_dev,
"Thunderbolt pool preparation error\n");
return 0;
}
/*
Allocate DMA memory mapping for MPI2 IOC Init descriptor,
we are taking it diffrent from what we have allocated for Request
and reply descriptors to avoid confusion later
*/
tb_mem_size = sizeof(struct MPI2_IOC_INIT_REQUEST);
if (bus_dma_tag_create( sc->mfi_parent_dmat, /* parent */
1, 0, /* algnmnt, boundary */
BUS_SPACE_MAXADDR_32BIT,/* lowaddr */
BUS_SPACE_MAXADDR, /* highaddr */
NULL, NULL, /* filter, filterarg */
tb_mem_size, /* maxsize */
1, /* msegments */
tb_mem_size, /* maxsegsize */
0, /* flags */
NULL, NULL, /* lockfunc, lockarg */
&sc->mfi_tb_ioc_init_dmat)) {
device_printf(sc->mfi_dev,
"Cannot allocate comms DMA tag\n");
return (ENOMEM);
}
if (bus_dmamem_alloc(sc->mfi_tb_ioc_init_dmat,
(void **)&sc->mfi_tb_ioc_init_desc,
BUS_DMA_NOWAIT, &sc->mfi_tb_ioc_init_dmamap)) {
device_printf(sc->mfi_dev, "Cannot allocate comms memory\n");
return (ENOMEM);
}
bzero(sc->mfi_tb_ioc_init_desc, tb_mem_size);
bus_dmamap_load(sc->mfi_tb_ioc_init_dmat, sc->mfi_tb_ioc_init_dmamap,
sc->mfi_tb_ioc_init_desc, tb_mem_size, mfi_addr_cb,
&sc->mfi_tb_ioc_init_busaddr, 0);
}
/*
* Create the dma tag for data buffers. Used both for block I/O
* and for various internal data queries.
*/
if (bus_dma_tag_create( sc->mfi_parent_dmat, /* parent */
1, 0, /* algnmnt, boundary */
BUS_SPACE_MAXADDR, /* lowaddr */
BUS_SPACE_MAXADDR, /* highaddr */
NULL, NULL, /* filter, filterarg */
BUS_SPACE_MAXSIZE_32BIT,/* maxsize */
sc->mfi_max_sge, /* nsegments */
BUS_SPACE_MAXSIZE_32BIT,/* maxsegsize */
BUS_DMA_ALLOCNOW, /* flags */
busdma_lock_mutex, /* lockfunc */
&sc->mfi_io_lock, /* lockfuncarg */
&sc->mfi_buffer_dmat)) {
device_printf(sc->mfi_dev, "Cannot allocate buffer DMA tag\n");
return (ENOMEM);
}
/*
* Allocate DMA memory for the comms queues. Keep it under 4GB for
* efficiency. The mfi_hwcomms struct includes space for 1 reply queue
* entry, so the calculated size here will be will be 1 more than
* mfi_max_fw_cmds. This is apparently a requirement of the hardware.
*/
commsz = (sizeof(uint32_t) * sc->mfi_max_fw_cmds) +
sizeof(struct mfi_hwcomms);
if (bus_dma_tag_create( sc->mfi_parent_dmat, /* parent */
1, 0, /* algnmnt, boundary */
BUS_SPACE_MAXADDR_32BIT,/* lowaddr */
BUS_SPACE_MAXADDR, /* highaddr */
NULL, NULL, /* filter, filterarg */
commsz, /* maxsize */
1, /* msegments */
commsz, /* maxsegsize */
0, /* flags */
NULL, NULL, /* lockfunc, lockarg */
&sc->mfi_comms_dmat)) {
device_printf(sc->mfi_dev, "Cannot allocate comms DMA tag\n");
return (ENOMEM);
}
if (bus_dmamem_alloc(sc->mfi_comms_dmat, (void **)&sc->mfi_comms,
BUS_DMA_NOWAIT, &sc->mfi_comms_dmamap)) {
device_printf(sc->mfi_dev, "Cannot allocate comms memory\n");
return (ENOMEM);
}
bzero(sc->mfi_comms, commsz);
bus_dmamap_load(sc->mfi_comms_dmat, sc->mfi_comms_dmamap,
sc->mfi_comms, commsz, mfi_addr_cb, &sc->mfi_comms_busaddr, 0);
/*
* Allocate DMA memory for the command frames. Keep them in the
* lower 4GB for efficiency. Calculate the size of the commands at
* the same time; each command is one 64 byte frame plus a set of
* additional frames for holding sg lists or other data.
* The assumption here is that the SG list will start at the second
* frame and not use the unused bytes in the first frame. While this
* isn't technically correct, it simplifies the calculation and allows
* for command frames that might be larger than an mfi_io_frame.
*/
if (sizeof(bus_addr_t) == 8) {
sc->mfi_sge_size = sizeof(struct mfi_sg64);
sc->mfi_flags |= MFI_FLAGS_SG64;
} else {
sc->mfi_sge_size = sizeof(struct mfi_sg32);
}
if (sc->mfi_flags & MFI_FLAGS_SKINNY)
sc->mfi_sge_size = sizeof(struct mfi_sg_skinny);
frames = (sc->mfi_sge_size * sc->mfi_max_sge - 1) / MFI_FRAME_SIZE + 2;
sc->mfi_cmd_size = frames * MFI_FRAME_SIZE;
framessz = sc->mfi_cmd_size * sc->mfi_max_fw_cmds;
if (bus_dma_tag_create( sc->mfi_parent_dmat, /* parent */
64, 0, /* algnmnt, boundary */
BUS_SPACE_MAXADDR_32BIT,/* lowaddr */
BUS_SPACE_MAXADDR, /* highaddr */
NULL, NULL, /* filter, filterarg */
framessz, /* maxsize */
1, /* nsegments */
framessz, /* maxsegsize */
0, /* flags */
NULL, NULL, /* lockfunc, lockarg */
&sc->mfi_frames_dmat)) {
device_printf(sc->mfi_dev, "Cannot allocate frame DMA tag\n");
return (ENOMEM);
}
if (bus_dmamem_alloc(sc->mfi_frames_dmat, (void **)&sc->mfi_frames,
BUS_DMA_NOWAIT, &sc->mfi_frames_dmamap)) {
device_printf(sc->mfi_dev, "Cannot allocate frames memory\n");
return (ENOMEM);
}
bzero(sc->mfi_frames, framessz);
bus_dmamap_load(sc->mfi_frames_dmat, sc->mfi_frames_dmamap,
sc->mfi_frames, framessz, mfi_addr_cb, &sc->mfi_frames_busaddr,0);
/*
* Allocate DMA memory for the frame sense data. Keep them in the
* lower 4GB for efficiency
*/
sensesz = sc->mfi_max_fw_cmds * MFI_SENSE_LEN;
if (bus_dma_tag_create( sc->mfi_parent_dmat, /* parent */
4, 0, /* algnmnt, boundary */
BUS_SPACE_MAXADDR_32BIT,/* lowaddr */
BUS_SPACE_MAXADDR, /* highaddr */
NULL, NULL, /* filter, filterarg */
sensesz, /* maxsize */
1, /* nsegments */
sensesz, /* maxsegsize */
0, /* flags */
NULL, NULL, /* lockfunc, lockarg */
&sc->mfi_sense_dmat)) {
device_printf(sc->mfi_dev, "Cannot allocate sense DMA tag\n");
return (ENOMEM);
}
if (bus_dmamem_alloc(sc->mfi_sense_dmat, (void **)&sc->mfi_sense,
BUS_DMA_NOWAIT, &sc->mfi_sense_dmamap)) {
device_printf(sc->mfi_dev, "Cannot allocate sense memory\n");
return (ENOMEM);
}
bus_dmamap_load(sc->mfi_sense_dmat, sc->mfi_sense_dmamap,
sc->mfi_sense, sensesz, mfi_addr_cb, &sc->mfi_sense_busaddr, 0);
if ((error = mfi_alloc_commands(sc)) != 0)
return (error);
/* Before moving the FW to operational state, check whether
* hostmemory is required by the FW or not
*/
/* ThunderBolt MFI_IOC2 INIT */
if (sc->mfi_flags & MFI_FLAGS_TBOLT) {
sc->mfi_disable_intr(sc);
mtx_lock(&sc->mfi_io_lock);
if ((error = mfi_tbolt_init_MFI_queue(sc)) != 0) {
device_printf(sc->mfi_dev,
"TB Init has failed with error %d\n",error);
mtx_unlock(&sc->mfi_io_lock);
return error;
}
mtx_unlock(&sc->mfi_io_lock);
if ((error = mfi_tbolt_alloc_cmd(sc)) != 0)
return error;
if (bus_setup_intr(sc->mfi_dev, sc->mfi_irq,
INTR_MPSAFE|INTR_TYPE_BIO, NULL, mfi_intr_tbolt, sc,
&sc->mfi_intr)) {
device_printf(sc->mfi_dev, "Cannot set up interrupt\n");
return (EINVAL);
}
sc->mfi_intr_ptr = mfi_intr_tbolt;
sc->mfi_enable_intr(sc);
} else {
if ((error = mfi_comms_init(sc)) != 0)
return (error);
if (bus_setup_intr(sc->mfi_dev, sc->mfi_irq,
INTR_MPSAFE|INTR_TYPE_BIO, NULL, mfi_intr, sc, &sc->mfi_intr)) {
device_printf(sc->mfi_dev, "Cannot set up interrupt\n");
return (EINVAL);
}
sc->mfi_intr_ptr = mfi_intr;
sc->mfi_enable_intr(sc);
}
if ((error = mfi_get_controller_info(sc)) != 0)
return (error);
sc->disableOnlineCtrlReset = 0;
/* Register a config hook to probe the bus for arrays */
sc->mfi_ich.ich_func = mfi_startup;
sc->mfi_ich.ich_arg = sc;
if (config_intrhook_establish(&sc->mfi_ich) != 0) {
device_printf(sc->mfi_dev, "Cannot establish configuration "
"hook\n");
return (EINVAL);
}
mtx_lock(&sc->mfi_io_lock);
if ((error = mfi_aen_setup(sc, 0), 0) != 0) {
mtx_unlock(&sc->mfi_io_lock);
return (error);
}
mtx_unlock(&sc->mfi_io_lock);
/*
* Register a shutdown handler.
*/
if ((sc->mfi_eh = EVENTHANDLER_REGISTER(shutdown_final, mfi_shutdown,
sc, SHUTDOWN_PRI_DEFAULT)) == NULL) {
device_printf(sc->mfi_dev, "Warning: shutdown event "
"registration failed\n");
}
/*
* Create the control device for doing management
*/
unit = device_get_unit(sc->mfi_dev);
sc->mfi_cdev = make_dev(&mfi_cdevsw, unit, UID_ROOT, GID_OPERATOR,
0640, "mfi%d", unit);
if (unit == 0)
make_dev_alias(sc->mfi_cdev, "megaraid_sas_ioctl_node");
if (sc->mfi_cdev != NULL)
sc->mfi_cdev->si_drv1 = sc;
SYSCTL_ADD_INT(device_get_sysctl_ctx(sc->mfi_dev),
SYSCTL_CHILDREN(device_get_sysctl_tree(sc->mfi_dev)),
OID_AUTO, "delete_busy_volumes", CTLFLAG_RW,
&sc->mfi_delete_busy_volumes, 0, "Allow removal of busy volumes");
SYSCTL_ADD_INT(device_get_sysctl_ctx(sc->mfi_dev),
SYSCTL_CHILDREN(device_get_sysctl_tree(sc->mfi_dev)),
OID_AUTO, "keep_deleted_volumes", CTLFLAG_RW,
&sc->mfi_keep_deleted_volumes, 0,
"Don't detach the mfid device for a busy volume that is deleted");
device_add_child(sc->mfi_dev, "mfip", -1);
bus_generic_attach(sc->mfi_dev);
/* Start the timeout watchdog */
callout_init(&sc->mfi_watchdog_callout, CALLOUT_MPSAFE);
callout_reset(&sc->mfi_watchdog_callout, mfi_cmd_timeout * hz,
mfi_timeout, sc);
if (sc->mfi_flags & MFI_FLAGS_TBOLT) {
mtx_lock(&sc->mfi_io_lock);
mfi_tbolt_sync_map_info(sc);
mtx_unlock(&sc->mfi_io_lock);
}
return (0);
}
static int
mfi_alloc_commands(struct mfi_softc *sc)
{
struct mfi_command *cm;
int i, j;
/*
* XXX Should we allocate all the commands up front, or allocate on
* demand later like 'aac' does?
*/
sc->mfi_commands = malloc(sizeof(sc->mfi_commands[0]) *
sc->mfi_max_fw_cmds, M_MFIBUF, M_WAITOK | M_ZERO);
for (i = 0; i < sc->mfi_max_fw_cmds; i++) {
cm = &sc->mfi_commands[i];
cm->cm_frame = (union mfi_frame *)((uintptr_t)sc->mfi_frames +
sc->mfi_cmd_size * i);
cm->cm_frame_busaddr = sc->mfi_frames_busaddr +
sc->mfi_cmd_size * i;
cm->cm_frame->header.context = i;
cm->cm_sense = &sc->mfi_sense[i];
cm->cm_sense_busaddr= sc->mfi_sense_busaddr + MFI_SENSE_LEN * i;
cm->cm_sc = sc;
cm->cm_index = i;
if (bus_dmamap_create(sc->mfi_buffer_dmat, 0,
&cm->cm_dmamap) == 0) {
mtx_lock(&sc->mfi_io_lock);
mfi_release_command(cm);
mtx_unlock(&sc->mfi_io_lock);
} else {
device_printf(sc->mfi_dev, "Failed to allocate %d "
"command blocks, only allocated %d\n",
sc->mfi_max_fw_cmds, i - 1);
for (j = 0; j < i; j++) {
cm = &sc->mfi_commands[i];
bus_dmamap_destroy(sc->mfi_buffer_dmat,
cm->cm_dmamap);
}
free(sc->mfi_commands, M_MFIBUF);
sc->mfi_commands = NULL;
return (ENOMEM);
}
}
return (0);
}
void
mfi_release_command(struct mfi_command *cm)
{
struct mfi_frame_header *hdr;
uint32_t *hdr_data;
mtx_assert(&cm->cm_sc->mfi_io_lock, MA_OWNED);
/*
* Zero out the important fields of the frame, but make sure the
* context field is preserved. For efficiency, handle the fields
* as 32 bit words. Clear out the first S/G entry too for safety.
*/
hdr = &cm->cm_frame->header;
if (cm->cm_data != NULL && hdr->sg_count) {
cm->cm_sg->sg32[0].len = 0;
cm->cm_sg->sg32[0].addr = 0;
}
/*
* Command may be on other queues e.g. busy queue depending on the
* flow of a previous call to mfi_mapcmd, so ensure its dequeued
* properly
*/
if ((cm->cm_flags & MFI_ON_MFIQ_BUSY) != 0)
mfi_remove_busy(cm);
if ((cm->cm_flags & MFI_ON_MFIQ_READY) != 0)
mfi_remove_ready(cm);
/* We're not expecting it to be on any other queue but check */
if ((cm->cm_flags & MFI_ON_MFIQ_MASK) != 0) {
panic("Command %p is still on another queue, flags = %#x",
cm, cm->cm_flags);
}
/* tbolt cleanup */
if ((cm->cm_flags & MFI_CMD_TBOLT) != 0) {
mfi_tbolt_return_cmd(cm->cm_sc,
cm->cm_sc->mfi_cmd_pool_tbolt[cm->cm_extra_frames - 1],
cm);
}
hdr_data = (uint32_t *)cm->cm_frame;
hdr_data[0] = 0; /* cmd, sense_len, cmd_status, scsi_status */
hdr_data[1] = 0; /* target_id, lun_id, cdb_len, sg_count */
hdr_data[4] = 0; /* flags, timeout */
hdr_data[5] = 0; /* data_len */
cm->cm_extra_frames = 0;
cm->cm_flags = 0;
cm->cm_complete = NULL;
cm->cm_private = NULL;
cm->cm_data = NULL;
cm->cm_sg = 0;
cm->cm_total_frame_size = 0;
cm->retry_for_fw_reset = 0;
mfi_enqueue_free(cm);
}
int
mfi_dcmd_command(struct mfi_softc *sc, struct mfi_command **cmp,
uint32_t opcode, void **bufp, size_t bufsize)
{
struct mfi_command *cm;
struct mfi_dcmd_frame *dcmd;
void *buf = NULL;
uint32_t context = 0;
mtx_assert(&sc->mfi_io_lock, MA_OWNED);
cm = mfi_dequeue_free(sc);
if (cm == NULL)
return (EBUSY);
/* Zero out the MFI frame */
context = cm->cm_frame->header.context;
bzero(cm->cm_frame, sizeof(union mfi_frame));
cm->cm_frame->header.context = context;
if ((bufsize > 0) && (bufp != NULL)) {
if (*bufp == NULL) {
buf = malloc(bufsize, M_MFIBUF, M_NOWAIT|M_ZERO);
if (buf == NULL) {
mfi_release_command(cm);
return (ENOMEM);
}
*bufp = buf;
} else {
buf = *bufp;
}
}
dcmd = &cm->cm_frame->dcmd;
bzero(dcmd->mbox, MFI_MBOX_SIZE);
dcmd->header.cmd = MFI_CMD_DCMD;
dcmd->header.timeout = 0;
dcmd->header.flags = 0;
dcmd->header.data_len = bufsize;
dcmd->header.scsi_status = 0;
dcmd->opcode = opcode;
cm->cm_sg = &dcmd->sgl;
cm->cm_total_frame_size = MFI_DCMD_FRAME_SIZE;
cm->cm_flags = 0;
cm->cm_data = buf;
cm->cm_private = buf;
cm->cm_len = bufsize;
*cmp = cm;
if ((bufp != NULL) && (*bufp == NULL) && (buf != NULL))
*bufp = buf;
return (0);
}
static int
mfi_comms_init(struct mfi_softc *sc)
{
struct mfi_command *cm;
struct mfi_init_frame *init;
struct mfi_init_qinfo *qinfo;
int error;
uint32_t context = 0;
mtx_lock(&sc->mfi_io_lock);
if ((cm = mfi_dequeue_free(sc)) == NULL) {
mtx_unlock(&sc->mfi_io_lock);
return (EBUSY);
}
/* Zero out the MFI frame */
context = cm->cm_frame->header.context;
bzero(cm->cm_frame, sizeof(union mfi_frame));
cm->cm_frame->header.context = context;
/*
* Abuse the SG list area of the frame to hold the init_qinfo
* object;
*/
init = &cm->cm_frame->init;
qinfo = (struct mfi_init_qinfo *)((uintptr_t)init + MFI_FRAME_SIZE);
bzero(qinfo, sizeof(struct mfi_init_qinfo));
qinfo->rq_entries = sc->mfi_max_fw_cmds + 1;
qinfo->rq_addr_lo = sc->mfi_comms_busaddr +
offsetof(struct mfi_hwcomms, hw_reply_q);
qinfo->pi_addr_lo = sc->mfi_comms_busaddr +
offsetof(struct mfi_hwcomms, hw_pi);
qinfo->ci_addr_lo = sc->mfi_comms_busaddr +
offsetof(struct mfi_hwcomms, hw_ci);
init->header.cmd = MFI_CMD_INIT;
init->header.data_len = sizeof(struct mfi_init_qinfo);
init->qinfo_new_addr_lo = cm->cm_frame_busaddr + MFI_FRAME_SIZE;
cm->cm_data = NULL;
cm->cm_flags = MFI_CMD_POLLED;
if ((error = mfi_mapcmd(sc, cm)) != 0)
device_printf(sc->mfi_dev, "failed to send init command\n");
mfi_release_command(cm);
mtx_unlock(&sc->mfi_io_lock);
return (error);
}
static int
mfi_get_controller_info(struct mfi_softc *sc)
{
struct mfi_command *cm = NULL;
struct mfi_ctrl_info *ci = NULL;
uint32_t max_sectors_1, max_sectors_2;
int error;
mtx_lock(&sc->mfi_io_lock);
error = mfi_dcmd_command(sc, &cm, MFI_DCMD_CTRL_GETINFO,
(void **)&ci, sizeof(*ci));
if (error)
goto out;
cm->cm_flags = MFI_CMD_DATAIN | MFI_CMD_POLLED;
if ((error = mfi_mapcmd(sc, cm)) != 0) {
device_printf(sc->mfi_dev, "Failed to get controller info\n");
sc->mfi_max_io = (sc->mfi_max_sge - 1) * PAGE_SIZE /
MFI_SECTOR_LEN;
error = 0;
goto out;
}
bus_dmamap_sync(sc->mfi_buffer_dmat, cm->cm_dmamap,
BUS_DMASYNC_POSTREAD);
bus_dmamap_unload(sc->mfi_buffer_dmat, cm->cm_dmamap);
max_sectors_1 = (1 << ci->stripe_sz_ops.max) * ci->max_strips_per_io;
max_sectors_2 = ci->max_request_size;
sc->mfi_max_io = min(max_sectors_1, max_sectors_2);
sc->disableOnlineCtrlReset =
ci->properties.OnOffProperties.disableOnlineCtrlReset;
out:
if (ci)
free(ci, M_MFIBUF);
if (cm)
mfi_release_command(cm);
mtx_unlock(&sc->mfi_io_lock);
return (error);
}
static int
mfi_get_log_state(struct mfi_softc *sc, struct mfi_evt_log_state **log_state)
{
struct mfi_command *cm = NULL;
int error;
mtx_assert(&sc->mfi_io_lock, MA_OWNED);
error = mfi_dcmd_command(sc, &cm, MFI_DCMD_CTRL_EVENT_GETINFO,
(void **)log_state, sizeof(**log_state));
if (error)
goto out;
cm->cm_flags = MFI_CMD_DATAIN | MFI_CMD_POLLED;
if ((error = mfi_mapcmd(sc, cm)) != 0) {
device_printf(sc->mfi_dev, "Failed to get log state\n");
goto out;
}
bus_dmamap_sync(sc->mfi_buffer_dmat, cm->cm_dmamap,
BUS_DMASYNC_POSTREAD);
bus_dmamap_unload(sc->mfi_buffer_dmat, cm->cm_dmamap);
out:
if (cm)
mfi_release_command(cm);
return (error);
}
int
mfi_aen_setup(struct mfi_softc *sc, uint32_t seq_start)
{
struct mfi_evt_log_state *log_state = NULL;
union mfi_evt class_locale;
int error = 0;
uint32_t seq;
mtx_assert(&sc->mfi_io_lock, MA_OWNED);
class_locale.members.reserved = 0;
class_locale.members.locale = mfi_event_locale;
class_locale.members.evt_class = mfi_event_class;
if (seq_start == 0) {
if ((error = mfi_get_log_state(sc, &log_state)) != 0)
goto out;
sc->mfi_boot_seq_num = log_state->boot_seq_num;
/*
* Walk through any events that fired since the last
* shutdown.
*/
if ((error = mfi_parse_entries(sc, log_state->shutdown_seq_num,
log_state->newest_seq_num)) != 0)
goto out;
seq = log_state->newest_seq_num;
} else
seq = seq_start;
error = mfi_aen_register(sc, seq, class_locale.word);
out:
free(log_state, M_MFIBUF);
return (error);
}
int
mfi_wait_command(struct mfi_softc *sc, struct mfi_command *cm)
{
mtx_assert(&sc->mfi_io_lock, MA_OWNED);
cm->cm_complete = NULL;
/*
* MegaCli can issue a DCMD of 0. In this case do nothing
* and return 0 to it as status
*/
if (cm->cm_frame->dcmd.opcode == 0) {
cm->cm_frame->header.cmd_status = MFI_STAT_OK;
cm->cm_error = 0;
return (cm->cm_error);
}
mfi_enqueue_ready(cm);
mfi_startio(sc);
if ((cm->cm_flags & MFI_CMD_COMPLETED) == 0)
msleep(cm, &sc->mfi_io_lock, PRIBIO, "mfiwait", 0);
return (cm->cm_error);
}
void
mfi_free(struct mfi_softc *sc)
{
struct mfi_command *cm;
int i;
callout_drain(&sc->mfi_watchdog_callout);
if (sc->mfi_cdev != NULL)
destroy_dev(sc->mfi_cdev);
if (sc->mfi_commands != NULL) {
for (i = 0; i < sc->mfi_max_fw_cmds; i++) {
cm = &sc->mfi_commands[i];
bus_dmamap_destroy(sc->mfi_buffer_dmat, cm->cm_dmamap);
}
free(sc->mfi_commands, M_MFIBUF);
sc->mfi_commands = NULL;
}
if (sc->mfi_intr)
bus_teardown_intr(sc->mfi_dev, sc->mfi_irq, sc->mfi_intr);
if (sc->mfi_irq != NULL)
bus_release_resource(sc->mfi_dev, SYS_RES_IRQ, sc->mfi_irq_rid,
sc->mfi_irq);
if (sc->mfi_sense_busaddr != 0)
bus_dmamap_unload(sc->mfi_sense_dmat, sc->mfi_sense_dmamap);
if (sc->mfi_sense != NULL)
bus_dmamem_free(sc->mfi_sense_dmat, sc->mfi_sense,
sc->mfi_sense_dmamap);
if (sc->mfi_sense_dmat != NULL)
bus_dma_tag_destroy(sc->mfi_sense_dmat);
if (sc->mfi_frames_busaddr != 0)
bus_dmamap_unload(sc->mfi_frames_dmat, sc->mfi_frames_dmamap);
if (sc->mfi_frames != NULL)
bus_dmamem_free(sc->mfi_frames_dmat, sc->mfi_frames,
sc->mfi_frames_dmamap);
if (sc->mfi_frames_dmat != NULL)
bus_dma_tag_destroy(sc->mfi_frames_dmat);
if (sc->mfi_comms_busaddr != 0)
bus_dmamap_unload(sc->mfi_comms_dmat, sc->mfi_comms_dmamap);
if (sc->mfi_comms != NULL)
bus_dmamem_free(sc->mfi_comms_dmat, sc->mfi_comms,
sc->mfi_comms_dmamap);
if (sc->mfi_comms_dmat != NULL)
bus_dma_tag_destroy(sc->mfi_comms_dmat);
/* ThunderBolt contiguous memory free here */
if (sc->mfi_flags & MFI_FLAGS_TBOLT) {
if (sc->mfi_tb_busaddr != 0)
bus_dmamap_unload(sc->mfi_tb_dmat, sc->mfi_tb_dmamap);
if (sc->request_message_pool != NULL)
bus_dmamem_free(sc->mfi_tb_dmat, sc->request_message_pool,
sc->mfi_tb_dmamap);
if (sc->mfi_tb_dmat != NULL)
bus_dma_tag_destroy(sc->mfi_tb_dmat);
/* Version buffer memory free */
/* Start LSIP200113393 */
if (sc->verbuf_h_busaddr != 0)
bus_dmamap_unload(sc->verbuf_h_dmat, sc->verbuf_h_dmamap);
if (sc->verbuf != NULL)
bus_dmamem_free(sc->verbuf_h_dmat, sc->verbuf,
sc->verbuf_h_dmamap);
if (sc->verbuf_h_dmat != NULL)
bus_dma_tag_destroy(sc->verbuf_h_dmat);
/* End LSIP200113393 */
/* ThunderBolt INIT packet memory Free */
if (sc->mfi_tb_init_busaddr != 0)
bus_dmamap_unload(sc->mfi_tb_init_dmat,
sc->mfi_tb_init_dmamap);
if (sc->mfi_tb_init != NULL)
bus_dmamem_free(sc->mfi_tb_init_dmat, sc->mfi_tb_init,
sc->mfi_tb_init_dmamap);
if (sc->mfi_tb_init_dmat != NULL)
bus_dma_tag_destroy(sc->mfi_tb_init_dmat);
/* ThunderBolt IOC Init Desc memory free here */
if (sc->mfi_tb_ioc_init_busaddr != 0)
bus_dmamap_unload(sc->mfi_tb_ioc_init_dmat,
sc->mfi_tb_ioc_init_dmamap);
if (sc->mfi_tb_ioc_init_desc != NULL)
bus_dmamem_free(sc->mfi_tb_ioc_init_dmat,
sc->mfi_tb_ioc_init_desc,
sc->mfi_tb_ioc_init_dmamap);
if (sc->mfi_tb_ioc_init_dmat != NULL)
bus_dma_tag_destroy(sc->mfi_tb_ioc_init_dmat);
if (sc->mfi_cmd_pool_tbolt != NULL) {
for (int i = 0; i < sc->mfi_max_fw_cmds; i++) {
if (sc->mfi_cmd_pool_tbolt[i] != NULL) {
free(sc->mfi_cmd_pool_tbolt[i],
M_MFIBUF);
sc->mfi_cmd_pool_tbolt[i] = NULL;
}
}
free(sc->mfi_cmd_pool_tbolt, M_MFIBUF);
sc->mfi_cmd_pool_tbolt = NULL;
}
if (sc->request_desc_pool != NULL) {
free(sc->request_desc_pool, M_MFIBUF);
sc->request_desc_pool = NULL;
}
}
if (sc->mfi_buffer_dmat != NULL)
bus_dma_tag_destroy(sc->mfi_buffer_dmat);
if (sc->mfi_parent_dmat != NULL)
bus_dma_tag_destroy(sc->mfi_parent_dmat);
if (mtx_initialized(&sc->mfi_io_lock)) {
mtx_destroy(&sc->mfi_io_lock);
sx_destroy(&sc->mfi_config_lock);
}
return;
}
static void
mfi_startup(void *arg)
{
struct mfi_softc *sc;
sc = (struct mfi_softc *)arg;
config_intrhook_disestablish(&sc->mfi_ich);
sc->mfi_enable_intr(sc);
sx_xlock(&sc->mfi_config_lock);
mtx_lock(&sc->mfi_io_lock);
mfi_ldprobe(sc);
if (sc->mfi_flags & MFI_FLAGS_SKINNY)
mfi_syspdprobe(sc);
mtx_unlock(&sc->mfi_io_lock);
sx_xunlock(&sc->mfi_config_lock);
}
static void
mfi_intr(void *arg)
{
struct mfi_softc *sc;
struct mfi_command *cm;
uint32_t pi, ci, context;
sc = (struct mfi_softc *)arg;
if (sc->mfi_check_clear_intr(sc))
return;
restart:
pi = sc->mfi_comms->hw_pi;
ci = sc->mfi_comms->hw_ci;
mtx_lock(&sc->mfi_io_lock);
while (ci != pi) {
context = sc->mfi_comms->hw_reply_q[ci];
if (context < sc->mfi_max_fw_cmds) {
cm = &sc->mfi_commands[context];
mfi_remove_busy(cm);
cm->cm_error = 0;
mfi_complete(sc, cm);
}
if (++ci == (sc->mfi_max_fw_cmds + 1))
ci = 0;
}
sc->mfi_comms->hw_ci = ci;
/* Give defered I/O a chance to run */
sc->mfi_flags &= ~MFI_FLAGS_QFRZN;
mfi_startio(sc);
mtx_unlock(&sc->mfi_io_lock);
/*
* Dummy read to flush the bus; this ensures that the indexes are up
* to date. Restart processing if more commands have come it.
*/
(void)sc->mfi_read_fw_status(sc);
if (pi != sc->mfi_comms->hw_pi)
goto restart;
return;
}
int
mfi_shutdown(struct mfi_softc *sc)
{
struct mfi_dcmd_frame *dcmd;
struct mfi_command *cm;
int error;
if (sc->mfi_aen_cm != NULL) {
sc->cm_aen_abort = 1;
mfi_abort(sc, &sc->mfi_aen_cm);
}
if (sc->mfi_map_sync_cm != NULL) {
sc->cm_map_abort = 1;
mfi_abort(sc, &sc->mfi_map_sync_cm);
}
mtx_lock(&sc->mfi_io_lock);
error = mfi_dcmd_command(sc, &cm, MFI_DCMD_CTRL_SHUTDOWN, NULL, 0);
if (error) {
mtx_unlock(&sc->mfi_io_lock);
return (error);
}
dcmd = &cm->cm_frame->dcmd;
dcmd->header.flags = MFI_FRAME_DIR_NONE;
cm->cm_flags = MFI_CMD_POLLED;
cm->cm_data = NULL;
if ((error = mfi_mapcmd(sc, cm)) != 0)
device_printf(sc->mfi_dev, "Failed to shutdown controller\n");
mfi_release_command(cm);
mtx_unlock(&sc->mfi_io_lock);
return (error);
}
static void
mfi_syspdprobe(struct mfi_softc *sc)
{
struct mfi_frame_header *hdr;
struct mfi_command *cm = NULL;
struct mfi_pd_list *pdlist = NULL;
struct mfi_system_pd *syspd, *tmp;
struct mfi_system_pending *syspd_pend;
int error, i, found;
sx_assert(&sc->mfi_config_lock, SA_XLOCKED);
mtx_assert(&sc->mfi_io_lock, MA_OWNED);
/* Add SYSTEM PD's */
error = mfi_dcmd_command(sc, &cm, MFI_DCMD_PD_LIST_QUERY,
(void **)&pdlist, sizeof(*pdlist));
if (error) {
device_printf(sc->mfi_dev,
"Error while forming SYSTEM PD list\n");
goto out;
}
cm->cm_flags = MFI_CMD_DATAIN | MFI_CMD_POLLED;
cm->cm_frame->dcmd.mbox[0] = MR_PD_QUERY_TYPE_EXPOSED_TO_HOST;
cm->cm_frame->dcmd.mbox[1] = 0;
if (mfi_mapcmd(sc, cm) != 0) {
device_printf(sc->mfi_dev,
"Failed to get syspd device listing\n");
goto out;
}
bus_dmamap_sync(sc->mfi_buffer_dmat,cm->cm_dmamap,
BUS_DMASYNC_POSTREAD);
bus_dmamap_unload(sc->mfi_buffer_dmat, cm->cm_dmamap);
hdr = &cm->cm_frame->header;
if (hdr->cmd_status != MFI_STAT_OK) {
device_printf(sc->mfi_dev,
"MFI_DCMD_PD_LIST_QUERY failed %x\n", hdr->cmd_status);
goto out;
}
/* Get each PD and add it to the system */
for (i = 0; i < pdlist->count; i++) {
if (pdlist->addr[i].device_id ==
pdlist->addr[i].encl_device_id)
continue;
found = 0;
TAILQ_FOREACH(syspd, &sc->mfi_syspd_tqh, pd_link) {
if (syspd->pd_id == pdlist->addr[i].device_id)
found = 1;
}
TAILQ_FOREACH(syspd_pend, &sc->mfi_syspd_pend_tqh, pd_link) {
if (syspd_pend->pd_id == pdlist->addr[i].device_id)
found = 1;
}
if (found == 0)
mfi_add_sys_pd(sc, pdlist->addr[i].device_id);
}
/* Delete SYSPD's whose state has been changed */
TAILQ_FOREACH_SAFE(syspd, &sc->mfi_syspd_tqh, pd_link, tmp) {
found = 0;
for (i = 0; i < pdlist->count; i++) {
if (syspd->pd_id == pdlist->addr[i].device_id) {
found = 1;
break;
}
}
if (found == 0) {
printf("DELETE\n");
mtx_unlock(&sc->mfi_io_lock);
mtx_lock(&Giant);
device_delete_child(sc->mfi_dev, syspd->pd_dev);
mtx_unlock(&Giant);
mtx_lock(&sc->mfi_io_lock);
}
}
out:
if (pdlist)
free(pdlist, M_MFIBUF);
if (cm)
mfi_release_command(cm);
return;
}
static void
mfi_ldprobe(struct mfi_softc *sc)
{
struct mfi_frame_header *hdr;
struct mfi_command *cm = NULL;
struct mfi_ld_list *list = NULL;
struct mfi_disk *ld;
struct mfi_disk_pending *ld_pend;
int error, i;
sx_assert(&sc->mfi_config_lock, SA_XLOCKED);
mtx_assert(&sc->mfi_io_lock, MA_OWNED);
error = mfi_dcmd_command(sc, &cm, MFI_DCMD_LD_GET_LIST,
(void **)&list, sizeof(*list));
if (error)
goto out;
cm->cm_flags = MFI_CMD_DATAIN;
if (mfi_wait_command(sc, cm) != 0) {
device_printf(sc->mfi_dev, "Failed to get device listing\n");
goto out;
}
hdr = &cm->cm_frame->header;
if (hdr->cmd_status != MFI_STAT_OK) {
device_printf(sc->mfi_dev, "MFI_DCMD_LD_GET_LIST failed %x\n",
hdr->cmd_status);
goto out;
}
for (i = 0; i < list->ld_count; i++) {
TAILQ_FOREACH(ld, &sc->mfi_ld_tqh, ld_link) {
if (ld->ld_id == list->ld_list[i].ld.v.target_id)
goto skip_add;
}
TAILQ_FOREACH(ld_pend, &sc->mfi_ld_pend_tqh, ld_link) {
if (ld_pend->ld_id == list->ld_list[i].ld.v.target_id)
goto skip_add;
}
mfi_add_ld(sc, list->ld_list[i].ld.v.target_id);
skip_add:;
}
out:
if (list)
free(list, M_MFIBUF);
if (cm)
mfi_release_command(cm);
return;
}
/*
* The timestamp is the number of seconds since 00:00 Jan 1, 2000. If
* the bits in 24-31 are all set, then it is the number of seconds since
* boot.
*/
static const char *
format_timestamp(uint32_t timestamp)
{
static char buffer[32];
if ((timestamp & 0xff000000) == 0xff000000)
snprintf(buffer, sizeof(buffer), "boot + %us", timestamp &
0x00ffffff);
else
snprintf(buffer, sizeof(buffer), "%us", timestamp);
return (buffer);
}
static const char *
format_class(int8_t class)
{
static char buffer[6];
switch (class) {
case MFI_EVT_CLASS_DEBUG:
return ("debug");
case MFI_EVT_CLASS_PROGRESS:
return ("progress");
case MFI_EVT_CLASS_INFO:
return ("info");
case MFI_EVT_CLASS_WARNING:
return ("WARN");
case MFI_EVT_CLASS_CRITICAL:
return ("CRIT");
case MFI_EVT_CLASS_FATAL:
return ("FATAL");
case MFI_EVT_CLASS_DEAD:
return ("DEAD");
default:
snprintf(buffer, sizeof(buffer), "%d", class);
return (buffer);
}
}
static void
mfi_decode_evt(struct mfi_softc *sc, struct mfi_evt_detail *detail)
{
struct mfi_system_pd *syspd = NULL;
device_printf(sc->mfi_dev, "%d (%s/0x%04x/%s) - %s\n", detail->seq,
format_timestamp(detail->time), detail->evt_class.members.locale,
format_class(detail->evt_class.members.evt_class),
detail->description);
/* Don't act on old AEN's or while shutting down */
if (detail->seq < sc->mfi_boot_seq_num || sc->mfi_detaching)
return;
switch (detail->arg_type) {
case MR_EVT_ARGS_NONE:
if (detail->code == MR_EVT_CTRL_HOST_BUS_SCAN_REQUESTED) {
device_printf(sc->mfi_dev, "HostBus scan raised\n");
if (mfi_detect_jbod_change) {
/*
* Probe for new SYSPD's and Delete
* invalid SYSPD's
*/
sx_xlock(&sc->mfi_config_lock);
mtx_lock(&sc->mfi_io_lock);
mfi_syspdprobe(sc);
mtx_unlock(&sc->mfi_io_lock);
sx_xunlock(&sc->mfi_config_lock);
}
}
break;
case MR_EVT_ARGS_LD_STATE:
/* During load time driver reads all the events starting
* from the one that has been logged after shutdown. Avoid
* these old events.
*/
if (detail->args.ld_state.new_state == MFI_LD_STATE_OFFLINE ) {
/* Remove the LD */
struct mfi_disk *ld;
TAILQ_FOREACH(ld, &sc->mfi_ld_tqh, ld_link) {
if (ld->ld_id ==
detail->args.ld_state.ld.target_id)
break;
}
/*
Fix: for kernel panics when SSCD is removed
KASSERT(ld != NULL, ("volume dissappeared"));
*/
if (ld != NULL) {
mtx_lock(&Giant);
device_delete_child(sc->mfi_dev, ld->ld_dev);
mtx_unlock(&Giant);
}
}
break;
case MR_EVT_ARGS_PD:
if (detail->code == MR_EVT_PD_REMOVED) {
if (mfi_detect_jbod_change) {
/*
* If the removed device is a SYSPD then
* delete it
*/
TAILQ_FOREACH(syspd, &sc->mfi_syspd_tqh,
pd_link) {
if (syspd->pd_id ==
detail->args.pd.device_id) {
mtx_lock(&Giant);
device_delete_child(
sc->mfi_dev,
syspd->pd_dev);
mtx_unlock(&Giant);
break;
}
}
}
}
if (detail->code == MR_EVT_PD_INSERTED) {
if (mfi_detect_jbod_change) {
/* Probe for new SYSPD's */
sx_xlock(&sc->mfi_config_lock);
mtx_lock(&sc->mfi_io_lock);
mfi_syspdprobe(sc);
mtx_unlock(&sc->mfi_io_lock);
sx_xunlock(&sc->mfi_config_lock);
}
}
if (sc->mfi_cam_rescan_cb != NULL &&
(detail->code == MR_EVT_PD_INSERTED ||
detail->code == MR_EVT_PD_REMOVED)) {
sc->mfi_cam_rescan_cb(sc, detail->args.pd.device_id);
}
break;
}
}
static void
mfi_queue_evt(struct mfi_softc *sc, struct mfi_evt_detail *detail)
{
struct mfi_evt_queue_elm *elm;
mtx_assert(&sc->mfi_io_lock, MA_OWNED);
elm = malloc(sizeof(*elm), M_MFIBUF, M_NOWAIT|M_ZERO);
if (elm == NULL)
return;
memcpy(&elm->detail, detail, sizeof(*detail));
TAILQ_INSERT_TAIL(&sc->mfi_evt_queue, elm, link);
taskqueue_enqueue(taskqueue_swi, &sc->mfi_evt_task);
}
static void
mfi_handle_evt(void *context, int pending)
{
TAILQ_HEAD(,mfi_evt_queue_elm) queue;
struct mfi_softc *sc;
struct mfi_evt_queue_elm *elm;
sc = context;
TAILQ_INIT(&queue);
mtx_lock(&sc->mfi_io_lock);
TAILQ_CONCAT(&queue, &sc->mfi_evt_queue, link);
mtx_unlock(&sc->mfi_io_lock);
while ((elm = TAILQ_FIRST(&queue)) != NULL) {
TAILQ_REMOVE(&queue, elm, link);
mfi_decode_evt(sc, &elm->detail);
free(elm, M_MFIBUF);
}
}
static int
mfi_aen_register(struct mfi_softc *sc, int seq, int locale)
{
struct mfi_command *cm;
struct mfi_dcmd_frame *dcmd;
union mfi_evt current_aen, prior_aen;
struct mfi_evt_detail *ed = NULL;
int error = 0;
mtx_assert(&sc->mfi_io_lock, MA_OWNED);
current_aen.word = locale;
if (sc->mfi_aen_cm != NULL) {
prior_aen.word =
((uint32_t *)&sc->mfi_aen_cm->cm_frame->dcmd.mbox)[1];
if (prior_aen.members.evt_class <= current_aen.members.evt_class &&
!((prior_aen.members.locale & current_aen.members.locale)
^current_aen.members.locale)) {
return (0);
} else {
prior_aen.members.locale |= current_aen.members.locale;
if (prior_aen.members.evt_class
< current_aen.members.evt_class)
current_aen.members.evt_class =
prior_aen.members.evt_class;
mfi_abort(sc, &sc->mfi_aen_cm);
}
}
error = mfi_dcmd_command(sc, &cm, MFI_DCMD_CTRL_EVENT_WAIT,
(void **)&ed, sizeof(*ed));
if (error)
goto out;
dcmd = &cm->cm_frame->dcmd;
((uint32_t *)&dcmd->mbox)[0] = seq;
((uint32_t *)&dcmd->mbox)[1] = locale;
cm->cm_flags = MFI_CMD_DATAIN;
cm->cm_complete = mfi_aen_complete;
sc->last_seq_num = seq;
sc->mfi_aen_cm = cm;
mfi_enqueue_ready(cm);
mfi_startio(sc);
out:
return (error);
}
static void
mfi_aen_complete(struct mfi_command *cm)
{
struct mfi_frame_header *hdr;
struct mfi_softc *sc;
struct mfi_evt_detail *detail;
struct mfi_aen *mfi_aen_entry, *tmp;
int seq = 0, aborted = 0;
sc = cm->cm_sc;
mtx_assert(&sc->mfi_io_lock, MA_OWNED);
if (sc->mfi_aen_cm == NULL)
return;
hdr = &cm->cm_frame->header;
if (sc->cm_aen_abort ||
hdr->cmd_status == MFI_STAT_INVALID_STATUS) {
sc->cm_aen_abort = 0;
aborted = 1;
} else {
sc->mfi_aen_triggered = 1;
if (sc->mfi_poll_waiting) {
sc->mfi_poll_waiting = 0;
selwakeup(&sc->mfi_select);
}
detail = cm->cm_data;
mfi_queue_evt(sc, detail);
seq = detail->seq + 1;
TAILQ_FOREACH_SAFE(mfi_aen_entry, &sc->mfi_aen_pids, aen_link,
tmp) {
TAILQ_REMOVE(&sc->mfi_aen_pids, mfi_aen_entry,
aen_link);
PROC_LOCK(mfi_aen_entry->p);
kern_psignal(mfi_aen_entry->p, SIGIO);
PROC_UNLOCK(mfi_aen_entry->p);
free(mfi_aen_entry, M_MFIBUF);
}
}
free(cm->cm_data, M_MFIBUF);
wakeup(&sc->mfi_aen_cm);
sc->mfi_aen_cm = NULL;
mfi_release_command(cm);
/* set it up again so the driver can catch more events */
if (!aborted)
mfi_aen_setup(sc, seq);
}
#define MAX_EVENTS 15
static int
mfi_parse_entries(struct mfi_softc *sc, int start_seq, int stop_seq)
{
struct mfi_command *cm;
struct mfi_dcmd_frame *dcmd;
struct mfi_evt_list *el;
union mfi_evt class_locale;
int error, i, seq, size;
mtx_assert(&sc->mfi_io_lock, MA_OWNED);
class_locale.members.reserved = 0;
class_locale.members.locale = mfi_event_locale;
class_locale.members.evt_class = mfi_event_class;
size = sizeof(struct mfi_evt_list) + sizeof(struct mfi_evt_detail)
* (MAX_EVENTS - 1);
el = malloc(size, M_MFIBUF, M_NOWAIT | M_ZERO);
if (el == NULL)
return (ENOMEM);
for (seq = start_seq;;) {
if ((cm = mfi_dequeue_free(sc)) == NULL) {
free(el, M_MFIBUF);
return (EBUSY);
}
dcmd = &cm->cm_frame->dcmd;
bzero(dcmd->mbox, MFI_MBOX_SIZE);
dcmd->header.cmd = MFI_CMD_DCMD;
dcmd->header.timeout = 0;
dcmd->header.data_len = size;
dcmd->opcode = MFI_DCMD_CTRL_EVENT_GET;
((uint32_t *)&dcmd->mbox)[0] = seq;
((uint32_t *)&dcmd->mbox)[1] = class_locale.word;
cm->cm_sg = &dcmd->sgl;
cm->cm_total_frame_size = MFI_DCMD_FRAME_SIZE;
cm->cm_flags = MFI_CMD_DATAIN | MFI_CMD_POLLED;
cm->cm_data = el;
cm->cm_len = size;
if ((error = mfi_mapcmd(sc, cm)) != 0) {
device_printf(sc->mfi_dev,
"Failed to get controller entries\n");
mfi_release_command(cm);
break;
}
bus_dmamap_sync(sc->mfi_buffer_dmat, cm->cm_dmamap,
BUS_DMASYNC_POSTREAD);
bus_dmamap_unload(sc->mfi_buffer_dmat, cm->cm_dmamap);
if (dcmd->header.cmd_status == MFI_STAT_NOT_FOUND) {
mfi_release_command(cm);
break;
}
if (dcmd->header.cmd_status != MFI_STAT_OK) {
device_printf(sc->mfi_dev,
"Error %d fetching controller entries\n",
dcmd->header.cmd_status);
mfi_release_command(cm);
error = EIO;
break;
}
mfi_release_command(cm);
for (i = 0; i < el->count; i++) {
/*
* If this event is newer than 'stop_seq' then
* break out of the loop. Note that the log
* is a circular buffer so we have to handle
* the case that our stop point is earlier in
* the buffer than our start point.
*/
if (el->event[i].seq >= stop_seq) {
if (start_seq <= stop_seq)
break;
else if (el->event[i].seq < start_seq)
break;
}
mfi_queue_evt(sc, &el->event[i]);
}
seq = el->event[el->count - 1].seq + 1;
}
free(el, M_MFIBUF);
return (error);
}
static int
mfi_add_ld(struct mfi_softc *sc, int id)
{
struct mfi_command *cm;
struct mfi_dcmd_frame *dcmd = NULL;
struct mfi_ld_info *ld_info = NULL;
struct mfi_disk_pending *ld_pend;
int error;
mtx_assert(&sc->mfi_io_lock, MA_OWNED);
ld_pend = malloc(sizeof(*ld_pend), M_MFIBUF, M_NOWAIT | M_ZERO);
if (ld_pend != NULL) {
ld_pend->ld_id = id;
TAILQ_INSERT_TAIL(&sc->mfi_ld_pend_tqh, ld_pend, ld_link);
}
error = mfi_dcmd_command(sc, &cm, MFI_DCMD_LD_GET_INFO,
(void **)&ld_info, sizeof(*ld_info));
if (error) {
device_printf(sc->mfi_dev,
"Failed to allocate for MFI_DCMD_LD_GET_INFO %d\n", error);
if (ld_info)
free(ld_info, M_MFIBUF);
return (error);
}
cm->cm_flags = MFI_CMD_DATAIN;
dcmd = &cm->cm_frame->dcmd;
dcmd->mbox[0] = id;
if (mfi_wait_command(sc, cm) != 0) {
device_printf(sc->mfi_dev,
"Failed to get logical drive: %d\n", id);
free(ld_info, M_MFIBUF);
return (0);
}
if (ld_info->ld_config.params.isSSCD != 1)
mfi_add_ld_complete(cm);
else {
mfi_release_command(cm);
if (ld_info) /* SSCD drives ld_info free here */
free(ld_info, M_MFIBUF);
}
return (0);
}
static void
mfi_add_ld_complete(struct mfi_command *cm)
{
struct mfi_frame_header *hdr;
struct mfi_ld_info *ld_info;
struct mfi_softc *sc;
device_t child;
sc = cm->cm_sc;
hdr = &cm->cm_frame->header;
ld_info = cm->cm_private;
if (sc->cm_map_abort || hdr->cmd_status != MFI_STAT_OK) {
free(ld_info, M_MFIBUF);
wakeup(&sc->mfi_map_sync_cm);
mfi_release_command(cm);
return;
}
wakeup(&sc->mfi_map_sync_cm);
mfi_release_command(cm);
mtx_unlock(&sc->mfi_io_lock);
mtx_lock(&Giant);
if ((child = device_add_child(sc->mfi_dev, "mfid", -1)) == NULL) {
device_printf(sc->mfi_dev, "Failed to add logical disk\n");
free(ld_info, M_MFIBUF);
mtx_unlock(&Giant);
mtx_lock(&sc->mfi_io_lock);
return;
}
device_set_ivars(child, ld_info);
device_set_desc(child, "MFI Logical Disk");
bus_generic_attach(sc->mfi_dev);
mtx_unlock(&Giant);
mtx_lock(&sc->mfi_io_lock);
}
static int mfi_add_sys_pd(struct mfi_softc *sc, int id)
{
struct mfi_command *cm;
struct mfi_dcmd_frame *dcmd = NULL;
struct mfi_pd_info *pd_info = NULL;
struct mfi_system_pending *syspd_pend;
int error;
mtx_assert(&sc->mfi_io_lock, MA_OWNED);
syspd_pend = malloc(sizeof(*syspd_pend), M_MFIBUF, M_NOWAIT | M_ZERO);
if (syspd_pend != NULL) {
syspd_pend->pd_id = id;
TAILQ_INSERT_TAIL(&sc->mfi_syspd_pend_tqh, syspd_pend, pd_link);
}
error = mfi_dcmd_command(sc, &cm, MFI_DCMD_PD_GET_INFO,
(void **)&pd_info, sizeof(*pd_info));
if (error) {
device_printf(sc->mfi_dev,
"Failed to allocated for MFI_DCMD_PD_GET_INFO %d\n",
error);
if (pd_info)
free(pd_info, M_MFIBUF);
return (error);
}
cm->cm_flags = MFI_CMD_DATAIN | MFI_CMD_POLLED;
dcmd = &cm->cm_frame->dcmd;
dcmd->mbox[0]=id;
dcmd->header.scsi_status = 0;
dcmd->header.pad0 = 0;
if ((error = mfi_mapcmd(sc, cm)) != 0) {
device_printf(sc->mfi_dev,
"Failed to get physical drive info %d\n", id);
free(pd_info, M_MFIBUF);
mfi_release_command(cm);
return (error);
}
bus_dmamap_sync(sc->mfi_buffer_dmat, cm->cm_dmamap,
BUS_DMASYNC_POSTREAD);
bus_dmamap_unload(sc->mfi_buffer_dmat, cm->cm_dmamap);
mfi_add_sys_pd_complete(cm);
return (0);
}
static void
mfi_add_sys_pd_complete(struct mfi_command *cm)
{
struct mfi_frame_header *hdr;
struct mfi_pd_info *pd_info;
struct mfi_softc *sc;
device_t child;
sc = cm->cm_sc;
hdr = &cm->cm_frame->header;
pd_info = cm->cm_private;
if (hdr->cmd_status != MFI_STAT_OK) {
free(pd_info, M_MFIBUF);
mfi_release_command(cm);
return;
}
if (pd_info->fw_state != MFI_PD_STATE_SYSTEM) {
device_printf(sc->mfi_dev, "PD=%x is not SYSTEM PD\n",
pd_info->ref.v.device_id);
free(pd_info, M_MFIBUF);
mfi_release_command(cm);
return;
}
mfi_release_command(cm);
mtx_unlock(&sc->mfi_io_lock);
mtx_lock(&Giant);
if ((child = device_add_child(sc->mfi_dev, "mfisyspd", -1)) == NULL) {
device_printf(sc->mfi_dev, "Failed to add system pd\n");
free(pd_info, M_MFIBUF);
mtx_unlock(&Giant);
mtx_lock(&sc->mfi_io_lock);
return;
}
device_set_ivars(child, pd_info);
device_set_desc(child, "MFI System PD");
bus_generic_attach(sc->mfi_dev);
mtx_unlock(&Giant);
mtx_lock(&sc->mfi_io_lock);
}
static struct mfi_command *
mfi_bio_command(struct mfi_softc *sc)
{
struct bio *bio;
struct mfi_command *cm = NULL;
/*reserving two commands to avoid starvation for IOCTL*/
if (sc->mfi_qstat[MFIQ_FREE].q_length < 2) {
return (NULL);
}
if ((bio = mfi_dequeue_bio(sc)) == NULL) {
return (NULL);
}
if ((uintptr_t)bio->bio_driver2 == MFI_LD_IO) {
cm = mfi_build_ldio(sc, bio);
} else if ((uintptr_t) bio->bio_driver2 == MFI_SYS_PD_IO) {
cm = mfi_build_syspdio(sc, bio);
}
if (!cm)
mfi_enqueue_bio(sc, bio);
return cm;
}
/*
* mostly copied from cam/scsi/scsi_all.c:scsi_read_write
*/
int
mfi_build_cdb(int readop, uint8_t byte2, u_int64_t lba, u_int32_t block_count, uint8_t *cdb)
{
int cdb_len;
if (((lba & 0x1fffff) == lba)
&& ((block_count & 0xff) == block_count)
&& (byte2 == 0)) {
/* We can fit in a 6 byte cdb */
struct scsi_rw_6 *scsi_cmd;
scsi_cmd = (struct scsi_rw_6 *)cdb;
scsi_cmd->opcode = readop ? READ_6 : WRITE_6;
scsi_ulto3b(lba, scsi_cmd->addr);
scsi_cmd->length = block_count & 0xff;
scsi_cmd->control = 0;
cdb_len = sizeof(*scsi_cmd);
} else if (((block_count & 0xffff) == block_count) && ((lba & 0xffffffff) == lba)) {
/* Need a 10 byte CDB */
struct scsi_rw_10 *scsi_cmd;
scsi_cmd = (struct scsi_rw_10 *)cdb;
scsi_cmd->opcode = readop ? READ_10 : WRITE_10;
scsi_cmd->byte2 = byte2;
scsi_ulto4b(lba, scsi_cmd->addr);
scsi_cmd->reserved = 0;
scsi_ulto2b(block_count, scsi_cmd->length);
scsi_cmd->control = 0;
cdb_len = sizeof(*scsi_cmd);
} else if (((block_count & 0xffffffff) == block_count) &&
((lba & 0xffffffff) == lba)) {
/* Block count is too big for 10 byte CDB use a 12 byte CDB */
struct scsi_rw_12 *scsi_cmd;
scsi_cmd = (struct scsi_rw_12 *)cdb;
scsi_cmd->opcode = readop ? READ_12 : WRITE_12;
scsi_cmd->byte2 = byte2;
scsi_ulto4b(lba, scsi_cmd->addr);
scsi_cmd->reserved = 0;
scsi_ulto4b(block_count, scsi_cmd->length);
scsi_cmd->control = 0;
cdb_len = sizeof(*scsi_cmd);
} else {
/*
* 16 byte CDB. We'll only get here if the LBA is larger
* than 2^32
*/
struct scsi_rw_16 *scsi_cmd;
scsi_cmd = (struct scsi_rw_16 *)cdb;
scsi_cmd->opcode = readop ? READ_16 : WRITE_16;
scsi_cmd->byte2 = byte2;
scsi_u64to8b(lba, scsi_cmd->addr);
scsi_cmd->reserved = 0;
scsi_ulto4b(block_count, scsi_cmd->length);
scsi_cmd->control = 0;
cdb_len = sizeof(*scsi_cmd);
}
return cdb_len;
}
static struct mfi_command *
mfi_build_syspdio(struct mfi_softc *sc, struct bio *bio)
{
struct mfi_command *cm;
struct mfi_pass_frame *pass;
uint32_t context = 0;
int flags = 0, blkcount = 0, readop;
uint8_t cdb_len;
mtx_assert(&sc->mfi_io_lock, MA_OWNED);
if ((cm = mfi_dequeue_free(sc)) == NULL)
return (NULL);
/* Zero out the MFI frame */
context = cm->cm_frame->header.context;
bzero(cm->cm_frame, sizeof(union mfi_frame));
cm->cm_frame->header.context = context;
pass = &cm->cm_frame->pass;
bzero(pass->cdb, 16);
pass->header.cmd = MFI_CMD_PD_SCSI_IO;
switch (bio->bio_cmd & 0x03) {
case BIO_READ:
flags = MFI_CMD_DATAIN;
readop = 1;
break;
case BIO_WRITE:
flags = MFI_CMD_DATAOUT;
readop = 0;
break;
default:
/* TODO: what about BIO_DELETE??? */
panic("Unsupported bio command %x\n", bio->bio_cmd);
}
/* Cheat with the sector length to avoid a non-constant division */
blkcount = (bio->bio_bcount + MFI_SECTOR_LEN - 1) / MFI_SECTOR_LEN;
/* Fill the LBA and Transfer length in CDB */
cdb_len = mfi_build_cdb(readop, 0, bio->bio_pblkno, blkcount,
pass->cdb);
pass->header.target_id = (uintptr_t)bio->bio_driver1;
pass->header.lun_id = 0;
pass->header.timeout = 0;
pass->header.flags = 0;
pass->header.scsi_status = 0;
pass->header.sense_len = MFI_SENSE_LEN;
pass->header.data_len = bio->bio_bcount;
pass->header.cdb_len = cdb_len;
pass->sense_addr_lo = (uint32_t)cm->cm_sense_busaddr;
pass->sense_addr_hi = (uint32_t)((uint64_t)cm->cm_sense_busaddr >> 32);
cm->cm_complete = mfi_bio_complete;
cm->cm_private = bio;
cm->cm_data = bio->bio_data;
cm->cm_len = bio->bio_bcount;
cm->cm_sg = &pass->sgl;
cm->cm_total_frame_size = MFI_PASS_FRAME_SIZE;
cm->cm_flags = flags;
return (cm);
}
static struct mfi_command *
mfi_build_ldio(struct mfi_softc *sc, struct bio *bio)
{
struct mfi_io_frame *io;
struct mfi_command *cm;
int flags;
uint32_t blkcount;
uint32_t context = 0;
mtx_assert(&sc->mfi_io_lock, MA_OWNED);
if ((cm = mfi_dequeue_free(sc)) == NULL)
return (NULL);
/* Zero out the MFI frame */
context = cm->cm_frame->header.context;
bzero(cm->cm_frame, sizeof(union mfi_frame));
cm->cm_frame->header.context = context;
io = &cm->cm_frame->io;
switch (bio->bio_cmd & 0x03) {
case BIO_READ:
io->header.cmd = MFI_CMD_LD_READ;
flags = MFI_CMD_DATAIN;
break;
case BIO_WRITE:
io->header.cmd = MFI_CMD_LD_WRITE;
flags = MFI_CMD_DATAOUT;
break;
default:
/* TODO: what about BIO_DELETE??? */
panic("Unsupported bio command %x\n", bio->bio_cmd);
}
/* Cheat with the sector length to avoid a non-constant division */
blkcount = (bio->bio_bcount + MFI_SECTOR_LEN - 1) / MFI_SECTOR_LEN;
io->header.target_id = (uintptr_t)bio->bio_driver1;
io->header.timeout = 0;
io->header.flags = 0;
io->header.scsi_status = 0;
io->header.sense_len = MFI_SENSE_LEN;
io->header.data_len = blkcount;
io->sense_addr_lo = (uint32_t)cm->cm_sense_busaddr;
io->sense_addr_hi = (uint32_t)((uint64_t)cm->cm_sense_busaddr >> 32);
io->lba_hi = (bio->bio_pblkno & 0xffffffff00000000) >> 32;
io->lba_lo = bio->bio_pblkno & 0xffffffff;
cm->cm_complete = mfi_bio_complete;
cm->cm_private = bio;
cm->cm_data = bio->bio_data;
cm->cm_len = bio->bio_bcount;
cm->cm_sg = &io->sgl;
cm->cm_total_frame_size = MFI_IO_FRAME_SIZE;
cm->cm_flags = flags;
return (cm);
}
static void
mfi_bio_complete(struct mfi_command *cm)
{
struct bio *bio;
struct mfi_frame_header *hdr;
struct mfi_softc *sc;
bio = cm->cm_private;
hdr = &cm->cm_frame->header;
sc = cm->cm_sc;
if ((hdr->cmd_status != MFI_STAT_OK) || (hdr->scsi_status != 0)) {
bio->bio_flags |= BIO_ERROR;
bio->bio_error = EIO;
device_printf(sc->mfi_dev, "I/O error, cmd=%p, status=%#x, "
"scsi_status=%#x\n", cm, hdr->cmd_status, hdr->scsi_status);
mfi_print_sense(cm->cm_sc, cm->cm_sense);
} else if (cm->cm_error != 0) {
bio->bio_flags |= BIO_ERROR;
bio->bio_error = cm->cm_error;
device_printf(sc->mfi_dev, "I/O error, cmd=%p, error=%#x\n",
cm, cm->cm_error);
}
mfi_release_command(cm);
mfi_disk_complete(bio);
}
void
mfi_startio(struct mfi_softc *sc)
{
struct mfi_command *cm;
struct ccb_hdr *ccbh;
for (;;) {
/* Don't bother if we're short on resources */
if (sc->mfi_flags & MFI_FLAGS_QFRZN)
break;
/* Try a command that has already been prepared */
cm = mfi_dequeue_ready(sc);
if (cm == NULL) {
if ((ccbh = TAILQ_FIRST(&sc->mfi_cam_ccbq)) != NULL)
cm = sc->mfi_cam_start(ccbh);
}
/* Nope, so look for work on the bioq */
if (cm == NULL)
cm = mfi_bio_command(sc);
/* No work available, so exit */
if (cm == NULL)
break;
/* Send the command to the controller */
if (mfi_mapcmd(sc, cm) != 0) {
device_printf(sc->mfi_dev, "Failed to startio\n");
mfi_requeue_ready(cm);
break;
}
}
}
int
mfi_mapcmd(struct mfi_softc *sc, struct mfi_command *cm)
{
int error, polled;
mtx_assert(&sc->mfi_io_lock, MA_OWNED);
if ((cm->cm_data != NULL) && (cm->cm_frame->header.cmd != MFI_CMD_STP )) {
polled = (cm->cm_flags & MFI_CMD_POLLED) ? BUS_DMA_NOWAIT : 0;
if (cm->cm_flags & MFI_CMD_CCB)
error = bus_dmamap_load_ccb(sc->mfi_buffer_dmat,
cm->cm_dmamap, cm->cm_data, mfi_data_cb, cm,
polled);
else
error = bus_dmamap_load(sc->mfi_buffer_dmat,
cm->cm_dmamap, cm->cm_data, cm->cm_len,
mfi_data_cb, cm, polled);
if (error == EINPROGRESS) {
sc->mfi_flags |= MFI_FLAGS_QFRZN;
return (0);
}
} else {
error = mfi_send_frame(sc, cm);
}
return (error);
}
static void
mfi_data_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
{
struct mfi_frame_header *hdr;
struct mfi_command *cm;
union mfi_sgl *sgl;
struct mfi_softc *sc;
int i, j, first, dir;
int sge_size, locked;
cm = (struct mfi_command *)arg;
sc = cm->cm_sc;
hdr = &cm->cm_frame->header;
sgl = cm->cm_sg;
/*
* We need to check if we have the lock as this is async
* callback so even though our caller mfi_mapcmd asserts
* it has the lock, there is no garantee that hasn't been
* dropped if bus_dmamap_load returned prior to our
* completion.
*/
if ((locked = mtx_owned(&sc->mfi_io_lock)) == 0)
mtx_lock(&sc->mfi_io_lock);
if (error) {
printf("error %d in callback\n", error);
cm->cm_error = error;
mfi_complete(sc, cm);
goto out;
}
/* Use IEEE sgl only for IO's on a SKINNY controller
* For other commands on a SKINNY controller use either
* sg32 or sg64 based on the sizeof(bus_addr_t).
* Also calculate the total frame size based on the type
* of SGL used.
*/
if (((cm->cm_frame->header.cmd == MFI_CMD_PD_SCSI_IO) ||
(cm->cm_frame->header.cmd == MFI_CMD_LD_READ) ||
(cm->cm_frame->header.cmd == MFI_CMD_LD_WRITE)) &&
(sc->mfi_flags & MFI_FLAGS_SKINNY)) {
for (i = 0; i < nsegs; i++) {
sgl->sg_skinny[i].addr = segs[i].ds_addr;
sgl->sg_skinny[i].len = segs[i].ds_len;
sgl->sg_skinny[i].flag = 0;
}
hdr->flags |= MFI_FRAME_IEEE_SGL | MFI_FRAME_SGL64;
sge_size = sizeof(struct mfi_sg_skinny);
hdr->sg_count = nsegs;
} else {
j = 0;
if (cm->cm_frame->header.cmd == MFI_CMD_STP) {
first = cm->cm_stp_len;
if ((sc->mfi_flags & MFI_FLAGS_SG64) == 0) {
sgl->sg32[j].addr = segs[0].ds_addr;
sgl->sg32[j++].len = first;
} else {
sgl->sg64[j].addr = segs[0].ds_addr;
sgl->sg64[j++].len = first;
}
} else
first = 0;
if ((sc->mfi_flags & MFI_FLAGS_SG64) == 0) {
for (i = 0; i < nsegs; i++) {
sgl->sg32[j].addr = segs[i].ds_addr + first;
sgl->sg32[j++].len = segs[i].ds_len - first;
first = 0;
}
} else {
for (i = 0; i < nsegs; i++) {
sgl->sg64[j].addr = segs[i].ds_addr + first;
sgl->sg64[j++].len = segs[i].ds_len - first;
first = 0;
}
hdr->flags |= MFI_FRAME_SGL64;
}
hdr->sg_count = j;
sge_size = sc->mfi_sge_size;
}
dir = 0;
if (cm->cm_flags & MFI_CMD_DATAIN) {
dir |= BUS_DMASYNC_PREREAD;
hdr->flags |= MFI_FRAME_DIR_READ;
}
if (cm->cm_flags & MFI_CMD_DATAOUT) {
dir |= BUS_DMASYNC_PREWRITE;
hdr->flags |= MFI_FRAME_DIR_WRITE;
}
bus_dmamap_sync(sc->mfi_buffer_dmat, cm->cm_dmamap, dir);
cm->cm_flags |= MFI_CMD_MAPPED;
/*
* Instead of calculating the total number of frames in the
* compound frame, it's already assumed that there will be at
* least 1 frame, so don't compensate for the modulo of the
* following division.
*/
cm->cm_total_frame_size += (sc->mfi_sge_size * nsegs);
cm->cm_extra_frames = (cm->cm_total_frame_size - 1) / MFI_FRAME_SIZE;
if ((error = mfi_send_frame(sc, cm)) != 0) {
printf("error %d in callback from mfi_send_frame\n", error);
cm->cm_error = error;
mfi_complete(sc, cm);
goto out;
}
out:
/* leave the lock in the state we found it */
if (locked == 0)
mtx_unlock(&sc->mfi_io_lock);
return;
}
static int
mfi_send_frame(struct mfi_softc *sc, struct mfi_command *cm)
{
int error;
mtx_assert(&sc->mfi_io_lock, MA_OWNED);
if (sc->MFA_enabled)
error = mfi_tbolt_send_frame(sc, cm);
else
error = mfi_std_send_frame(sc, cm);
if (error != 0 && (cm->cm_flags & MFI_ON_MFIQ_BUSY) != 0)
mfi_remove_busy(cm);
return (error);
}
static int
mfi_std_send_frame(struct mfi_softc *sc, struct mfi_command *cm)
{
struct mfi_frame_header *hdr;
int tm = mfi_polled_cmd_timeout * 1000;
hdr = &cm->cm_frame->header;
if ((cm->cm_flags & MFI_CMD_POLLED) == 0) {
cm->cm_timestamp = time_uptime;
mfi_enqueue_busy(cm);
} else {
hdr->cmd_status = MFI_STAT_INVALID_STATUS;
hdr->flags |= MFI_FRAME_DONT_POST_IN_REPLY_QUEUE;
}
/*
* The bus address of the command is aligned on a 64 byte boundary,
* leaving the least 6 bits as zero. For whatever reason, the
* hardware wants the address shifted right by three, leaving just
* 3 zero bits. These three bits are then used as a prefetching
* hint for the hardware to predict how many frames need to be
* fetched across the bus. If a command has more than 8 frames
* then the 3 bits are set to 0x7 and the firmware uses other
* information in the command to determine the total amount to fetch.
* However, FreeBSD doesn't support I/O larger than 128K, so 8 frames
* is enough for both 32bit and 64bit systems.
*/
if (cm->cm_extra_frames > 7)
cm->cm_extra_frames = 7;
sc->mfi_issue_cmd(sc, cm->cm_frame_busaddr, cm->cm_extra_frames);
if ((cm->cm_flags & MFI_CMD_POLLED) == 0)
return (0);
/* This is a polled command, so busy-wait for it to complete. */
while (hdr->cmd_status == MFI_STAT_INVALID_STATUS) {
DELAY(1000);
tm -= 1;
if (tm <= 0)
break;
}
if (hdr->cmd_status == MFI_STAT_INVALID_STATUS) {
device_printf(sc->mfi_dev, "Frame %p timed out "
"command 0x%X\n", hdr, cm->cm_frame->dcmd.opcode);
return (ETIMEDOUT);
}
return (0);
}
void
mfi_complete(struct mfi_softc *sc, struct mfi_command *cm)
{
int dir;
mtx_assert(&sc->mfi_io_lock, MA_OWNED);
if ((cm->cm_flags & MFI_CMD_MAPPED) != 0) {
dir = 0;
if ((cm->cm_flags & MFI_CMD_DATAIN) ||
(cm->cm_frame->header.cmd == MFI_CMD_STP))
dir |= BUS_DMASYNC_POSTREAD;
if (cm->cm_flags & MFI_CMD_DATAOUT)
dir |= BUS_DMASYNC_POSTWRITE;
bus_dmamap_sync(sc->mfi_buffer_dmat, cm->cm_dmamap, dir);
bus_dmamap_unload(sc->mfi_buffer_dmat, cm->cm_dmamap);
cm->cm_flags &= ~MFI_CMD_MAPPED;
}
cm->cm_flags |= MFI_CMD_COMPLETED;
if (cm->cm_complete != NULL)
cm->cm_complete(cm);
else
wakeup(cm);
}
static int
mfi_abort(struct mfi_softc *sc, struct mfi_command **cm_abort)
{
struct mfi_command *cm;
struct mfi_abort_frame *abort;
int i = 0, error;
uint32_t context = 0;
mtx_lock(&sc->mfi_io_lock);
if ((cm = mfi_dequeue_free(sc)) == NULL) {
mtx_unlock(&sc->mfi_io_lock);
return (EBUSY);
}
/* Zero out the MFI frame */
context = cm->cm_frame->header.context;
bzero(cm->cm_frame, sizeof(union mfi_frame));
cm->cm_frame->header.context = context;
abort = &cm->cm_frame->abort;
abort->header.cmd = MFI_CMD_ABORT;
abort->header.flags = 0;
abort->header.scsi_status = 0;
abort->abort_context = (*cm_abort)->cm_frame->header.context;
abort->abort_mfi_addr_lo = (uint32_t)(*cm_abort)->cm_frame_busaddr;
abort->abort_mfi_addr_hi =
(uint32_t)((uint64_t)(*cm_abort)->cm_frame_busaddr >> 32);
cm->cm_data = NULL;
cm->cm_flags = MFI_CMD_POLLED;
if ((error = mfi_mapcmd(sc, cm)) != 0)
device_printf(sc->mfi_dev, "failed to abort command\n");
mfi_release_command(cm);
mtx_unlock(&sc->mfi_io_lock);
while (i < 5 && *cm_abort != NULL) {
tsleep(cm_abort, 0, "mfiabort",
5 * hz);
i++;
}
if (*cm_abort != NULL) {
/* Force a complete if command didn't abort */
mtx_lock(&sc->mfi_io_lock);
(*cm_abort)->cm_complete(*cm_abort);
mtx_unlock(&sc->mfi_io_lock);
}
return (error);
}
int
mfi_dump_blocks(struct mfi_softc *sc, int id, uint64_t lba, void *virt,
int len)
{
struct mfi_command *cm;
struct mfi_io_frame *io;
int error;
uint32_t context = 0;
if ((cm = mfi_dequeue_free(sc)) == NULL)
return (EBUSY);
/* Zero out the MFI frame */
context = cm->cm_frame->header.context;
bzero(cm->cm_frame, sizeof(union mfi_frame));
cm->cm_frame->header.context = context;
io = &cm->cm_frame->io;
io->header.cmd = MFI_CMD_LD_WRITE;
io->header.target_id = id;
io->header.timeout = 0;
io->header.flags = 0;
io->header.scsi_status = 0;
io->header.sense_len = MFI_SENSE_LEN;
io->header.data_len = (len + MFI_SECTOR_LEN - 1) / MFI_SECTOR_LEN;
io->sense_addr_lo = (uint32_t)cm->cm_sense_busaddr;
io->sense_addr_hi = (uint32_t)((uint64_t)cm->cm_sense_busaddr >> 32);
io->lba_hi = (lba & 0xffffffff00000000) >> 32;
io->lba_lo = lba & 0xffffffff;
cm->cm_data = virt;
cm->cm_len = len;
cm->cm_sg = &io->sgl;
cm->cm_total_frame_size = MFI_IO_FRAME_SIZE;
cm->cm_flags = MFI_CMD_POLLED | MFI_CMD_DATAOUT;
if ((error = mfi_mapcmd(sc, cm)) != 0)
device_printf(sc->mfi_dev, "failed dump blocks\n");
bus_dmamap_sync(sc->mfi_buffer_dmat, cm->cm_dmamap,
BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(sc->mfi_buffer_dmat, cm->cm_dmamap);
mfi_release_command(cm);
return (error);
}
int
mfi_dump_syspd_blocks(struct mfi_softc *sc, int id, uint64_t lba, void *virt,
int len)
{
struct mfi_command *cm;
struct mfi_pass_frame *pass;
int error, readop, cdb_len;
uint32_t blkcount;
if ((cm = mfi_dequeue_free(sc)) == NULL)
return (EBUSY);
pass = &cm->cm_frame->pass;
bzero(pass->cdb, 16);
pass->header.cmd = MFI_CMD_PD_SCSI_IO;
readop = 0;
blkcount = (len + MFI_SECTOR_LEN - 1) / MFI_SECTOR_LEN;
cdb_len = mfi_build_cdb(readop, 0, lba, blkcount, pass->cdb);
pass->header.target_id = id;
pass->header.timeout = 0;
pass->header.flags = 0;
pass->header.scsi_status = 0;
pass->header.sense_len = MFI_SENSE_LEN;
pass->header.data_len = len;
pass->header.cdb_len = cdb_len;
pass->sense_addr_lo = (uint32_t)cm->cm_sense_busaddr;
pass->sense_addr_hi = (uint32_t)((uint64_t)cm->cm_sense_busaddr >> 32);
cm->cm_data = virt;
cm->cm_len = len;
cm->cm_sg = &pass->sgl;
cm->cm_total_frame_size = MFI_PASS_FRAME_SIZE;
cm->cm_flags = MFI_CMD_POLLED | MFI_CMD_DATAOUT | MFI_CMD_SCSI;
if ((error = mfi_mapcmd(sc, cm)) != 0)
device_printf(sc->mfi_dev, "failed dump blocks\n");
bus_dmamap_sync(sc->mfi_buffer_dmat, cm->cm_dmamap,
BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(sc->mfi_buffer_dmat, cm->cm_dmamap);
mfi_release_command(cm);
return (error);
}
static int
mfi_open(struct cdev *dev, int flags, int fmt, struct thread *td)
{
struct mfi_softc *sc;
int error;
sc = dev->si_drv1;
mtx_lock(&sc->mfi_io_lock);
if (sc->mfi_detaching)
error = ENXIO;
else {
sc->mfi_flags |= MFI_FLAGS_OPEN;
error = 0;
}
mtx_unlock(&sc->mfi_io_lock);
return (error);
}
static int
mfi_close(struct cdev *dev, int flags, int fmt, struct thread *td)
{
struct mfi_softc *sc;
struct mfi_aen *mfi_aen_entry, *tmp;
sc = dev->si_drv1;
mtx_lock(&sc->mfi_io_lock);
sc->mfi_flags &= ~MFI_FLAGS_OPEN;
TAILQ_FOREACH_SAFE(mfi_aen_entry, &sc->mfi_aen_pids, aen_link, tmp) {
if (mfi_aen_entry->p == curproc) {
TAILQ_REMOVE(&sc->mfi_aen_pids, mfi_aen_entry,
aen_link);
free(mfi_aen_entry, M_MFIBUF);
}
}
mtx_unlock(&sc->mfi_io_lock);
return (0);
}
static int
mfi_config_lock(struct mfi_softc *sc, uint32_t opcode)
{
switch (opcode) {
case MFI_DCMD_LD_DELETE:
case MFI_DCMD_CFG_ADD:
case MFI_DCMD_CFG_CLEAR:
case MFI_DCMD_CFG_FOREIGN_IMPORT:
sx_xlock(&sc->mfi_config_lock);
return (1);
default:
return (0);
}
}
static void
mfi_config_unlock(struct mfi_softc *sc, int locked)
{
if (locked)
sx_xunlock(&sc->mfi_config_lock);
}
/*
* Perform pre-issue checks on commands from userland and possibly veto
* them.
*/
static int
mfi_check_command_pre(struct mfi_softc *sc, struct mfi_command *cm)
{
struct mfi_disk *ld, *ld2;
int error;
struct mfi_system_pd *syspd = NULL;
uint16_t syspd_id;
uint16_t *mbox;
mtx_assert(&sc->mfi_io_lock, MA_OWNED);
error = 0;
switch (cm->cm_frame->dcmd.opcode) {
case MFI_DCMD_LD_DELETE:
TAILQ_FOREACH(ld, &sc->mfi_ld_tqh, ld_link) {
if (ld->ld_id == cm->cm_frame->dcmd.mbox[0])
break;
}
if (ld == NULL)
error = ENOENT;
else
error = mfi_disk_disable(ld);
break;
case MFI_DCMD_CFG_CLEAR:
TAILQ_FOREACH(ld, &sc->mfi_ld_tqh, ld_link) {
error = mfi_disk_disable(ld);
if (error)
break;
}
if (error) {
TAILQ_FOREACH(ld2, &sc->mfi_ld_tqh, ld_link) {
if (ld2 == ld)
break;
mfi_disk_enable(ld2);
}
}
break;
case MFI_DCMD_PD_STATE_SET:
mbox = (uint16_t *) cm->cm_frame->dcmd.mbox;
syspd_id = mbox[0];
if (mbox[2] == MFI_PD_STATE_UNCONFIGURED_GOOD) {
TAILQ_FOREACH(syspd, &sc->mfi_syspd_tqh, pd_link) {
if (syspd->pd_id == syspd_id)
break;
}
}
else
break;
if (syspd)
error = mfi_syspd_disable(syspd);
break;
default:
break;
}
return (error);
}
/* Perform post-issue checks on commands from userland. */
static void
mfi_check_command_post(struct mfi_softc *sc, struct mfi_command *cm)
{
struct mfi_disk *ld, *ldn;
struct mfi_system_pd *syspd = NULL;
uint16_t syspd_id;
uint16_t *mbox;
switch (cm->cm_frame->dcmd.opcode) {
case MFI_DCMD_LD_DELETE:
TAILQ_FOREACH(ld, &sc->mfi_ld_tqh, ld_link) {
if (ld->ld_id == cm->cm_frame->dcmd.mbox[0])
break;
}
KASSERT(ld != NULL, ("volume dissappeared"));
if (cm->cm_frame->header.cmd_status == MFI_STAT_OK) {
mtx_unlock(&sc->mfi_io_lock);
mtx_lock(&Giant);
device_delete_child(sc->mfi_dev, ld->ld_dev);
mtx_unlock(&Giant);
mtx_lock(&sc->mfi_io_lock);
} else
mfi_disk_enable(ld);
break;
case MFI_DCMD_CFG_CLEAR:
if (cm->cm_frame->header.cmd_status == MFI_STAT_OK) {
mtx_unlock(&sc->mfi_io_lock);
mtx_lock(&Giant);
TAILQ_FOREACH_SAFE(ld, &sc->mfi_ld_tqh, ld_link, ldn) {
device_delete_child(sc->mfi_dev, ld->ld_dev);
}
mtx_unlock(&Giant);
mtx_lock(&sc->mfi_io_lock);
} else {
TAILQ_FOREACH(ld, &sc->mfi_ld_tqh, ld_link)
mfi_disk_enable(ld);
}
break;
case MFI_DCMD_CFG_ADD:
mfi_ldprobe(sc);
break;
case MFI_DCMD_CFG_FOREIGN_IMPORT:
mfi_ldprobe(sc);
break;
case MFI_DCMD_PD_STATE_SET:
mbox = (uint16_t *) cm->cm_frame->dcmd.mbox;
syspd_id = mbox[0];
if (mbox[2] == MFI_PD_STATE_UNCONFIGURED_GOOD) {
TAILQ_FOREACH(syspd, &sc->mfi_syspd_tqh,pd_link) {
if (syspd->pd_id == syspd_id)
break;
}
}
else
break;
/* If the transition fails then enable the syspd again */
if (syspd && cm->cm_frame->header.cmd_status != MFI_STAT_OK)
mfi_syspd_enable(syspd);
break;
}
}
static int
mfi_check_for_sscd(struct mfi_softc *sc, struct mfi_command *cm)
{
struct mfi_config_data *conf_data;
struct mfi_command *ld_cm = NULL;
struct mfi_ld_info *ld_info = NULL;
struct mfi_ld_config *ld;
char *p;
int error = 0;
conf_data = (struct mfi_config_data *)cm->cm_data;
if (cm->cm_frame->dcmd.opcode == MFI_DCMD_CFG_ADD) {
p = (char *)conf_data->array;
p += conf_data->array_size * conf_data->array_count;
ld = (struct mfi_ld_config *)p;
if (ld->params.isSSCD == 1)
error = 1;
} else if (cm->cm_frame->dcmd.opcode == MFI_DCMD_LD_DELETE) {
error = mfi_dcmd_command (sc, &ld_cm, MFI_DCMD_LD_GET_INFO,
(void **)&ld_info, sizeof(*ld_info));
if (error) {
device_printf(sc->mfi_dev, "Failed to allocate"
"MFI_DCMD_LD_GET_INFO %d", error);
if (ld_info)
free(ld_info, M_MFIBUF);
return 0;
}
ld_cm->cm_flags = MFI_CMD_DATAIN;
ld_cm->cm_frame->dcmd.mbox[0]= cm->cm_frame->dcmd.mbox[0];
ld_cm->cm_frame->header.target_id = cm->cm_frame->dcmd.mbox[0];
if (mfi_wait_command(sc, ld_cm) != 0) {
device_printf(sc->mfi_dev, "failed to get log drv\n");
mfi_release_command(ld_cm);
free(ld_info, M_MFIBUF);
return 0;
}
if (ld_cm->cm_frame->header.cmd_status != MFI_STAT_OK) {
free(ld_info, M_MFIBUF);
mfi_release_command(ld_cm);
return 0;
}
else
ld_info = (struct mfi_ld_info *)ld_cm->cm_private;
if (ld_info->ld_config.params.isSSCD == 1)
error = 1;
mfi_release_command(ld_cm);
free(ld_info, M_MFIBUF);
}
return error;
}
static int
mfi_stp_cmd(struct mfi_softc *sc, struct mfi_command *cm,caddr_t arg)
{
uint8_t i;
struct mfi_ioc_packet *ioc;
ioc = (struct mfi_ioc_packet *)arg;
int sge_size, error;
struct megasas_sge *kern_sge;
memset(sc->kbuff_arr, 0, sizeof(sc->kbuff_arr));
kern_sge =(struct megasas_sge *) ((uintptr_t)cm->cm_frame + ioc->mfi_sgl_off);
cm->cm_frame->header.sg_count = ioc->mfi_sge_count;
if (sizeof(bus_addr_t) == 8) {
cm->cm_frame->header.flags |= MFI_FRAME_SGL64;
cm->cm_extra_frames = 2;
sge_size = sizeof(struct mfi_sg64);
} else {
cm->cm_extra_frames = (cm->cm_total_frame_size - 1) / MFI_FRAME_SIZE;
sge_size = sizeof(struct mfi_sg32);
}
cm->cm_total_frame_size += (sge_size * ioc->mfi_sge_count);
for (i = 0; i < ioc->mfi_sge_count; i++) {
if (bus_dma_tag_create( sc->mfi_parent_dmat, /* parent */
1, 0, /* algnmnt, boundary */
BUS_SPACE_MAXADDR_32BIT,/* lowaddr */
BUS_SPACE_MAXADDR, /* highaddr */
NULL, NULL, /* filter, filterarg */
ioc->mfi_sgl[i].iov_len,/* maxsize */
2, /* nsegments */
ioc->mfi_sgl[i].iov_len,/* maxsegsize */
BUS_DMA_ALLOCNOW, /* flags */
NULL, NULL, /* lockfunc, lockarg */
&sc->mfi_kbuff_arr_dmat[i])) {
device_printf(sc->mfi_dev,
"Cannot allocate mfi_kbuff_arr_dmat tag\n");
return (ENOMEM);
}
if (bus_dmamem_alloc(sc->mfi_kbuff_arr_dmat[i],
(void **)&sc->kbuff_arr[i], BUS_DMA_NOWAIT,
&sc->mfi_kbuff_arr_dmamap[i])) {
device_printf(sc->mfi_dev,
"Cannot allocate mfi_kbuff_arr_dmamap memory\n");
return (ENOMEM);
}
bus_dmamap_load(sc->mfi_kbuff_arr_dmat[i],
sc->mfi_kbuff_arr_dmamap[i], sc->kbuff_arr[i],
ioc->mfi_sgl[i].iov_len, mfi_addr_cb,
&sc->mfi_kbuff_arr_busaddr[i], 0);
if (!sc->kbuff_arr[i]) {
device_printf(sc->mfi_dev,
"Could not allocate memory for kbuff_arr info\n");
return -1;
}
kern_sge[i].phys_addr = sc->mfi_kbuff_arr_busaddr[i];
kern_sge[i].length = ioc->mfi_sgl[i].iov_len;
if (sizeof(bus_addr_t) == 8) {
cm->cm_frame->stp.sgl.sg64[i].addr =
kern_sge[i].phys_addr;
cm->cm_frame->stp.sgl.sg64[i].len =
ioc->mfi_sgl[i].iov_len;
} else {
cm->cm_frame->stp.sgl.sg32[i].addr =
kern_sge[i].phys_addr;
cm->cm_frame->stp.sgl.sg32[i].len =
ioc->mfi_sgl[i].iov_len;
}
error = copyin(ioc->mfi_sgl[i].iov_base,
sc->kbuff_arr[i],
ioc->mfi_sgl[i].iov_len);
if (error != 0) {
device_printf(sc->mfi_dev, "Copy in failed\n");
return error;
}
}
cm->cm_flags |=MFI_CMD_MAPPED;
return 0;
}
static int
mfi_user_command(struct mfi_softc *sc, struct mfi_ioc_passthru *ioc)
{
struct mfi_command *cm;
struct mfi_dcmd_frame *dcmd;
void *ioc_buf = NULL;
uint32_t context;
int error = 0, locked;
if (ioc->buf_size > 0) {
if (ioc->buf_size > 1024 * 1024)
return (ENOMEM);
ioc_buf = malloc(ioc->buf_size, M_MFIBUF, M_WAITOK);
error = copyin(ioc->buf, ioc_buf, ioc->buf_size);
if (error) {
device_printf(sc->mfi_dev, "failed to copyin\n");
free(ioc_buf, M_MFIBUF);
return (error);
}
}
locked = mfi_config_lock(sc, ioc->ioc_frame.opcode);
mtx_lock(&sc->mfi_io_lock);
while ((cm = mfi_dequeue_free(sc)) == NULL)
msleep(mfi_user_command, &sc->mfi_io_lock, 0, "mfiioc", hz);
/* Save context for later */
context = cm->cm_frame->header.context;
dcmd = &cm->cm_frame->dcmd;
bcopy(&ioc->ioc_frame, dcmd, sizeof(struct mfi_dcmd_frame));
cm->cm_sg = &dcmd->sgl;
cm->cm_total_frame_size = MFI_DCMD_FRAME_SIZE;
cm->cm_data = ioc_buf;
cm->cm_len = ioc->buf_size;
/* restore context */
cm->cm_frame->header.context = context;
/* Cheat since we don't know if we're writing or reading */
cm->cm_flags = MFI_CMD_DATAIN | MFI_CMD_DATAOUT;
error = mfi_check_command_pre(sc, cm);
if (error)
goto out;
error = mfi_wait_command(sc, cm);
if (error) {
device_printf(sc->mfi_dev, "ioctl failed %d\n", error);
goto out;
}
bcopy(dcmd, &ioc->ioc_frame, sizeof(struct mfi_dcmd_frame));
mfi_check_command_post(sc, cm);
out:
mfi_release_command(cm);
mtx_unlock(&sc->mfi_io_lock);
mfi_config_unlock(sc, locked);
if (ioc->buf_size > 0)
error = copyout(ioc_buf, ioc->buf, ioc->buf_size);
if (ioc_buf)
free(ioc_buf, M_MFIBUF);
return (error);
}
#define PTRIN(p) ((void *)(uintptr_t)(p))
static int
mfi_ioctl(struct cdev *dev, u_long cmd, caddr_t arg, int flag, struct thread *td)
{
struct mfi_softc *sc;
union mfi_statrequest *ms;
struct mfi_ioc_packet *ioc;
#ifdef COMPAT_FREEBSD32
struct mfi_ioc_packet32 *ioc32;
#endif
struct mfi_ioc_aen *aen;
struct mfi_command *cm = NULL;
uint32_t context = 0;
union mfi_sense_ptr sense_ptr;
uint8_t *data = NULL, *temp, *addr, skip_pre_post = 0;
size_t len;
int i, res;
struct mfi_ioc_passthru *iop = (struct mfi_ioc_passthru *)arg;
#ifdef COMPAT_FREEBSD32
struct mfi_ioc_passthru32 *iop32 = (struct mfi_ioc_passthru32 *)arg;
struct mfi_ioc_passthru iop_swab;
#endif
int error, locked;
union mfi_sgl *sgl;
sc = dev->si_drv1;
error = 0;
if (sc->adpreset)
return EBUSY;
if (sc->hw_crit_error)
return EBUSY;
if (sc->issuepend_done == 0)
return EBUSY;
switch (cmd) {
case MFIIO_STATS:
ms = (union mfi_statrequest *)arg;
switch (ms->ms_item) {
case MFIQ_FREE:
case MFIQ_BIO:
case MFIQ_READY:
case MFIQ_BUSY:
bcopy(&sc->mfi_qstat[ms->ms_item], &ms->ms_qstat,
sizeof(struct mfi_qstat));
break;
default:
error = ENOIOCTL;
break;
}
break;
case MFIIO_QUERY_DISK:
{
struct mfi_query_disk *qd;
struct mfi_disk *ld;
qd = (struct mfi_query_disk *)arg;
mtx_lock(&sc->mfi_io_lock);
TAILQ_FOREACH(ld, &sc->mfi_ld_tqh, ld_link) {
if (ld->ld_id == qd->array_id)
break;
}
if (ld == NULL) {
qd->present = 0;
mtx_unlock(&sc->mfi_io_lock);
return (0);
}
qd->present = 1;
if (ld->ld_flags & MFI_DISK_FLAGS_OPEN)
qd->open = 1;
bzero(qd->devname, SPECNAMELEN + 1);
snprintf(qd->devname, SPECNAMELEN, "mfid%d", ld->ld_unit);
mtx_unlock(&sc->mfi_io_lock);
break;
}
case MFI_CMD:
#ifdef COMPAT_FREEBSD32
case MFI_CMD32:
#endif
{
devclass_t devclass;
ioc = (struct mfi_ioc_packet *)arg;
int adapter;
adapter = ioc->mfi_adapter_no;
if (device_get_unit(sc->mfi_dev) == 0 && adapter != 0) {
devclass = devclass_find("mfi");
sc = devclass_get_softc(devclass, adapter);
}
mtx_lock(&sc->mfi_io_lock);
if ((cm = mfi_dequeue_free(sc)) == NULL) {
mtx_unlock(&sc->mfi_io_lock);
return (EBUSY);
}
mtx_unlock(&sc->mfi_io_lock);
locked = 0;
/*
* save off original context since copying from user
* will clobber some data
*/
context = cm->cm_frame->header.context;
cm->cm_frame->header.context = cm->cm_index;
bcopy(ioc->mfi_frame.raw, cm->cm_frame,
2 * MEGAMFI_FRAME_SIZE);
cm->cm_total_frame_size = (sizeof(union mfi_sgl)
* ioc->mfi_sge_count) + ioc->mfi_sgl_off;
cm->cm_frame->header.scsi_status = 0;
cm->cm_frame->header.pad0 = 0;
if (ioc->mfi_sge_count) {
cm->cm_sg =
(union mfi_sgl *)&cm->cm_frame->bytes[ioc->mfi_sgl_off];
}
sgl = cm->cm_sg;
cm->cm_flags = 0;
if (cm->cm_frame->header.flags & MFI_FRAME_DATAIN)
cm->cm_flags |= MFI_CMD_DATAIN;
if (cm->cm_frame->header.flags & MFI_FRAME_DATAOUT)
cm->cm_flags |= MFI_CMD_DATAOUT;
/* Legacy app shim */
if (cm->cm_flags == 0)
cm->cm_flags |= MFI_CMD_DATAIN | MFI_CMD_DATAOUT;
cm->cm_len = cm->cm_frame->header.data_len;
if (cm->cm_frame->header.cmd == MFI_CMD_STP) {
#ifdef COMPAT_FREEBSD32
if (cmd == MFI_CMD) {
#endif
/* Native */
cm->cm_stp_len = ioc->mfi_sgl[0].iov_len;
#ifdef COMPAT_FREEBSD32
} else {
/* 32bit on 64bit */
ioc32 = (struct mfi_ioc_packet32 *)ioc;
cm->cm_stp_len = ioc32->mfi_sgl[0].iov_len;
}
#endif
cm->cm_len += cm->cm_stp_len;
}
if (cm->cm_len &&
(cm->cm_flags & (MFI_CMD_DATAIN | MFI_CMD_DATAOUT))) {
cm->cm_data = data = malloc(cm->cm_len, M_MFIBUF,
M_WAITOK | M_ZERO);
if (cm->cm_data == NULL) {
device_printf(sc->mfi_dev, "Malloc failed\n");
goto out;
}
} else {
cm->cm_data = 0;
}
/* restore header context */
cm->cm_frame->header.context = context;
if (cm->cm_frame->header.cmd == MFI_CMD_STP) {
res = mfi_stp_cmd(sc, cm, arg);
if (res != 0)
goto out;
} else {
temp = data;
if ((cm->cm_flags & MFI_CMD_DATAOUT) ||
(cm->cm_frame->header.cmd == MFI_CMD_STP)) {
for (i = 0; i < ioc->mfi_sge_count; i++) {
#ifdef COMPAT_FREEBSD32
if (cmd == MFI_CMD) {
#endif
/* Native */
addr = ioc->mfi_sgl[i].iov_base;
len = ioc->mfi_sgl[i].iov_len;
#ifdef COMPAT_FREEBSD32
} else {
/* 32bit on 64bit */
ioc32 = (struct mfi_ioc_packet32 *)ioc;
addr = PTRIN(ioc32->mfi_sgl[i].iov_base);
len = ioc32->mfi_sgl[i].iov_len;
}
#endif
error = copyin(addr, temp, len);
if (error != 0) {
device_printf(sc->mfi_dev,
"Copy in failed\n");
goto out;
}
temp = &temp[len];
}
}
}
if (cm->cm_frame->header.cmd == MFI_CMD_DCMD)
locked = mfi_config_lock(sc,
cm->cm_frame->dcmd.opcode);
if (cm->cm_frame->header.cmd == MFI_CMD_PD_SCSI_IO) {
cm->cm_frame->pass.sense_addr_lo =
(uint32_t)cm->cm_sense_busaddr;
cm->cm_frame->pass.sense_addr_hi =
(uint32_t)((uint64_t)cm->cm_sense_busaddr >> 32);
}
mtx_lock(&sc->mfi_io_lock);
skip_pre_post = mfi_check_for_sscd (sc, cm);
if (!skip_pre_post) {
error = mfi_check_command_pre(sc, cm);
if (error) {
mtx_unlock(&sc->mfi_io_lock);
goto out;
}
}
if ((error = mfi_wait_command(sc, cm)) != 0) {
device_printf(sc->mfi_dev,
"Controller polled failed\n");
mtx_unlock(&sc->mfi_io_lock);
goto out;
}
if (!skip_pre_post) {
mfi_check_command_post(sc, cm);
}
mtx_unlock(&sc->mfi_io_lock);
if (cm->cm_frame->header.cmd != MFI_CMD_STP) {
temp = data;
if ((cm->cm_flags & MFI_CMD_DATAIN) ||
(cm->cm_frame->header.cmd == MFI_CMD_STP)) {
for (i = 0; i < ioc->mfi_sge_count; i++) {
#ifdef COMPAT_FREEBSD32
if (cmd == MFI_CMD) {
#endif
/* Native */
addr = ioc->mfi_sgl[i].iov_base;
len = ioc->mfi_sgl[i].iov_len;
#ifdef COMPAT_FREEBSD32
} else {
/* 32bit on 64bit */
ioc32 = (struct mfi_ioc_packet32 *)ioc;
addr = PTRIN(ioc32->mfi_sgl[i].iov_base);
len = ioc32->mfi_sgl[i].iov_len;
}
#endif
error = copyout(temp, addr, len);
if (error != 0) {
device_printf(sc->mfi_dev,
"Copy out failed\n");
goto out;
}
temp = &temp[len];
}
}
}
if (ioc->mfi_sense_len) {
/* get user-space sense ptr then copy out sense */
bcopy(&ioc->mfi_frame.raw[ioc->mfi_sense_off],
&sense_ptr.sense_ptr_data[0],
sizeof(sense_ptr.sense_ptr_data));
#ifdef COMPAT_FREEBSD32
if (cmd != MFI_CMD) {
/*
* not 64bit native so zero out any address
* over 32bit */
sense_ptr.addr.high = 0;
}
#endif
error = copyout(cm->cm_sense, sense_ptr.user_space,
ioc->mfi_sense_len);
if (error != 0) {
device_printf(sc->mfi_dev,
"Copy out failed\n");
goto out;
}
}
ioc->mfi_frame.hdr.cmd_status = cm->cm_frame->header.cmd_status;
out:
mfi_config_unlock(sc, locked);
if (data)
free(data, M_MFIBUF);
if (cm->cm_frame->header.cmd == MFI_CMD_STP) {
for (i = 0; i < 2; i++) {
if (sc->kbuff_arr[i]) {
if (sc->mfi_kbuff_arr_busaddr != 0)
bus_dmamap_unload(
sc->mfi_kbuff_arr_dmat[i],
sc->mfi_kbuff_arr_dmamap[i]
);
if (sc->kbuff_arr[i] != NULL)
bus_dmamem_free(
sc->mfi_kbuff_arr_dmat[i],
sc->kbuff_arr[i],
sc->mfi_kbuff_arr_dmamap[i]
);
if (sc->mfi_kbuff_arr_dmat[i] != NULL)
bus_dma_tag_destroy(
sc->mfi_kbuff_arr_dmat[i]);
}
}
}
if (cm) {
mtx_lock(&sc->mfi_io_lock);
mfi_release_command(cm);
mtx_unlock(&sc->mfi_io_lock);
}
break;
}
case MFI_SET_AEN:
aen = (struct mfi_ioc_aen *)arg;
mtx_lock(&sc->mfi_io_lock);
error = mfi_aen_register(sc, aen->aen_seq_num,
aen->aen_class_locale);
mtx_unlock(&sc->mfi_io_lock);
break;
case MFI_LINUX_CMD_2: /* Firmware Linux ioctl shim */
{
devclass_t devclass;
struct mfi_linux_ioc_packet l_ioc;
int adapter;
devclass = devclass_find("mfi");
if (devclass == NULL)
return (ENOENT);
error = copyin(arg, &l_ioc, sizeof(l_ioc));
if (error)
return (error);
adapter = l_ioc.lioc_adapter_no;
sc = devclass_get_softc(devclass, adapter);
if (sc == NULL)
return (ENOENT);
return (mfi_linux_ioctl_int(sc->mfi_cdev,
cmd, arg, flag, td));
break;
}
case MFI_LINUX_SET_AEN_2: /* AEN Linux ioctl shim */
{
devclass_t devclass;
struct mfi_linux_ioc_aen l_aen;
int adapter;
devclass = devclass_find("mfi");
if (devclass == NULL)
return (ENOENT);
error = copyin(arg, &l_aen, sizeof(l_aen));
if (error)
return (error);
adapter = l_aen.laen_adapter_no;
sc = devclass_get_softc(devclass, adapter);
if (sc == NULL)
return (ENOENT);
return (mfi_linux_ioctl_int(sc->mfi_cdev,
cmd, arg, flag, td));
break;
}
#ifdef COMPAT_FREEBSD32
case MFIIO_PASSTHRU32:
if (!SV_CURPROC_FLAG(SV_ILP32)) {
error = ENOTTY;
break;
}
iop_swab.ioc_frame = iop32->ioc_frame;
iop_swab.buf_size = iop32->buf_size;
iop_swab.buf = PTRIN(iop32->buf);
iop = &iop_swab;
/* FALLTHROUGH */
#endif
case MFIIO_PASSTHRU:
error = mfi_user_command(sc, iop);
#ifdef COMPAT_FREEBSD32
if (cmd == MFIIO_PASSTHRU32)
iop32->ioc_frame = iop_swab.ioc_frame;
#endif
break;
default:
device_printf(sc->mfi_dev, "IOCTL 0x%lx not handled\n", cmd);
error = ENOTTY;
break;
}
return (error);
}
static int
mfi_linux_ioctl_int(struct cdev *dev, u_long cmd, caddr_t arg, int flag, struct thread *td)
{
struct mfi_softc *sc;
struct mfi_linux_ioc_packet l_ioc;
struct mfi_linux_ioc_aen l_aen;
struct mfi_command *cm = NULL;
struct mfi_aen *mfi_aen_entry;
union mfi_sense_ptr sense_ptr;
uint32_t context = 0;
uint8_t *data = NULL, *temp;
int i;
int error, locked;
sc = dev->si_drv1;
error = 0;
switch (cmd) {
case MFI_LINUX_CMD_2: /* Firmware Linux ioctl shim */
error = copyin(arg, &l_ioc, sizeof(l_ioc));
if (error != 0)
return (error);
if (l_ioc.lioc_sge_count > MAX_LINUX_IOCTL_SGE) {
return (EINVAL);
}
mtx_lock(&sc->mfi_io_lock);
if ((cm = mfi_dequeue_free(sc)) == NULL) {
mtx_unlock(&sc->mfi_io_lock);
return (EBUSY);
}
mtx_unlock(&sc->mfi_io_lock);
locked = 0;
/*
* save off original context since copying from user
* will clobber some data
*/
context = cm->cm_frame->header.context;
bcopy(l_ioc.lioc_frame.raw, cm->cm_frame,
2 * MFI_DCMD_FRAME_SIZE); /* this isn't quite right */
cm->cm_total_frame_size = (sizeof(union mfi_sgl)
* l_ioc.lioc_sge_count) + l_ioc.lioc_sgl_off;
cm->cm_frame->header.scsi_status = 0;
cm->cm_frame->header.pad0 = 0;
if (l_ioc.lioc_sge_count)
cm->cm_sg =
(union mfi_sgl *)&cm->cm_frame->bytes[l_ioc.lioc_sgl_off];
cm->cm_flags = 0;
if (cm->cm_frame->header.flags & MFI_FRAME_DATAIN)
cm->cm_flags |= MFI_CMD_DATAIN;
if (cm->cm_frame->header.flags & MFI_FRAME_DATAOUT)
cm->cm_flags |= MFI_CMD_DATAOUT;
cm->cm_len = cm->cm_frame->header.data_len;
if (cm->cm_len &&
(cm->cm_flags & (MFI_CMD_DATAIN | MFI_CMD_DATAOUT))) {
cm->cm_data = data = malloc(cm->cm_len, M_MFIBUF,
M_WAITOK | M_ZERO);
if (cm->cm_data == NULL) {
device_printf(sc->mfi_dev, "Malloc failed\n");
goto out;
}
} else {
cm->cm_data = 0;
}
/* restore header context */
cm->cm_frame->header.context = context;
temp = data;
if (cm->cm_flags & MFI_CMD_DATAOUT) {
for (i = 0; i < l_ioc.lioc_sge_count; i++) {
error = copyin(PTRIN(l_ioc.lioc_sgl[i].iov_base),
temp,
l_ioc.lioc_sgl[i].iov_len);
if (error != 0) {
device_printf(sc->mfi_dev,
"Copy in failed\n");
goto out;
}
temp = &temp[l_ioc.lioc_sgl[i].iov_len];
}
}
if (cm->cm_frame->header.cmd == MFI_CMD_DCMD)
locked = mfi_config_lock(sc, cm->cm_frame->dcmd.opcode);
if (cm->cm_frame->header.cmd == MFI_CMD_PD_SCSI_IO) {
cm->cm_frame->pass.sense_addr_lo =
(uint32_t)cm->cm_sense_busaddr;
cm->cm_frame->pass.sense_addr_hi =
(uint32_t)((uint64_t)cm->cm_sense_busaddr >> 32);
}
mtx_lock(&sc->mfi_io_lock);
error = mfi_check_command_pre(sc, cm);
if (error) {
mtx_unlock(&sc->mfi_io_lock);
goto out;
}
if ((error = mfi_wait_command(sc, cm)) != 0) {
device_printf(sc->mfi_dev,
"Controller polled failed\n");
mtx_unlock(&sc->mfi_io_lock);
goto out;
}
mfi_check_command_post(sc, cm);
mtx_unlock(&sc->mfi_io_lock);
temp = data;
if (cm->cm_flags & MFI_CMD_DATAIN) {
for (i = 0; i < l_ioc.lioc_sge_count; i++) {
error = copyout(temp,
PTRIN(l_ioc.lioc_sgl[i].iov_base),
l_ioc.lioc_sgl[i].iov_len);
if (error != 0) {
device_printf(sc->mfi_dev,
"Copy out failed\n");
goto out;
}
temp = &temp[l_ioc.lioc_sgl[i].iov_len];
}
}
if (l_ioc.lioc_sense_len) {
/* get user-space sense ptr then copy out sense */
bcopy(&((struct mfi_linux_ioc_packet*)arg)
->lioc_frame.raw[l_ioc.lioc_sense_off],
&sense_ptr.sense_ptr_data[0],
sizeof(sense_ptr.sense_ptr_data));
#ifdef __amd64__
/*
* only 32bit Linux support so zero out any
* address over 32bit
*/
sense_ptr.addr.high = 0;
#endif
error = copyout(cm->cm_sense, sense_ptr.user_space,
l_ioc.lioc_sense_len);
if (error != 0) {
device_printf(sc->mfi_dev,
"Copy out failed\n");
goto out;
}
}
error = copyout(&cm->cm_frame->header.cmd_status,
&((struct mfi_linux_ioc_packet*)arg)
->lioc_frame.hdr.cmd_status,
1);
if (error != 0) {
device_printf(sc->mfi_dev,
"Copy out failed\n");
goto out;
}
out:
mfi_config_unlock(sc, locked);
if (data)
free(data, M_MFIBUF);
if (cm) {
mtx_lock(&sc->mfi_io_lock);
mfi_release_command(cm);
mtx_unlock(&sc->mfi_io_lock);
}
return (error);
case MFI_LINUX_SET_AEN_2: /* AEN Linux ioctl shim */
error = copyin(arg, &l_aen, sizeof(l_aen));
if (error != 0)
return (error);
printf("AEN IMPLEMENTED for pid %d\n", curproc->p_pid);
mfi_aen_entry = malloc(sizeof(struct mfi_aen), M_MFIBUF,
M_WAITOK);
mtx_lock(&sc->mfi_io_lock);
if (mfi_aen_entry != NULL) {
mfi_aen_entry->p = curproc;
TAILQ_INSERT_TAIL(&sc->mfi_aen_pids, mfi_aen_entry,
aen_link);
}
error = mfi_aen_register(sc, l_aen.laen_seq_num,
l_aen.laen_class_locale);
if (error != 0) {
TAILQ_REMOVE(&sc->mfi_aen_pids, mfi_aen_entry,
aen_link);
free(mfi_aen_entry, M_MFIBUF);
}
mtx_unlock(&sc->mfi_io_lock);
return (error);
default:
device_printf(sc->mfi_dev, "IOCTL 0x%lx not handled\n", cmd);
error = ENOENT;
break;
}
return (error);
}
static int
mfi_poll(struct cdev *dev, int poll_events, struct thread *td)
{
struct mfi_softc *sc;
int revents = 0;
sc = dev->si_drv1;
if (poll_events & (POLLIN | POLLRDNORM)) {
if (sc->mfi_aen_triggered != 0) {
revents |= poll_events & (POLLIN | POLLRDNORM);
sc->mfi_aen_triggered = 0;
}
if (sc->mfi_aen_triggered == 0 && sc->mfi_aen_cm == NULL) {
revents |= POLLERR;
}
}
if (revents == 0) {
if (poll_events & (POLLIN | POLLRDNORM)) {
sc->mfi_poll_waiting = 1;
selrecord(td, &sc->mfi_select);
}
}
return revents;
}
static void
mfi_dump_all(void)
{
struct mfi_softc *sc;
struct mfi_command *cm;
devclass_t dc;
time_t deadline;
int timedout;
int i;
dc = devclass_find("mfi");
if (dc == NULL) {
printf("No mfi dev class\n");
return;
}
for (i = 0; ; i++) {
sc = devclass_get_softc(dc, i);
if (sc == NULL)
break;
device_printf(sc->mfi_dev, "Dumping\n\n");
timedout = 0;
deadline = time_uptime - mfi_cmd_timeout;
mtx_lock(&sc->mfi_io_lock);
TAILQ_FOREACH(cm, &sc->mfi_busy, cm_link) {
if (cm->cm_timestamp <= deadline) {
device_printf(sc->mfi_dev,
"COMMAND %p TIMEOUT AFTER %d SECONDS\n",
cm, (int)(time_uptime - cm->cm_timestamp));
MFI_PRINT_CMD(cm);
timedout++;
}
}
#if 0
if (timedout)
MFI_DUMP_CMDS(sc);
#endif
mtx_unlock(&sc->mfi_io_lock);
}
return;
}
static void
mfi_timeout(void *data)
{
struct mfi_softc *sc = (struct mfi_softc *)data;
struct mfi_command *cm, *tmp;
time_t deadline;
int timedout = 0;
deadline = time_uptime - mfi_cmd_timeout;
if (sc->adpreset == 0) {
if (!mfi_tbolt_reset(sc)) {
callout_reset(&sc->mfi_watchdog_callout,
mfi_cmd_timeout * hz, mfi_timeout, sc);
return;
}
}
mtx_lock(&sc->mfi_io_lock);
TAILQ_FOREACH_SAFE(cm, &sc->mfi_busy, cm_link, tmp) {
if (sc->mfi_aen_cm == cm || sc->mfi_map_sync_cm == cm)
continue;
if (cm->cm_timestamp <= deadline) {
if (sc->adpreset != 0 && sc->issuepend_done == 0) {
cm->cm_timestamp = time_uptime;
} else {
device_printf(sc->mfi_dev,
"COMMAND %p TIMEOUT AFTER %d SECONDS\n",
cm, (int)(time_uptime - cm->cm_timestamp)
);
MFI_PRINT_CMD(cm);
MFI_VALIDATE_CMD(sc, cm);
/*
* While commands can get stuck forever we do
* not fail them as there is no way to tell if
* the controller has actually processed them
* or not.
*
* In addition its very likely that force
* failing a command here would cause a panic
* e.g. in UFS.
*/
timedout++;
}
}
}
#if 0
if (timedout)
MFI_DUMP_CMDS(sc);
#endif
mtx_unlock(&sc->mfi_io_lock);
callout_reset(&sc->mfi_watchdog_callout, mfi_cmd_timeout * hz,
mfi_timeout, sc);
if (0)
mfi_dump_all();
return;
}