Bjoern A. Zeeb 334fc5822b vnet: virtualise more network stack sysctls.
Virtualise tcp_always_keepalive, TCP and UDP log_in_vain.  All three are
set in the netoptions startup script, which we would love to run for VNETs
as well [1].

While virtualising the log_in_vain sysctls seems pointles at first for as
long as the kernel message buffer is not virtualised, it at least allows
an administrator to debug the base system or an individual jail if needed
without turning the logging on for all jails running on a system.

PR:		243193 [1]
MFC after:	2 weeks
2020-01-08 23:30:26 +00:00

1934 lines
46 KiB
C

/*-
* SPDX-License-Identifier: BSD-2-Clause-FreeBSD
*
* Copyright (c) 2012 Chelsio Communications, Inc.
* All rights reserved.
* Written by: Navdeep Parhar <np@FreeBSD.org>
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include "opt_inet.h"
#include "opt_inet6.h"
#include "opt_kern_tls.h"
#include "opt_ratelimit.h"
#include <sys/param.h>
#include <sys/types.h>
#include <sys/systm.h>
#include <sys/kernel.h>
#include <sys/ktr.h>
#include <sys/lock.h>
#include <sys/limits.h>
#include <sys/module.h>
#include <sys/protosw.h>
#include <sys/domain.h>
#include <sys/refcount.h>
#include <sys/rmlock.h>
#include <sys/socket.h>
#include <sys/socketvar.h>
#include <sys/sysctl.h>
#include <sys/taskqueue.h>
#include <net/if.h>
#include <net/if_var.h>
#include <net/if_types.h>
#include <net/if_vlan_var.h>
#include <netinet/in.h>
#include <netinet/in_pcb.h>
#include <netinet/in_var.h>
#include <netinet/ip.h>
#include <netinet/ip6.h>
#include <netinet6/scope6_var.h>
#define TCPSTATES
#include <netinet/tcp_fsm.h>
#include <netinet/tcp_timer.h>
#include <netinet/tcp_var.h>
#include <netinet/toecore.h>
#include <netinet/cc/cc.h>
#ifdef TCP_OFFLOAD
#include "common/common.h"
#include "common/t4_msg.h"
#include "common/t4_regs.h"
#include "common/t4_regs_values.h"
#include "common/t4_tcb.h"
#include "t4_clip.h"
#include "tom/t4_tom_l2t.h"
#include "tom/t4_tom.h"
#include "tom/t4_tls.h"
static struct protosw toe_protosw;
static struct pr_usrreqs toe_usrreqs;
static struct protosw toe6_protosw;
static struct pr_usrreqs toe6_usrreqs;
/* Module ops */
static int t4_tom_mod_load(void);
static int t4_tom_mod_unload(void);
static int t4_tom_modevent(module_t, int, void *);
/* ULD ops and helpers */
static int t4_tom_activate(struct adapter *);
static int t4_tom_deactivate(struct adapter *);
static struct uld_info tom_uld_info = {
.uld_id = ULD_TOM,
.activate = t4_tom_activate,
.deactivate = t4_tom_deactivate,
};
static void release_offload_resources(struct toepcb *);
static int alloc_tid_tabs(struct tid_info *);
static void free_tid_tabs(struct tid_info *);
static void free_tom_data(struct adapter *, struct tom_data *);
static void reclaim_wr_resources(void *, int);
struct toepcb *
alloc_toepcb(struct vi_info *vi, int flags)
{
struct port_info *pi = vi->pi;
struct adapter *sc = pi->adapter;
struct toepcb *toep;
int tx_credits, txsd_total, len;
/*
* The firmware counts tx work request credits in units of 16 bytes
* each. Reserve room for an ABORT_REQ so the driver never has to worry
* about tx credits if it wants to abort a connection.
*/
tx_credits = sc->params.ofldq_wr_cred;
tx_credits -= howmany(sizeof(struct cpl_abort_req), 16);
/*
* Shortest possible tx work request is a fw_ofld_tx_data_wr + 1 byte
* immediate payload, and firmware counts tx work request credits in
* units of 16 byte. Calculate the maximum work requests possible.
*/
txsd_total = tx_credits /
howmany(sizeof(struct fw_ofld_tx_data_wr) + 1, 16);
len = offsetof(struct toepcb, txsd) +
txsd_total * sizeof(struct ofld_tx_sdesc);
toep = malloc(len, M_CXGBE, M_ZERO | flags);
if (toep == NULL)
return (NULL);
refcount_init(&toep->refcount, 1);
toep->td = sc->tom_softc;
toep->vi = vi;
toep->tid = -1;
toep->tx_total = tx_credits;
toep->tx_credits = tx_credits;
mbufq_init(&toep->ulp_pduq, INT_MAX);
mbufq_init(&toep->ulp_pdu_reclaimq, INT_MAX);
toep->txsd_total = txsd_total;
toep->txsd_avail = txsd_total;
toep->txsd_pidx = 0;
toep->txsd_cidx = 0;
aiotx_init_toep(toep);
return (toep);
}
/*
* Initialize a toepcb after its params have been filled out.
*/
int
init_toepcb(struct vi_info *vi, struct toepcb *toep)
{
struct conn_params *cp = &toep->params;
struct port_info *pi = vi->pi;
struct adapter *sc = pi->adapter;
struct tx_cl_rl_params *tc;
if (cp->tc_idx >= 0 && cp->tc_idx < sc->chip_params->nsched_cls) {
tc = &pi->sched_params->cl_rl[cp->tc_idx];
mtx_lock(&sc->tc_lock);
if (tc->flags & CLRL_ERR) {
log(LOG_ERR,
"%s: failed to associate traffic class %u with tid %u\n",
device_get_nameunit(vi->dev), cp->tc_idx,
toep->tid);
cp->tc_idx = -1;
} else {
tc->refcount++;
}
mtx_unlock(&sc->tc_lock);
}
toep->ofld_txq = &sc->sge.ofld_txq[cp->txq_idx];
toep->ofld_rxq = &sc->sge.ofld_rxq[cp->rxq_idx];
toep->ctrlq = &sc->sge.ctrlq[pi->port_id];
tls_init_toep(toep);
if (ulp_mode(toep) == ULP_MODE_TCPDDP)
ddp_init_toep(toep);
return (0);
}
struct toepcb *
hold_toepcb(struct toepcb *toep)
{
refcount_acquire(&toep->refcount);
return (toep);
}
void
free_toepcb(struct toepcb *toep)
{
if (refcount_release(&toep->refcount) == 0)
return;
KASSERT(!(toep->flags & TPF_ATTACHED),
("%s: attached to an inpcb", __func__));
KASSERT(!(toep->flags & TPF_CPL_PENDING),
("%s: CPL pending", __func__));
if (ulp_mode(toep) == ULP_MODE_TCPDDP)
ddp_uninit_toep(toep);
tls_uninit_toep(toep);
free(toep, M_CXGBE);
}
/*
* Set up the socket for TCP offload.
*/
void
offload_socket(struct socket *so, struct toepcb *toep)
{
struct tom_data *td = toep->td;
struct inpcb *inp = sotoinpcb(so);
struct tcpcb *tp = intotcpcb(inp);
struct sockbuf *sb;
INP_WLOCK_ASSERT(inp);
/* Update socket */
sb = &so->so_snd;
SOCKBUF_LOCK(sb);
sb->sb_flags |= SB_NOCOALESCE;
SOCKBUF_UNLOCK(sb);
sb = &so->so_rcv;
SOCKBUF_LOCK(sb);
sb->sb_flags |= SB_NOCOALESCE;
if (inp->inp_vflag & INP_IPV6)
so->so_proto = &toe6_protosw;
else
so->so_proto = &toe_protosw;
SOCKBUF_UNLOCK(sb);
/* Update TCP PCB */
tp->tod = &td->tod;
tp->t_toe = toep;
tp->t_flags |= TF_TOE;
/* Install an extra hold on inp */
toep->inp = inp;
toep->flags |= TPF_ATTACHED;
in_pcbref(inp);
/* Add the TOE PCB to the active list */
mtx_lock(&td->toep_list_lock);
TAILQ_INSERT_HEAD(&td->toep_list, toep, link);
mtx_unlock(&td->toep_list_lock);
}
/* This is _not_ the normal way to "unoffload" a socket. */
void
undo_offload_socket(struct socket *so)
{
struct inpcb *inp = sotoinpcb(so);
struct tcpcb *tp = intotcpcb(inp);
struct toepcb *toep = tp->t_toe;
struct tom_data *td = toep->td;
struct sockbuf *sb;
INP_WLOCK_ASSERT(inp);
sb = &so->so_snd;
SOCKBUF_LOCK(sb);
sb->sb_flags &= ~SB_NOCOALESCE;
SOCKBUF_UNLOCK(sb);
sb = &so->so_rcv;
SOCKBUF_LOCK(sb);
sb->sb_flags &= ~SB_NOCOALESCE;
SOCKBUF_UNLOCK(sb);
tp->tod = NULL;
tp->t_toe = NULL;
tp->t_flags &= ~TF_TOE;
toep->inp = NULL;
toep->flags &= ~TPF_ATTACHED;
if (in_pcbrele_wlocked(inp))
panic("%s: inp freed.", __func__);
mtx_lock(&td->toep_list_lock);
TAILQ_REMOVE(&td->toep_list, toep, link);
mtx_unlock(&td->toep_list_lock);
}
static void
release_offload_resources(struct toepcb *toep)
{
struct tom_data *td = toep->td;
struct adapter *sc = td_adapter(td);
int tid = toep->tid;
KASSERT(!(toep->flags & TPF_CPL_PENDING),
("%s: %p has CPL pending.", __func__, toep));
KASSERT(!(toep->flags & TPF_ATTACHED),
("%s: %p is still attached.", __func__, toep));
CTR5(KTR_CXGBE, "%s: toep %p (tid %d, l2te %p, ce %p)",
__func__, toep, tid, toep->l2te, toep->ce);
/*
* These queues should have been emptied at approximately the same time
* that a normal connection's socket's so_snd would have been purged or
* drained. Do _not_ clean up here.
*/
MPASS(mbufq_len(&toep->ulp_pduq) == 0);
MPASS(mbufq_len(&toep->ulp_pdu_reclaimq) == 0);
#ifdef INVARIANTS
if (ulp_mode(toep) == ULP_MODE_TCPDDP)
ddp_assert_empty(toep);
#endif
MPASS(TAILQ_EMPTY(&toep->aiotx_jobq));
if (toep->l2te)
t4_l2t_release(toep->l2te);
if (tid >= 0) {
remove_tid(sc, tid, toep->ce ? 2 : 1);
release_tid(sc, tid, toep->ctrlq);
}
if (toep->ce)
t4_release_lip(sc, toep->ce);
if (toep->params.tc_idx != -1)
t4_release_cl_rl(sc, toep->vi->pi->port_id, toep->params.tc_idx);
mtx_lock(&td->toep_list_lock);
TAILQ_REMOVE(&td->toep_list, toep, link);
mtx_unlock(&td->toep_list_lock);
free_toepcb(toep);
}
/*
* The kernel is done with the TCP PCB and this is our opportunity to unhook the
* toepcb hanging off of it. If the TOE driver is also done with the toepcb (no
* pending CPL) then it is time to release all resources tied to the toepcb.
*
* Also gets called when an offloaded active open fails and the TOM wants the
* kernel to take the TCP PCB back.
*/
static void
t4_pcb_detach(struct toedev *tod __unused, struct tcpcb *tp)
{
#if defined(KTR) || defined(INVARIANTS)
struct inpcb *inp = tp->t_inpcb;
#endif
struct toepcb *toep = tp->t_toe;
INP_WLOCK_ASSERT(inp);
KASSERT(toep != NULL, ("%s: toep is NULL", __func__));
KASSERT(toep->flags & TPF_ATTACHED,
("%s: not attached", __func__));
#ifdef KTR
if (tp->t_state == TCPS_SYN_SENT) {
CTR6(KTR_CXGBE, "%s: atid %d, toep %p (0x%x), inp %p (0x%x)",
__func__, toep->tid, toep, toep->flags, inp,
inp->inp_flags);
} else {
CTR6(KTR_CXGBE,
"t4_pcb_detach: tid %d (%s), toep %p (0x%x), inp %p (0x%x)",
toep->tid, tcpstates[tp->t_state], toep, toep->flags, inp,
inp->inp_flags);
}
#endif
tp->t_toe = NULL;
tp->t_flags &= ~TF_TOE;
toep->flags &= ~TPF_ATTACHED;
if (!(toep->flags & TPF_CPL_PENDING))
release_offload_resources(toep);
}
/*
* setsockopt handler.
*/
static void
t4_ctloutput(struct toedev *tod, struct tcpcb *tp, int dir, int name)
{
struct adapter *sc = tod->tod_softc;
struct toepcb *toep = tp->t_toe;
if (dir == SOPT_GET)
return;
CTR4(KTR_CXGBE, "%s: tp %p, dir %u, name %u", __func__, tp, dir, name);
switch (name) {
case TCP_NODELAY:
if (tp->t_state != TCPS_ESTABLISHED)
break;
toep->params.nagle = tp->t_flags & TF_NODELAY ? 0 : 1;
t4_set_tcb_field(sc, toep->ctrlq, toep, W_TCB_T_FLAGS,
V_TF_NAGLE(1), V_TF_NAGLE(toep->params.nagle), 0, 0);
break;
default:
break;
}
}
static inline uint64_t
get_tcb_tflags(const uint64_t *tcb)
{
return ((be64toh(tcb[14]) << 32) | (be64toh(tcb[15]) >> 32));
}
static inline uint32_t
get_tcb_field(const uint64_t *tcb, u_int word, uint32_t mask, u_int shift)
{
#define LAST_WORD ((TCB_SIZE / 4) - 1)
uint64_t t1, t2;
int flit_idx;
MPASS(mask != 0);
MPASS(word <= LAST_WORD);
MPASS(shift < 32);
flit_idx = (LAST_WORD - word) / 2;
if (word & 0x1)
shift += 32;
t1 = be64toh(tcb[flit_idx]) >> shift;
t2 = 0;
if (fls(mask) > 64 - shift) {
/*
* Will spill over into the next logical flit, which is the flit
* before this one. The flit_idx before this one must be valid.
*/
MPASS(flit_idx > 0);
t2 = be64toh(tcb[flit_idx - 1]) << (64 - shift);
}
return ((t2 | t1) & mask);
#undef LAST_WORD
}
#define GET_TCB_FIELD(tcb, F) \
get_tcb_field(tcb, W_TCB_##F, M_TCB_##F, S_TCB_##F)
/*
* Issues a CPL_GET_TCB to read the entire TCB for the tid.
*/
static int
send_get_tcb(struct adapter *sc, u_int tid)
{
struct cpl_get_tcb *cpl;
struct wrq_cookie cookie;
MPASS(tid < sc->tids.ntids);
cpl = start_wrq_wr(&sc->sge.ctrlq[0], howmany(sizeof(*cpl), 16),
&cookie);
if (__predict_false(cpl == NULL))
return (ENOMEM);
bzero(cpl, sizeof(*cpl));
INIT_TP_WR(cpl, tid);
OPCODE_TID(cpl) = htobe32(MK_OPCODE_TID(CPL_GET_TCB, tid));
cpl->reply_ctrl = htobe16(V_REPLY_CHAN(0) |
V_QUEUENO(sc->sge.ofld_rxq[0].iq.cntxt_id));
cpl->cookie = 0xff;
commit_wrq_wr(&sc->sge.ctrlq[0], cpl, &cookie);
return (0);
}
static struct tcb_histent *
alloc_tcb_histent(struct adapter *sc, u_int tid, int flags)
{
struct tcb_histent *te;
MPASS(flags == M_NOWAIT || flags == M_WAITOK);
te = malloc(sizeof(*te), M_CXGBE, M_ZERO | flags);
if (te == NULL)
return (NULL);
mtx_init(&te->te_lock, "TCB entry", NULL, MTX_DEF);
callout_init_mtx(&te->te_callout, &te->te_lock, 0);
te->te_adapter = sc;
te->te_tid = tid;
return (te);
}
static void
free_tcb_histent(struct tcb_histent *te)
{
mtx_destroy(&te->te_lock);
free(te, M_CXGBE);
}
/*
* Start tracking the tid in the TCB history.
*/
int
add_tid_to_history(struct adapter *sc, u_int tid)
{
struct tcb_histent *te = NULL;
struct tom_data *td = sc->tom_softc;
int rc;
MPASS(tid < sc->tids.ntids);
if (td->tcb_history == NULL)
return (ENXIO);
rw_wlock(&td->tcb_history_lock);
if (td->tcb_history[tid] != NULL) {
rc = EEXIST;
goto done;
}
te = alloc_tcb_histent(sc, tid, M_NOWAIT);
if (te == NULL) {
rc = ENOMEM;
goto done;
}
mtx_lock(&te->te_lock);
rc = send_get_tcb(sc, tid);
if (rc == 0) {
te->te_flags |= TE_RPL_PENDING;
td->tcb_history[tid] = te;
} else {
free(te, M_CXGBE);
}
mtx_unlock(&te->te_lock);
done:
rw_wunlock(&td->tcb_history_lock);
return (rc);
}
static void
remove_tcb_histent(struct tcb_histent *te)
{
struct adapter *sc = te->te_adapter;
struct tom_data *td = sc->tom_softc;
rw_assert(&td->tcb_history_lock, RA_WLOCKED);
mtx_assert(&te->te_lock, MA_OWNED);
MPASS(td->tcb_history[te->te_tid] == te);
td->tcb_history[te->te_tid] = NULL;
free_tcb_histent(te);
rw_wunlock(&td->tcb_history_lock);
}
static inline struct tcb_histent *
lookup_tcb_histent(struct adapter *sc, u_int tid, bool addrem)
{
struct tcb_histent *te;
struct tom_data *td = sc->tom_softc;
MPASS(tid < sc->tids.ntids);
if (td->tcb_history == NULL)
return (NULL);
if (addrem)
rw_wlock(&td->tcb_history_lock);
else
rw_rlock(&td->tcb_history_lock);
te = td->tcb_history[tid];
if (te != NULL) {
mtx_lock(&te->te_lock);
return (te); /* with both locks held */
}
if (addrem)
rw_wunlock(&td->tcb_history_lock);
else
rw_runlock(&td->tcb_history_lock);
return (te);
}
static inline void
release_tcb_histent(struct tcb_histent *te)
{
struct adapter *sc = te->te_adapter;
struct tom_data *td = sc->tom_softc;
mtx_assert(&te->te_lock, MA_OWNED);
mtx_unlock(&te->te_lock);
rw_assert(&td->tcb_history_lock, RA_RLOCKED);
rw_runlock(&td->tcb_history_lock);
}
static void
request_tcb(void *arg)
{
struct tcb_histent *te = arg;
mtx_assert(&te->te_lock, MA_OWNED);
/* Noone else is supposed to update the histent. */
MPASS(!(te->te_flags & TE_RPL_PENDING));
if (send_get_tcb(te->te_adapter, te->te_tid) == 0)
te->te_flags |= TE_RPL_PENDING;
else
callout_schedule(&te->te_callout, hz / 100);
}
static void
update_tcb_histent(struct tcb_histent *te, const uint64_t *tcb)
{
struct tom_data *td = te->te_adapter->tom_softc;
uint64_t tflags = get_tcb_tflags(tcb);
uint8_t sample = 0;
if (GET_TCB_FIELD(tcb, SND_MAX_RAW) != GET_TCB_FIELD(tcb, SND_UNA_RAW)) {
if (GET_TCB_FIELD(tcb, T_RXTSHIFT) != 0)
sample |= TS_RTO;
if (GET_TCB_FIELD(tcb, T_DUPACKS) != 0)
sample |= TS_DUPACKS;
if (GET_TCB_FIELD(tcb, T_DUPACKS) >= td->dupack_threshold)
sample |= TS_FASTREXMT;
}
if (GET_TCB_FIELD(tcb, SND_MAX_RAW) != 0) {
uint32_t snd_wnd;
sample |= TS_SND_BACKLOGGED; /* for whatever reason. */
snd_wnd = GET_TCB_FIELD(tcb, RCV_ADV);
if (tflags & V_TF_RECV_SCALE(1))
snd_wnd <<= GET_TCB_FIELD(tcb, RCV_SCALE);
if (GET_TCB_FIELD(tcb, SND_CWND) < snd_wnd)
sample |= TS_CWND_LIMITED; /* maybe due to CWND */
}
if (tflags & V_TF_CCTRL_ECN(1)) {
/*
* CE marker on incoming IP hdr, echoing ECE back in the TCP
* hdr. Indicates congestion somewhere on the way from the peer
* to this node.
*/
if (tflags & V_TF_CCTRL_ECE(1))
sample |= TS_ECN_ECE;
/*
* ECE seen and CWR sent (or about to be sent). Might indicate
* congestion on the way to the peer. This node is reducing its
* congestion window in response.
*/
if (tflags & (V_TF_CCTRL_CWR(1) | V_TF_CCTRL_RFR(1)))
sample |= TS_ECN_CWR;
}
te->te_sample[te->te_pidx] = sample;
if (++te->te_pidx == nitems(te->te_sample))
te->te_pidx = 0;
memcpy(te->te_tcb, tcb, TCB_SIZE);
te->te_flags |= TE_ACTIVE;
}
static int
do_get_tcb_rpl(struct sge_iq *iq, const struct rss_header *rss, struct mbuf *m)
{
struct adapter *sc = iq->adapter;
const struct cpl_get_tcb_rpl *cpl = mtod(m, const void *);
const uint64_t *tcb = (const uint64_t *)(const void *)(cpl + 1);
struct tcb_histent *te;
const u_int tid = GET_TID(cpl);
bool remove;
remove = GET_TCB_FIELD(tcb, T_STATE) == TCPS_CLOSED;
te = lookup_tcb_histent(sc, tid, remove);
if (te == NULL) {
/* Not in the history. Who issued the GET_TCB for this? */
device_printf(sc->dev, "tcb %u: flags 0x%016jx, state %u, "
"srtt %u, sscale %u, rscale %u, cookie 0x%x\n", tid,
(uintmax_t)get_tcb_tflags(tcb), GET_TCB_FIELD(tcb, T_STATE),
GET_TCB_FIELD(tcb, T_SRTT), GET_TCB_FIELD(tcb, SND_SCALE),
GET_TCB_FIELD(tcb, RCV_SCALE), cpl->cookie);
goto done;
}
MPASS(te->te_flags & TE_RPL_PENDING);
te->te_flags &= ~TE_RPL_PENDING;
if (remove) {
remove_tcb_histent(te);
} else {
update_tcb_histent(te, tcb);
callout_reset(&te->te_callout, hz / 10, request_tcb, te);
release_tcb_histent(te);
}
done:
m_freem(m);
return (0);
}
static void
fill_tcp_info_from_tcb(struct adapter *sc, uint64_t *tcb, struct tcp_info *ti)
{
uint32_t v;
ti->tcpi_state = GET_TCB_FIELD(tcb, T_STATE);
v = GET_TCB_FIELD(tcb, T_SRTT);
ti->tcpi_rtt = tcp_ticks_to_us(sc, v);
v = GET_TCB_FIELD(tcb, T_RTTVAR);
ti->tcpi_rttvar = tcp_ticks_to_us(sc, v);
ti->tcpi_snd_ssthresh = GET_TCB_FIELD(tcb, SND_SSTHRESH);
ti->tcpi_snd_cwnd = GET_TCB_FIELD(tcb, SND_CWND);
ti->tcpi_rcv_nxt = GET_TCB_FIELD(tcb, RCV_NXT);
v = GET_TCB_FIELD(tcb, TX_MAX);
ti->tcpi_snd_nxt = v - GET_TCB_FIELD(tcb, SND_NXT_RAW);
/* Receive window being advertised by us. */
ti->tcpi_rcv_wscale = GET_TCB_FIELD(tcb, SND_SCALE); /* Yes, SND. */
ti->tcpi_rcv_space = GET_TCB_FIELD(tcb, RCV_WND);
/* Send window */
ti->tcpi_snd_wscale = GET_TCB_FIELD(tcb, RCV_SCALE); /* Yes, RCV. */
ti->tcpi_snd_wnd = GET_TCB_FIELD(tcb, RCV_ADV);
if (get_tcb_tflags(tcb) & V_TF_RECV_SCALE(1))
ti->tcpi_snd_wnd <<= ti->tcpi_snd_wscale;
else
ti->tcpi_snd_wscale = 0;
}
static void
fill_tcp_info_from_history(struct adapter *sc, struct tcb_histent *te,
struct tcp_info *ti)
{
fill_tcp_info_from_tcb(sc, te->te_tcb, ti);
}
/*
* Reads the TCB for the given tid using a memory window and copies it to 'buf'
* in the same format as CPL_GET_TCB_RPL.
*/
static void
read_tcb_using_memwin(struct adapter *sc, u_int tid, uint64_t *buf)
{
int i, j, k, rc;
uint32_t addr;
u_char *tcb, tmp;
MPASS(tid < sc->tids.ntids);
addr = t4_read_reg(sc, A_TP_CMM_TCB_BASE) + tid * TCB_SIZE;
rc = read_via_memwin(sc, 2, addr, (uint32_t *)buf, TCB_SIZE);
if (rc != 0)
return;
tcb = (u_char *)buf;
for (i = 0, j = TCB_SIZE - 16; i < j; i += 16, j -= 16) {
for (k = 0; k < 16; k++) {
tmp = tcb[i + k];
tcb[i + k] = tcb[j + k];
tcb[j + k] = tmp;
}
}
}
static void
fill_tcp_info(struct adapter *sc, u_int tid, struct tcp_info *ti)
{
uint64_t tcb[TCB_SIZE / sizeof(uint64_t)];
struct tcb_histent *te;
ti->tcpi_toe_tid = tid;
te = lookup_tcb_histent(sc, tid, false);
if (te != NULL) {
fill_tcp_info_from_history(sc, te, ti);
release_tcb_histent(te);
} else {
if (!(sc->debug_flags & DF_DISABLE_TCB_CACHE)) {
/* XXX: tell firmware to flush TCB cache. */
}
read_tcb_using_memwin(sc, tid, tcb);
fill_tcp_info_from_tcb(sc, tcb, ti);
}
}
/*
* Called by the kernel to allow the TOE driver to "refine" values filled up in
* the tcp_info for an offloaded connection.
*/
static void
t4_tcp_info(struct toedev *tod, struct tcpcb *tp, struct tcp_info *ti)
{
struct adapter *sc = tod->tod_softc;
struct toepcb *toep = tp->t_toe;
INP_WLOCK_ASSERT(tp->t_inpcb);
MPASS(ti != NULL);
fill_tcp_info(sc, toep->tid, ti);
}
#ifdef KERN_TLS
static int
t4_alloc_tls_session(struct toedev *tod, struct tcpcb *tp,
struct ktls_session *tls)
{
struct toepcb *toep = tp->t_toe;
INP_WLOCK_ASSERT(tp->t_inpcb);
MPASS(tls != NULL);
return (tls_alloc_ktls(toep, tls));
}
#endif
/*
* The TOE driver will not receive any more CPLs for the tid associated with the
* toepcb; release the hold on the inpcb.
*/
void
final_cpl_received(struct toepcb *toep)
{
struct inpcb *inp = toep->inp;
KASSERT(inp != NULL, ("%s: inp is NULL", __func__));
INP_WLOCK_ASSERT(inp);
KASSERT(toep->flags & TPF_CPL_PENDING,
("%s: CPL not pending already?", __func__));
CTR6(KTR_CXGBE, "%s: tid %d, toep %p (0x%x), inp %p (0x%x)",
__func__, toep->tid, toep, toep->flags, inp, inp->inp_flags);
if (ulp_mode(toep) == ULP_MODE_TCPDDP)
release_ddp_resources(toep);
toep->inp = NULL;
toep->flags &= ~TPF_CPL_PENDING;
mbufq_drain(&toep->ulp_pdu_reclaimq);
if (!(toep->flags & TPF_ATTACHED))
release_offload_resources(toep);
if (!in_pcbrele_wlocked(inp))
INP_WUNLOCK(inp);
}
void
insert_tid(struct adapter *sc, int tid, void *ctx, int ntids)
{
struct tid_info *t = &sc->tids;
MPASS(tid >= t->tid_base);
MPASS(tid - t->tid_base < t->ntids);
t->tid_tab[tid - t->tid_base] = ctx;
atomic_add_int(&t->tids_in_use, ntids);
}
void *
lookup_tid(struct adapter *sc, int tid)
{
struct tid_info *t = &sc->tids;
return (t->tid_tab[tid - t->tid_base]);
}
void
update_tid(struct adapter *sc, int tid, void *ctx)
{
struct tid_info *t = &sc->tids;
t->tid_tab[tid - t->tid_base] = ctx;
}
void
remove_tid(struct adapter *sc, int tid, int ntids)
{
struct tid_info *t = &sc->tids;
t->tid_tab[tid - t->tid_base] = NULL;
atomic_subtract_int(&t->tids_in_use, ntids);
}
/*
* What mtu_idx to use, given a 4-tuple. Note that both s->mss and tcp_mssopt
* have the MSS that we should advertise in our SYN. Advertised MSS doesn't
* account for any TCP options so the effective MSS (only payload, no headers or
* options) could be different.
*/
static int
find_best_mtu_idx(struct adapter *sc, struct in_conninfo *inc,
struct offload_settings *s)
{
unsigned short *mtus = &sc->params.mtus[0];
int i, mss, mtu;
MPASS(inc != NULL);
mss = s->mss > 0 ? s->mss : tcp_mssopt(inc);
if (inc->inc_flags & INC_ISIPV6)
mtu = mss + sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
else
mtu = mss + sizeof(struct ip) + sizeof(struct tcphdr);
for (i = 0; i < NMTUS - 1 && mtus[i + 1] <= mtu; i++)
continue;
return (i);
}
/*
* Determine the receive window size for a socket.
*/
u_long
select_rcv_wnd(struct socket *so)
{
unsigned long wnd;
SOCKBUF_LOCK_ASSERT(&so->so_rcv);
wnd = sbspace(&so->so_rcv);
if (wnd < MIN_RCV_WND)
wnd = MIN_RCV_WND;
return min(wnd, MAX_RCV_WND);
}
int
select_rcv_wscale(void)
{
int wscale = 0;
unsigned long space = sb_max;
if (space > MAX_RCV_WND)
space = MAX_RCV_WND;
while (wscale < TCP_MAX_WINSHIFT && (TCP_MAXWIN << wscale) < space)
wscale++;
return (wscale);
}
__be64
calc_options0(struct vi_info *vi, struct conn_params *cp)
{
uint64_t opt0 = 0;
opt0 |= F_TCAM_BYPASS;
MPASS(cp->wscale >= 0 && cp->wscale <= M_WND_SCALE);
opt0 |= V_WND_SCALE(cp->wscale);
MPASS(cp->mtu_idx >= 0 && cp->mtu_idx < NMTUS);
opt0 |= V_MSS_IDX(cp->mtu_idx);
MPASS(cp->ulp_mode >= 0 && cp->ulp_mode <= M_ULP_MODE);
opt0 |= V_ULP_MODE(cp->ulp_mode);
MPASS(cp->opt0_bufsize >= 0 && cp->opt0_bufsize <= M_RCV_BUFSIZ);
opt0 |= V_RCV_BUFSIZ(cp->opt0_bufsize);
MPASS(cp->l2t_idx >= 0 && cp->l2t_idx < vi->pi->adapter->vres.l2t.size);
opt0 |= V_L2T_IDX(cp->l2t_idx);
opt0 |= V_SMAC_SEL(vi->smt_idx);
opt0 |= V_TX_CHAN(vi->pi->tx_chan);
MPASS(cp->keepalive == 0 || cp->keepalive == 1);
opt0 |= V_KEEP_ALIVE(cp->keepalive);
MPASS(cp->nagle == 0 || cp->nagle == 1);
opt0 |= V_NAGLE(cp->nagle);
return (htobe64(opt0));
}
__be32
calc_options2(struct vi_info *vi, struct conn_params *cp)
{
uint32_t opt2 = 0;
struct port_info *pi = vi->pi;
struct adapter *sc = pi->adapter;
/*
* rx flow control, rx coalesce, congestion control, and tx pace are all
* explicitly set by the driver. On T5+ the ISS is also set by the
* driver to the value picked by the kernel.
*/
if (is_t4(sc)) {
opt2 |= F_RX_FC_VALID | F_RX_COALESCE_VALID;
opt2 |= F_CONG_CNTRL_VALID | F_PACE_VALID;
} else {
opt2 |= F_T5_OPT_2_VALID; /* all 4 valid */
opt2 |= F_T5_ISS; /* ISS provided in CPL */
}
MPASS(cp->sack == 0 || cp->sack == 1);
opt2 |= V_SACK_EN(cp->sack);
MPASS(cp->tstamp == 0 || cp->tstamp == 1);
opt2 |= V_TSTAMPS_EN(cp->tstamp);
if (cp->wscale > 0)
opt2 |= F_WND_SCALE_EN;
MPASS(cp->ecn == 0 || cp->ecn == 1);
opt2 |= V_CCTRL_ECN(cp->ecn);
/* XXX: F_RX_CHANNEL for multiple rx c-chan support goes here. */
opt2 |= V_TX_QUEUE(sc->params.tp.tx_modq[pi->tx_chan]);
opt2 |= V_PACE(0);
opt2 |= F_RSS_QUEUE_VALID;
opt2 |= V_RSS_QUEUE(sc->sge.ofld_rxq[cp->rxq_idx].iq.abs_id);
MPASS(cp->cong_algo >= 0 && cp->cong_algo <= M_CONG_CNTRL);
opt2 |= V_CONG_CNTRL(cp->cong_algo);
MPASS(cp->rx_coalesce == 0 || cp->rx_coalesce == 1);
if (cp->rx_coalesce == 1)
opt2 |= V_RX_COALESCE(M_RX_COALESCE);
opt2 |= V_RX_FC_DDP(0) | V_RX_FC_DISABLE(0);
#ifdef USE_DDP_RX_FLOW_CONTROL
if (cp->ulp_mode == ULP_MODE_TCPDDP)
opt2 |= F_RX_FC_DDP;
#endif
if (cp->ulp_mode == ULP_MODE_TLS)
opt2 |= F_RX_FC_DISABLE;
return (htobe32(opt2));
}
uint64_t
select_ntuple(struct vi_info *vi, struct l2t_entry *e)
{
struct adapter *sc = vi->pi->adapter;
struct tp_params *tp = &sc->params.tp;
uint64_t ntuple = 0;
/*
* Initialize each of the fields which we care about which are present
* in the Compressed Filter Tuple.
*/
if (tp->vlan_shift >= 0 && EVL_VLANOFTAG(e->vlan) != CPL_L2T_VLAN_NONE)
ntuple |= (uint64_t)(F_FT_VLAN_VLD | e->vlan) << tp->vlan_shift;
if (tp->port_shift >= 0)
ntuple |= (uint64_t)e->lport << tp->port_shift;
if (tp->protocol_shift >= 0)
ntuple |= (uint64_t)IPPROTO_TCP << tp->protocol_shift;
if (tp->vnic_shift >= 0 && tp->ingress_config & F_VNIC) {
ntuple |= (uint64_t)(V_FT_VNID_ID_VF(vi->vin) |
V_FT_VNID_ID_PF(sc->pf) | V_FT_VNID_ID_VLD(vi->vfvld)) <<
tp->vnic_shift;
}
if (is_t4(sc))
return (htobe32((uint32_t)ntuple));
else
return (htobe64(V_FILTER_TUPLE(ntuple)));
}
static int
is_tls_sock(struct socket *so, struct adapter *sc)
{
struct inpcb *inp = sotoinpcb(so);
int i, rc;
/* XXX: Eventually add a SO_WANT_TLS socket option perhaps? */
rc = 0;
ADAPTER_LOCK(sc);
for (i = 0; i < sc->tt.num_tls_rx_ports; i++) {
if (inp->inp_lport == htons(sc->tt.tls_rx_ports[i]) ||
inp->inp_fport == htons(sc->tt.tls_rx_ports[i])) {
rc = 1;
break;
}
}
ADAPTER_UNLOCK(sc);
return (rc);
}
/*
* Initialize various connection parameters.
*/
void
init_conn_params(struct vi_info *vi , struct offload_settings *s,
struct in_conninfo *inc, struct socket *so,
const struct tcp_options *tcpopt, int16_t l2t_idx, struct conn_params *cp)
{
struct port_info *pi = vi->pi;
struct adapter *sc = pi->adapter;
struct tom_tunables *tt = &sc->tt;
struct inpcb *inp = sotoinpcb(so);
struct tcpcb *tp = intotcpcb(inp);
u_long wnd;
MPASS(s->offload != 0);
/* Congestion control algorithm */
if (s->cong_algo >= 0)
cp->cong_algo = s->cong_algo & M_CONG_CNTRL;
else if (sc->tt.cong_algorithm >= 0)
cp->cong_algo = tt->cong_algorithm & M_CONG_CNTRL;
else {
struct cc_algo *cc = CC_ALGO(tp);
if (strcasecmp(cc->name, "reno") == 0)
cp->cong_algo = CONG_ALG_RENO;
else if (strcasecmp(cc->name, "tahoe") == 0)
cp->cong_algo = CONG_ALG_TAHOE;
if (strcasecmp(cc->name, "newreno") == 0)
cp->cong_algo = CONG_ALG_NEWRENO;
if (strcasecmp(cc->name, "highspeed") == 0)
cp->cong_algo = CONG_ALG_HIGHSPEED;
else {
/*
* Use newreno in case the algorithm selected by the
* host stack is not supported by the hardware.
*/
cp->cong_algo = CONG_ALG_NEWRENO;
}
}
/* Tx traffic scheduling class. */
if (s->sched_class >= 0 &&
s->sched_class < sc->chip_params->nsched_cls) {
cp->tc_idx = s->sched_class;
} else
cp->tc_idx = -1;
/* Nagle's algorithm. */
if (s->nagle >= 0)
cp->nagle = s->nagle > 0 ? 1 : 0;
else
cp->nagle = tp->t_flags & TF_NODELAY ? 0 : 1;
/* TCP Keepalive. */
if (V_tcp_always_keepalive || so_options_get(so) & SO_KEEPALIVE)
cp->keepalive = 1;
else
cp->keepalive = 0;
/* Optimization that's specific to T5 @ 40G. */
if (tt->tx_align >= 0)
cp->tx_align = tt->tx_align > 0 ? 1 : 0;
else if (chip_id(sc) == CHELSIO_T5 &&
(port_top_speed(pi) > 10 || sc->params.nports > 2))
cp->tx_align = 1;
else
cp->tx_align = 0;
/* ULP mode. */
if (can_tls_offload(sc) &&
(s->tls > 0 || (s->tls < 0 && is_tls_sock(so, sc))))
cp->ulp_mode = ULP_MODE_TLS;
else if (s->ddp > 0 ||
(s->ddp < 0 && sc->tt.ddp && (so_options_get(so) & SO_NO_DDP) == 0))
cp->ulp_mode = ULP_MODE_TCPDDP;
else
cp->ulp_mode = ULP_MODE_NONE;
/* Rx coalescing. */
if (s->rx_coalesce >= 0)
cp->rx_coalesce = s->rx_coalesce > 0 ? 1 : 0;
else if (cp->ulp_mode == ULP_MODE_TLS)
cp->rx_coalesce = 0;
else if (tt->rx_coalesce >= 0)
cp->rx_coalesce = tt->rx_coalesce > 0 ? 1 : 0;
else
cp->rx_coalesce = 1; /* default */
/*
* Index in the PMTU table. This controls the MSS that we announce in
* our SYN initially, but after ESTABLISHED it controls the MSS that we
* use to send data.
*/
cp->mtu_idx = find_best_mtu_idx(sc, inc, s);
/* Tx queue for this connection. */
if (s->txq >= 0 && s->txq < vi->nofldtxq)
cp->txq_idx = s->txq;
else
cp->txq_idx = arc4random() % vi->nofldtxq;
cp->txq_idx += vi->first_ofld_txq;
/* Rx queue for this connection. */
if (s->rxq >= 0 && s->rxq < vi->nofldrxq)
cp->rxq_idx = s->rxq;
else
cp->rxq_idx = arc4random() % vi->nofldrxq;
cp->rxq_idx += vi->first_ofld_rxq;
if (SOLISTENING(so)) {
/* Passive open */
MPASS(tcpopt != NULL);
/* TCP timestamp option */
if (tcpopt->tstamp &&
(s->tstamp > 0 || (s->tstamp < 0 && V_tcp_do_rfc1323)))
cp->tstamp = 1;
else
cp->tstamp = 0;
/* SACK */
if (tcpopt->sack &&
(s->sack > 0 || (s->sack < 0 && V_tcp_do_sack)))
cp->sack = 1;
else
cp->sack = 0;
/* Receive window scaling. */
if (tcpopt->wsf > 0 && tcpopt->wsf < 15 && V_tcp_do_rfc1323)
cp->wscale = select_rcv_wscale();
else
cp->wscale = 0;
/* ECN */
if (tcpopt->ecn && /* XXX: review. */
(s->ecn > 0 || (s->ecn < 0 && V_tcp_do_ecn)))
cp->ecn = 1;
else
cp->ecn = 0;
wnd = max(so->sol_sbrcv_hiwat, MIN_RCV_WND);
cp->opt0_bufsize = min(wnd >> 10, M_RCV_BUFSIZ);
if (tt->sndbuf > 0)
cp->sndbuf = tt->sndbuf;
else if (so->sol_sbsnd_flags & SB_AUTOSIZE &&
V_tcp_do_autosndbuf)
cp->sndbuf = 256 * 1024;
else
cp->sndbuf = so->sol_sbsnd_hiwat;
} else {
/* Active open */
/* TCP timestamp option */
if (s->tstamp > 0 ||
(s->tstamp < 0 && (tp->t_flags & TF_REQ_TSTMP)))
cp->tstamp = 1;
else
cp->tstamp = 0;
/* SACK */
if (s->sack > 0 ||
(s->sack < 0 && (tp->t_flags & TF_SACK_PERMIT)))
cp->sack = 1;
else
cp->sack = 0;
/* Receive window scaling */
if (tp->t_flags & TF_REQ_SCALE)
cp->wscale = select_rcv_wscale();
else
cp->wscale = 0;
/* ECN */
if (s->ecn > 0 || (s->ecn < 0 && V_tcp_do_ecn == 1))
cp->ecn = 1;
else
cp->ecn = 0;
SOCKBUF_LOCK(&so->so_rcv);
wnd = max(select_rcv_wnd(so), MIN_RCV_WND);
SOCKBUF_UNLOCK(&so->so_rcv);
cp->opt0_bufsize = min(wnd >> 10, M_RCV_BUFSIZ);
if (tt->sndbuf > 0)
cp->sndbuf = tt->sndbuf;
else {
SOCKBUF_LOCK(&so->so_snd);
if (so->so_snd.sb_flags & SB_AUTOSIZE &&
V_tcp_do_autosndbuf)
cp->sndbuf = 256 * 1024;
else
cp->sndbuf = so->so_snd.sb_hiwat;
SOCKBUF_UNLOCK(&so->so_snd);
}
}
cp->l2t_idx = l2t_idx;
/* This will be initialized on ESTABLISHED. */
cp->emss = 0;
}
int
negative_advice(int status)
{
return (status == CPL_ERR_RTX_NEG_ADVICE ||
status == CPL_ERR_PERSIST_NEG_ADVICE ||
status == CPL_ERR_KEEPALV_NEG_ADVICE);
}
static int
alloc_tid_tab(struct tid_info *t, int flags)
{
MPASS(t->ntids > 0);
MPASS(t->tid_tab == NULL);
t->tid_tab = malloc(t->ntids * sizeof(*t->tid_tab), M_CXGBE,
M_ZERO | flags);
if (t->tid_tab == NULL)
return (ENOMEM);
atomic_store_rel_int(&t->tids_in_use, 0);
return (0);
}
static void
free_tid_tab(struct tid_info *t)
{
KASSERT(t->tids_in_use == 0,
("%s: %d tids still in use.", __func__, t->tids_in_use));
free(t->tid_tab, M_CXGBE);
t->tid_tab = NULL;
}
static int
alloc_stid_tab(struct tid_info *t, int flags)
{
MPASS(t->nstids > 0);
MPASS(t->stid_tab == NULL);
t->stid_tab = malloc(t->nstids * sizeof(*t->stid_tab), M_CXGBE,
M_ZERO | flags);
if (t->stid_tab == NULL)
return (ENOMEM);
mtx_init(&t->stid_lock, "stid lock", NULL, MTX_DEF);
t->stids_in_use = 0;
TAILQ_INIT(&t->stids);
t->nstids_free_head = t->nstids;
return (0);
}
static void
free_stid_tab(struct tid_info *t)
{
KASSERT(t->stids_in_use == 0,
("%s: %d tids still in use.", __func__, t->stids_in_use));
if (mtx_initialized(&t->stid_lock))
mtx_destroy(&t->stid_lock);
free(t->stid_tab, M_CXGBE);
t->stid_tab = NULL;
}
static void
free_tid_tabs(struct tid_info *t)
{
free_tid_tab(t);
free_stid_tab(t);
}
static int
alloc_tid_tabs(struct tid_info *t)
{
int rc;
rc = alloc_tid_tab(t, M_NOWAIT);
if (rc != 0)
goto failed;
rc = alloc_stid_tab(t, M_NOWAIT);
if (rc != 0)
goto failed;
return (0);
failed:
free_tid_tabs(t);
return (rc);
}
static inline void
alloc_tcb_history(struct adapter *sc, struct tom_data *td)
{
if (sc->tids.ntids == 0 || sc->tids.ntids > 1024)
return;
rw_init(&td->tcb_history_lock, "TCB history");
td->tcb_history = malloc(sc->tids.ntids * sizeof(*td->tcb_history),
M_CXGBE, M_ZERO | M_NOWAIT);
td->dupack_threshold = G_DUPACKTHRESH(t4_read_reg(sc, A_TP_PARA_REG0));
}
static inline void
free_tcb_history(struct adapter *sc, struct tom_data *td)
{
#ifdef INVARIANTS
int i;
if (td->tcb_history != NULL) {
for (i = 0; i < sc->tids.ntids; i++) {
MPASS(td->tcb_history[i] == NULL);
}
}
#endif
free(td->tcb_history, M_CXGBE);
if (rw_initialized(&td->tcb_history_lock))
rw_destroy(&td->tcb_history_lock);
}
static void
free_tom_data(struct adapter *sc, struct tom_data *td)
{
ASSERT_SYNCHRONIZED_OP(sc);
KASSERT(TAILQ_EMPTY(&td->toep_list),
("%s: TOE PCB list is not empty.", __func__));
KASSERT(td->lctx_count == 0,
("%s: lctx hash table is not empty.", __func__));
t4_free_ppod_region(&td->pr);
if (td->listen_mask != 0)
hashdestroy(td->listen_hash, M_CXGBE, td->listen_mask);
if (mtx_initialized(&td->unsent_wr_lock))
mtx_destroy(&td->unsent_wr_lock);
if (mtx_initialized(&td->lctx_hash_lock))
mtx_destroy(&td->lctx_hash_lock);
if (mtx_initialized(&td->toep_list_lock))
mtx_destroy(&td->toep_list_lock);
free_tcb_history(sc, td);
free_tid_tabs(&sc->tids);
free(td, M_CXGBE);
}
static char *
prepare_pkt(int open_type, uint16_t vtag, struct inpcb *inp, int *pktlen,
int *buflen)
{
char *pkt;
struct tcphdr *th;
int ipv6, len;
const int maxlen =
max(sizeof(struct ether_header), sizeof(struct ether_vlan_header)) +
max(sizeof(struct ip), sizeof(struct ip6_hdr)) +
sizeof(struct tcphdr);
MPASS(open_type == OPEN_TYPE_ACTIVE || open_type == OPEN_TYPE_LISTEN);
pkt = malloc(maxlen, M_CXGBE, M_ZERO | M_NOWAIT);
if (pkt == NULL)
return (NULL);
ipv6 = inp->inp_vflag & INP_IPV6;
len = 0;
if (EVL_VLANOFTAG(vtag) == 0xfff) {
struct ether_header *eh = (void *)pkt;
if (ipv6)
eh->ether_type = htons(ETHERTYPE_IPV6);
else
eh->ether_type = htons(ETHERTYPE_IP);
len += sizeof(*eh);
} else {
struct ether_vlan_header *evh = (void *)pkt;
evh->evl_encap_proto = htons(ETHERTYPE_VLAN);
evh->evl_tag = htons(vtag);
if (ipv6)
evh->evl_proto = htons(ETHERTYPE_IPV6);
else
evh->evl_proto = htons(ETHERTYPE_IP);
len += sizeof(*evh);
}
if (ipv6) {
struct ip6_hdr *ip6 = (void *)&pkt[len];
ip6->ip6_vfc = IPV6_VERSION;
ip6->ip6_plen = htons(sizeof(struct tcphdr));
ip6->ip6_nxt = IPPROTO_TCP;
if (open_type == OPEN_TYPE_ACTIVE) {
ip6->ip6_src = inp->in6p_laddr;
ip6->ip6_dst = inp->in6p_faddr;
} else if (open_type == OPEN_TYPE_LISTEN) {
ip6->ip6_src = inp->in6p_laddr;
ip6->ip6_dst = ip6->ip6_src;
}
len += sizeof(*ip6);
} else {
struct ip *ip = (void *)&pkt[len];
ip->ip_v = IPVERSION;
ip->ip_hl = sizeof(*ip) >> 2;
ip->ip_tos = inp->inp_ip_tos;
ip->ip_len = htons(sizeof(struct ip) + sizeof(struct tcphdr));
ip->ip_ttl = inp->inp_ip_ttl;
ip->ip_p = IPPROTO_TCP;
if (open_type == OPEN_TYPE_ACTIVE) {
ip->ip_src = inp->inp_laddr;
ip->ip_dst = inp->inp_faddr;
} else if (open_type == OPEN_TYPE_LISTEN) {
ip->ip_src = inp->inp_laddr;
ip->ip_dst = ip->ip_src;
}
len += sizeof(*ip);
}
th = (void *)&pkt[len];
if (open_type == OPEN_TYPE_ACTIVE) {
th->th_sport = inp->inp_lport; /* network byte order already */
th->th_dport = inp->inp_fport; /* ditto */
} else if (open_type == OPEN_TYPE_LISTEN) {
th->th_sport = inp->inp_lport; /* network byte order already */
th->th_dport = th->th_sport;
}
len += sizeof(th);
*pktlen = *buflen = len;
return (pkt);
}
const struct offload_settings *
lookup_offload_policy(struct adapter *sc, int open_type, struct mbuf *m,
uint16_t vtag, struct inpcb *inp)
{
const struct t4_offload_policy *op;
char *pkt;
struct offload_rule *r;
int i, matched, pktlen, buflen;
static const struct offload_settings allow_offloading_settings = {
.offload = 1,
.rx_coalesce = -1,
.cong_algo = -1,
.sched_class = -1,
.tstamp = -1,
.sack = -1,
.nagle = -1,
.ecn = -1,
.ddp = -1,
.tls = -1,
.txq = -1,
.rxq = -1,
.mss = -1,
};
static const struct offload_settings disallow_offloading_settings = {
.offload = 0,
/* rest is irrelevant when offload is off. */
};
rw_assert(&sc->policy_lock, RA_LOCKED);
/*
* If there's no Connection Offloading Policy attached to the device
* then we need to return a default static policy. If
* "cop_managed_offloading" is true, then we need to disallow
* offloading until a COP is attached to the device. Otherwise we
* allow offloading ...
*/
op = sc->policy;
if (op == NULL) {
if (sc->tt.cop_managed_offloading)
return (&disallow_offloading_settings);
else
return (&allow_offloading_settings);
}
switch (open_type) {
case OPEN_TYPE_ACTIVE:
case OPEN_TYPE_LISTEN:
pkt = prepare_pkt(open_type, vtag, inp, &pktlen, &buflen);
break;
case OPEN_TYPE_PASSIVE:
MPASS(m != NULL);
pkt = mtod(m, char *);
MPASS(*pkt == CPL_PASS_ACCEPT_REQ);
pkt += sizeof(struct cpl_pass_accept_req);
pktlen = m->m_pkthdr.len - sizeof(struct cpl_pass_accept_req);
buflen = m->m_len - sizeof(struct cpl_pass_accept_req);
break;
default:
MPASS(0);
return (&disallow_offloading_settings);
}
if (pkt == NULL || pktlen == 0 || buflen == 0)
return (&disallow_offloading_settings);
matched = 0;
r = &op->rule[0];
for (i = 0; i < op->nrules; i++, r++) {
if (r->open_type != open_type &&
r->open_type != OPEN_TYPE_DONTCARE) {
continue;
}
matched = bpf_filter(r->bpf_prog.bf_insns, pkt, pktlen, buflen);
if (matched)
break;
}
if (open_type == OPEN_TYPE_ACTIVE || open_type == OPEN_TYPE_LISTEN)
free(pkt, M_CXGBE);
return (matched ? &r->settings : &disallow_offloading_settings);
}
static void
reclaim_wr_resources(void *arg, int count)
{
struct tom_data *td = arg;
STAILQ_HEAD(, wrqe) twr_list = STAILQ_HEAD_INITIALIZER(twr_list);
struct cpl_act_open_req *cpl;
u_int opcode, atid, tid;
struct wrqe *wr;
struct adapter *sc = td_adapter(td);
mtx_lock(&td->unsent_wr_lock);
STAILQ_SWAP(&td->unsent_wr_list, &twr_list, wrqe);
mtx_unlock(&td->unsent_wr_lock);
while ((wr = STAILQ_FIRST(&twr_list)) != NULL) {
STAILQ_REMOVE_HEAD(&twr_list, link);
cpl = wrtod(wr);
opcode = GET_OPCODE(cpl);
switch (opcode) {
case CPL_ACT_OPEN_REQ:
case CPL_ACT_OPEN_REQ6:
atid = G_TID_TID(be32toh(OPCODE_TID(cpl)));
CTR2(KTR_CXGBE, "%s: atid %u ", __func__, atid);
act_open_failure_cleanup(sc, atid, EHOSTUNREACH);
free(wr, M_CXGBE);
break;
case CPL_PASS_ACCEPT_RPL:
tid = GET_TID(cpl);
CTR2(KTR_CXGBE, "%s: tid %u ", __func__, tid);
synack_failure_cleanup(sc, tid);
free(wr, M_CXGBE);
break;
default:
log(LOG_ERR, "%s: leaked work request %p, wr_len %d, "
"opcode %x\n", __func__, wr, wr->wr_len, opcode);
/* WR not freed here; go look at it with a debugger. */
}
}
}
/*
* Ground control to Major TOM
* Commencing countdown, engines on
*/
static int
t4_tom_activate(struct adapter *sc)
{
struct tom_data *td;
struct toedev *tod;
struct vi_info *vi;
int i, rc, v;
ASSERT_SYNCHRONIZED_OP(sc);
/* per-adapter softc for TOM */
td = malloc(sizeof(*td), M_CXGBE, M_ZERO | M_NOWAIT);
if (td == NULL)
return (ENOMEM);
/* List of TOE PCBs and associated lock */
mtx_init(&td->toep_list_lock, "PCB list lock", NULL, MTX_DEF);
TAILQ_INIT(&td->toep_list);
/* Listen context */
mtx_init(&td->lctx_hash_lock, "lctx hash lock", NULL, MTX_DEF);
td->listen_hash = hashinit_flags(LISTEN_HASH_SIZE, M_CXGBE,
&td->listen_mask, HASH_NOWAIT);
/* List of WRs for which L2 resolution failed */
mtx_init(&td->unsent_wr_lock, "Unsent WR list lock", NULL, MTX_DEF);
STAILQ_INIT(&td->unsent_wr_list);
TASK_INIT(&td->reclaim_wr_resources, 0, reclaim_wr_resources, td);
/* TID tables */
rc = alloc_tid_tabs(&sc->tids);
if (rc != 0)
goto done;
rc = t4_init_ppod_region(&td->pr, &sc->vres.ddp,
t4_read_reg(sc, A_ULP_RX_TDDP_PSZ), "TDDP page pods");
if (rc != 0)
goto done;
t4_set_reg_field(sc, A_ULP_RX_TDDP_TAGMASK,
V_TDDPTAGMASK(M_TDDPTAGMASK), td->pr.pr_tag_mask);
alloc_tcb_history(sc, td);
/* toedev ops */
tod = &td->tod;
init_toedev(tod);
tod->tod_softc = sc;
tod->tod_connect = t4_connect;
tod->tod_listen_start = t4_listen_start;
tod->tod_listen_stop = t4_listen_stop;
tod->tod_rcvd = t4_rcvd;
tod->tod_output = t4_tod_output;
tod->tod_send_rst = t4_send_rst;
tod->tod_send_fin = t4_send_fin;
tod->tod_pcb_detach = t4_pcb_detach;
tod->tod_l2_update = t4_l2_update;
tod->tod_syncache_added = t4_syncache_added;
tod->tod_syncache_removed = t4_syncache_removed;
tod->tod_syncache_respond = t4_syncache_respond;
tod->tod_offload_socket = t4_offload_socket;
tod->tod_ctloutput = t4_ctloutput;
tod->tod_tcp_info = t4_tcp_info;
#ifdef KERN_TLS
tod->tod_alloc_tls_session = t4_alloc_tls_session;
#endif
for_each_port(sc, i) {
for_each_vi(sc->port[i], v, vi) {
TOEDEV(vi->ifp) = &td->tod;
}
}
sc->tom_softc = td;
register_toedev(sc->tom_softc);
done:
if (rc != 0)
free_tom_data(sc, td);
return (rc);
}
static int
t4_tom_deactivate(struct adapter *sc)
{
int rc = 0;
struct tom_data *td = sc->tom_softc;
ASSERT_SYNCHRONIZED_OP(sc);
if (td == NULL)
return (0); /* XXX. KASSERT? */
if (sc->offload_map != 0)
return (EBUSY); /* at least one port has IFCAP_TOE enabled */
if (uld_active(sc, ULD_IWARP) || uld_active(sc, ULD_ISCSI))
return (EBUSY); /* both iWARP and iSCSI rely on the TOE. */
mtx_lock(&td->toep_list_lock);
if (!TAILQ_EMPTY(&td->toep_list))
rc = EBUSY;
mtx_unlock(&td->toep_list_lock);
mtx_lock(&td->lctx_hash_lock);
if (td->lctx_count > 0)
rc = EBUSY;
mtx_unlock(&td->lctx_hash_lock);
taskqueue_drain(taskqueue_thread, &td->reclaim_wr_resources);
mtx_lock(&td->unsent_wr_lock);
if (!STAILQ_EMPTY(&td->unsent_wr_list))
rc = EBUSY;
mtx_unlock(&td->unsent_wr_lock);
if (rc == 0) {
unregister_toedev(sc->tom_softc);
free_tom_data(sc, td);
sc->tom_softc = NULL;
}
return (rc);
}
static int
t4_aio_queue_tom(struct socket *so, struct kaiocb *job)
{
struct tcpcb *tp = so_sototcpcb(so);
struct toepcb *toep = tp->t_toe;
int error;
if (ulp_mode(toep) == ULP_MODE_TCPDDP) {
error = t4_aio_queue_ddp(so, job);
if (error != EOPNOTSUPP)
return (error);
}
return (t4_aio_queue_aiotx(so, job));
}
static int
t4_ctloutput_tom(struct socket *so, struct sockopt *sopt)
{
if (sopt->sopt_level != IPPROTO_TCP)
return (tcp_ctloutput(so, sopt));
switch (sopt->sopt_name) {
case TCP_TLSOM_SET_TLS_CONTEXT:
case TCP_TLSOM_GET_TLS_TOM:
case TCP_TLSOM_CLR_TLS_TOM:
case TCP_TLSOM_CLR_QUIES:
return (t4_ctloutput_tls(so, sopt));
default:
return (tcp_ctloutput(so, sopt));
}
}
static int
t4_tom_mod_load(void)
{
struct protosw *tcp_protosw, *tcp6_protosw;
/* CPL handlers */
t4_register_cpl_handler(CPL_GET_TCB_RPL, do_get_tcb_rpl);
t4_register_shared_cpl_handler(CPL_L2T_WRITE_RPL, do_l2t_write_rpl2,
CPL_COOKIE_TOM);
t4_init_connect_cpl_handlers();
t4_init_listen_cpl_handlers();
t4_init_cpl_io_handlers();
t4_ddp_mod_load();
t4_tls_mod_load();
tcp_protosw = pffindproto(PF_INET, IPPROTO_TCP, SOCK_STREAM);
if (tcp_protosw == NULL)
return (ENOPROTOOPT);
bcopy(tcp_protosw, &toe_protosw, sizeof(toe_protosw));
bcopy(tcp_protosw->pr_usrreqs, &toe_usrreqs, sizeof(toe_usrreqs));
toe_usrreqs.pru_aio_queue = t4_aio_queue_tom;
toe_protosw.pr_ctloutput = t4_ctloutput_tom;
toe_protosw.pr_usrreqs = &toe_usrreqs;
tcp6_protosw = pffindproto(PF_INET6, IPPROTO_TCP, SOCK_STREAM);
if (tcp6_protosw == NULL)
return (ENOPROTOOPT);
bcopy(tcp6_protosw, &toe6_protosw, sizeof(toe6_protosw));
bcopy(tcp6_protosw->pr_usrreqs, &toe6_usrreqs, sizeof(toe6_usrreqs));
toe6_usrreqs.pru_aio_queue = t4_aio_queue_tom;
toe6_protosw.pr_ctloutput = t4_ctloutput_tom;
toe6_protosw.pr_usrreqs = &toe6_usrreqs;
return (t4_register_uld(&tom_uld_info));
}
static void
tom_uninit(struct adapter *sc, void *arg __unused)
{
if (begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4tomun"))
return;
/* Try to free resources (works only if no port has IFCAP_TOE) */
if (uld_active(sc, ULD_TOM))
t4_deactivate_uld(sc, ULD_TOM);
end_synchronized_op(sc, 0);
}
static int
t4_tom_mod_unload(void)
{
t4_iterate(tom_uninit, NULL);
if (t4_unregister_uld(&tom_uld_info) == EBUSY)
return (EBUSY);
t4_tls_mod_unload();
t4_ddp_mod_unload();
t4_uninit_connect_cpl_handlers();
t4_uninit_listen_cpl_handlers();
t4_uninit_cpl_io_handlers();
t4_register_shared_cpl_handler(CPL_L2T_WRITE_RPL, NULL, CPL_COOKIE_TOM);
return (0);
}
#endif /* TCP_OFFLOAD */
static int
t4_tom_modevent(module_t mod, int cmd, void *arg)
{
int rc = 0;
#ifdef TCP_OFFLOAD
switch (cmd) {
case MOD_LOAD:
rc = t4_tom_mod_load();
break;
case MOD_UNLOAD:
rc = t4_tom_mod_unload();
break;
default:
rc = EINVAL;
}
#else
printf("t4_tom: compiled without TCP_OFFLOAD support.\n");
rc = EOPNOTSUPP;
#endif
return (rc);
}
static moduledata_t t4_tom_moddata= {
"t4_tom",
t4_tom_modevent,
0
};
MODULE_VERSION(t4_tom, 1);
MODULE_DEPEND(t4_tom, toecore, 1, 1, 1);
MODULE_DEPEND(t4_tom, t4nex, 1, 1, 1);
DECLARE_MODULE(t4_tom, t4_tom_moddata, SI_SUB_EXEC, SI_ORDER_ANY);