e012fe34cb
When multiple threads wish to report a tracing event to a debugger, both threads call ptracestop() and one thread will win the race to be the reporting thread (p->p_xthread). The debugger uses PT_LWPINFO with the process ID to determine which thread / LWP is reporting an event and the details of that event. This event is cleared as a side effect of the subsequent ptrace event that resumed the process (PT_CONTINUE, PT_STEP, etc.). However, ptrace() was clearing the event identified by the LWP ID passed to the resume request even if that wasn't the 'p_xthread'. This could result in clearing an event that had not yet been observed by the debugger and leaving the existing event for 'p_thread' pending so that it was reported a second time. Specifically, if the debugger stopped due to a software breakpoint in one thread, but then switched to another thread that was used to resume (e.g. if the user switched to a different thread and issued a step), the resume request (PT_STEP) cleared a pending event (if any) for the thread being stepped. However, the process immediately stopped and the first thread reported it's breakpoint event a second time. The debugger decremented the PC for "both" breakpoint events which resulted in the PC now pointing into the middle of an instruction (on x86) and a SIGILL fault when the process was resumed a second time. To fix, always clear the pending event for 'p_xthread' when resuming a process. ptrace() still honors the requested LWP ID when enabling single-stepping (PT_STEP) or setting a different PC (PT_CONTINUE). Reported by: GDB testsuite (gdb.threads/continue-pending-status.exp) Reviewed by: kib MFC after: 1 week Differential Revision: https://reviews.freebsd.org/D12794
3692 lines
102 KiB
C
3692 lines
102 KiB
C
/*-
|
|
* Copyright (c) 2015 John Baldwin <jhb@FreeBSD.org>
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*/
|
|
|
|
#include <sys/cdefs.h>
|
|
__FBSDID("$FreeBSD$");
|
|
|
|
#include <sys/types.h>
|
|
#include <sys/cpuset.h>
|
|
#include <sys/event.h>
|
|
#include <sys/file.h>
|
|
#include <sys/time.h>
|
|
#include <sys/procctl.h>
|
|
#include <sys/ptrace.h>
|
|
#include <sys/queue.h>
|
|
#include <sys/runq.h>
|
|
#include <sys/syscall.h>
|
|
#include <sys/sysctl.h>
|
|
#include <sys/user.h>
|
|
#include <sys/wait.h>
|
|
#include <errno.h>
|
|
#include <machine/cpufunc.h>
|
|
#include <pthread.h>
|
|
#include <sched.h>
|
|
#include <semaphore.h>
|
|
#include <signal.h>
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <unistd.h>
|
|
#include <atf-c.h>
|
|
|
|
/*
|
|
* A variant of ATF_REQUIRE that is suitable for use in child
|
|
* processes. This only works if the parent process is tripped up by
|
|
* the early exit and fails some requirement itself.
|
|
*/
|
|
#define CHILD_REQUIRE(exp) do { \
|
|
if (!(exp)) \
|
|
child_fail_require(__FILE__, __LINE__, \
|
|
#exp " not met"); \
|
|
} while (0)
|
|
|
|
static __dead2 void
|
|
child_fail_require(const char *file, int line, const char *str)
|
|
{
|
|
char buf[128];
|
|
|
|
snprintf(buf, sizeof(buf), "%s:%d: %s\n", file, line, str);
|
|
write(2, buf, strlen(buf));
|
|
_exit(32);
|
|
}
|
|
|
|
static void
|
|
trace_me(void)
|
|
{
|
|
|
|
/* Attach the parent process as a tracer of this process. */
|
|
CHILD_REQUIRE(ptrace(PT_TRACE_ME, 0, NULL, 0) != -1);
|
|
|
|
/* Trigger a stop. */
|
|
raise(SIGSTOP);
|
|
}
|
|
|
|
static void
|
|
attach_child(pid_t pid)
|
|
{
|
|
pid_t wpid;
|
|
int status;
|
|
|
|
ATF_REQUIRE(ptrace(PT_ATTACH, pid, NULL, 0) == 0);
|
|
|
|
wpid = waitpid(pid, &status, 0);
|
|
ATF_REQUIRE(wpid == pid);
|
|
ATF_REQUIRE(WIFSTOPPED(status));
|
|
ATF_REQUIRE(WSTOPSIG(status) == SIGSTOP);
|
|
}
|
|
|
|
static void
|
|
wait_for_zombie(pid_t pid)
|
|
{
|
|
|
|
/*
|
|
* Wait for a process to exit. This is kind of gross, but
|
|
* there is not a better way.
|
|
*/
|
|
for (;;) {
|
|
struct kinfo_proc kp;
|
|
size_t len;
|
|
int mib[4];
|
|
|
|
mib[0] = CTL_KERN;
|
|
mib[1] = KERN_PROC;
|
|
mib[2] = KERN_PROC_PID;
|
|
mib[3] = pid;
|
|
len = sizeof(kp);
|
|
if (sysctl(mib, nitems(mib), &kp, &len, NULL, 0) == -1) {
|
|
/* The KERN_PROC_PID sysctl fails for zombies. */
|
|
ATF_REQUIRE(errno == ESRCH);
|
|
break;
|
|
}
|
|
usleep(5000);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Verify that a parent debugger process "sees" the exit of a debugged
|
|
* process exactly once when attached via PT_TRACE_ME.
|
|
*/
|
|
ATF_TC_WITHOUT_HEAD(ptrace__parent_wait_after_trace_me);
|
|
ATF_TC_BODY(ptrace__parent_wait_after_trace_me, tc)
|
|
{
|
|
pid_t child, wpid;
|
|
int status;
|
|
|
|
ATF_REQUIRE((child = fork()) != -1);
|
|
if (child == 0) {
|
|
/* Child process. */
|
|
trace_me();
|
|
|
|
_exit(1);
|
|
}
|
|
|
|
/* Parent process. */
|
|
|
|
/* The first wait() should report the stop from SIGSTOP. */
|
|
wpid = waitpid(child, &status, 0);
|
|
ATF_REQUIRE(wpid == child);
|
|
ATF_REQUIRE(WIFSTOPPED(status));
|
|
ATF_REQUIRE(WSTOPSIG(status) == SIGSTOP);
|
|
|
|
/* Continue the child ignoring the SIGSTOP. */
|
|
ATF_REQUIRE(ptrace(PT_CONTINUE, child, (caddr_t)1, 0) != -1);
|
|
|
|
/* The second wait() should report the exit status. */
|
|
wpid = waitpid(child, &status, 0);
|
|
ATF_REQUIRE(wpid == child);
|
|
ATF_REQUIRE(WIFEXITED(status));
|
|
ATF_REQUIRE(WEXITSTATUS(status) == 1);
|
|
|
|
/* The child should no longer exist. */
|
|
wpid = waitpid(child, &status, 0);
|
|
ATF_REQUIRE(wpid == -1);
|
|
ATF_REQUIRE(errno == ECHILD);
|
|
}
|
|
|
|
/*
|
|
* Verify that a parent debugger process "sees" the exit of a debugged
|
|
* process exactly once when attached via PT_ATTACH.
|
|
*/
|
|
ATF_TC_WITHOUT_HEAD(ptrace__parent_wait_after_attach);
|
|
ATF_TC_BODY(ptrace__parent_wait_after_attach, tc)
|
|
{
|
|
pid_t child, wpid;
|
|
int cpipe[2], status;
|
|
char c;
|
|
|
|
ATF_REQUIRE(pipe(cpipe) == 0);
|
|
ATF_REQUIRE((child = fork()) != -1);
|
|
if (child == 0) {
|
|
/* Child process. */
|
|
close(cpipe[0]);
|
|
|
|
/* Wait for the parent to attach. */
|
|
CHILD_REQUIRE(read(cpipe[1], &c, sizeof(c)) == 0);
|
|
|
|
_exit(1);
|
|
}
|
|
close(cpipe[1]);
|
|
|
|
/* Parent process. */
|
|
|
|
/* Attach to the child process. */
|
|
attach_child(child);
|
|
|
|
/* Continue the child ignoring the SIGSTOP. */
|
|
ATF_REQUIRE(ptrace(PT_CONTINUE, child, (caddr_t)1, 0) != -1);
|
|
|
|
/* Signal the child to exit. */
|
|
close(cpipe[0]);
|
|
|
|
/* The second wait() should report the exit status. */
|
|
wpid = waitpid(child, &status, 0);
|
|
ATF_REQUIRE(wpid == child);
|
|
ATF_REQUIRE(WIFEXITED(status));
|
|
ATF_REQUIRE(WEXITSTATUS(status) == 1);
|
|
|
|
/* The child should no longer exist. */
|
|
wpid = waitpid(child, &status, 0);
|
|
ATF_REQUIRE(wpid == -1);
|
|
ATF_REQUIRE(errno == ECHILD);
|
|
}
|
|
|
|
/*
|
|
* Verify that a parent process "sees" the exit of a debugged process only
|
|
* after the debugger has seen it.
|
|
*/
|
|
ATF_TC_WITHOUT_HEAD(ptrace__parent_sees_exit_after_child_debugger);
|
|
ATF_TC_BODY(ptrace__parent_sees_exit_after_child_debugger, tc)
|
|
{
|
|
pid_t child, debugger, wpid;
|
|
int cpipe[2], dpipe[2], status;
|
|
char c;
|
|
|
|
ATF_REQUIRE(pipe(cpipe) == 0);
|
|
ATF_REQUIRE((child = fork()) != -1);
|
|
|
|
if (child == 0) {
|
|
/* Child process. */
|
|
close(cpipe[0]);
|
|
|
|
/* Wait for parent to be ready. */
|
|
CHILD_REQUIRE(read(cpipe[1], &c, sizeof(c)) == sizeof(c));
|
|
|
|
_exit(1);
|
|
}
|
|
close(cpipe[1]);
|
|
|
|
ATF_REQUIRE(pipe(dpipe) == 0);
|
|
ATF_REQUIRE((debugger = fork()) != -1);
|
|
|
|
if (debugger == 0) {
|
|
/* Debugger process. */
|
|
close(dpipe[0]);
|
|
|
|
CHILD_REQUIRE(ptrace(PT_ATTACH, child, NULL, 0) != -1);
|
|
|
|
wpid = waitpid(child, &status, 0);
|
|
CHILD_REQUIRE(wpid == child);
|
|
CHILD_REQUIRE(WIFSTOPPED(status));
|
|
CHILD_REQUIRE(WSTOPSIG(status) == SIGSTOP);
|
|
|
|
CHILD_REQUIRE(ptrace(PT_CONTINUE, child, (caddr_t)1, 0) != -1);
|
|
|
|
/* Signal parent that debugger is attached. */
|
|
CHILD_REQUIRE(write(dpipe[1], &c, sizeof(c)) == sizeof(c));
|
|
|
|
/* Wait for parent's failed wait. */
|
|
CHILD_REQUIRE(read(dpipe[1], &c, sizeof(c)) == 0);
|
|
|
|
wpid = waitpid(child, &status, 0);
|
|
CHILD_REQUIRE(wpid == child);
|
|
CHILD_REQUIRE(WIFEXITED(status));
|
|
CHILD_REQUIRE(WEXITSTATUS(status) == 1);
|
|
|
|
_exit(0);
|
|
}
|
|
close(dpipe[1]);
|
|
|
|
/* Parent process. */
|
|
|
|
/* Wait for the debugger to attach to the child. */
|
|
ATF_REQUIRE(read(dpipe[0], &c, sizeof(c)) == sizeof(c));
|
|
|
|
/* Release the child. */
|
|
ATF_REQUIRE(write(cpipe[0], &c, sizeof(c)) == sizeof(c));
|
|
ATF_REQUIRE(read(cpipe[0], &c, sizeof(c)) == 0);
|
|
close(cpipe[0]);
|
|
|
|
wait_for_zombie(child);
|
|
|
|
/*
|
|
* This wait should return a pid of 0 to indicate no status to
|
|
* report. The parent should see the child as non-exited
|
|
* until the debugger sees the exit.
|
|
*/
|
|
wpid = waitpid(child, &status, WNOHANG);
|
|
ATF_REQUIRE(wpid == 0);
|
|
|
|
/* Signal the debugger to wait for the child. */
|
|
close(dpipe[0]);
|
|
|
|
/* Wait for the debugger. */
|
|
wpid = waitpid(debugger, &status, 0);
|
|
ATF_REQUIRE(wpid == debugger);
|
|
ATF_REQUIRE(WIFEXITED(status));
|
|
ATF_REQUIRE(WEXITSTATUS(status) == 0);
|
|
|
|
/* The child process should now be ready. */
|
|
wpid = waitpid(child, &status, WNOHANG);
|
|
ATF_REQUIRE(wpid == child);
|
|
ATF_REQUIRE(WIFEXITED(status));
|
|
ATF_REQUIRE(WEXITSTATUS(status) == 1);
|
|
}
|
|
|
|
/*
|
|
* Verify that a parent process "sees" the exit of a debugged process
|
|
* only after a non-direct-child debugger has seen it. In particular,
|
|
* various wait() calls in the parent must avoid failing with ESRCH by
|
|
* checking the parent's orphan list for the debugee.
|
|
*/
|
|
ATF_TC_WITHOUT_HEAD(ptrace__parent_sees_exit_after_unrelated_debugger);
|
|
ATF_TC_BODY(ptrace__parent_sees_exit_after_unrelated_debugger, tc)
|
|
{
|
|
pid_t child, debugger, fpid, wpid;
|
|
int cpipe[2], dpipe[2], status;
|
|
char c;
|
|
|
|
ATF_REQUIRE(pipe(cpipe) == 0);
|
|
ATF_REQUIRE((child = fork()) != -1);
|
|
|
|
if (child == 0) {
|
|
/* Child process. */
|
|
close(cpipe[0]);
|
|
|
|
/* Wait for parent to be ready. */
|
|
CHILD_REQUIRE(read(cpipe[1], &c, sizeof(c)) == sizeof(c));
|
|
|
|
_exit(1);
|
|
}
|
|
close(cpipe[1]);
|
|
|
|
ATF_REQUIRE(pipe(dpipe) == 0);
|
|
ATF_REQUIRE((debugger = fork()) != -1);
|
|
|
|
if (debugger == 0) {
|
|
/* Debugger parent. */
|
|
|
|
/*
|
|
* Fork again and drop the debugger parent so that the
|
|
* debugger is not a child of the main parent.
|
|
*/
|
|
CHILD_REQUIRE((fpid = fork()) != -1);
|
|
if (fpid != 0)
|
|
_exit(2);
|
|
|
|
/* Debugger process. */
|
|
close(dpipe[0]);
|
|
|
|
CHILD_REQUIRE(ptrace(PT_ATTACH, child, NULL, 0) != -1);
|
|
|
|
wpid = waitpid(child, &status, 0);
|
|
CHILD_REQUIRE(wpid == child);
|
|
CHILD_REQUIRE(WIFSTOPPED(status));
|
|
CHILD_REQUIRE(WSTOPSIG(status) == SIGSTOP);
|
|
|
|
CHILD_REQUIRE(ptrace(PT_CONTINUE, child, (caddr_t)1, 0) != -1);
|
|
|
|
/* Signal parent that debugger is attached. */
|
|
CHILD_REQUIRE(write(dpipe[1], &c, sizeof(c)) == sizeof(c));
|
|
|
|
/* Wait for parent's failed wait. */
|
|
CHILD_REQUIRE(read(dpipe[1], &c, sizeof(c)) == sizeof(c));
|
|
|
|
wpid = waitpid(child, &status, 0);
|
|
CHILD_REQUIRE(wpid == child);
|
|
CHILD_REQUIRE(WIFEXITED(status));
|
|
CHILD_REQUIRE(WEXITSTATUS(status) == 1);
|
|
|
|
_exit(0);
|
|
}
|
|
close(dpipe[1]);
|
|
|
|
/* Parent process. */
|
|
|
|
/* Wait for the debugger parent process to exit. */
|
|
wpid = waitpid(debugger, &status, 0);
|
|
ATF_REQUIRE(wpid == debugger);
|
|
ATF_REQUIRE(WIFEXITED(status));
|
|
ATF_REQUIRE(WEXITSTATUS(status) == 2);
|
|
|
|
/* A WNOHANG wait here should see the non-exited child. */
|
|
wpid = waitpid(child, &status, WNOHANG);
|
|
ATF_REQUIRE(wpid == 0);
|
|
|
|
/* Wait for the debugger to attach to the child. */
|
|
ATF_REQUIRE(read(dpipe[0], &c, sizeof(c)) == sizeof(c));
|
|
|
|
/* Release the child. */
|
|
ATF_REQUIRE(write(cpipe[0], &c, sizeof(c)) == sizeof(c));
|
|
ATF_REQUIRE(read(cpipe[0], &c, sizeof(c)) == 0);
|
|
close(cpipe[0]);
|
|
|
|
wait_for_zombie(child);
|
|
|
|
/*
|
|
* This wait should return a pid of 0 to indicate no status to
|
|
* report. The parent should see the child as non-exited
|
|
* until the debugger sees the exit.
|
|
*/
|
|
wpid = waitpid(child, &status, WNOHANG);
|
|
ATF_REQUIRE(wpid == 0);
|
|
|
|
/* Signal the debugger to wait for the child. */
|
|
ATF_REQUIRE(write(dpipe[0], &c, sizeof(c)) == sizeof(c));
|
|
|
|
/* Wait for the debugger. */
|
|
ATF_REQUIRE(read(dpipe[0], &c, sizeof(c)) == 0);
|
|
close(dpipe[0]);
|
|
|
|
/* The child process should now be ready. */
|
|
wpid = waitpid(child, &status, WNOHANG);
|
|
ATF_REQUIRE(wpid == child);
|
|
ATF_REQUIRE(WIFEXITED(status));
|
|
ATF_REQUIRE(WEXITSTATUS(status) == 1);
|
|
}
|
|
|
|
/*
|
|
* The parent process should always act the same regardless of how the
|
|
* debugger is attached to it.
|
|
*/
|
|
static __dead2 void
|
|
follow_fork_parent(bool use_vfork)
|
|
{
|
|
pid_t fpid, wpid;
|
|
int status;
|
|
|
|
if (use_vfork)
|
|
CHILD_REQUIRE((fpid = vfork()) != -1);
|
|
else
|
|
CHILD_REQUIRE((fpid = fork()) != -1);
|
|
|
|
if (fpid == 0)
|
|
/* Child */
|
|
_exit(2);
|
|
|
|
wpid = waitpid(fpid, &status, 0);
|
|
CHILD_REQUIRE(wpid == fpid);
|
|
CHILD_REQUIRE(WIFEXITED(status));
|
|
CHILD_REQUIRE(WEXITSTATUS(status) == 2);
|
|
|
|
_exit(1);
|
|
}
|
|
|
|
/*
|
|
* Helper routine for follow fork tests. This waits for two stops
|
|
* that report both "sides" of a fork. It returns the pid of the new
|
|
* child process.
|
|
*/
|
|
static pid_t
|
|
handle_fork_events(pid_t parent, struct ptrace_lwpinfo *ppl)
|
|
{
|
|
struct ptrace_lwpinfo pl;
|
|
bool fork_reported[2];
|
|
pid_t child, wpid;
|
|
int i, status;
|
|
|
|
fork_reported[0] = false;
|
|
fork_reported[1] = false;
|
|
child = -1;
|
|
|
|
/*
|
|
* Each process should report a fork event. The parent should
|
|
* report a PL_FLAG_FORKED event, and the child should report
|
|
* a PL_FLAG_CHILD event.
|
|
*/
|
|
for (i = 0; i < 2; i++) {
|
|
wpid = wait(&status);
|
|
ATF_REQUIRE(wpid > 0);
|
|
ATF_REQUIRE(WIFSTOPPED(status));
|
|
|
|
ATF_REQUIRE(ptrace(PT_LWPINFO, wpid, (caddr_t)&pl,
|
|
sizeof(pl)) != -1);
|
|
ATF_REQUIRE((pl.pl_flags & (PL_FLAG_FORKED | PL_FLAG_CHILD)) !=
|
|
0);
|
|
ATF_REQUIRE((pl.pl_flags & (PL_FLAG_FORKED | PL_FLAG_CHILD)) !=
|
|
(PL_FLAG_FORKED | PL_FLAG_CHILD));
|
|
if (pl.pl_flags & PL_FLAG_CHILD) {
|
|
ATF_REQUIRE(wpid != parent);
|
|
ATF_REQUIRE(WSTOPSIG(status) == SIGSTOP);
|
|
ATF_REQUIRE(!fork_reported[1]);
|
|
if (child == -1)
|
|
child = wpid;
|
|
else
|
|
ATF_REQUIRE(child == wpid);
|
|
if (ppl != NULL)
|
|
ppl[1] = pl;
|
|
fork_reported[1] = true;
|
|
} else {
|
|
ATF_REQUIRE(wpid == parent);
|
|
ATF_REQUIRE(WSTOPSIG(status) == SIGTRAP);
|
|
ATF_REQUIRE(!fork_reported[0]);
|
|
if (child == -1)
|
|
child = pl.pl_child_pid;
|
|
else
|
|
ATF_REQUIRE(child == pl.pl_child_pid);
|
|
if (ppl != NULL)
|
|
ppl[0] = pl;
|
|
fork_reported[0] = true;
|
|
}
|
|
}
|
|
|
|
return (child);
|
|
}
|
|
|
|
/*
|
|
* Verify that a new child process is stopped after a followed fork and
|
|
* that the traced parent sees the exit of the child after the debugger
|
|
* when both processes remain attached to the debugger.
|
|
*/
|
|
ATF_TC_WITHOUT_HEAD(ptrace__follow_fork_both_attached);
|
|
ATF_TC_BODY(ptrace__follow_fork_both_attached, tc)
|
|
{
|
|
pid_t children[2], fpid, wpid;
|
|
int status;
|
|
|
|
ATF_REQUIRE((fpid = fork()) != -1);
|
|
if (fpid == 0) {
|
|
trace_me();
|
|
follow_fork_parent(false);
|
|
}
|
|
|
|
/* Parent process. */
|
|
children[0] = fpid;
|
|
|
|
/* The first wait() should report the stop from SIGSTOP. */
|
|
wpid = waitpid(children[0], &status, 0);
|
|
ATF_REQUIRE(wpid == children[0]);
|
|
ATF_REQUIRE(WIFSTOPPED(status));
|
|
ATF_REQUIRE(WSTOPSIG(status) == SIGSTOP);
|
|
|
|
ATF_REQUIRE(ptrace(PT_FOLLOW_FORK, children[0], NULL, 1) != -1);
|
|
|
|
/* Continue the child ignoring the SIGSTOP. */
|
|
ATF_REQUIRE(ptrace(PT_CONTINUE, children[0], (caddr_t)1, 0) != -1);
|
|
|
|
children[1] = handle_fork_events(children[0], NULL);
|
|
ATF_REQUIRE(children[1] > 0);
|
|
|
|
ATF_REQUIRE(ptrace(PT_CONTINUE, children[0], (caddr_t)1, 0) != -1);
|
|
ATF_REQUIRE(ptrace(PT_CONTINUE, children[1], (caddr_t)1, 0) != -1);
|
|
|
|
/*
|
|
* The child can't exit until the grandchild reports status, so the
|
|
* grandchild should report its exit first to the debugger.
|
|
*/
|
|
wpid = wait(&status);
|
|
ATF_REQUIRE(wpid == children[1]);
|
|
ATF_REQUIRE(WIFEXITED(status));
|
|
ATF_REQUIRE(WEXITSTATUS(status) == 2);
|
|
|
|
wpid = wait(&status);
|
|
ATF_REQUIRE(wpid == children[0]);
|
|
ATF_REQUIRE(WIFEXITED(status));
|
|
ATF_REQUIRE(WEXITSTATUS(status) == 1);
|
|
|
|
wpid = wait(&status);
|
|
ATF_REQUIRE(wpid == -1);
|
|
ATF_REQUIRE(errno == ECHILD);
|
|
}
|
|
|
|
/*
|
|
* Verify that a new child process is stopped after a followed fork
|
|
* and that the traced parent sees the exit of the child when the new
|
|
* child process is detached after it reports its fork.
|
|
*/
|
|
ATF_TC_WITHOUT_HEAD(ptrace__follow_fork_child_detached);
|
|
ATF_TC_BODY(ptrace__follow_fork_child_detached, tc)
|
|
{
|
|
pid_t children[2], fpid, wpid;
|
|
int status;
|
|
|
|
ATF_REQUIRE((fpid = fork()) != -1);
|
|
if (fpid == 0) {
|
|
trace_me();
|
|
follow_fork_parent(false);
|
|
}
|
|
|
|
/* Parent process. */
|
|
children[0] = fpid;
|
|
|
|
/* The first wait() should report the stop from SIGSTOP. */
|
|
wpid = waitpid(children[0], &status, 0);
|
|
ATF_REQUIRE(wpid == children[0]);
|
|
ATF_REQUIRE(WIFSTOPPED(status));
|
|
ATF_REQUIRE(WSTOPSIG(status) == SIGSTOP);
|
|
|
|
ATF_REQUIRE(ptrace(PT_FOLLOW_FORK, children[0], NULL, 1) != -1);
|
|
|
|
/* Continue the child ignoring the SIGSTOP. */
|
|
ATF_REQUIRE(ptrace(PT_CONTINUE, children[0], (caddr_t)1, 0) != -1);
|
|
|
|
children[1] = handle_fork_events(children[0], NULL);
|
|
ATF_REQUIRE(children[1] > 0);
|
|
|
|
ATF_REQUIRE(ptrace(PT_CONTINUE, children[0], (caddr_t)1, 0) != -1);
|
|
ATF_REQUIRE(ptrace(PT_DETACH, children[1], (caddr_t)1, 0) != -1);
|
|
|
|
/*
|
|
* Should not see any status from the grandchild now, only the
|
|
* child.
|
|
*/
|
|
wpid = wait(&status);
|
|
ATF_REQUIRE(wpid == children[0]);
|
|
ATF_REQUIRE(WIFEXITED(status));
|
|
ATF_REQUIRE(WEXITSTATUS(status) == 1);
|
|
|
|
wpid = wait(&status);
|
|
ATF_REQUIRE(wpid == -1);
|
|
ATF_REQUIRE(errno == ECHILD);
|
|
}
|
|
|
|
/*
|
|
* Verify that a new child process is stopped after a followed fork
|
|
* and that the traced parent sees the exit of the child when the
|
|
* traced parent is detached after the fork.
|
|
*/
|
|
ATF_TC_WITHOUT_HEAD(ptrace__follow_fork_parent_detached);
|
|
ATF_TC_BODY(ptrace__follow_fork_parent_detached, tc)
|
|
{
|
|
pid_t children[2], fpid, wpid;
|
|
int status;
|
|
|
|
ATF_REQUIRE((fpid = fork()) != -1);
|
|
if (fpid == 0) {
|
|
trace_me();
|
|
follow_fork_parent(false);
|
|
}
|
|
|
|
/* Parent process. */
|
|
children[0] = fpid;
|
|
|
|
/* The first wait() should report the stop from SIGSTOP. */
|
|
wpid = waitpid(children[0], &status, 0);
|
|
ATF_REQUIRE(wpid == children[0]);
|
|
ATF_REQUIRE(WIFSTOPPED(status));
|
|
ATF_REQUIRE(WSTOPSIG(status) == SIGSTOP);
|
|
|
|
ATF_REQUIRE(ptrace(PT_FOLLOW_FORK, children[0], NULL, 1) != -1);
|
|
|
|
/* Continue the child ignoring the SIGSTOP. */
|
|
ATF_REQUIRE(ptrace(PT_CONTINUE, children[0], (caddr_t)1, 0) != -1);
|
|
|
|
children[1] = handle_fork_events(children[0], NULL);
|
|
ATF_REQUIRE(children[1] > 0);
|
|
|
|
ATF_REQUIRE(ptrace(PT_DETACH, children[0], (caddr_t)1, 0) != -1);
|
|
ATF_REQUIRE(ptrace(PT_CONTINUE, children[1], (caddr_t)1, 0) != -1);
|
|
|
|
/*
|
|
* The child can't exit until the grandchild reports status, so the
|
|
* grandchild should report its exit first to the debugger.
|
|
*
|
|
* Even though the child process is detached, it is still a
|
|
* child of the debugger, so it will still report it's exit
|
|
* after the grandchild.
|
|
*/
|
|
wpid = wait(&status);
|
|
ATF_REQUIRE(wpid == children[1]);
|
|
ATF_REQUIRE(WIFEXITED(status));
|
|
ATF_REQUIRE(WEXITSTATUS(status) == 2);
|
|
|
|
wpid = wait(&status);
|
|
ATF_REQUIRE(wpid == children[0]);
|
|
ATF_REQUIRE(WIFEXITED(status));
|
|
ATF_REQUIRE(WEXITSTATUS(status) == 1);
|
|
|
|
wpid = wait(&status);
|
|
ATF_REQUIRE(wpid == -1);
|
|
ATF_REQUIRE(errno == ECHILD);
|
|
}
|
|
|
|
static void
|
|
attach_fork_parent(int cpipe[2])
|
|
{
|
|
pid_t fpid;
|
|
|
|
close(cpipe[0]);
|
|
|
|
/* Double-fork to disassociate from the debugger. */
|
|
CHILD_REQUIRE((fpid = fork()) != -1);
|
|
if (fpid != 0)
|
|
_exit(3);
|
|
|
|
/* Send the pid of the disassociated child to the debugger. */
|
|
fpid = getpid();
|
|
CHILD_REQUIRE(write(cpipe[1], &fpid, sizeof(fpid)) == sizeof(fpid));
|
|
|
|
/* Wait for the debugger to attach. */
|
|
CHILD_REQUIRE(read(cpipe[1], &fpid, sizeof(fpid)) == 0);
|
|
}
|
|
|
|
/*
|
|
* Verify that a new child process is stopped after a followed fork and
|
|
* that the traced parent sees the exit of the child after the debugger
|
|
* when both processes remain attached to the debugger. In this test
|
|
* the parent that forks is not a direct child of the debugger.
|
|
*/
|
|
ATF_TC_WITHOUT_HEAD(ptrace__follow_fork_both_attached_unrelated_debugger);
|
|
ATF_TC_BODY(ptrace__follow_fork_both_attached_unrelated_debugger, tc)
|
|
{
|
|
pid_t children[2], fpid, wpid;
|
|
int cpipe[2], status;
|
|
|
|
ATF_REQUIRE(pipe(cpipe) == 0);
|
|
ATF_REQUIRE((fpid = fork()) != -1);
|
|
if (fpid == 0) {
|
|
attach_fork_parent(cpipe);
|
|
follow_fork_parent(false);
|
|
}
|
|
|
|
/* Parent process. */
|
|
close(cpipe[1]);
|
|
|
|
/* Wait for the direct child to exit. */
|
|
wpid = waitpid(fpid, &status, 0);
|
|
ATF_REQUIRE(wpid == fpid);
|
|
ATF_REQUIRE(WIFEXITED(status));
|
|
ATF_REQUIRE(WEXITSTATUS(status) == 3);
|
|
|
|
/* Read the pid of the fork parent. */
|
|
ATF_REQUIRE(read(cpipe[0], &children[0], sizeof(children[0])) ==
|
|
sizeof(children[0]));
|
|
|
|
/* Attach to the fork parent. */
|
|
attach_child(children[0]);
|
|
|
|
ATF_REQUIRE(ptrace(PT_FOLLOW_FORK, children[0], NULL, 1) != -1);
|
|
|
|
/* Continue the fork parent ignoring the SIGSTOP. */
|
|
ATF_REQUIRE(ptrace(PT_CONTINUE, children[0], (caddr_t)1, 0) != -1);
|
|
|
|
/* Signal the fork parent to continue. */
|
|
close(cpipe[0]);
|
|
|
|
children[1] = handle_fork_events(children[0], NULL);
|
|
ATF_REQUIRE(children[1] > 0);
|
|
|
|
ATF_REQUIRE(ptrace(PT_CONTINUE, children[0], (caddr_t)1, 0) != -1);
|
|
ATF_REQUIRE(ptrace(PT_CONTINUE, children[1], (caddr_t)1, 0) != -1);
|
|
|
|
/*
|
|
* The fork parent can't exit until the child reports status,
|
|
* so the child should report its exit first to the debugger.
|
|
*/
|
|
wpid = wait(&status);
|
|
ATF_REQUIRE(wpid == children[1]);
|
|
ATF_REQUIRE(WIFEXITED(status));
|
|
ATF_REQUIRE(WEXITSTATUS(status) == 2);
|
|
|
|
wpid = wait(&status);
|
|
ATF_REQUIRE(wpid == children[0]);
|
|
ATF_REQUIRE(WIFEXITED(status));
|
|
ATF_REQUIRE(WEXITSTATUS(status) == 1);
|
|
|
|
wpid = wait(&status);
|
|
ATF_REQUIRE(wpid == -1);
|
|
ATF_REQUIRE(errno == ECHILD);
|
|
}
|
|
|
|
/*
|
|
* Verify that a new child process is stopped after a followed fork
|
|
* and that the traced parent sees the exit of the child when the new
|
|
* child process is detached after it reports its fork. In this test
|
|
* the parent that forks is not a direct child of the debugger.
|
|
*/
|
|
ATF_TC_WITHOUT_HEAD(ptrace__follow_fork_child_detached_unrelated_debugger);
|
|
ATF_TC_BODY(ptrace__follow_fork_child_detached_unrelated_debugger, tc)
|
|
{
|
|
pid_t children[2], fpid, wpid;
|
|
int cpipe[2], status;
|
|
|
|
ATF_REQUIRE(pipe(cpipe) == 0);
|
|
ATF_REQUIRE((fpid = fork()) != -1);
|
|
if (fpid == 0) {
|
|
attach_fork_parent(cpipe);
|
|
follow_fork_parent(false);
|
|
}
|
|
|
|
/* Parent process. */
|
|
close(cpipe[1]);
|
|
|
|
/* Wait for the direct child to exit. */
|
|
wpid = waitpid(fpid, &status, 0);
|
|
ATF_REQUIRE(wpid == fpid);
|
|
ATF_REQUIRE(WIFEXITED(status));
|
|
ATF_REQUIRE(WEXITSTATUS(status) == 3);
|
|
|
|
/* Read the pid of the fork parent. */
|
|
ATF_REQUIRE(read(cpipe[0], &children[0], sizeof(children[0])) ==
|
|
sizeof(children[0]));
|
|
|
|
/* Attach to the fork parent. */
|
|
attach_child(children[0]);
|
|
|
|
ATF_REQUIRE(ptrace(PT_FOLLOW_FORK, children[0], NULL, 1) != -1);
|
|
|
|
/* Continue the fork parent ignoring the SIGSTOP. */
|
|
ATF_REQUIRE(ptrace(PT_CONTINUE, children[0], (caddr_t)1, 0) != -1);
|
|
|
|
/* Signal the fork parent to continue. */
|
|
close(cpipe[0]);
|
|
|
|
children[1] = handle_fork_events(children[0], NULL);
|
|
ATF_REQUIRE(children[1] > 0);
|
|
|
|
ATF_REQUIRE(ptrace(PT_CONTINUE, children[0], (caddr_t)1, 0) != -1);
|
|
ATF_REQUIRE(ptrace(PT_DETACH, children[1], (caddr_t)1, 0) != -1);
|
|
|
|
/*
|
|
* Should not see any status from the child now, only the fork
|
|
* parent.
|
|
*/
|
|
wpid = wait(&status);
|
|
ATF_REQUIRE(wpid == children[0]);
|
|
ATF_REQUIRE(WIFEXITED(status));
|
|
ATF_REQUIRE(WEXITSTATUS(status) == 1);
|
|
|
|
wpid = wait(&status);
|
|
ATF_REQUIRE(wpid == -1);
|
|
ATF_REQUIRE(errno == ECHILD);
|
|
}
|
|
|
|
/*
|
|
* Verify that a new child process is stopped after a followed fork
|
|
* and that the traced parent sees the exit of the child when the
|
|
* traced parent is detached after the fork. In this test the parent
|
|
* that forks is not a direct child of the debugger.
|
|
*/
|
|
ATF_TC_WITHOUT_HEAD(ptrace__follow_fork_parent_detached_unrelated_debugger);
|
|
ATF_TC_BODY(ptrace__follow_fork_parent_detached_unrelated_debugger, tc)
|
|
{
|
|
pid_t children[2], fpid, wpid;
|
|
int cpipe[2], status;
|
|
|
|
ATF_REQUIRE(pipe(cpipe) == 0);
|
|
ATF_REQUIRE((fpid = fork()) != -1);
|
|
if (fpid == 0) {
|
|
attach_fork_parent(cpipe);
|
|
follow_fork_parent(false);
|
|
}
|
|
|
|
/* Parent process. */
|
|
close(cpipe[1]);
|
|
|
|
/* Wait for the direct child to exit. */
|
|
wpid = waitpid(fpid, &status, 0);
|
|
ATF_REQUIRE(wpid == fpid);
|
|
ATF_REQUIRE(WIFEXITED(status));
|
|
ATF_REQUIRE(WEXITSTATUS(status) == 3);
|
|
|
|
/* Read the pid of the fork parent. */
|
|
ATF_REQUIRE(read(cpipe[0], &children[0], sizeof(children[0])) ==
|
|
sizeof(children[0]));
|
|
|
|
/* Attach to the fork parent. */
|
|
attach_child(children[0]);
|
|
|
|
ATF_REQUIRE(ptrace(PT_FOLLOW_FORK, children[0], NULL, 1) != -1);
|
|
|
|
/* Continue the fork parent ignoring the SIGSTOP. */
|
|
ATF_REQUIRE(ptrace(PT_CONTINUE, children[0], (caddr_t)1, 0) != -1);
|
|
|
|
/* Signal the fork parent to continue. */
|
|
close(cpipe[0]);
|
|
|
|
children[1] = handle_fork_events(children[0], NULL);
|
|
ATF_REQUIRE(children[1] > 0);
|
|
|
|
ATF_REQUIRE(ptrace(PT_DETACH, children[0], (caddr_t)1, 0) != -1);
|
|
ATF_REQUIRE(ptrace(PT_CONTINUE, children[1], (caddr_t)1, 0) != -1);
|
|
|
|
/*
|
|
* Should not see any status from the fork parent now, only
|
|
* the child.
|
|
*/
|
|
wpid = wait(&status);
|
|
ATF_REQUIRE(wpid == children[1]);
|
|
ATF_REQUIRE(WIFEXITED(status));
|
|
ATF_REQUIRE(WEXITSTATUS(status) == 2);
|
|
|
|
wpid = wait(&status);
|
|
ATF_REQUIRE(wpid == -1);
|
|
ATF_REQUIRE(errno == ECHILD);
|
|
}
|
|
|
|
/*
|
|
* Verify that a child process does not see an unrelated debugger as its
|
|
* parent but sees its original parent process.
|
|
*/
|
|
ATF_TC_WITHOUT_HEAD(ptrace__getppid);
|
|
ATF_TC_BODY(ptrace__getppid, tc)
|
|
{
|
|
pid_t child, debugger, ppid, wpid;
|
|
int cpipe[2], dpipe[2], status;
|
|
char c;
|
|
|
|
ATF_REQUIRE(pipe(cpipe) == 0);
|
|
ATF_REQUIRE((child = fork()) != -1);
|
|
|
|
if (child == 0) {
|
|
/* Child process. */
|
|
close(cpipe[0]);
|
|
|
|
/* Wait for parent to be ready. */
|
|
CHILD_REQUIRE(read(cpipe[1], &c, sizeof(c)) == sizeof(c));
|
|
|
|
/* Report the parent PID to the parent. */
|
|
ppid = getppid();
|
|
CHILD_REQUIRE(write(cpipe[1], &ppid, sizeof(ppid)) ==
|
|
sizeof(ppid));
|
|
|
|
_exit(1);
|
|
}
|
|
close(cpipe[1]);
|
|
|
|
ATF_REQUIRE(pipe(dpipe) == 0);
|
|
ATF_REQUIRE((debugger = fork()) != -1);
|
|
|
|
if (debugger == 0) {
|
|
/* Debugger process. */
|
|
close(dpipe[0]);
|
|
|
|
CHILD_REQUIRE(ptrace(PT_ATTACH, child, NULL, 0) != -1);
|
|
|
|
wpid = waitpid(child, &status, 0);
|
|
CHILD_REQUIRE(wpid == child);
|
|
CHILD_REQUIRE(WIFSTOPPED(status));
|
|
CHILD_REQUIRE(WSTOPSIG(status) == SIGSTOP);
|
|
|
|
CHILD_REQUIRE(ptrace(PT_CONTINUE, child, (caddr_t)1, 0) != -1);
|
|
|
|
/* Signal parent that debugger is attached. */
|
|
CHILD_REQUIRE(write(dpipe[1], &c, sizeof(c)) == sizeof(c));
|
|
|
|
/* Wait for traced child to exit. */
|
|
wpid = waitpid(child, &status, 0);
|
|
CHILD_REQUIRE(wpid == child);
|
|
CHILD_REQUIRE(WIFEXITED(status));
|
|
CHILD_REQUIRE(WEXITSTATUS(status) == 1);
|
|
|
|
_exit(0);
|
|
}
|
|
close(dpipe[1]);
|
|
|
|
/* Parent process. */
|
|
|
|
/* Wait for the debugger to attach to the child. */
|
|
ATF_REQUIRE(read(dpipe[0], &c, sizeof(c)) == sizeof(c));
|
|
|
|
/* Release the child. */
|
|
ATF_REQUIRE(write(cpipe[0], &c, sizeof(c)) == sizeof(c));
|
|
|
|
/* Read the parent PID from the child. */
|
|
ATF_REQUIRE(read(cpipe[0], &ppid, sizeof(ppid)) == sizeof(ppid));
|
|
close(cpipe[0]);
|
|
|
|
ATF_REQUIRE(ppid == getpid());
|
|
|
|
/* Wait for the debugger. */
|
|
wpid = waitpid(debugger, &status, 0);
|
|
ATF_REQUIRE(wpid == debugger);
|
|
ATF_REQUIRE(WIFEXITED(status));
|
|
ATF_REQUIRE(WEXITSTATUS(status) == 0);
|
|
|
|
/* The child process should now be ready. */
|
|
wpid = waitpid(child, &status, WNOHANG);
|
|
ATF_REQUIRE(wpid == child);
|
|
ATF_REQUIRE(WIFEXITED(status));
|
|
ATF_REQUIRE(WEXITSTATUS(status) == 1);
|
|
}
|
|
|
|
/*
|
|
* Verify that pl_syscall_code in struct ptrace_lwpinfo for a new
|
|
* child process created via fork() reports the correct value.
|
|
*/
|
|
ATF_TC_WITHOUT_HEAD(ptrace__new_child_pl_syscall_code_fork);
|
|
ATF_TC_BODY(ptrace__new_child_pl_syscall_code_fork, tc)
|
|
{
|
|
struct ptrace_lwpinfo pl[2];
|
|
pid_t children[2], fpid, wpid;
|
|
int status;
|
|
|
|
ATF_REQUIRE((fpid = fork()) != -1);
|
|
if (fpid == 0) {
|
|
trace_me();
|
|
follow_fork_parent(false);
|
|
}
|
|
|
|
/* Parent process. */
|
|
children[0] = fpid;
|
|
|
|
/* The first wait() should report the stop from SIGSTOP. */
|
|
wpid = waitpid(children[0], &status, 0);
|
|
ATF_REQUIRE(wpid == children[0]);
|
|
ATF_REQUIRE(WIFSTOPPED(status));
|
|
ATF_REQUIRE(WSTOPSIG(status) == SIGSTOP);
|
|
|
|
ATF_REQUIRE(ptrace(PT_FOLLOW_FORK, children[0], NULL, 1) != -1);
|
|
|
|
/* Continue the child ignoring the SIGSTOP. */
|
|
ATF_REQUIRE(ptrace(PT_CONTINUE, children[0], (caddr_t)1, 0) != -1);
|
|
|
|
/* Wait for both halves of the fork event to get reported. */
|
|
children[1] = handle_fork_events(children[0], pl);
|
|
ATF_REQUIRE(children[1] > 0);
|
|
|
|
ATF_REQUIRE((pl[0].pl_flags & PL_FLAG_SCX) != 0);
|
|
ATF_REQUIRE((pl[1].pl_flags & PL_FLAG_SCX) != 0);
|
|
ATF_REQUIRE(pl[0].pl_syscall_code == SYS_fork);
|
|
ATF_REQUIRE(pl[0].pl_syscall_code == pl[1].pl_syscall_code);
|
|
ATF_REQUIRE(pl[0].pl_syscall_narg == pl[1].pl_syscall_narg);
|
|
|
|
ATF_REQUIRE(ptrace(PT_CONTINUE, children[0], (caddr_t)1, 0) != -1);
|
|
ATF_REQUIRE(ptrace(PT_CONTINUE, children[1], (caddr_t)1, 0) != -1);
|
|
|
|
/*
|
|
* The child can't exit until the grandchild reports status, so the
|
|
* grandchild should report its exit first to the debugger.
|
|
*/
|
|
wpid = wait(&status);
|
|
ATF_REQUIRE(wpid == children[1]);
|
|
ATF_REQUIRE(WIFEXITED(status));
|
|
ATF_REQUIRE(WEXITSTATUS(status) == 2);
|
|
|
|
wpid = wait(&status);
|
|
ATF_REQUIRE(wpid == children[0]);
|
|
ATF_REQUIRE(WIFEXITED(status));
|
|
ATF_REQUIRE(WEXITSTATUS(status) == 1);
|
|
|
|
wpid = wait(&status);
|
|
ATF_REQUIRE(wpid == -1);
|
|
ATF_REQUIRE(errno == ECHILD);
|
|
}
|
|
|
|
/*
|
|
* Verify that pl_syscall_code in struct ptrace_lwpinfo for a new
|
|
* child process created via vfork() reports the correct value.
|
|
*/
|
|
ATF_TC_WITHOUT_HEAD(ptrace__new_child_pl_syscall_code_vfork);
|
|
ATF_TC_BODY(ptrace__new_child_pl_syscall_code_vfork, tc)
|
|
{
|
|
struct ptrace_lwpinfo pl[2];
|
|
pid_t children[2], fpid, wpid;
|
|
int status;
|
|
|
|
ATF_REQUIRE((fpid = fork()) != -1);
|
|
if (fpid == 0) {
|
|
trace_me();
|
|
follow_fork_parent(true);
|
|
}
|
|
|
|
/* Parent process. */
|
|
children[0] = fpid;
|
|
|
|
/* The first wait() should report the stop from SIGSTOP. */
|
|
wpid = waitpid(children[0], &status, 0);
|
|
ATF_REQUIRE(wpid == children[0]);
|
|
ATF_REQUIRE(WIFSTOPPED(status));
|
|
ATF_REQUIRE(WSTOPSIG(status) == SIGSTOP);
|
|
|
|
ATF_REQUIRE(ptrace(PT_FOLLOW_FORK, children[0], NULL, 1) != -1);
|
|
|
|
/* Continue the child ignoring the SIGSTOP. */
|
|
ATF_REQUIRE(ptrace(PT_CONTINUE, children[0], (caddr_t)1, 0) != -1);
|
|
|
|
/* Wait for both halves of the fork event to get reported. */
|
|
children[1] = handle_fork_events(children[0], pl);
|
|
ATF_REQUIRE(children[1] > 0);
|
|
|
|
ATF_REQUIRE((pl[0].pl_flags & PL_FLAG_SCX) != 0);
|
|
ATF_REQUIRE((pl[1].pl_flags & PL_FLAG_SCX) != 0);
|
|
ATF_REQUIRE(pl[0].pl_syscall_code == SYS_vfork);
|
|
ATF_REQUIRE(pl[0].pl_syscall_code == pl[1].pl_syscall_code);
|
|
ATF_REQUIRE(pl[0].pl_syscall_narg == pl[1].pl_syscall_narg);
|
|
|
|
ATF_REQUIRE(ptrace(PT_CONTINUE, children[0], (caddr_t)1, 0) != -1);
|
|
ATF_REQUIRE(ptrace(PT_CONTINUE, children[1], (caddr_t)1, 0) != -1);
|
|
|
|
/*
|
|
* The child can't exit until the grandchild reports status, so the
|
|
* grandchild should report its exit first to the debugger.
|
|
*/
|
|
wpid = wait(&status);
|
|
ATF_REQUIRE(wpid == children[1]);
|
|
ATF_REQUIRE(WIFEXITED(status));
|
|
ATF_REQUIRE(WEXITSTATUS(status) == 2);
|
|
|
|
wpid = wait(&status);
|
|
ATF_REQUIRE(wpid == children[0]);
|
|
ATF_REQUIRE(WIFEXITED(status));
|
|
ATF_REQUIRE(WEXITSTATUS(status) == 1);
|
|
|
|
wpid = wait(&status);
|
|
ATF_REQUIRE(wpid == -1);
|
|
ATF_REQUIRE(errno == ECHILD);
|
|
}
|
|
|
|
static void *
|
|
simple_thread(void *arg __unused)
|
|
{
|
|
|
|
pthread_exit(NULL);
|
|
}
|
|
|
|
static __dead2 void
|
|
simple_thread_main(void)
|
|
{
|
|
pthread_t thread;
|
|
|
|
CHILD_REQUIRE(pthread_create(&thread, NULL, simple_thread, NULL) == 0);
|
|
CHILD_REQUIRE(pthread_join(thread, NULL) == 0);
|
|
exit(1);
|
|
}
|
|
|
|
/*
|
|
* Verify that pl_syscall_code in struct ptrace_lwpinfo for a new
|
|
* thread reports the correct value.
|
|
*/
|
|
ATF_TC_WITHOUT_HEAD(ptrace__new_child_pl_syscall_code_thread);
|
|
ATF_TC_BODY(ptrace__new_child_pl_syscall_code_thread, tc)
|
|
{
|
|
struct ptrace_lwpinfo pl;
|
|
pid_t fpid, wpid;
|
|
lwpid_t mainlwp;
|
|
int status;
|
|
|
|
ATF_REQUIRE((fpid = fork()) != -1);
|
|
if (fpid == 0) {
|
|
trace_me();
|
|
simple_thread_main();
|
|
}
|
|
|
|
/* The first wait() should report the stop from SIGSTOP. */
|
|
wpid = waitpid(fpid, &status, 0);
|
|
ATF_REQUIRE(wpid == fpid);
|
|
ATF_REQUIRE(WIFSTOPPED(status));
|
|
ATF_REQUIRE(WSTOPSIG(status) == SIGSTOP);
|
|
|
|
ATF_REQUIRE(ptrace(PT_LWPINFO, wpid, (caddr_t)&pl,
|
|
sizeof(pl)) != -1);
|
|
mainlwp = pl.pl_lwpid;
|
|
|
|
/*
|
|
* Continue the child ignoring the SIGSTOP and tracing all
|
|
* system call exits.
|
|
*/
|
|
ATF_REQUIRE(ptrace(PT_TO_SCX, fpid, (caddr_t)1, 0) != -1);
|
|
|
|
/*
|
|
* Wait for the new thread to arrive. pthread_create() might
|
|
* invoke any number of system calls. For now we just wait
|
|
* for the new thread to arrive and make sure it reports a
|
|
* valid system call code. If ptrace grows thread event
|
|
* reporting then this test can be made more precise.
|
|
*/
|
|
for (;;) {
|
|
wpid = waitpid(fpid, &status, 0);
|
|
ATF_REQUIRE(wpid == fpid);
|
|
ATF_REQUIRE(WIFSTOPPED(status));
|
|
ATF_REQUIRE(WSTOPSIG(status) == SIGTRAP);
|
|
|
|
ATF_REQUIRE(ptrace(PT_LWPINFO, wpid, (caddr_t)&pl,
|
|
sizeof(pl)) != -1);
|
|
ATF_REQUIRE((pl.pl_flags & PL_FLAG_SCX) != 0);
|
|
ATF_REQUIRE(pl.pl_syscall_code != 0);
|
|
if (pl.pl_lwpid != mainlwp)
|
|
/* New thread seen. */
|
|
break;
|
|
|
|
ATF_REQUIRE(ptrace(PT_CONTINUE, fpid, (caddr_t)1, 0) == 0);
|
|
}
|
|
|
|
/* Wait for the child to exit. */
|
|
ATF_REQUIRE(ptrace(PT_CONTINUE, fpid, (caddr_t)1, 0) == 0);
|
|
for (;;) {
|
|
wpid = waitpid(fpid, &status, 0);
|
|
ATF_REQUIRE(wpid == fpid);
|
|
if (WIFEXITED(status))
|
|
break;
|
|
|
|
ATF_REQUIRE(WIFSTOPPED(status));
|
|
ATF_REQUIRE(WSTOPSIG(status) == SIGTRAP);
|
|
ATF_REQUIRE(ptrace(PT_CONTINUE, fpid, (caddr_t)1, 0) == 0);
|
|
}
|
|
|
|
ATF_REQUIRE(WEXITSTATUS(status) == 1);
|
|
|
|
wpid = wait(&status);
|
|
ATF_REQUIRE(wpid == -1);
|
|
ATF_REQUIRE(errno == ECHILD);
|
|
}
|
|
|
|
/*
|
|
* Verify that the expected LWP events are reported for a child thread.
|
|
*/
|
|
ATF_TC_WITHOUT_HEAD(ptrace__lwp_events);
|
|
ATF_TC_BODY(ptrace__lwp_events, tc)
|
|
{
|
|
struct ptrace_lwpinfo pl;
|
|
pid_t fpid, wpid;
|
|
lwpid_t lwps[2];
|
|
int status;
|
|
|
|
ATF_REQUIRE((fpid = fork()) != -1);
|
|
if (fpid == 0) {
|
|
trace_me();
|
|
simple_thread_main();
|
|
}
|
|
|
|
/* The first wait() should report the stop from SIGSTOP. */
|
|
wpid = waitpid(fpid, &status, 0);
|
|
ATF_REQUIRE(wpid == fpid);
|
|
ATF_REQUIRE(WIFSTOPPED(status));
|
|
ATF_REQUIRE(WSTOPSIG(status) == SIGSTOP);
|
|
|
|
ATF_REQUIRE(ptrace(PT_LWPINFO, wpid, (caddr_t)&pl,
|
|
sizeof(pl)) != -1);
|
|
lwps[0] = pl.pl_lwpid;
|
|
|
|
ATF_REQUIRE(ptrace(PT_LWP_EVENTS, wpid, NULL, 1) == 0);
|
|
|
|
/* Continue the child ignoring the SIGSTOP. */
|
|
ATF_REQUIRE(ptrace(PT_CONTINUE, fpid, (caddr_t)1, 0) == 0);
|
|
|
|
/* The first event should be for the child thread's birth. */
|
|
wpid = waitpid(fpid, &status, 0);
|
|
ATF_REQUIRE(wpid == fpid);
|
|
ATF_REQUIRE(WIFSTOPPED(status));
|
|
ATF_REQUIRE(WSTOPSIG(status) == SIGTRAP);
|
|
|
|
ATF_REQUIRE(ptrace(PT_LWPINFO, wpid, (caddr_t)&pl, sizeof(pl)) != -1);
|
|
ATF_REQUIRE((pl.pl_flags & (PL_FLAG_BORN | PL_FLAG_SCX)) ==
|
|
(PL_FLAG_BORN | PL_FLAG_SCX));
|
|
ATF_REQUIRE(pl.pl_lwpid != lwps[0]);
|
|
lwps[1] = pl.pl_lwpid;
|
|
|
|
ATF_REQUIRE(ptrace(PT_CONTINUE, fpid, (caddr_t)1, 0) == 0);
|
|
|
|
/* The next event should be for the child thread's death. */
|
|
wpid = waitpid(fpid, &status, 0);
|
|
ATF_REQUIRE(wpid == fpid);
|
|
ATF_REQUIRE(WIFSTOPPED(status));
|
|
ATF_REQUIRE(WSTOPSIG(status) == SIGTRAP);
|
|
|
|
ATF_REQUIRE(ptrace(PT_LWPINFO, wpid, (caddr_t)&pl, sizeof(pl)) != -1);
|
|
ATF_REQUIRE((pl.pl_flags & (PL_FLAG_EXITED | PL_FLAG_SCE)) ==
|
|
(PL_FLAG_EXITED | PL_FLAG_SCE));
|
|
ATF_REQUIRE(pl.pl_lwpid == lwps[1]);
|
|
|
|
ATF_REQUIRE(ptrace(PT_CONTINUE, fpid, (caddr_t)1, 0) == 0);
|
|
|
|
/* The last event should be for the child process's exit. */
|
|
wpid = waitpid(fpid, &status, 0);
|
|
ATF_REQUIRE(WIFEXITED(status));
|
|
ATF_REQUIRE(WEXITSTATUS(status) == 1);
|
|
|
|
wpid = wait(&status);
|
|
ATF_REQUIRE(wpid == -1);
|
|
ATF_REQUIRE(errno == ECHILD);
|
|
}
|
|
|
|
static void *
|
|
exec_thread(void *arg __unused)
|
|
{
|
|
|
|
execl("/usr/bin/true", "true", NULL);
|
|
exit(127);
|
|
}
|
|
|
|
static __dead2 void
|
|
exec_thread_main(void)
|
|
{
|
|
pthread_t thread;
|
|
|
|
CHILD_REQUIRE(pthread_create(&thread, NULL, exec_thread, NULL) == 0);
|
|
for (;;)
|
|
sleep(60);
|
|
exit(1);
|
|
}
|
|
|
|
/*
|
|
* Verify that the expected LWP events are reported for a multithreaded
|
|
* process that calls execve(2).
|
|
*/
|
|
ATF_TC_WITHOUT_HEAD(ptrace__lwp_events_exec);
|
|
ATF_TC_BODY(ptrace__lwp_events_exec, tc)
|
|
{
|
|
struct ptrace_lwpinfo pl;
|
|
pid_t fpid, wpid;
|
|
lwpid_t lwps[2];
|
|
int status;
|
|
|
|
ATF_REQUIRE((fpid = fork()) != -1);
|
|
if (fpid == 0) {
|
|
trace_me();
|
|
exec_thread_main();
|
|
}
|
|
|
|
/* The first wait() should report the stop from SIGSTOP. */
|
|
wpid = waitpid(fpid, &status, 0);
|
|
ATF_REQUIRE(wpid == fpid);
|
|
ATF_REQUIRE(WIFSTOPPED(status));
|
|
ATF_REQUIRE(WSTOPSIG(status) == SIGSTOP);
|
|
|
|
ATF_REQUIRE(ptrace(PT_LWPINFO, wpid, (caddr_t)&pl,
|
|
sizeof(pl)) != -1);
|
|
lwps[0] = pl.pl_lwpid;
|
|
|
|
ATF_REQUIRE(ptrace(PT_LWP_EVENTS, wpid, NULL, 1) == 0);
|
|
|
|
/* Continue the child ignoring the SIGSTOP. */
|
|
ATF_REQUIRE(ptrace(PT_CONTINUE, fpid, (caddr_t)1, 0) == 0);
|
|
|
|
/* The first event should be for the child thread's birth. */
|
|
wpid = waitpid(fpid, &status, 0);
|
|
ATF_REQUIRE(wpid == fpid);
|
|
ATF_REQUIRE(WIFSTOPPED(status));
|
|
ATF_REQUIRE(WSTOPSIG(status) == SIGTRAP);
|
|
|
|
ATF_REQUIRE(ptrace(PT_LWPINFO, wpid, (caddr_t)&pl, sizeof(pl)) != -1);
|
|
ATF_REQUIRE((pl.pl_flags & (PL_FLAG_BORN | PL_FLAG_SCX)) ==
|
|
(PL_FLAG_BORN | PL_FLAG_SCX));
|
|
ATF_REQUIRE(pl.pl_lwpid != lwps[0]);
|
|
lwps[1] = pl.pl_lwpid;
|
|
|
|
ATF_REQUIRE(ptrace(PT_CONTINUE, fpid, (caddr_t)1, 0) == 0);
|
|
|
|
/*
|
|
* The next event should be for the main thread's death due to
|
|
* single threading from execve().
|
|
*/
|
|
wpid = waitpid(fpid, &status, 0);
|
|
ATF_REQUIRE(wpid == fpid);
|
|
ATF_REQUIRE(WIFSTOPPED(status));
|
|
ATF_REQUIRE(WSTOPSIG(status) == SIGTRAP);
|
|
|
|
ATF_REQUIRE(ptrace(PT_LWPINFO, wpid, (caddr_t)&pl, sizeof(pl)) != -1);
|
|
ATF_REQUIRE((pl.pl_flags & (PL_FLAG_EXITED | PL_FLAG_SCE)) ==
|
|
(PL_FLAG_EXITED));
|
|
ATF_REQUIRE(pl.pl_lwpid == lwps[0]);
|
|
|
|
ATF_REQUIRE(ptrace(PT_CONTINUE, fpid, (caddr_t)1, 0) == 0);
|
|
|
|
/* The next event should be for the child process's exec. */
|
|
wpid = waitpid(fpid, &status, 0);
|
|
ATF_REQUIRE(WIFSTOPPED(status));
|
|
ATF_REQUIRE(WSTOPSIG(status) == SIGTRAP);
|
|
|
|
ATF_REQUIRE(ptrace(PT_LWPINFO, wpid, (caddr_t)&pl, sizeof(pl)) != -1);
|
|
ATF_REQUIRE((pl.pl_flags & (PL_FLAG_EXEC | PL_FLAG_SCX)) ==
|
|
(PL_FLAG_EXEC | PL_FLAG_SCX));
|
|
ATF_REQUIRE(pl.pl_lwpid == lwps[1]);
|
|
|
|
ATF_REQUIRE(ptrace(PT_CONTINUE, fpid, (caddr_t)1, 0) == 0);
|
|
|
|
/* The last event should be for the child process's exit. */
|
|
wpid = waitpid(fpid, &status, 0);
|
|
ATF_REQUIRE(WIFEXITED(status));
|
|
ATF_REQUIRE(WEXITSTATUS(status) == 0);
|
|
|
|
wpid = wait(&status);
|
|
ATF_REQUIRE(wpid == -1);
|
|
ATF_REQUIRE(errno == ECHILD);
|
|
}
|
|
|
|
static void
|
|
handler(int sig __unused)
|
|
{
|
|
}
|
|
|
|
static void
|
|
signal_main(void)
|
|
{
|
|
|
|
signal(SIGINFO, handler);
|
|
raise(SIGINFO);
|
|
exit(0);
|
|
}
|
|
|
|
/*
|
|
* Verify that the expected ptrace event is reported for a signal.
|
|
*/
|
|
ATF_TC_WITHOUT_HEAD(ptrace__siginfo);
|
|
ATF_TC_BODY(ptrace__siginfo, tc)
|
|
{
|
|
struct ptrace_lwpinfo pl;
|
|
pid_t fpid, wpid;
|
|
int status;
|
|
|
|
ATF_REQUIRE((fpid = fork()) != -1);
|
|
if (fpid == 0) {
|
|
trace_me();
|
|
signal_main();
|
|
}
|
|
|
|
/* The first wait() should report the stop from SIGSTOP. */
|
|
wpid = waitpid(fpid, &status, 0);
|
|
ATF_REQUIRE(wpid == fpid);
|
|
ATF_REQUIRE(WIFSTOPPED(status));
|
|
ATF_REQUIRE(WSTOPSIG(status) == SIGSTOP);
|
|
|
|
ATF_REQUIRE(ptrace(PT_CONTINUE, fpid, (caddr_t)1, 0) == 0);
|
|
|
|
/* The next event should be for the SIGINFO. */
|
|
wpid = waitpid(fpid, &status, 0);
|
|
ATF_REQUIRE(WIFSTOPPED(status));
|
|
ATF_REQUIRE(WSTOPSIG(status) == SIGINFO);
|
|
|
|
ATF_REQUIRE(ptrace(PT_LWPINFO, wpid, (caddr_t)&pl, sizeof(pl)) != -1);
|
|
ATF_REQUIRE(pl.pl_event == PL_EVENT_SIGNAL);
|
|
ATF_REQUIRE(pl.pl_flags & PL_FLAG_SI);
|
|
ATF_REQUIRE(pl.pl_siginfo.si_code == SI_LWP);
|
|
ATF_REQUIRE(pl.pl_siginfo.si_pid == wpid);
|
|
|
|
ATF_REQUIRE(ptrace(PT_CONTINUE, fpid, (caddr_t)1, 0) == 0);
|
|
|
|
/* The last event should be for the child process's exit. */
|
|
wpid = waitpid(fpid, &status, 0);
|
|
ATF_REQUIRE(WIFEXITED(status));
|
|
ATF_REQUIRE(WEXITSTATUS(status) == 0);
|
|
|
|
wpid = wait(&status);
|
|
ATF_REQUIRE(wpid == -1);
|
|
ATF_REQUIRE(errno == ECHILD);
|
|
}
|
|
|
|
/*
|
|
* Verify that the expected ptrace events are reported for PTRACE_EXEC.
|
|
*/
|
|
ATF_TC_WITHOUT_HEAD(ptrace__ptrace_exec_disable);
|
|
ATF_TC_BODY(ptrace__ptrace_exec_disable, tc)
|
|
{
|
|
pid_t fpid, wpid;
|
|
int events, status;
|
|
|
|
ATF_REQUIRE((fpid = fork()) != -1);
|
|
if (fpid == 0) {
|
|
trace_me();
|
|
exec_thread(NULL);
|
|
}
|
|
|
|
/* The first wait() should report the stop from SIGSTOP. */
|
|
wpid = waitpid(fpid, &status, 0);
|
|
ATF_REQUIRE(wpid == fpid);
|
|
ATF_REQUIRE(WIFSTOPPED(status));
|
|
ATF_REQUIRE(WSTOPSIG(status) == SIGSTOP);
|
|
|
|
events = 0;
|
|
ATF_REQUIRE(ptrace(PT_SET_EVENT_MASK, fpid, (caddr_t)&events,
|
|
sizeof(events)) == 0);
|
|
|
|
ATF_REQUIRE(ptrace(PT_CONTINUE, fpid, (caddr_t)1, 0) == 0);
|
|
|
|
/* Should get one event at exit. */
|
|
wpid = waitpid(fpid, &status, 0);
|
|
ATF_REQUIRE(WIFEXITED(status));
|
|
ATF_REQUIRE(WEXITSTATUS(status) == 0);
|
|
|
|
wpid = wait(&status);
|
|
ATF_REQUIRE(wpid == -1);
|
|
ATF_REQUIRE(errno == ECHILD);
|
|
}
|
|
|
|
ATF_TC_WITHOUT_HEAD(ptrace__ptrace_exec_enable);
|
|
ATF_TC_BODY(ptrace__ptrace_exec_enable, tc)
|
|
{
|
|
struct ptrace_lwpinfo pl;
|
|
pid_t fpid, wpid;
|
|
int events, status;
|
|
|
|
ATF_REQUIRE((fpid = fork()) != -1);
|
|
if (fpid == 0) {
|
|
trace_me();
|
|
exec_thread(NULL);
|
|
}
|
|
|
|
/* The first wait() should report the stop from SIGSTOP. */
|
|
wpid = waitpid(fpid, &status, 0);
|
|
ATF_REQUIRE(wpid == fpid);
|
|
ATF_REQUIRE(WIFSTOPPED(status));
|
|
ATF_REQUIRE(WSTOPSIG(status) == SIGSTOP);
|
|
|
|
events = PTRACE_EXEC;
|
|
ATF_REQUIRE(ptrace(PT_SET_EVENT_MASK, fpid, (caddr_t)&events,
|
|
sizeof(events)) == 0);
|
|
|
|
ATF_REQUIRE(ptrace(PT_CONTINUE, fpid, (caddr_t)1, 0) == 0);
|
|
|
|
/* The next event should be for the child process's exec. */
|
|
wpid = waitpid(fpid, &status, 0);
|
|
ATF_REQUIRE(WIFSTOPPED(status));
|
|
ATF_REQUIRE(WSTOPSIG(status) == SIGTRAP);
|
|
|
|
ATF_REQUIRE(ptrace(PT_LWPINFO, wpid, (caddr_t)&pl, sizeof(pl)) != -1);
|
|
ATF_REQUIRE((pl.pl_flags & (PL_FLAG_EXEC | PL_FLAG_SCX)) ==
|
|
(PL_FLAG_EXEC | PL_FLAG_SCX));
|
|
|
|
ATF_REQUIRE(ptrace(PT_CONTINUE, fpid, (caddr_t)1, 0) == 0);
|
|
|
|
/* The last event should be for the child process's exit. */
|
|
wpid = waitpid(fpid, &status, 0);
|
|
ATF_REQUIRE(WIFEXITED(status));
|
|
ATF_REQUIRE(WEXITSTATUS(status) == 0);
|
|
|
|
wpid = wait(&status);
|
|
ATF_REQUIRE(wpid == -1);
|
|
ATF_REQUIRE(errno == ECHILD);
|
|
}
|
|
|
|
ATF_TC_WITHOUT_HEAD(ptrace__event_mask);
|
|
ATF_TC_BODY(ptrace__event_mask, tc)
|
|
{
|
|
pid_t fpid, wpid;
|
|
int events, status;
|
|
|
|
ATF_REQUIRE((fpid = fork()) != -1);
|
|
if (fpid == 0) {
|
|
trace_me();
|
|
exit(0);
|
|
}
|
|
|
|
/* The first wait() should report the stop from SIGSTOP. */
|
|
wpid = waitpid(fpid, &status, 0);
|
|
ATF_REQUIRE(wpid == fpid);
|
|
ATF_REQUIRE(WIFSTOPPED(status));
|
|
ATF_REQUIRE(WSTOPSIG(status) == SIGSTOP);
|
|
|
|
/* PT_FOLLOW_FORK should toggle the state of PTRACE_FORK. */
|
|
ATF_REQUIRE(ptrace(PT_FOLLOW_FORK, fpid, NULL, 1) != -1);
|
|
ATF_REQUIRE(ptrace(PT_GET_EVENT_MASK, fpid, (caddr_t)&events,
|
|
sizeof(events)) == 0);
|
|
ATF_REQUIRE(events & PTRACE_FORK);
|
|
ATF_REQUIRE(ptrace(PT_FOLLOW_FORK, fpid, NULL, 0) != -1);
|
|
ATF_REQUIRE(ptrace(PT_GET_EVENT_MASK, fpid, (caddr_t)&events,
|
|
sizeof(events)) == 0);
|
|
ATF_REQUIRE(!(events & PTRACE_FORK));
|
|
|
|
/* PT_LWP_EVENTS should toggle the state of PTRACE_LWP. */
|
|
ATF_REQUIRE(ptrace(PT_LWP_EVENTS, fpid, NULL, 1) != -1);
|
|
ATF_REQUIRE(ptrace(PT_GET_EVENT_MASK, fpid, (caddr_t)&events,
|
|
sizeof(events)) == 0);
|
|
ATF_REQUIRE(events & PTRACE_LWP);
|
|
ATF_REQUIRE(ptrace(PT_LWP_EVENTS, fpid, NULL, 0) != -1);
|
|
ATF_REQUIRE(ptrace(PT_GET_EVENT_MASK, fpid, (caddr_t)&events,
|
|
sizeof(events)) == 0);
|
|
ATF_REQUIRE(!(events & PTRACE_LWP));
|
|
|
|
ATF_REQUIRE(ptrace(PT_CONTINUE, fpid, (caddr_t)1, 0) == 0);
|
|
|
|
/* Should get one event at exit. */
|
|
wpid = waitpid(fpid, &status, 0);
|
|
ATF_REQUIRE(WIFEXITED(status));
|
|
ATF_REQUIRE(WEXITSTATUS(status) == 0);
|
|
|
|
wpid = wait(&status);
|
|
ATF_REQUIRE(wpid == -1);
|
|
ATF_REQUIRE(errno == ECHILD);
|
|
}
|
|
|
|
/*
|
|
* Verify that the expected ptrace events are reported for PTRACE_VFORK.
|
|
*/
|
|
ATF_TC_WITHOUT_HEAD(ptrace__ptrace_vfork);
|
|
ATF_TC_BODY(ptrace__ptrace_vfork, tc)
|
|
{
|
|
struct ptrace_lwpinfo pl;
|
|
pid_t fpid, wpid;
|
|
int events, status;
|
|
|
|
ATF_REQUIRE((fpid = fork()) != -1);
|
|
if (fpid == 0) {
|
|
trace_me();
|
|
follow_fork_parent(true);
|
|
}
|
|
|
|
/* The first wait() should report the stop from SIGSTOP. */
|
|
wpid = waitpid(fpid, &status, 0);
|
|
ATF_REQUIRE(wpid == fpid);
|
|
ATF_REQUIRE(WIFSTOPPED(status));
|
|
ATF_REQUIRE(WSTOPSIG(status) == SIGSTOP);
|
|
|
|
ATF_REQUIRE(ptrace(PT_GET_EVENT_MASK, fpid, (caddr_t)&events,
|
|
sizeof(events)) == 0);
|
|
events |= PTRACE_VFORK;
|
|
ATF_REQUIRE(ptrace(PT_SET_EVENT_MASK, fpid, (caddr_t)&events,
|
|
sizeof(events)) == 0);
|
|
|
|
/* Continue the child ignoring the SIGSTOP. */
|
|
ATF_REQUIRE(ptrace(PT_CONTINUE, fpid, (caddr_t)1, 0) != -1);
|
|
|
|
/* The next event should report the end of the vfork. */
|
|
wpid = wait(&status);
|
|
ATF_REQUIRE(wpid == fpid);
|
|
ATF_REQUIRE(WIFSTOPPED(status));
|
|
ATF_REQUIRE(WSTOPSIG(status) == SIGTRAP);
|
|
ATF_REQUIRE(ptrace(PT_LWPINFO, wpid, (caddr_t)&pl, sizeof(pl)) != -1);
|
|
ATF_REQUIRE((pl.pl_flags & PL_FLAG_VFORK_DONE) != 0);
|
|
|
|
ATF_REQUIRE(ptrace(PT_CONTINUE, fpid, (caddr_t)1, 0) != -1);
|
|
|
|
wpid = wait(&status);
|
|
ATF_REQUIRE(wpid == fpid);
|
|
ATF_REQUIRE(WIFEXITED(status));
|
|
ATF_REQUIRE(WEXITSTATUS(status) == 1);
|
|
|
|
wpid = wait(&status);
|
|
ATF_REQUIRE(wpid == -1);
|
|
ATF_REQUIRE(errno == ECHILD);
|
|
}
|
|
|
|
ATF_TC_WITHOUT_HEAD(ptrace__ptrace_vfork_follow);
|
|
ATF_TC_BODY(ptrace__ptrace_vfork_follow, tc)
|
|
{
|
|
struct ptrace_lwpinfo pl[2];
|
|
pid_t children[2], fpid, wpid;
|
|
int events, status;
|
|
|
|
ATF_REQUIRE((fpid = fork()) != -1);
|
|
if (fpid == 0) {
|
|
trace_me();
|
|
follow_fork_parent(true);
|
|
}
|
|
|
|
/* Parent process. */
|
|
children[0] = fpid;
|
|
|
|
/* The first wait() should report the stop from SIGSTOP. */
|
|
wpid = waitpid(children[0], &status, 0);
|
|
ATF_REQUIRE(wpid == children[0]);
|
|
ATF_REQUIRE(WIFSTOPPED(status));
|
|
ATF_REQUIRE(WSTOPSIG(status) == SIGSTOP);
|
|
|
|
ATF_REQUIRE(ptrace(PT_GET_EVENT_MASK, children[0], (caddr_t)&events,
|
|
sizeof(events)) == 0);
|
|
events |= PTRACE_FORK | PTRACE_VFORK;
|
|
ATF_REQUIRE(ptrace(PT_SET_EVENT_MASK, children[0], (caddr_t)&events,
|
|
sizeof(events)) == 0);
|
|
|
|
/* Continue the child ignoring the SIGSTOP. */
|
|
ATF_REQUIRE(ptrace(PT_CONTINUE, children[0], (caddr_t)1, 0) != -1);
|
|
|
|
/* Wait for both halves of the fork event to get reported. */
|
|
children[1] = handle_fork_events(children[0], pl);
|
|
ATF_REQUIRE(children[1] > 0);
|
|
|
|
ATF_REQUIRE((pl[0].pl_flags & PL_FLAG_VFORKED) != 0);
|
|
|
|
ATF_REQUIRE(ptrace(PT_CONTINUE, children[0], (caddr_t)1, 0) != -1);
|
|
ATF_REQUIRE(ptrace(PT_CONTINUE, children[1], (caddr_t)1, 0) != -1);
|
|
|
|
/*
|
|
* The child can't exit until the grandchild reports status, so the
|
|
* grandchild should report its exit first to the debugger.
|
|
*/
|
|
wpid = waitpid(children[1], &status, 0);
|
|
ATF_REQUIRE(wpid == children[1]);
|
|
ATF_REQUIRE(WIFEXITED(status));
|
|
ATF_REQUIRE(WEXITSTATUS(status) == 2);
|
|
|
|
/*
|
|
* The child should report it's vfork() completion before it
|
|
* exits.
|
|
*/
|
|
wpid = wait(&status);
|
|
ATF_REQUIRE(wpid == children[0]);
|
|
ATF_REQUIRE(WIFSTOPPED(status));
|
|
ATF_REQUIRE(WSTOPSIG(status) == SIGTRAP);
|
|
ATF_REQUIRE(ptrace(PT_LWPINFO, wpid, (caddr_t)&pl[0], sizeof(pl[0])) !=
|
|
-1);
|
|
ATF_REQUIRE((pl[0].pl_flags & PL_FLAG_VFORK_DONE) != 0);
|
|
|
|
ATF_REQUIRE(ptrace(PT_CONTINUE, children[0], (caddr_t)1, 0) != -1);
|
|
|
|
wpid = wait(&status);
|
|
ATF_REQUIRE(wpid == children[0]);
|
|
ATF_REQUIRE(WIFEXITED(status));
|
|
ATF_REQUIRE(WEXITSTATUS(status) == 1);
|
|
|
|
wpid = wait(&status);
|
|
ATF_REQUIRE(wpid == -1);
|
|
ATF_REQUIRE(errno == ECHILD);
|
|
}
|
|
|
|
/*
|
|
* XXX: There's nothing inherently platform specific about this test, however a
|
|
* userspace visible breakpoint() is a prerequisite.
|
|
*/
|
|
#if defined(__amd64__) || defined(__i386__) || defined(__sparc64__)
|
|
/*
|
|
* Verify that no more events are reported after PT_KILL except for the
|
|
* process exit when stopped due to a breakpoint trap.
|
|
*/
|
|
ATF_TC_WITHOUT_HEAD(ptrace__PT_KILL_breakpoint);
|
|
ATF_TC_BODY(ptrace__PT_KILL_breakpoint, tc)
|
|
{
|
|
pid_t fpid, wpid;
|
|
int status;
|
|
|
|
ATF_REQUIRE((fpid = fork()) != -1);
|
|
if (fpid == 0) {
|
|
trace_me();
|
|
breakpoint();
|
|
exit(1);
|
|
}
|
|
|
|
/* The first wait() should report the stop from SIGSTOP. */
|
|
wpid = waitpid(fpid, &status, 0);
|
|
ATF_REQUIRE(wpid == fpid);
|
|
ATF_REQUIRE(WIFSTOPPED(status));
|
|
ATF_REQUIRE(WSTOPSIG(status) == SIGSTOP);
|
|
|
|
/* Continue the child ignoring the SIGSTOP. */
|
|
ATF_REQUIRE(ptrace(PT_CONTINUE, fpid, (caddr_t)1, 0) == 0);
|
|
|
|
/* The second wait() should report hitting the breakpoint. */
|
|
wpid = waitpid(fpid, &status, 0);
|
|
ATF_REQUIRE(wpid == fpid);
|
|
ATF_REQUIRE(WIFSTOPPED(status));
|
|
ATF_REQUIRE(WSTOPSIG(status) == SIGTRAP);
|
|
|
|
/* Kill the child process. */
|
|
ATF_REQUIRE(ptrace(PT_KILL, fpid, 0, 0) == 0);
|
|
|
|
/* The last wait() should report the SIGKILL. */
|
|
wpid = waitpid(fpid, &status, 0);
|
|
ATF_REQUIRE(wpid == fpid);
|
|
ATF_REQUIRE(WIFSIGNALED(status));
|
|
ATF_REQUIRE(WTERMSIG(status) == SIGKILL);
|
|
|
|
wpid = wait(&status);
|
|
ATF_REQUIRE(wpid == -1);
|
|
ATF_REQUIRE(errno == ECHILD);
|
|
}
|
|
#endif /* defined(__amd64__) || defined(__i386__) || defined(__sparc64__) */
|
|
|
|
/*
|
|
* Verify that no more events are reported after PT_KILL except for the
|
|
* process exit when stopped inside of a system call.
|
|
*/
|
|
ATF_TC_WITHOUT_HEAD(ptrace__PT_KILL_system_call);
|
|
ATF_TC_BODY(ptrace__PT_KILL_system_call, tc)
|
|
{
|
|
struct ptrace_lwpinfo pl;
|
|
pid_t fpid, wpid;
|
|
int status;
|
|
|
|
ATF_REQUIRE((fpid = fork()) != -1);
|
|
if (fpid == 0) {
|
|
trace_me();
|
|
getpid();
|
|
exit(1);
|
|
}
|
|
|
|
/* The first wait() should report the stop from SIGSTOP. */
|
|
wpid = waitpid(fpid, &status, 0);
|
|
ATF_REQUIRE(wpid == fpid);
|
|
ATF_REQUIRE(WIFSTOPPED(status));
|
|
ATF_REQUIRE(WSTOPSIG(status) == SIGSTOP);
|
|
|
|
/* Continue the child ignoring the SIGSTOP and tracing system calls. */
|
|
ATF_REQUIRE(ptrace(PT_SYSCALL, fpid, (caddr_t)1, 0) == 0);
|
|
|
|
/* The second wait() should report a system call entry for getpid(). */
|
|
wpid = waitpid(fpid, &status, 0);
|
|
ATF_REQUIRE(wpid == fpid);
|
|
ATF_REQUIRE(WIFSTOPPED(status));
|
|
ATF_REQUIRE(WSTOPSIG(status) == SIGTRAP);
|
|
|
|
ATF_REQUIRE(ptrace(PT_LWPINFO, wpid, (caddr_t)&pl, sizeof(pl)) != -1);
|
|
ATF_REQUIRE(pl.pl_flags & PL_FLAG_SCE);
|
|
|
|
/* Kill the child process. */
|
|
ATF_REQUIRE(ptrace(PT_KILL, fpid, 0, 0) == 0);
|
|
|
|
/* The last wait() should report the SIGKILL. */
|
|
wpid = waitpid(fpid, &status, 0);
|
|
ATF_REQUIRE(wpid == fpid);
|
|
ATF_REQUIRE(WIFSIGNALED(status));
|
|
ATF_REQUIRE(WTERMSIG(status) == SIGKILL);
|
|
|
|
wpid = wait(&status);
|
|
ATF_REQUIRE(wpid == -1);
|
|
ATF_REQUIRE(errno == ECHILD);
|
|
}
|
|
|
|
/*
|
|
* Verify that no more events are reported after PT_KILL except for the
|
|
* process exit when killing a multithreaded process.
|
|
*/
|
|
ATF_TC_WITHOUT_HEAD(ptrace__PT_KILL_threads);
|
|
ATF_TC_BODY(ptrace__PT_KILL_threads, tc)
|
|
{
|
|
struct ptrace_lwpinfo pl;
|
|
pid_t fpid, wpid;
|
|
lwpid_t main_lwp;
|
|
int status;
|
|
|
|
ATF_REQUIRE((fpid = fork()) != -1);
|
|
if (fpid == 0) {
|
|
trace_me();
|
|
simple_thread_main();
|
|
}
|
|
|
|
/* The first wait() should report the stop from SIGSTOP. */
|
|
wpid = waitpid(fpid, &status, 0);
|
|
ATF_REQUIRE(wpid == fpid);
|
|
ATF_REQUIRE(WIFSTOPPED(status));
|
|
ATF_REQUIRE(WSTOPSIG(status) == SIGSTOP);
|
|
|
|
ATF_REQUIRE(ptrace(PT_LWPINFO, wpid, (caddr_t)&pl,
|
|
sizeof(pl)) != -1);
|
|
main_lwp = pl.pl_lwpid;
|
|
|
|
ATF_REQUIRE(ptrace(PT_LWP_EVENTS, wpid, NULL, 1) == 0);
|
|
|
|
/* Continue the child ignoring the SIGSTOP. */
|
|
ATF_REQUIRE(ptrace(PT_CONTINUE, fpid, (caddr_t)1, 0) == 0);
|
|
|
|
/* The first event should be for the child thread's birth. */
|
|
wpid = waitpid(fpid, &status, 0);
|
|
ATF_REQUIRE(wpid == fpid);
|
|
ATF_REQUIRE(WIFSTOPPED(status));
|
|
ATF_REQUIRE(WSTOPSIG(status) == SIGTRAP);
|
|
|
|
ATF_REQUIRE(ptrace(PT_LWPINFO, wpid, (caddr_t)&pl, sizeof(pl)) != -1);
|
|
ATF_REQUIRE((pl.pl_flags & (PL_FLAG_BORN | PL_FLAG_SCX)) ==
|
|
(PL_FLAG_BORN | PL_FLAG_SCX));
|
|
ATF_REQUIRE(pl.pl_lwpid != main_lwp);
|
|
|
|
/* Kill the child process. */
|
|
ATF_REQUIRE(ptrace(PT_KILL, fpid, 0, 0) == 0);
|
|
|
|
/* The last wait() should report the SIGKILL. */
|
|
wpid = waitpid(fpid, &status, 0);
|
|
ATF_REQUIRE(wpid == fpid);
|
|
ATF_REQUIRE(WIFSIGNALED(status));
|
|
ATF_REQUIRE(WTERMSIG(status) == SIGKILL);
|
|
|
|
wpid = wait(&status);
|
|
ATF_REQUIRE(wpid == -1);
|
|
ATF_REQUIRE(errno == ECHILD);
|
|
}
|
|
|
|
static void *
|
|
mask_usr1_thread(void *arg)
|
|
{
|
|
pthread_barrier_t *pbarrier;
|
|
sigset_t sigmask;
|
|
|
|
pbarrier = (pthread_barrier_t*)arg;
|
|
|
|
sigemptyset(&sigmask);
|
|
sigaddset(&sigmask, SIGUSR1);
|
|
CHILD_REQUIRE(pthread_sigmask(SIG_BLOCK, &sigmask, NULL) == 0);
|
|
|
|
/* Sync up with other thread after sigmask updated. */
|
|
pthread_barrier_wait(pbarrier);
|
|
|
|
for (;;)
|
|
sleep(60);
|
|
|
|
return (NULL);
|
|
}
|
|
|
|
/*
|
|
* Verify that the SIGKILL from PT_KILL takes priority over other signals
|
|
* and prevents spurious stops due to those other signals.
|
|
*/
|
|
ATF_TC(ptrace__PT_KILL_competing_signal);
|
|
ATF_TC_HEAD(ptrace__PT_KILL_competing_signal, tc)
|
|
{
|
|
|
|
atf_tc_set_md_var(tc, "require.user", "root");
|
|
}
|
|
ATF_TC_BODY(ptrace__PT_KILL_competing_signal, tc)
|
|
{
|
|
pid_t fpid, wpid;
|
|
int status;
|
|
cpuset_t setmask;
|
|
pthread_t t;
|
|
pthread_barrier_t barrier;
|
|
struct sched_param sched_param;
|
|
|
|
ATF_REQUIRE((fpid = fork()) != -1);
|
|
if (fpid == 0) {
|
|
/* Bind to one CPU so only one thread at a time will run. */
|
|
CPU_ZERO(&setmask);
|
|
CPU_SET(0, &setmask);
|
|
cpusetid_t setid;
|
|
CHILD_REQUIRE(cpuset(&setid) == 0);
|
|
CHILD_REQUIRE(cpuset_setaffinity(CPU_LEVEL_CPUSET,
|
|
CPU_WHICH_CPUSET, setid, sizeof(setmask), &setmask) == 0);
|
|
|
|
CHILD_REQUIRE(pthread_barrier_init(&barrier, NULL, 2) == 0);
|
|
|
|
CHILD_REQUIRE(pthread_create(&t, NULL, mask_usr1_thread,
|
|
(void*)&barrier) == 0);
|
|
|
|
/*
|
|
* Give the main thread higher priority. The test always
|
|
* assumes that, if both threads are able to run, the main
|
|
* thread runs first.
|
|
*/
|
|
sched_param.sched_priority =
|
|
(sched_get_priority_max(SCHED_FIFO) +
|
|
sched_get_priority_min(SCHED_FIFO)) / 2;
|
|
CHILD_REQUIRE(pthread_setschedparam(pthread_self(),
|
|
SCHED_FIFO, &sched_param) == 0);
|
|
sched_param.sched_priority -= RQ_PPQ;
|
|
CHILD_REQUIRE(pthread_setschedparam(t, SCHED_FIFO,
|
|
&sched_param) == 0);
|
|
|
|
sigset_t sigmask;
|
|
sigemptyset(&sigmask);
|
|
sigaddset(&sigmask, SIGUSR2);
|
|
CHILD_REQUIRE(pthread_sigmask(SIG_BLOCK, &sigmask, NULL) == 0);
|
|
|
|
/* Sync up with other thread after sigmask updated. */
|
|
pthread_barrier_wait(&barrier);
|
|
|
|
trace_me();
|
|
|
|
for (;;)
|
|
sleep(60);
|
|
|
|
exit(1);
|
|
}
|
|
|
|
/* The first wait() should report the stop from SIGSTOP. */
|
|
wpid = waitpid(fpid, &status, 0);
|
|
ATF_REQUIRE(wpid == fpid);
|
|
ATF_REQUIRE(WIFSTOPPED(status));
|
|
ATF_REQUIRE(WSTOPSIG(status) == SIGSTOP);
|
|
|
|
/* Continue the child ignoring the SIGSTOP. */
|
|
ATF_REQUIRE(ptrace(PT_CONTINUE, fpid, (caddr_t)1, 0) == 0);
|
|
|
|
/* Send a signal that only the second thread can handle. */
|
|
ATF_REQUIRE(kill(fpid, SIGUSR2) == 0);
|
|
|
|
/* The second wait() should report the SIGUSR2. */
|
|
wpid = waitpid(fpid, &status, 0);
|
|
ATF_REQUIRE(wpid == fpid);
|
|
ATF_REQUIRE(WIFSTOPPED(status));
|
|
ATF_REQUIRE(WSTOPSIG(status) == SIGUSR2);
|
|
|
|
/* Send a signal that only the first thread can handle. */
|
|
ATF_REQUIRE(kill(fpid, SIGUSR1) == 0);
|
|
|
|
/* Replace the SIGUSR2 with a kill. */
|
|
ATF_REQUIRE(ptrace(PT_KILL, fpid, 0, 0) == 0);
|
|
|
|
/* The last wait() should report the SIGKILL (not the SIGUSR signal). */
|
|
wpid = waitpid(fpid, &status, 0);
|
|
ATF_REQUIRE(wpid == fpid);
|
|
ATF_REQUIRE(WIFSIGNALED(status));
|
|
ATF_REQUIRE(WTERMSIG(status) == SIGKILL);
|
|
|
|
wpid = wait(&status);
|
|
ATF_REQUIRE(wpid == -1);
|
|
ATF_REQUIRE(errno == ECHILD);
|
|
}
|
|
|
|
/*
|
|
* Verify that the SIGKILL from PT_KILL takes priority over other stop events
|
|
* and prevents spurious stops caused by those events.
|
|
*/
|
|
ATF_TC(ptrace__PT_KILL_competing_stop);
|
|
ATF_TC_HEAD(ptrace__PT_KILL_competing_stop, tc)
|
|
{
|
|
|
|
atf_tc_set_md_var(tc, "require.user", "root");
|
|
}
|
|
ATF_TC_BODY(ptrace__PT_KILL_competing_stop, tc)
|
|
{
|
|
pid_t fpid, wpid;
|
|
int status;
|
|
cpuset_t setmask;
|
|
pthread_t t;
|
|
pthread_barrier_t barrier;
|
|
lwpid_t main_lwp;
|
|
struct ptrace_lwpinfo pl;
|
|
struct sched_param sched_param;
|
|
|
|
ATF_REQUIRE((fpid = fork()) != -1);
|
|
if (fpid == 0) {
|
|
trace_me();
|
|
|
|
/* Bind to one CPU so only one thread at a time will run. */
|
|
CPU_ZERO(&setmask);
|
|
CPU_SET(0, &setmask);
|
|
cpusetid_t setid;
|
|
CHILD_REQUIRE(cpuset(&setid) == 0);
|
|
CHILD_REQUIRE(cpuset_setaffinity(CPU_LEVEL_CPUSET,
|
|
CPU_WHICH_CPUSET, setid, sizeof(setmask), &setmask) == 0);
|
|
|
|
CHILD_REQUIRE(pthread_barrier_init(&barrier, NULL, 2) == 0);
|
|
|
|
CHILD_REQUIRE(pthread_create(&t, NULL, mask_usr1_thread,
|
|
(void*)&barrier) == 0);
|
|
|
|
/*
|
|
* Give the main thread higher priority. The test always
|
|
* assumes that, if both threads are able to run, the main
|
|
* thread runs first.
|
|
*/
|
|
sched_param.sched_priority =
|
|
(sched_get_priority_max(SCHED_FIFO) +
|
|
sched_get_priority_min(SCHED_FIFO)) / 2;
|
|
CHILD_REQUIRE(pthread_setschedparam(pthread_self(),
|
|
SCHED_FIFO, &sched_param) == 0);
|
|
sched_param.sched_priority -= RQ_PPQ;
|
|
CHILD_REQUIRE(pthread_setschedparam(t, SCHED_FIFO,
|
|
&sched_param) == 0);
|
|
|
|
sigset_t sigmask;
|
|
sigemptyset(&sigmask);
|
|
sigaddset(&sigmask, SIGUSR2);
|
|
CHILD_REQUIRE(pthread_sigmask(SIG_BLOCK, &sigmask, NULL) == 0);
|
|
|
|
/* Sync up with other thread after sigmask updated. */
|
|
pthread_barrier_wait(&barrier);
|
|
|
|
/* Sync up with the test before doing the getpid(). */
|
|
raise(SIGSTOP);
|
|
|
|
getpid();
|
|
exit(1);
|
|
}
|
|
|
|
/* The first wait() should report the stop from SIGSTOP. */
|
|
wpid = waitpid(fpid, &status, 0);
|
|
ATF_REQUIRE(wpid == fpid);
|
|
ATF_REQUIRE(WIFSTOPPED(status));
|
|
ATF_REQUIRE(WSTOPSIG(status) == SIGSTOP);
|
|
|
|
ATF_REQUIRE(ptrace(PT_LWPINFO, wpid, (caddr_t)&pl, sizeof(pl)) != -1);
|
|
main_lwp = pl.pl_lwpid;
|
|
|
|
/* Continue the child ignoring the SIGSTOP and tracing system calls. */
|
|
ATF_REQUIRE(ptrace(PT_SYSCALL, fpid, (caddr_t)1, 0) == 0);
|
|
|
|
/*
|
|
* Continue until child is done with setup, which is indicated with
|
|
* SIGSTOP. Ignore system calls in the meantime.
|
|
*/
|
|
for (;;) {
|
|
wpid = waitpid(fpid, &status, 0);
|
|
ATF_REQUIRE(wpid == fpid);
|
|
ATF_REQUIRE(WIFSTOPPED(status));
|
|
if (WSTOPSIG(status) == SIGTRAP) {
|
|
ATF_REQUIRE(ptrace(PT_LWPINFO, wpid, (caddr_t)&pl,
|
|
sizeof(pl)) != -1);
|
|
ATF_REQUIRE(pl.pl_flags & (PL_FLAG_SCE | PL_FLAG_SCX));
|
|
} else {
|
|
ATF_REQUIRE(WSTOPSIG(status) == SIGSTOP);
|
|
break;
|
|
}
|
|
ATF_REQUIRE(ptrace(PT_SYSCALL, fpid, (caddr_t)1, 0) == 0);
|
|
}
|
|
|
|
/* Proceed, allowing main thread to hit syscall entry for getpid(). */
|
|
ATF_REQUIRE(ptrace(PT_SYSCALL, fpid, (caddr_t)1, 0) == 0);
|
|
|
|
wpid = waitpid(fpid, &status, 0);
|
|
ATF_REQUIRE(wpid == fpid);
|
|
ATF_REQUIRE(WIFSTOPPED(status));
|
|
ATF_REQUIRE(WSTOPSIG(status) == SIGTRAP);
|
|
|
|
ATF_REQUIRE(ptrace(PT_LWPINFO, wpid, (caddr_t)&pl,
|
|
sizeof(pl)) != -1);
|
|
ATF_REQUIRE(pl.pl_lwpid == main_lwp);
|
|
ATF_REQUIRE(pl.pl_flags & PL_FLAG_SCE);
|
|
/* Prevent the main thread from hitting its syscall exit for now. */
|
|
ATF_REQUIRE(ptrace(PT_SUSPEND, main_lwp, 0, 0) == 0);
|
|
|
|
/*
|
|
* Proceed, allowing second thread to hit syscall exit for
|
|
* pthread_barrier_wait().
|
|
*/
|
|
ATF_REQUIRE(ptrace(PT_SYSCALL, fpid, (caddr_t)1, 0) == 0);
|
|
|
|
wpid = waitpid(fpid, &status, 0);
|
|
ATF_REQUIRE(wpid == fpid);
|
|
ATF_REQUIRE(WIFSTOPPED(status));
|
|
ATF_REQUIRE(WSTOPSIG(status) == SIGTRAP);
|
|
|
|
ATF_REQUIRE(ptrace(PT_LWPINFO, wpid, (caddr_t)&pl,
|
|
sizeof(pl)) != -1);
|
|
ATF_REQUIRE(pl.pl_lwpid != main_lwp);
|
|
ATF_REQUIRE(pl.pl_flags & PL_FLAG_SCX);
|
|
|
|
/* Send a signal that only the second thread can handle. */
|
|
ATF_REQUIRE(kill(fpid, SIGUSR2) == 0);
|
|
|
|
ATF_REQUIRE(ptrace(PT_SYSCALL, fpid, (caddr_t)1, 0) == 0);
|
|
|
|
/* The next wait() should report the SIGUSR2. */
|
|
wpid = waitpid(fpid, &status, 0);
|
|
ATF_REQUIRE(wpid == fpid);
|
|
ATF_REQUIRE(WIFSTOPPED(status));
|
|
ATF_REQUIRE(WSTOPSIG(status) == SIGUSR2);
|
|
|
|
/* Allow the main thread to try to finish its system call. */
|
|
ATF_REQUIRE(ptrace(PT_RESUME, main_lwp, 0, 0) == 0);
|
|
|
|
/*
|
|
* At this point, the main thread is in the middle of a system call and
|
|
* has been resumed. The second thread has taken a SIGUSR2 which will
|
|
* be replaced with a SIGKILL below. The main thread will get to run
|
|
* first. It should notice the kill request (even though the signal
|
|
* replacement occurred in the other thread) and exit accordingly. It
|
|
* should not stop for the system call exit event.
|
|
*/
|
|
|
|
/* Replace the SIGUSR2 with a kill. */
|
|
ATF_REQUIRE(ptrace(PT_KILL, fpid, 0, 0) == 0);
|
|
|
|
/* The last wait() should report the SIGKILL (not a syscall exit). */
|
|
wpid = waitpid(fpid, &status, 0);
|
|
ATF_REQUIRE(wpid == fpid);
|
|
ATF_REQUIRE(WIFSIGNALED(status));
|
|
ATF_REQUIRE(WTERMSIG(status) == SIGKILL);
|
|
|
|
wpid = wait(&status);
|
|
ATF_REQUIRE(wpid == -1);
|
|
ATF_REQUIRE(errno == ECHILD);
|
|
}
|
|
|
|
static void
|
|
sigusr1_handler(int sig)
|
|
{
|
|
|
|
CHILD_REQUIRE(sig == SIGUSR1);
|
|
_exit(2);
|
|
}
|
|
|
|
/*
|
|
* Verify that even if the signal queue is full for a child process,
|
|
* a PT_KILL will kill the process.
|
|
*/
|
|
ATF_TC_WITHOUT_HEAD(ptrace__PT_KILL_with_signal_full_sigqueue);
|
|
ATF_TC_BODY(ptrace__PT_KILL_with_signal_full_sigqueue, tc)
|
|
{
|
|
pid_t fpid, wpid;
|
|
int status;
|
|
int max_pending_per_proc;
|
|
size_t len;
|
|
int i;
|
|
|
|
ATF_REQUIRE(signal(SIGUSR1, sigusr1_handler) != SIG_ERR);
|
|
|
|
ATF_REQUIRE((fpid = fork()) != -1);
|
|
if (fpid == 0) {
|
|
trace_me();
|
|
exit(1);
|
|
}
|
|
|
|
/* The first wait() should report the stop from SIGSTOP. */
|
|
wpid = waitpid(fpid, &status, 0);
|
|
ATF_REQUIRE(wpid == fpid);
|
|
ATF_REQUIRE(WIFSTOPPED(status));
|
|
ATF_REQUIRE(WSTOPSIG(status) == SIGSTOP);
|
|
|
|
len = sizeof(max_pending_per_proc);
|
|
ATF_REQUIRE(sysctlbyname("kern.sigqueue.max_pending_per_proc",
|
|
&max_pending_per_proc, &len, NULL, 0) == 0);
|
|
|
|
/* Fill the signal queue. */
|
|
for (i = 0; i < max_pending_per_proc; ++i)
|
|
ATF_REQUIRE(kill(fpid, SIGUSR1) == 0);
|
|
|
|
/* Kill the child process. */
|
|
ATF_REQUIRE(ptrace(PT_KILL, fpid, 0, 0) == 0);
|
|
|
|
/* The last wait() should report the SIGKILL. */
|
|
wpid = waitpid(fpid, &status, 0);
|
|
ATF_REQUIRE(wpid == fpid);
|
|
ATF_REQUIRE(WIFSIGNALED(status));
|
|
ATF_REQUIRE(WTERMSIG(status) == SIGKILL);
|
|
|
|
wpid = wait(&status);
|
|
ATF_REQUIRE(wpid == -1);
|
|
ATF_REQUIRE(errno == ECHILD);
|
|
}
|
|
|
|
/*
|
|
* Verify that when stopped at a system call entry, a signal can be
|
|
* requested with PT_CONTINUE which will be delivered once the system
|
|
* call is complete.
|
|
*/
|
|
ATF_TC_WITHOUT_HEAD(ptrace__PT_CONTINUE_with_signal_system_call_entry);
|
|
ATF_TC_BODY(ptrace__PT_CONTINUE_with_signal_system_call_entry, tc)
|
|
{
|
|
struct ptrace_lwpinfo pl;
|
|
pid_t fpid, wpid;
|
|
int status;
|
|
|
|
ATF_REQUIRE(signal(SIGUSR1, sigusr1_handler) != SIG_ERR);
|
|
|
|
ATF_REQUIRE((fpid = fork()) != -1);
|
|
if (fpid == 0) {
|
|
trace_me();
|
|
getpid();
|
|
exit(1);
|
|
}
|
|
|
|
/* The first wait() should report the stop from SIGSTOP. */
|
|
wpid = waitpid(fpid, &status, 0);
|
|
ATF_REQUIRE(wpid == fpid);
|
|
ATF_REQUIRE(WIFSTOPPED(status));
|
|
ATF_REQUIRE(WSTOPSIG(status) == SIGSTOP);
|
|
|
|
/* Continue the child ignoring the SIGSTOP and tracing system calls. */
|
|
ATF_REQUIRE(ptrace(PT_SYSCALL, fpid, (caddr_t)1, 0) == 0);
|
|
|
|
/* The second wait() should report a system call entry for getpid(). */
|
|
wpid = waitpid(fpid, &status, 0);
|
|
ATF_REQUIRE(wpid == fpid);
|
|
ATF_REQUIRE(WIFSTOPPED(status));
|
|
ATF_REQUIRE(WSTOPSIG(status) == SIGTRAP);
|
|
|
|
ATF_REQUIRE(ptrace(PT_LWPINFO, wpid, (caddr_t)&pl, sizeof(pl)) != -1);
|
|
ATF_REQUIRE(pl.pl_flags & PL_FLAG_SCE);
|
|
|
|
/* Continue the child process with a signal. */
|
|
ATF_REQUIRE(ptrace(PT_CONTINUE, fpid, (caddr_t)1, SIGUSR1) == 0);
|
|
|
|
for (;;) {
|
|
/*
|
|
* The last wait() should report exit 2, i.e., a normal _exit
|
|
* from the signal handler. In the meantime, catch and proceed
|
|
* past any syscall stops.
|
|
*/
|
|
wpid = waitpid(fpid, &status, 0);
|
|
ATF_REQUIRE(wpid == fpid);
|
|
if (WIFSTOPPED(status) && WSTOPSIG(status) == SIGTRAP) {
|
|
ATF_REQUIRE(ptrace(PT_LWPINFO, wpid, (caddr_t)&pl, sizeof(pl)) != -1);
|
|
ATF_REQUIRE(pl.pl_flags & (PL_FLAG_SCE | PL_FLAG_SCX));
|
|
ATF_REQUIRE(ptrace(PT_CONTINUE, fpid, (caddr_t)1, 0) == 0);
|
|
} else {
|
|
ATF_REQUIRE(WIFEXITED(status));
|
|
ATF_REQUIRE(WEXITSTATUS(status) == 2);
|
|
break;
|
|
}
|
|
}
|
|
|
|
wpid = wait(&status);
|
|
ATF_REQUIRE(wpid == -1);
|
|
ATF_REQUIRE(errno == ECHILD);
|
|
}
|
|
|
|
static void
|
|
sigusr1_counting_handler(int sig)
|
|
{
|
|
static int counter = 0;
|
|
|
|
CHILD_REQUIRE(sig == SIGUSR1);
|
|
counter++;
|
|
if (counter == 2)
|
|
_exit(2);
|
|
}
|
|
|
|
/*
|
|
* Verify that, when continuing from a stop at system call entry and exit,
|
|
* a signal can be requested from both stops, and both will be delivered when
|
|
* the system call is complete.
|
|
*/
|
|
ATF_TC_WITHOUT_HEAD(ptrace__PT_CONTINUE_with_signal_system_call_entry_and_exit);
|
|
ATF_TC_BODY(ptrace__PT_CONTINUE_with_signal_system_call_entry_and_exit, tc)
|
|
{
|
|
struct ptrace_lwpinfo pl;
|
|
pid_t fpid, wpid;
|
|
int status;
|
|
|
|
ATF_REQUIRE(signal(SIGUSR1, sigusr1_counting_handler) != SIG_ERR);
|
|
|
|
ATF_REQUIRE((fpid = fork()) != -1);
|
|
if (fpid == 0) {
|
|
trace_me();
|
|
getpid();
|
|
exit(1);
|
|
}
|
|
|
|
/* The first wait() should report the stop from SIGSTOP. */
|
|
wpid = waitpid(fpid, &status, 0);
|
|
ATF_REQUIRE(wpid == fpid);
|
|
ATF_REQUIRE(WIFSTOPPED(status));
|
|
ATF_REQUIRE(WSTOPSIG(status) == SIGSTOP);
|
|
|
|
/* Continue the child ignoring the SIGSTOP and tracing system calls. */
|
|
ATF_REQUIRE(ptrace(PT_SYSCALL, fpid, (caddr_t)1, 0) == 0);
|
|
|
|
/* The second wait() should report a system call entry for getpid(). */
|
|
wpid = waitpid(fpid, &status, 0);
|
|
ATF_REQUIRE(wpid == fpid);
|
|
ATF_REQUIRE(WIFSTOPPED(status));
|
|
ATF_REQUIRE(WSTOPSIG(status) == SIGTRAP);
|
|
|
|
ATF_REQUIRE(ptrace(PT_LWPINFO, wpid, (caddr_t)&pl, sizeof(pl)) != -1);
|
|
ATF_REQUIRE(pl.pl_flags & PL_FLAG_SCE);
|
|
|
|
/* Continue the child process with a signal. */
|
|
ATF_REQUIRE(ptrace(PT_CONTINUE, fpid, (caddr_t)1, SIGUSR1) == 0);
|
|
|
|
/* The third wait() should report a system call exit for getpid(). */
|
|
wpid = waitpid(fpid, &status, 0);
|
|
ATF_REQUIRE(wpid == fpid);
|
|
ATF_REQUIRE(WIFSTOPPED(status));
|
|
ATF_REQUIRE(WSTOPSIG(status) == SIGTRAP);
|
|
|
|
ATF_REQUIRE(ptrace(PT_LWPINFO, wpid, (caddr_t)&pl, sizeof(pl)) != -1);
|
|
ATF_REQUIRE(pl.pl_flags & PL_FLAG_SCX);
|
|
|
|
/* Continue the child process with a signal. */
|
|
ATF_REQUIRE(ptrace(PT_CONTINUE, fpid, (caddr_t)1, SIGUSR1) == 0);
|
|
|
|
for (;;) {
|
|
/*
|
|
* The last wait() should report exit 2, i.e., a normal _exit
|
|
* from the signal handler. In the meantime, catch and proceed
|
|
* past any syscall stops.
|
|
*/
|
|
wpid = waitpid(fpid, &status, 0);
|
|
ATF_REQUIRE(wpid == fpid);
|
|
if (WIFSTOPPED(status) && WSTOPSIG(status) == SIGTRAP) {
|
|
ATF_REQUIRE(ptrace(PT_LWPINFO, wpid, (caddr_t)&pl, sizeof(pl)) != -1);
|
|
ATF_REQUIRE(pl.pl_flags & (PL_FLAG_SCE | PL_FLAG_SCX));
|
|
ATF_REQUIRE(ptrace(PT_CONTINUE, fpid, (caddr_t)1, 0) == 0);
|
|
} else {
|
|
ATF_REQUIRE(WIFEXITED(status));
|
|
ATF_REQUIRE(WEXITSTATUS(status) == 2);
|
|
break;
|
|
}
|
|
}
|
|
|
|
wpid = wait(&status);
|
|
ATF_REQUIRE(wpid == -1);
|
|
ATF_REQUIRE(errno == ECHILD);
|
|
}
|
|
|
|
/*
|
|
* Verify that even if the signal queue is full for a child process,
|
|
* a PT_CONTINUE with a signal will not result in loss of that signal.
|
|
*/
|
|
ATF_TC_WITHOUT_HEAD(ptrace__PT_CONTINUE_with_signal_full_sigqueue);
|
|
ATF_TC_BODY(ptrace__PT_CONTINUE_with_signal_full_sigqueue, tc)
|
|
{
|
|
pid_t fpid, wpid;
|
|
int status;
|
|
int max_pending_per_proc;
|
|
size_t len;
|
|
int i;
|
|
|
|
ATF_REQUIRE(signal(SIGUSR2, handler) != SIG_ERR);
|
|
ATF_REQUIRE(signal(SIGUSR1, sigusr1_handler) != SIG_ERR);
|
|
|
|
ATF_REQUIRE((fpid = fork()) != -1);
|
|
if (fpid == 0) {
|
|
trace_me();
|
|
exit(1);
|
|
}
|
|
|
|
/* The first wait() should report the stop from SIGSTOP. */
|
|
wpid = waitpid(fpid, &status, 0);
|
|
ATF_REQUIRE(wpid == fpid);
|
|
ATF_REQUIRE(WIFSTOPPED(status));
|
|
ATF_REQUIRE(WSTOPSIG(status) == SIGSTOP);
|
|
|
|
len = sizeof(max_pending_per_proc);
|
|
ATF_REQUIRE(sysctlbyname("kern.sigqueue.max_pending_per_proc",
|
|
&max_pending_per_proc, &len, NULL, 0) == 0);
|
|
|
|
/* Fill the signal queue. */
|
|
for (i = 0; i < max_pending_per_proc; ++i)
|
|
ATF_REQUIRE(kill(fpid, SIGUSR2) == 0);
|
|
|
|
/* Continue with signal. */
|
|
ATF_REQUIRE(ptrace(PT_CONTINUE, fpid, (caddr_t)1, SIGUSR1) == 0);
|
|
|
|
for (;;) {
|
|
wpid = waitpid(fpid, &status, 0);
|
|
ATF_REQUIRE(wpid == fpid);
|
|
if (WIFSTOPPED(status)) {
|
|
ATF_REQUIRE(WSTOPSIG(status) == SIGUSR2);
|
|
ATF_REQUIRE(ptrace(PT_CONTINUE, fpid, (caddr_t)1, 0) == 0);
|
|
} else {
|
|
/*
|
|
* The last wait() should report normal _exit from the
|
|
* SIGUSR1 handler.
|
|
*/
|
|
ATF_REQUIRE(WIFEXITED(status));
|
|
ATF_REQUIRE(WEXITSTATUS(status) == 2);
|
|
break;
|
|
}
|
|
}
|
|
|
|
wpid = wait(&status);
|
|
ATF_REQUIRE(wpid == -1);
|
|
ATF_REQUIRE(errno == ECHILD);
|
|
}
|
|
|
|
static sem_t sigusr1_sem;
|
|
static int got_usr1;
|
|
|
|
static void
|
|
sigusr1_sempost_handler(int sig __unused)
|
|
{
|
|
|
|
got_usr1++;
|
|
CHILD_REQUIRE(sem_post(&sigusr1_sem) == 0);
|
|
}
|
|
|
|
/*
|
|
* Verify that even if the signal queue is full for a child process,
|
|
* and the signal is masked, a PT_CONTINUE with a signal will not
|
|
* result in loss of that signal.
|
|
*/
|
|
ATF_TC_WITHOUT_HEAD(ptrace__PT_CONTINUE_with_signal_masked_full_sigqueue);
|
|
ATF_TC_BODY(ptrace__PT_CONTINUE_with_signal_masked_full_sigqueue, tc)
|
|
{
|
|
struct ptrace_lwpinfo pl;
|
|
pid_t fpid, wpid;
|
|
int status, err;
|
|
int max_pending_per_proc;
|
|
size_t len;
|
|
int i;
|
|
sigset_t sigmask;
|
|
|
|
ATF_REQUIRE(signal(SIGUSR2, handler) != SIG_ERR);
|
|
ATF_REQUIRE(sem_init(&sigusr1_sem, 0, 0) == 0);
|
|
ATF_REQUIRE(signal(SIGUSR1, sigusr1_sempost_handler) != SIG_ERR);
|
|
|
|
got_usr1 = 0;
|
|
ATF_REQUIRE((fpid = fork()) != -1);
|
|
if (fpid == 0) {
|
|
CHILD_REQUIRE(sigemptyset(&sigmask) == 0);
|
|
CHILD_REQUIRE(sigaddset(&sigmask, SIGUSR1) == 0);
|
|
CHILD_REQUIRE(sigprocmask(SIG_BLOCK, &sigmask, NULL) == 0);
|
|
|
|
trace_me();
|
|
CHILD_REQUIRE(got_usr1 == 0);
|
|
|
|
/* Allow the pending SIGUSR1 in now. */
|
|
CHILD_REQUIRE(sigprocmask(SIG_UNBLOCK, &sigmask, NULL) == 0);
|
|
/* Wait to receive the SIGUSR1. */
|
|
do {
|
|
err = sem_wait(&sigusr1_sem);
|
|
CHILD_REQUIRE(err == 0 || errno == EINTR);
|
|
} while (err != 0 && errno == EINTR);
|
|
CHILD_REQUIRE(got_usr1 == 1);
|
|
exit(1);
|
|
}
|
|
|
|
/* The first wait() should report the stop from SIGSTOP. */
|
|
wpid = waitpid(fpid, &status, 0);
|
|
ATF_REQUIRE(wpid == fpid);
|
|
ATF_REQUIRE(WIFSTOPPED(status));
|
|
ATF_REQUIRE(WSTOPSIG(status) == SIGSTOP);
|
|
|
|
len = sizeof(max_pending_per_proc);
|
|
ATF_REQUIRE(sysctlbyname("kern.sigqueue.max_pending_per_proc",
|
|
&max_pending_per_proc, &len, NULL, 0) == 0);
|
|
|
|
/* Fill the signal queue. */
|
|
for (i = 0; i < max_pending_per_proc; ++i)
|
|
ATF_REQUIRE(kill(fpid, SIGUSR2) == 0);
|
|
|
|
/* Continue with signal. */
|
|
ATF_REQUIRE(ptrace(PT_CONTINUE, fpid, (caddr_t)1, SIGUSR1) == 0);
|
|
|
|
/* Collect and ignore all of the SIGUSR2. */
|
|
for (i = 0; i < max_pending_per_proc; ++i) {
|
|
wpid = waitpid(fpid, &status, 0);
|
|
ATF_REQUIRE(wpid == fpid);
|
|
ATF_REQUIRE(WIFSTOPPED(status));
|
|
ATF_REQUIRE(WSTOPSIG(status) == SIGUSR2);
|
|
ATF_REQUIRE(ptrace(PT_CONTINUE, fpid, (caddr_t)1, 0) == 0);
|
|
}
|
|
|
|
/* Now our PT_CONTINUE'd SIGUSR1 should cause a stop after unmask. */
|
|
wpid = waitpid(fpid, &status, 0);
|
|
ATF_REQUIRE(wpid == fpid);
|
|
ATF_REQUIRE(WIFSTOPPED(status));
|
|
ATF_REQUIRE(WSTOPSIG(status) == SIGUSR1);
|
|
ATF_REQUIRE(ptrace(PT_LWPINFO, fpid, (caddr_t)&pl, sizeof(pl)) != -1);
|
|
ATF_REQUIRE(pl.pl_siginfo.si_signo == SIGUSR1);
|
|
|
|
/* Continue the child, ignoring the SIGUSR1. */
|
|
ATF_REQUIRE(ptrace(PT_CONTINUE, fpid, (caddr_t)1, 0) == 0);
|
|
|
|
/* The last wait() should report exit after receiving SIGUSR1. */
|
|
wpid = waitpid(fpid, &status, 0);
|
|
ATF_REQUIRE(wpid == fpid);
|
|
ATF_REQUIRE(WIFEXITED(status));
|
|
ATF_REQUIRE(WEXITSTATUS(status) == 1);
|
|
|
|
wpid = wait(&status);
|
|
ATF_REQUIRE(wpid == -1);
|
|
ATF_REQUIRE(errno == ECHILD);
|
|
}
|
|
|
|
/*
|
|
* Verify that, after stopping due to a signal, that signal can be
|
|
* replaced with another signal.
|
|
*/
|
|
ATF_TC_WITHOUT_HEAD(ptrace__PT_CONTINUE_change_sig);
|
|
ATF_TC_BODY(ptrace__PT_CONTINUE_change_sig, tc)
|
|
{
|
|
struct ptrace_lwpinfo pl;
|
|
pid_t fpid, wpid;
|
|
int status;
|
|
|
|
ATF_REQUIRE((fpid = fork()) != -1);
|
|
if (fpid == 0) {
|
|
trace_me();
|
|
sleep(20);
|
|
exit(1);
|
|
}
|
|
|
|
/* The first wait() should report the stop from SIGSTOP. */
|
|
wpid = waitpid(fpid, &status, 0);
|
|
ATF_REQUIRE(wpid == fpid);
|
|
ATF_REQUIRE(WIFSTOPPED(status));
|
|
ATF_REQUIRE(WSTOPSIG(status) == SIGSTOP);
|
|
|
|
ATF_REQUIRE(ptrace(PT_CONTINUE, fpid, (caddr_t)1, 0) == 0);
|
|
|
|
/* Send a signal without ptrace. */
|
|
ATF_REQUIRE(kill(fpid, SIGINT) == 0);
|
|
|
|
/* The second wait() should report a SIGINT was received. */
|
|
wpid = waitpid(fpid, &status, 0);
|
|
ATF_REQUIRE(wpid == fpid);
|
|
ATF_REQUIRE(WIFSTOPPED(status));
|
|
ATF_REQUIRE(WSTOPSIG(status) == SIGINT);
|
|
|
|
ATF_REQUIRE(ptrace(PT_LWPINFO, wpid, (caddr_t)&pl, sizeof(pl)) != -1);
|
|
ATF_REQUIRE(pl.pl_flags & PL_FLAG_SI);
|
|
ATF_REQUIRE(pl.pl_siginfo.si_signo == SIGINT);
|
|
|
|
/* Continue the child process with a different signal. */
|
|
ATF_REQUIRE(ptrace(PT_CONTINUE, fpid, (caddr_t)1, SIGTERM) == 0);
|
|
|
|
/*
|
|
* The last wait() should report having died due to the new
|
|
* signal, SIGTERM.
|
|
*/
|
|
wpid = waitpid(fpid, &status, 0);
|
|
ATF_REQUIRE(wpid == fpid);
|
|
ATF_REQUIRE(WIFSIGNALED(status));
|
|
ATF_REQUIRE(WTERMSIG(status) == SIGTERM);
|
|
|
|
wpid = wait(&status);
|
|
ATF_REQUIRE(wpid == -1);
|
|
ATF_REQUIRE(errno == ECHILD);
|
|
}
|
|
|
|
/*
|
|
* Verify that a signal can be passed through to the child even when there
|
|
* was no true signal originally. Such cases arise when a SIGTRAP is
|
|
* invented for e.g, system call stops.
|
|
*/
|
|
ATF_TC_WITHOUT_HEAD(ptrace__PT_CONTINUE_with_sigtrap_system_call_entry);
|
|
ATF_TC_BODY(ptrace__PT_CONTINUE_with_sigtrap_system_call_entry, tc)
|
|
{
|
|
struct ptrace_lwpinfo pl;
|
|
struct rlimit rl;
|
|
pid_t fpid, wpid;
|
|
int status;
|
|
|
|
ATF_REQUIRE((fpid = fork()) != -1);
|
|
if (fpid == 0) {
|
|
trace_me();
|
|
/* SIGTRAP expected to cause exit on syscall entry. */
|
|
rl.rlim_cur = rl.rlim_max = 0;
|
|
ATF_REQUIRE(setrlimit(RLIMIT_CORE, &rl) == 0);
|
|
getpid();
|
|
exit(1);
|
|
}
|
|
|
|
/* The first wait() should report the stop from SIGSTOP. */
|
|
wpid = waitpid(fpid, &status, 0);
|
|
ATF_REQUIRE(wpid == fpid);
|
|
ATF_REQUIRE(WIFSTOPPED(status));
|
|
ATF_REQUIRE(WSTOPSIG(status) == SIGSTOP);
|
|
|
|
/* Continue the child ignoring the SIGSTOP and tracing system calls. */
|
|
ATF_REQUIRE(ptrace(PT_SYSCALL, fpid, (caddr_t)1, 0) == 0);
|
|
|
|
/* The second wait() should report a system call entry for getpid(). */
|
|
wpid = waitpid(fpid, &status, 0);
|
|
ATF_REQUIRE(wpid == fpid);
|
|
ATF_REQUIRE(WIFSTOPPED(status));
|
|
ATF_REQUIRE(WSTOPSIG(status) == SIGTRAP);
|
|
|
|
ATF_REQUIRE(ptrace(PT_LWPINFO, wpid, (caddr_t)&pl, sizeof(pl)) != -1);
|
|
ATF_REQUIRE(pl.pl_flags & PL_FLAG_SCE);
|
|
|
|
/* Continue the child process with a SIGTRAP. */
|
|
ATF_REQUIRE(ptrace(PT_CONTINUE, fpid, (caddr_t)1, SIGTRAP) == 0);
|
|
|
|
for (;;) {
|
|
/*
|
|
* The last wait() should report exit due to SIGTRAP. In the
|
|
* meantime, catch and proceed past any syscall stops.
|
|
*/
|
|
wpid = waitpid(fpid, &status, 0);
|
|
ATF_REQUIRE(wpid == fpid);
|
|
if (WIFSTOPPED(status) && WSTOPSIG(status) == SIGTRAP) {
|
|
ATF_REQUIRE(ptrace(PT_LWPINFO, wpid, (caddr_t)&pl, sizeof(pl)) != -1);
|
|
ATF_REQUIRE(pl.pl_flags & (PL_FLAG_SCE | PL_FLAG_SCX));
|
|
ATF_REQUIRE(ptrace(PT_CONTINUE, fpid, (caddr_t)1, 0) == 0);
|
|
} else {
|
|
ATF_REQUIRE(WIFSIGNALED(status));
|
|
ATF_REQUIRE(WTERMSIG(status) == SIGTRAP);
|
|
break;
|
|
}
|
|
}
|
|
|
|
wpid = wait(&status);
|
|
ATF_REQUIRE(wpid == -1);
|
|
ATF_REQUIRE(errno == ECHILD);
|
|
|
|
}
|
|
|
|
/*
|
|
* A mixed bag PT_CONTINUE with signal test.
|
|
*/
|
|
ATF_TC_WITHOUT_HEAD(ptrace__PT_CONTINUE_with_signal_mix);
|
|
ATF_TC_BODY(ptrace__PT_CONTINUE_with_signal_mix, tc)
|
|
{
|
|
struct ptrace_lwpinfo pl;
|
|
pid_t fpid, wpid;
|
|
int status;
|
|
|
|
ATF_REQUIRE(signal(SIGUSR1, sigusr1_counting_handler) != SIG_ERR);
|
|
|
|
ATF_REQUIRE((fpid = fork()) != -1);
|
|
if (fpid == 0) {
|
|
trace_me();
|
|
getpid();
|
|
exit(1);
|
|
}
|
|
|
|
/* The first wait() should report the stop from SIGSTOP. */
|
|
wpid = waitpid(fpid, &status, 0);
|
|
ATF_REQUIRE(wpid == fpid);
|
|
ATF_REQUIRE(WIFSTOPPED(status));
|
|
ATF_REQUIRE(WSTOPSIG(status) == SIGSTOP);
|
|
|
|
/* Continue the child ignoring the SIGSTOP and tracing system calls. */
|
|
ATF_REQUIRE(ptrace(PT_SYSCALL, fpid, (caddr_t)1, 0) == 0);
|
|
|
|
/* The second wait() should report a system call entry for getpid(). */
|
|
wpid = waitpid(fpid, &status, 0);
|
|
ATF_REQUIRE(wpid == fpid);
|
|
ATF_REQUIRE(WIFSTOPPED(status));
|
|
ATF_REQUIRE(WSTOPSIG(status) == SIGTRAP);
|
|
|
|
ATF_REQUIRE(ptrace(PT_LWPINFO, wpid, (caddr_t)&pl, sizeof(pl)) != -1);
|
|
ATF_REQUIRE(pl.pl_flags & PL_FLAG_SCE);
|
|
|
|
/* Continue with the first SIGUSR1. */
|
|
ATF_REQUIRE(ptrace(PT_CONTINUE, fpid, (caddr_t)1, SIGUSR1) == 0);
|
|
|
|
/* The next wait() should report a system call exit for getpid(). */
|
|
wpid = waitpid(fpid, &status, 0);
|
|
ATF_REQUIRE(wpid == fpid);
|
|
ATF_REQUIRE(WIFSTOPPED(status));
|
|
ATF_REQUIRE(WSTOPSIG(status) == SIGTRAP);
|
|
|
|
ATF_REQUIRE(ptrace(PT_LWPINFO, wpid, (caddr_t)&pl, sizeof(pl)) != -1);
|
|
ATF_REQUIRE(pl.pl_flags & PL_FLAG_SCX);
|
|
|
|
/* Send an ABRT without ptrace. */
|
|
ATF_REQUIRE(kill(fpid, SIGABRT) == 0);
|
|
|
|
/* Continue normally. */
|
|
ATF_REQUIRE(ptrace(PT_CONTINUE, fpid, (caddr_t)1, 0) == 0);
|
|
|
|
/* The next wait() should report the SIGABRT. */
|
|
wpid = waitpid(fpid, &status, 0);
|
|
ATF_REQUIRE(wpid == fpid);
|
|
ATF_REQUIRE(WIFSTOPPED(status));
|
|
ATF_REQUIRE(WSTOPSIG(status) == SIGABRT);
|
|
|
|
ATF_REQUIRE(ptrace(PT_LWPINFO, wpid, (caddr_t)&pl, sizeof(pl)) != -1);
|
|
ATF_REQUIRE(pl.pl_flags & PL_FLAG_SI);
|
|
ATF_REQUIRE(pl.pl_siginfo.si_signo == SIGABRT);
|
|
|
|
/* Continue, replacing the SIGABRT with another SIGUSR1. */
|
|
ATF_REQUIRE(ptrace(PT_CONTINUE, fpid, (caddr_t)1, SIGUSR1) == 0);
|
|
|
|
for (;;) {
|
|
/*
|
|
* The last wait() should report exit 2, i.e., a normal _exit
|
|
* from the signal handler. In the meantime, catch and proceed
|
|
* past any syscall stops.
|
|
*/
|
|
wpid = waitpid(fpid, &status, 0);
|
|
ATF_REQUIRE(wpid == fpid);
|
|
if (WIFSTOPPED(status) && WSTOPSIG(status) == SIGTRAP) {
|
|
ATF_REQUIRE(ptrace(PT_LWPINFO, wpid, (caddr_t)&pl, sizeof(pl)) != -1);
|
|
ATF_REQUIRE(pl.pl_flags & (PL_FLAG_SCE | PL_FLAG_SCX));
|
|
ATF_REQUIRE(ptrace(PT_CONTINUE, fpid, (caddr_t)1, 0) == 0);
|
|
} else {
|
|
ATF_REQUIRE(WIFEXITED(status));
|
|
ATF_REQUIRE(WEXITSTATUS(status) == 2);
|
|
break;
|
|
}
|
|
}
|
|
|
|
wpid = wait(&status);
|
|
ATF_REQUIRE(wpid == -1);
|
|
ATF_REQUIRE(errno == ECHILD);
|
|
|
|
}
|
|
|
|
/*
|
|
* Verify a signal delivered by ptrace is noticed by kevent(2).
|
|
*/
|
|
ATF_TC_WITHOUT_HEAD(ptrace__PT_CONTINUE_with_signal_kqueue);
|
|
ATF_TC_BODY(ptrace__PT_CONTINUE_with_signal_kqueue, tc)
|
|
{
|
|
pid_t fpid, wpid;
|
|
int status, kq, nevents;
|
|
struct kevent kev;
|
|
|
|
ATF_REQUIRE(signal(SIGUSR1, SIG_IGN) != SIG_ERR);
|
|
|
|
ATF_REQUIRE((fpid = fork()) != -1);
|
|
if (fpid == 0) {
|
|
CHILD_REQUIRE((kq = kqueue()) > 0);
|
|
EV_SET(&kev, SIGUSR1, EVFILT_SIGNAL, EV_ADD, 0, 0, 0);
|
|
CHILD_REQUIRE(kevent(kq, &kev, 1, NULL, 0, NULL) == 0);
|
|
|
|
trace_me();
|
|
|
|
for (;;) {
|
|
nevents = kevent(kq, NULL, 0, &kev, 1, NULL);
|
|
if (nevents == -1 && errno == EINTR)
|
|
continue;
|
|
CHILD_REQUIRE(nevents > 0);
|
|
CHILD_REQUIRE(kev.filter == EVFILT_SIGNAL);
|
|
CHILD_REQUIRE(kev.ident == SIGUSR1);
|
|
break;
|
|
}
|
|
|
|
exit(1);
|
|
}
|
|
|
|
/* The first wait() should report the stop from SIGSTOP. */
|
|
wpid = waitpid(fpid, &status, 0);
|
|
ATF_REQUIRE(wpid == fpid);
|
|
ATF_REQUIRE(WIFSTOPPED(status));
|
|
ATF_REQUIRE(WSTOPSIG(status) == SIGSTOP);
|
|
|
|
/* Continue with the SIGUSR1. */
|
|
ATF_REQUIRE(ptrace(PT_CONTINUE, fpid, (caddr_t)1, SIGUSR1) == 0);
|
|
|
|
/*
|
|
* The last wait() should report normal exit with code 1.
|
|
*/
|
|
wpid = waitpid(fpid, &status, 0);
|
|
ATF_REQUIRE(wpid == fpid);
|
|
ATF_REQUIRE(WIFEXITED(status));
|
|
ATF_REQUIRE(WEXITSTATUS(status) == 1);
|
|
|
|
wpid = wait(&status);
|
|
ATF_REQUIRE(wpid == -1);
|
|
ATF_REQUIRE(errno == ECHILD);
|
|
}
|
|
|
|
static void *
|
|
signal_thread(void *arg)
|
|
{
|
|
int err;
|
|
sigset_t sigmask;
|
|
|
|
pthread_barrier_t *pbarrier = (pthread_barrier_t*)arg;
|
|
|
|
/* Wait for this thread to receive a SIGUSR1. */
|
|
do {
|
|
err = sem_wait(&sigusr1_sem);
|
|
CHILD_REQUIRE(err == 0 || errno == EINTR);
|
|
} while (err != 0 && errno == EINTR);
|
|
|
|
/* Free our companion thread from the barrier. */
|
|
pthread_barrier_wait(pbarrier);
|
|
|
|
/*
|
|
* Swap ignore duties; the next SIGUSR1 should go to the
|
|
* other thread.
|
|
*/
|
|
CHILD_REQUIRE(sigemptyset(&sigmask) == 0);
|
|
CHILD_REQUIRE(sigaddset(&sigmask, SIGUSR1) == 0);
|
|
CHILD_REQUIRE(pthread_sigmask(SIG_BLOCK, &sigmask, NULL) == 0);
|
|
|
|
/* Sync up threads after swapping signal masks. */
|
|
pthread_barrier_wait(pbarrier);
|
|
|
|
/* Wait until our companion has received its SIGUSR1. */
|
|
pthread_barrier_wait(pbarrier);
|
|
|
|
return (NULL);
|
|
}
|
|
|
|
/*
|
|
* Verify that a traced process with blocked signal received the
|
|
* signal from kill() once unmasked.
|
|
*/
|
|
ATF_TC_WITHOUT_HEAD(ptrace__killed_with_sigmask);
|
|
ATF_TC_BODY(ptrace__killed_with_sigmask, tc)
|
|
{
|
|
struct ptrace_lwpinfo pl;
|
|
pid_t fpid, wpid;
|
|
int status, err;
|
|
sigset_t sigmask;
|
|
|
|
ATF_REQUIRE(sem_init(&sigusr1_sem, 0, 0) == 0);
|
|
ATF_REQUIRE(signal(SIGUSR1, sigusr1_sempost_handler) != SIG_ERR);
|
|
got_usr1 = 0;
|
|
|
|
ATF_REQUIRE((fpid = fork()) != -1);
|
|
if (fpid == 0) {
|
|
CHILD_REQUIRE(sigemptyset(&sigmask) == 0);
|
|
CHILD_REQUIRE(sigaddset(&sigmask, SIGUSR1) == 0);
|
|
CHILD_REQUIRE(sigprocmask(SIG_BLOCK, &sigmask, NULL) == 0);
|
|
|
|
trace_me();
|
|
CHILD_REQUIRE(got_usr1 == 0);
|
|
|
|
/* Allow the pending SIGUSR1 in now. */
|
|
CHILD_REQUIRE(sigprocmask(SIG_UNBLOCK, &sigmask, NULL) == 0);
|
|
/* Wait to receive a SIGUSR1. */
|
|
do {
|
|
err = sem_wait(&sigusr1_sem);
|
|
CHILD_REQUIRE(err == 0 || errno == EINTR);
|
|
} while (err != 0 && errno == EINTR);
|
|
CHILD_REQUIRE(got_usr1 == 1);
|
|
exit(1);
|
|
}
|
|
|
|
/* The first wait() should report the stop from SIGSTOP. */
|
|
wpid = waitpid(fpid, &status, 0);
|
|
ATF_REQUIRE(wpid == fpid);
|
|
ATF_REQUIRE(WIFSTOPPED(status));
|
|
ATF_REQUIRE(WSTOPSIG(status) == SIGSTOP);
|
|
ATF_REQUIRE(ptrace(PT_LWPINFO, fpid, (caddr_t)&pl, sizeof(pl)) != -1);
|
|
ATF_REQUIRE(pl.pl_siginfo.si_signo == SIGSTOP);
|
|
|
|
/* Send blocked SIGUSR1 which should cause a stop. */
|
|
ATF_REQUIRE(kill(fpid, SIGUSR1) == 0);
|
|
|
|
/* Continue the child ignoring the SIGSTOP. */
|
|
ATF_REQUIRE(ptrace(PT_CONTINUE, fpid, (caddr_t)1, 0) == 0);
|
|
|
|
/* The next wait() should report the kill(SIGUSR1) was received. */
|
|
wpid = waitpid(fpid, &status, 0);
|
|
ATF_REQUIRE(wpid == fpid);
|
|
ATF_REQUIRE(WIFSTOPPED(status));
|
|
ATF_REQUIRE(WSTOPSIG(status) == SIGUSR1);
|
|
ATF_REQUIRE(ptrace(PT_LWPINFO, fpid, (caddr_t)&pl, sizeof(pl)) != -1);
|
|
ATF_REQUIRE(pl.pl_siginfo.si_signo == SIGUSR1);
|
|
|
|
/* Continue the child, allowing in the SIGUSR1. */
|
|
ATF_REQUIRE(ptrace(PT_CONTINUE, fpid, (caddr_t)1, SIGUSR1) == 0);
|
|
|
|
/* The last wait() should report normal exit with code 1. */
|
|
wpid = waitpid(fpid, &status, 0);
|
|
ATF_REQUIRE(wpid == fpid);
|
|
ATF_REQUIRE(WIFEXITED(status));
|
|
ATF_REQUIRE(WEXITSTATUS(status) == 1);
|
|
|
|
wpid = wait(&status);
|
|
ATF_REQUIRE(wpid == -1);
|
|
ATF_REQUIRE(errno == ECHILD);
|
|
}
|
|
|
|
/*
|
|
* Verify that a traced process with blocked signal received the
|
|
* signal from PT_CONTINUE once unmasked.
|
|
*/
|
|
ATF_TC_WITHOUT_HEAD(ptrace__PT_CONTINUE_with_sigmask);
|
|
ATF_TC_BODY(ptrace__PT_CONTINUE_with_sigmask, tc)
|
|
{
|
|
struct ptrace_lwpinfo pl;
|
|
pid_t fpid, wpid;
|
|
int status, err;
|
|
sigset_t sigmask;
|
|
|
|
ATF_REQUIRE(sem_init(&sigusr1_sem, 0, 0) == 0);
|
|
ATF_REQUIRE(signal(SIGUSR1, sigusr1_sempost_handler) != SIG_ERR);
|
|
got_usr1 = 0;
|
|
|
|
ATF_REQUIRE((fpid = fork()) != -1);
|
|
if (fpid == 0) {
|
|
CHILD_REQUIRE(sigemptyset(&sigmask) == 0);
|
|
CHILD_REQUIRE(sigaddset(&sigmask, SIGUSR1) == 0);
|
|
CHILD_REQUIRE(sigprocmask(SIG_BLOCK, &sigmask, NULL) == 0);
|
|
|
|
trace_me();
|
|
CHILD_REQUIRE(got_usr1 == 0);
|
|
|
|
/* Allow the pending SIGUSR1 in now. */
|
|
CHILD_REQUIRE(sigprocmask(SIG_UNBLOCK, &sigmask, NULL) == 0);
|
|
/* Wait to receive a SIGUSR1. */
|
|
do {
|
|
err = sem_wait(&sigusr1_sem);
|
|
CHILD_REQUIRE(err == 0 || errno == EINTR);
|
|
} while (err != 0 && errno == EINTR);
|
|
|
|
CHILD_REQUIRE(got_usr1 == 1);
|
|
exit(1);
|
|
}
|
|
|
|
/* The first wait() should report the stop from SIGSTOP. */
|
|
wpid = waitpid(fpid, &status, 0);
|
|
ATF_REQUIRE(wpid == fpid);
|
|
ATF_REQUIRE(WIFSTOPPED(status));
|
|
ATF_REQUIRE(WSTOPSIG(status) == SIGSTOP);
|
|
ATF_REQUIRE(ptrace(PT_LWPINFO, fpid, (caddr_t)&pl, sizeof(pl)) != -1);
|
|
ATF_REQUIRE(pl.pl_siginfo.si_signo == SIGSTOP);
|
|
|
|
/* Continue the child replacing SIGSTOP with SIGUSR1. */
|
|
ATF_REQUIRE(ptrace(PT_CONTINUE, fpid, (caddr_t)1, SIGUSR1) == 0);
|
|
|
|
/* The next wait() should report the SIGUSR1 was received. */
|
|
wpid = waitpid(fpid, &status, 0);
|
|
ATF_REQUIRE(wpid == fpid);
|
|
ATF_REQUIRE(WIFSTOPPED(status));
|
|
ATF_REQUIRE(WSTOPSIG(status) == SIGUSR1);
|
|
ATF_REQUIRE(ptrace(PT_LWPINFO, fpid, (caddr_t)&pl, sizeof(pl)) != -1);
|
|
ATF_REQUIRE(pl.pl_siginfo.si_signo == SIGUSR1);
|
|
|
|
/* Continue the child, ignoring the SIGUSR1. */
|
|
ATF_REQUIRE(ptrace(PT_CONTINUE, fpid, (caddr_t)1, 0) == 0);
|
|
|
|
/* The last wait() should report normal exit with code 1. */
|
|
wpid = waitpid(fpid, &status, 0);
|
|
ATF_REQUIRE(wpid == fpid);
|
|
ATF_REQUIRE(WIFEXITED(status));
|
|
ATF_REQUIRE(WEXITSTATUS(status) == 1);
|
|
|
|
wpid = wait(&status);
|
|
ATF_REQUIRE(wpid == -1);
|
|
ATF_REQUIRE(errno == ECHILD);
|
|
}
|
|
|
|
/*
|
|
* Verify that if ptrace stops due to a signal but continues with
|
|
* a different signal that the new signal is routed to a thread
|
|
* that can accept it, and that that thread is awakened by the signal
|
|
* in a timely manner.
|
|
*/
|
|
ATF_TC_WITHOUT_HEAD(ptrace__PT_CONTINUE_with_signal_thread_sigmask);
|
|
ATF_TC_BODY(ptrace__PT_CONTINUE_with_signal_thread_sigmask, tc)
|
|
{
|
|
pid_t fpid, wpid;
|
|
int status, err;
|
|
pthread_t t;
|
|
sigset_t sigmask;
|
|
pthread_barrier_t barrier;
|
|
|
|
ATF_REQUIRE(pthread_barrier_init(&barrier, NULL, 2) == 0);
|
|
ATF_REQUIRE(sem_init(&sigusr1_sem, 0, 0) == 0);
|
|
ATF_REQUIRE(signal(SIGUSR1, sigusr1_sempost_handler) != SIG_ERR);
|
|
|
|
ATF_REQUIRE((fpid = fork()) != -1);
|
|
if (fpid == 0) {
|
|
CHILD_REQUIRE(pthread_create(&t, NULL, signal_thread, (void*)&barrier) == 0);
|
|
|
|
/* The other thread should receive the first SIGUSR1. */
|
|
CHILD_REQUIRE(sigemptyset(&sigmask) == 0);
|
|
CHILD_REQUIRE(sigaddset(&sigmask, SIGUSR1) == 0);
|
|
CHILD_REQUIRE(pthread_sigmask(SIG_BLOCK, &sigmask, NULL) == 0);
|
|
|
|
trace_me();
|
|
|
|
/* Wait until other thread has received its SIGUSR1. */
|
|
pthread_barrier_wait(&barrier);
|
|
|
|
/*
|
|
* Swap ignore duties; the next SIGUSR1 should go to this
|
|
* thread.
|
|
*/
|
|
CHILD_REQUIRE(pthread_sigmask(SIG_UNBLOCK, &sigmask, NULL) == 0);
|
|
|
|
/* Sync up threads after swapping signal masks. */
|
|
pthread_barrier_wait(&barrier);
|
|
|
|
/*
|
|
* Sync up with test code; we're ready for the next SIGUSR1
|
|
* now.
|
|
*/
|
|
raise(SIGSTOP);
|
|
|
|
/* Wait for this thread to receive a SIGUSR1. */
|
|
do {
|
|
err = sem_wait(&sigusr1_sem);
|
|
CHILD_REQUIRE(err == 0 || errno == EINTR);
|
|
} while (err != 0 && errno == EINTR);
|
|
|
|
/* Free the other thread from the barrier. */
|
|
pthread_barrier_wait(&barrier);
|
|
|
|
CHILD_REQUIRE(pthread_join(t, NULL) == 0);
|
|
|
|
exit(1);
|
|
}
|
|
|
|
/* The first wait() should report the stop from SIGSTOP. */
|
|
wpid = waitpid(fpid, &status, 0);
|
|
ATF_REQUIRE(wpid == fpid);
|
|
ATF_REQUIRE(WIFSTOPPED(status));
|
|
ATF_REQUIRE(WSTOPSIG(status) == SIGSTOP);
|
|
|
|
/* Continue the child ignoring the SIGSTOP. */
|
|
ATF_REQUIRE(ptrace(PT_CONTINUE, fpid, (caddr_t)1, 0) == 0);
|
|
|
|
/*
|
|
* Send a signal without ptrace that either thread will accept (USR2,
|
|
* in this case).
|
|
*/
|
|
ATF_REQUIRE(kill(fpid, SIGUSR2) == 0);
|
|
|
|
/* The second wait() should report a SIGUSR2 was received. */
|
|
wpid = waitpid(fpid, &status, 0);
|
|
ATF_REQUIRE(wpid == fpid);
|
|
ATF_REQUIRE(WIFSTOPPED(status));
|
|
ATF_REQUIRE(WSTOPSIG(status) == SIGUSR2);
|
|
|
|
/* Continue the child, changing the signal to USR1. */
|
|
ATF_REQUIRE(ptrace(PT_CONTINUE, fpid, (caddr_t)1, SIGUSR1) == 0);
|
|
|
|
/* The next wait() should report the stop from SIGSTOP. */
|
|
wpid = waitpid(fpid, &status, 0);
|
|
ATF_REQUIRE(wpid == fpid);
|
|
ATF_REQUIRE(WIFSTOPPED(status));
|
|
ATF_REQUIRE(WSTOPSIG(status) == SIGSTOP);
|
|
|
|
/* Continue the child ignoring the SIGSTOP. */
|
|
ATF_REQUIRE(ptrace(PT_CONTINUE, fpid, (caddr_t)1, 0) == 0);
|
|
|
|
ATF_REQUIRE(kill(fpid, SIGUSR2) == 0);
|
|
|
|
/* The next wait() should report a SIGUSR2 was received. */
|
|
wpid = waitpid(fpid, &status, 0);
|
|
ATF_REQUIRE(wpid == fpid);
|
|
ATF_REQUIRE(WIFSTOPPED(status));
|
|
ATF_REQUIRE(WSTOPSIG(status) == SIGUSR2);
|
|
|
|
/* Continue the child, changing the signal to USR1. */
|
|
ATF_REQUIRE(ptrace(PT_CONTINUE, fpid, (caddr_t)1, SIGUSR1) == 0);
|
|
|
|
/* The last wait() should report normal exit with code 1. */
|
|
wpid = waitpid(fpid, &status, 0);
|
|
ATF_REQUIRE(wpid == fpid);
|
|
ATF_REQUIRE(WIFEXITED(status));
|
|
ATF_REQUIRE(WEXITSTATUS(status) == 1);
|
|
|
|
wpid = wait(&status);
|
|
ATF_REQUIRE(wpid == -1);
|
|
ATF_REQUIRE(errno == ECHILD);
|
|
}
|
|
|
|
static void *
|
|
raise_sigstop_thread(void *arg __unused)
|
|
{
|
|
|
|
raise(SIGSTOP);
|
|
return NULL;
|
|
}
|
|
|
|
static void *
|
|
sleep_thread(void *arg __unused)
|
|
{
|
|
|
|
sleep(60);
|
|
return NULL;
|
|
}
|
|
|
|
static void
|
|
terminate_with_pending_sigstop(bool sigstop_from_main_thread)
|
|
{
|
|
pid_t fpid, wpid;
|
|
int status, i;
|
|
cpuset_t setmask;
|
|
cpusetid_t setid;
|
|
pthread_t t;
|
|
|
|
/*
|
|
* Become the reaper for this process tree. We need to be able to check
|
|
* that both child and grandchild have died.
|
|
*/
|
|
ATF_REQUIRE(procctl(P_PID, getpid(), PROC_REAP_ACQUIRE, NULL) == 0);
|
|
|
|
fpid = fork();
|
|
ATF_REQUIRE(fpid >= 0);
|
|
if (fpid == 0) {
|
|
fpid = fork();
|
|
CHILD_REQUIRE(fpid >= 0);
|
|
if (fpid == 0) {
|
|
trace_me();
|
|
|
|
/* Pin to CPU 0 to serialize thread execution. */
|
|
CPU_ZERO(&setmask);
|
|
CPU_SET(0, &setmask);
|
|
CHILD_REQUIRE(cpuset(&setid) == 0);
|
|
CHILD_REQUIRE(cpuset_setaffinity(CPU_LEVEL_CPUSET,
|
|
CPU_WHICH_CPUSET, setid,
|
|
sizeof(setmask), &setmask) == 0);
|
|
|
|
if (sigstop_from_main_thread) {
|
|
/*
|
|
* We expect the SIGKILL sent when our parent
|
|
* dies to be delivered to the new thread.
|
|
* Raise the SIGSTOP in this thread so the
|
|
* threads compete.
|
|
*/
|
|
CHILD_REQUIRE(pthread_create(&t, NULL,
|
|
sleep_thread, NULL) == 0);
|
|
raise(SIGSTOP);
|
|
} else {
|
|
/*
|
|
* We expect the SIGKILL to be delivered to
|
|
* this thread. After creating the new thread,
|
|
* just get off the CPU so the other thread can
|
|
* raise the SIGSTOP.
|
|
*/
|
|
CHILD_REQUIRE(pthread_create(&t, NULL,
|
|
raise_sigstop_thread, NULL) == 0);
|
|
sleep(60);
|
|
}
|
|
|
|
exit(0);
|
|
}
|
|
/* First stop is trace_me() immediately after fork. */
|
|
wpid = waitpid(fpid, &status, 0);
|
|
CHILD_REQUIRE(wpid == fpid);
|
|
CHILD_REQUIRE(WIFSTOPPED(status));
|
|
CHILD_REQUIRE(WSTOPSIG(status) == SIGSTOP);
|
|
|
|
CHILD_REQUIRE(ptrace(PT_CONTINUE, fpid, (caddr_t)1, 0) == 0);
|
|
|
|
/* Second stop is from the raise(SIGSTOP). */
|
|
wpid = waitpid(fpid, &status, 0);
|
|
CHILD_REQUIRE(wpid == fpid);
|
|
CHILD_REQUIRE(WIFSTOPPED(status));
|
|
CHILD_REQUIRE(WSTOPSIG(status) == SIGSTOP);
|
|
|
|
/*
|
|
* Terminate tracing process without detaching. Our child
|
|
* should be killed.
|
|
*/
|
|
exit(0);
|
|
}
|
|
|
|
/*
|
|
* We should get a normal exit from our immediate child and a SIGKILL
|
|
* exit from our grandchild. The latter case is the interesting one.
|
|
* Our grandchild should not have stopped due to the SIGSTOP that was
|
|
* left dangling when its parent died.
|
|
*/
|
|
for (i = 0; i < 2; ++i) {
|
|
wpid = wait(&status);
|
|
if (wpid == fpid)
|
|
ATF_REQUIRE(WIFEXITED(status) &&
|
|
WEXITSTATUS(status) == 0);
|
|
else
|
|
ATF_REQUIRE(WIFSIGNALED(status) &&
|
|
WTERMSIG(status) == SIGKILL);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* These two tests ensure that if the tracing process exits without detaching
|
|
* just after the child received a SIGSTOP, the child is cleanly killed and
|
|
* doesn't go to sleep due to the SIGSTOP. The parent's death will send a
|
|
* SIGKILL to the child. If the SIGKILL and the SIGSTOP are handled by
|
|
* different threads, the SIGKILL must win. There are two variants of this
|
|
* test, designed to catch the case where the SIGKILL is delivered to the
|
|
* younger thread (the first test) and the case where the SIGKILL is delivered
|
|
* to the older thread (the second test). This behavior has changed in the
|
|
* past, so make no assumption.
|
|
*/
|
|
ATF_TC(ptrace__parent_terminate_with_pending_sigstop1);
|
|
ATF_TC_HEAD(ptrace__parent_terminate_with_pending_sigstop1, tc)
|
|
{
|
|
|
|
atf_tc_set_md_var(tc, "require.user", "root");
|
|
}
|
|
ATF_TC_BODY(ptrace__parent_terminate_with_pending_sigstop1, tc)
|
|
{
|
|
|
|
terminate_with_pending_sigstop(true);
|
|
}
|
|
|
|
ATF_TC(ptrace__parent_terminate_with_pending_sigstop2);
|
|
ATF_TC_HEAD(ptrace__parent_terminate_with_pending_sigstop2, tc)
|
|
{
|
|
|
|
atf_tc_set_md_var(tc, "require.user", "root");
|
|
}
|
|
ATF_TC_BODY(ptrace__parent_terminate_with_pending_sigstop2, tc)
|
|
{
|
|
|
|
terminate_with_pending_sigstop(false);
|
|
}
|
|
|
|
/*
|
|
* Verify that after ptrace() discards a SIGKILL signal, the event mask
|
|
* is not modified.
|
|
*/
|
|
ATF_TC_WITHOUT_HEAD(ptrace__event_mask_sigkill_discard);
|
|
ATF_TC_BODY(ptrace__event_mask_sigkill_discard, tc)
|
|
{
|
|
struct ptrace_lwpinfo pl;
|
|
pid_t fpid, wpid;
|
|
int status, event_mask, new_event_mask;
|
|
|
|
ATF_REQUIRE((fpid = fork()) != -1);
|
|
if (fpid == 0) {
|
|
trace_me();
|
|
raise(SIGSTOP);
|
|
exit(0);
|
|
}
|
|
|
|
/* The first wait() should report the stop from trace_me(). */
|
|
wpid = waitpid(fpid, &status, 0);
|
|
ATF_REQUIRE(wpid == fpid);
|
|
ATF_REQUIRE(WIFSTOPPED(status));
|
|
ATF_REQUIRE(WSTOPSIG(status) == SIGSTOP);
|
|
|
|
/* Set several unobtrusive event bits. */
|
|
event_mask = PTRACE_EXEC | PTRACE_FORK | PTRACE_LWP;
|
|
ATF_REQUIRE(ptrace(PT_SET_EVENT_MASK, wpid, (caddr_t)&event_mask,
|
|
sizeof(event_mask)) == 0);
|
|
|
|
/* Send a SIGKILL without using ptrace. */
|
|
ATF_REQUIRE(kill(fpid, SIGKILL) == 0);
|
|
|
|
/* Continue the child ignoring the SIGSTOP. */
|
|
ATF_REQUIRE(ptrace(PT_CONTINUE, fpid, (caddr_t)1, 0) == 0);
|
|
|
|
/* The next stop should be due to the SIGKILL. */
|
|
wpid = waitpid(fpid, &status, 0);
|
|
ATF_REQUIRE(wpid == fpid);
|
|
ATF_REQUIRE(WIFSTOPPED(status));
|
|
ATF_REQUIRE(WSTOPSIG(status) == SIGKILL);
|
|
|
|
ATF_REQUIRE(ptrace(PT_LWPINFO, wpid, (caddr_t)&pl, sizeof(pl)) != -1);
|
|
ATF_REQUIRE(pl.pl_flags & PL_FLAG_SI);
|
|
ATF_REQUIRE(pl.pl_siginfo.si_signo == SIGKILL);
|
|
|
|
/* Continue the child ignoring the SIGKILL. */
|
|
ATF_REQUIRE(ptrace(PT_CONTINUE, fpid, (caddr_t)1, 0) == 0);
|
|
|
|
/* The next wait() should report the stop from SIGSTOP. */
|
|
wpid = waitpid(fpid, &status, 0);
|
|
ATF_REQUIRE(wpid == fpid);
|
|
ATF_REQUIRE(WIFSTOPPED(status));
|
|
ATF_REQUIRE(WSTOPSIG(status) == SIGSTOP);
|
|
|
|
/* Check the current event mask. It should not have changed. */
|
|
new_event_mask = 0;
|
|
ATF_REQUIRE(ptrace(PT_GET_EVENT_MASK, wpid, (caddr_t)&new_event_mask,
|
|
sizeof(new_event_mask)) == 0);
|
|
ATF_REQUIRE(event_mask == new_event_mask);
|
|
|
|
/* Continue the child to let it exit. */
|
|
ATF_REQUIRE(ptrace(PT_CONTINUE, fpid, (caddr_t)1, 0) == 0);
|
|
|
|
/* The last event should be for the child process's exit. */
|
|
wpid = waitpid(fpid, &status, 0);
|
|
ATF_REQUIRE(WIFEXITED(status));
|
|
ATF_REQUIRE(WEXITSTATUS(status) == 0);
|
|
|
|
wpid = wait(&status);
|
|
ATF_REQUIRE(wpid == -1);
|
|
ATF_REQUIRE(errno == ECHILD);
|
|
}
|
|
|
|
static void *
|
|
flock_thread(void *arg)
|
|
{
|
|
int fd;
|
|
|
|
fd = *(int *)arg;
|
|
(void)flock(fd, LOCK_EX);
|
|
(void)flock(fd, LOCK_UN);
|
|
return (NULL);
|
|
}
|
|
|
|
/*
|
|
* Verify that PT_ATTACH will suspend threads sleeping in an SBDRY section.
|
|
* We rely on the fact that the lockf implementation sets SBDRY before blocking
|
|
* on a lock. This is a regression test for r318191.
|
|
*/
|
|
ATF_TC_WITHOUT_HEAD(ptrace__PT_ATTACH_with_SBDRY_thread);
|
|
ATF_TC_BODY(ptrace__PT_ATTACH_with_SBDRY_thread, tc)
|
|
{
|
|
pthread_barrier_t barrier;
|
|
pthread_barrierattr_t battr;
|
|
char tmpfile[64];
|
|
pid_t child, wpid;
|
|
int error, fd, i, status;
|
|
|
|
ATF_REQUIRE(pthread_barrierattr_init(&battr) == 0);
|
|
ATF_REQUIRE(pthread_barrierattr_setpshared(&battr,
|
|
PTHREAD_PROCESS_SHARED) == 0);
|
|
ATF_REQUIRE(pthread_barrier_init(&barrier, &battr, 2) == 0);
|
|
|
|
(void)snprintf(tmpfile, sizeof(tmpfile), "./ptrace.XXXXXX");
|
|
fd = mkstemp(tmpfile);
|
|
ATF_REQUIRE(fd >= 0);
|
|
|
|
ATF_REQUIRE((child = fork()) != -1);
|
|
if (child == 0) {
|
|
pthread_t t[2];
|
|
int cfd;
|
|
|
|
error = pthread_barrier_wait(&barrier);
|
|
if (error != 0 && error != PTHREAD_BARRIER_SERIAL_THREAD)
|
|
_exit(1);
|
|
|
|
cfd = open(tmpfile, O_RDONLY);
|
|
if (cfd < 0)
|
|
_exit(1);
|
|
|
|
/*
|
|
* We want at least two threads blocked on the file lock since
|
|
* the SIGSTOP from PT_ATTACH may kick one of them out of
|
|
* sleep.
|
|
*/
|
|
if (pthread_create(&t[0], NULL, flock_thread, &cfd) != 0)
|
|
_exit(1);
|
|
if (pthread_create(&t[1], NULL, flock_thread, &cfd) != 0)
|
|
_exit(1);
|
|
if (pthread_join(t[0], NULL) != 0)
|
|
_exit(1);
|
|
if (pthread_join(t[1], NULL) != 0)
|
|
_exit(1);
|
|
_exit(0);
|
|
}
|
|
|
|
ATF_REQUIRE(flock(fd, LOCK_EX) == 0);
|
|
|
|
error = pthread_barrier_wait(&barrier);
|
|
ATF_REQUIRE(error == 0 || error == PTHREAD_BARRIER_SERIAL_THREAD);
|
|
|
|
/*
|
|
* Give the child some time to block. Is there a better way to do this?
|
|
*/
|
|
sleep(1);
|
|
|
|
/*
|
|
* Attach and give the child 3 seconds to stop.
|
|
*/
|
|
ATF_REQUIRE(ptrace(PT_ATTACH, child, NULL, 0) == 0);
|
|
for (i = 0; i < 3; i++) {
|
|
wpid = waitpid(child, &status, WNOHANG);
|
|
if (wpid == child && WIFSTOPPED(status) &&
|
|
WSTOPSIG(status) == SIGSTOP)
|
|
break;
|
|
sleep(1);
|
|
}
|
|
ATF_REQUIRE_MSG(i < 3, "failed to stop child process after PT_ATTACH");
|
|
|
|
ATF_REQUIRE(ptrace(PT_DETACH, child, NULL, 0) == 0);
|
|
|
|
ATF_REQUIRE(flock(fd, LOCK_UN) == 0);
|
|
ATF_REQUIRE(unlink(tmpfile) == 0);
|
|
ATF_REQUIRE(close(fd) == 0);
|
|
}
|
|
|
|
static void
|
|
sigusr1_step_handler(int sig)
|
|
{
|
|
|
|
CHILD_REQUIRE(sig == SIGUSR1);
|
|
raise(SIGABRT);
|
|
}
|
|
|
|
/*
|
|
* Verify that PT_STEP with a signal invokes the signal before
|
|
* stepping the next instruction (and that the next instruction is
|
|
* stepped correctly).
|
|
*/
|
|
ATF_TC_WITHOUT_HEAD(ptrace__PT_STEP_with_signal);
|
|
ATF_TC_BODY(ptrace__PT_STEP_with_signal, tc)
|
|
{
|
|
struct ptrace_lwpinfo pl;
|
|
pid_t fpid, wpid;
|
|
int status;
|
|
|
|
ATF_REQUIRE((fpid = fork()) != -1);
|
|
if (fpid == 0) {
|
|
trace_me();
|
|
signal(SIGUSR1, sigusr1_step_handler);
|
|
raise(SIGABRT);
|
|
exit(1);
|
|
}
|
|
|
|
/* The first wait() should report the stop from SIGSTOP. */
|
|
wpid = waitpid(fpid, &status, 0);
|
|
ATF_REQUIRE(wpid == fpid);
|
|
ATF_REQUIRE(WIFSTOPPED(status));
|
|
ATF_REQUIRE(WSTOPSIG(status) == SIGSTOP);
|
|
|
|
ATF_REQUIRE(ptrace(PT_CONTINUE, fpid, (caddr_t)1, 0) == 0);
|
|
|
|
/* The next stop should report the SIGABRT in the child body. */
|
|
wpid = waitpid(fpid, &status, 0);
|
|
ATF_REQUIRE(wpid == fpid);
|
|
ATF_REQUIRE(WIFSTOPPED(status));
|
|
ATF_REQUIRE(WSTOPSIG(status) == SIGABRT);
|
|
|
|
ATF_REQUIRE(ptrace(PT_LWPINFO, wpid, (caddr_t)&pl, sizeof(pl)) != -1);
|
|
ATF_REQUIRE(pl.pl_flags & PL_FLAG_SI);
|
|
ATF_REQUIRE(pl.pl_siginfo.si_signo == SIGABRT);
|
|
|
|
/* Step the child process inserting SIGUSR1. */
|
|
ATF_REQUIRE(ptrace(PT_STEP, fpid, (caddr_t)1, SIGUSR1) == 0);
|
|
|
|
/* The next stop should report the SIGABRT in the signal handler. */
|
|
wpid = waitpid(fpid, &status, 0);
|
|
ATF_REQUIRE(wpid == fpid);
|
|
ATF_REQUIRE(WIFSTOPPED(status));
|
|
ATF_REQUIRE(WSTOPSIG(status) == SIGABRT);
|
|
|
|
ATF_REQUIRE(ptrace(PT_LWPINFO, wpid, (caddr_t)&pl, sizeof(pl)) != -1);
|
|
ATF_REQUIRE(pl.pl_flags & PL_FLAG_SI);
|
|
ATF_REQUIRE(pl.pl_siginfo.si_signo == SIGABRT);
|
|
|
|
/* Continue the child process discarding the signal. */
|
|
ATF_REQUIRE(ptrace(PT_CONTINUE, fpid, (caddr_t)1, 0) == 0);
|
|
|
|
/* The next stop should report a trace trap from PT_STEP. */
|
|
wpid = waitpid(fpid, &status, 0);
|
|
ATF_REQUIRE(wpid == fpid);
|
|
ATF_REQUIRE(WIFSTOPPED(status));
|
|
ATF_REQUIRE(WSTOPSIG(status) == SIGTRAP);
|
|
|
|
ATF_REQUIRE(ptrace(PT_LWPINFO, wpid, (caddr_t)&pl, sizeof(pl)) != -1);
|
|
ATF_REQUIRE(pl.pl_flags & PL_FLAG_SI);
|
|
ATF_REQUIRE(pl.pl_siginfo.si_signo == SIGTRAP);
|
|
ATF_REQUIRE(pl.pl_siginfo.si_code == TRAP_TRACE);
|
|
|
|
/* Continue the child to let it exit. */
|
|
ATF_REQUIRE(ptrace(PT_CONTINUE, fpid, (caddr_t)1, 0) == 0);
|
|
|
|
/* The last event should be for the child process's exit. */
|
|
wpid = waitpid(fpid, &status, 0);
|
|
ATF_REQUIRE(WIFEXITED(status));
|
|
ATF_REQUIRE(WEXITSTATUS(status) == 1);
|
|
|
|
wpid = wait(&status);
|
|
ATF_REQUIRE(wpid == -1);
|
|
ATF_REQUIRE(errno == ECHILD);
|
|
}
|
|
|
|
#if defined(__amd64__) || defined(__i386__)
|
|
/*
|
|
* Only x86 both define breakpoint() and have a PC after breakpoint so
|
|
* that restarting doesn't retrigger the breakpoint.
|
|
*/
|
|
static void *
|
|
continue_thread(void *arg)
|
|
{
|
|
breakpoint();
|
|
return (NULL);
|
|
}
|
|
|
|
static __dead2 void
|
|
continue_thread_main(void)
|
|
{
|
|
pthread_t threads[2];
|
|
|
|
CHILD_REQUIRE(pthread_create(&threads[0], NULL, continue_thread,
|
|
NULL) == 0);
|
|
CHILD_REQUIRE(pthread_create(&threads[1], NULL, continue_thread,
|
|
NULL) == 0);
|
|
CHILD_REQUIRE(pthread_join(threads[0], NULL) == 0);
|
|
CHILD_REQUIRE(pthread_join(threads[1], NULL) == 0);
|
|
exit(1);
|
|
}
|
|
|
|
/*
|
|
* Ensure that PT_CONTINUE clears the status of the thread that
|
|
* triggered the stop even if a different thread's LWP was passed to
|
|
* PT_CONTINUE.
|
|
*/
|
|
ATF_TC_WITHOUT_HEAD(ptrace__PT_CONTINUE_different_thread);
|
|
ATF_TC_BODY(ptrace__PT_CONTINUE_different_thread, tc)
|
|
{
|
|
struct ptrace_lwpinfo pl;
|
|
pid_t fpid, wpid;
|
|
lwpid_t lwps[2];
|
|
bool hit_break[2];
|
|
int i, j, status;
|
|
|
|
ATF_REQUIRE((fpid = fork()) != -1);
|
|
if (fpid == 0) {
|
|
trace_me();
|
|
continue_thread_main();
|
|
}
|
|
|
|
/* The first wait() should report the stop from SIGSTOP. */
|
|
wpid = waitpid(fpid, &status, 0);
|
|
ATF_REQUIRE(wpid == fpid);
|
|
ATF_REQUIRE(WIFSTOPPED(status));
|
|
ATF_REQUIRE(WSTOPSIG(status) == SIGSTOP);
|
|
|
|
ATF_REQUIRE(ptrace(PT_LWPINFO, wpid, (caddr_t)&pl,
|
|
sizeof(pl)) != -1);
|
|
|
|
ATF_REQUIRE(ptrace(PT_LWP_EVENTS, wpid, NULL, 1) == 0);
|
|
|
|
/* Continue the child ignoring the SIGSTOP. */
|
|
ATF_REQUIRE(ptrace(PT_CONTINUE, fpid, (caddr_t)1, 0) == 0);
|
|
|
|
/* One of the new threads should report it's birth. */
|
|
wpid = waitpid(fpid, &status, 0);
|
|
ATF_REQUIRE(wpid == fpid);
|
|
ATF_REQUIRE(WIFSTOPPED(status));
|
|
ATF_REQUIRE(WSTOPSIG(status) == SIGTRAP);
|
|
|
|
ATF_REQUIRE(ptrace(PT_LWPINFO, wpid, (caddr_t)&pl, sizeof(pl)) != -1);
|
|
ATF_REQUIRE((pl.pl_flags & (PL_FLAG_BORN | PL_FLAG_SCX)) ==
|
|
(PL_FLAG_BORN | PL_FLAG_SCX));
|
|
lwps[0] = pl.pl_lwpid;
|
|
|
|
/*
|
|
* Suspend this thread to ensure both threads are alive before
|
|
* hitting the breakpoint.
|
|
*/
|
|
ATF_REQUIRE(ptrace(PT_SUSPEND, lwps[0], NULL, 0) != -1);
|
|
|
|
ATF_REQUIRE(ptrace(PT_CONTINUE, fpid, (caddr_t)1, 0) == 0);
|
|
|
|
/* Second thread should report it's birth. */
|
|
wpid = waitpid(fpid, &status, 0);
|
|
ATF_REQUIRE(wpid == fpid);
|
|
ATF_REQUIRE(WIFSTOPPED(status));
|
|
ATF_REQUIRE(WSTOPSIG(status) == SIGTRAP);
|
|
|
|
ATF_REQUIRE(ptrace(PT_LWPINFO, wpid, (caddr_t)&pl, sizeof(pl)) != -1);
|
|
ATF_REQUIRE((pl.pl_flags & (PL_FLAG_BORN | PL_FLAG_SCX)) ==
|
|
(PL_FLAG_BORN | PL_FLAG_SCX));
|
|
ATF_REQUIRE(pl.pl_lwpid != lwps[0]);
|
|
lwps[1] = pl.pl_lwpid;
|
|
|
|
/* Resume both threads waiting for breakpoint events. */
|
|
hit_break[0] = hit_break[1] = false;
|
|
ATF_REQUIRE(ptrace(PT_RESUME, lwps[0], NULL, 0) != -1);
|
|
ATF_REQUIRE(ptrace(PT_CONTINUE, fpid, (caddr_t)1, 0) == 0);
|
|
|
|
/* One thread should report a breakpoint. */
|
|
wpid = waitpid(fpid, &status, 0);
|
|
ATF_REQUIRE(wpid == fpid);
|
|
ATF_REQUIRE(WIFSTOPPED(status));
|
|
ATF_REQUIRE(WSTOPSIG(status) == SIGTRAP);
|
|
|
|
ATF_REQUIRE(ptrace(PT_LWPINFO, wpid, (caddr_t)&pl, sizeof(pl)) != -1);
|
|
ATF_REQUIRE((pl.pl_flags & PL_FLAG_SI) != 0);
|
|
ATF_REQUIRE(pl.pl_siginfo.si_signo == SIGTRAP &&
|
|
pl.pl_siginfo.si_code == TRAP_BRKPT);
|
|
if (pl.pl_lwpid == lwps[0])
|
|
i = 0;
|
|
else
|
|
i = 1;
|
|
hit_break[i] = true;
|
|
|
|
/*
|
|
* Resume both threads but pass the other thread's LWPID to
|
|
* PT_CONTINUE.
|
|
*/
|
|
ATF_REQUIRE(ptrace(PT_CONTINUE, lwps[i ^ 1], (caddr_t)1, 0) == 0);
|
|
|
|
/*
|
|
* Will now get two thread exit events and one more breakpoint
|
|
* event.
|
|
*/
|
|
for (j = 0; j < 3; j++) {
|
|
wpid = waitpid(fpid, &status, 0);
|
|
ATF_REQUIRE(wpid == fpid);
|
|
ATF_REQUIRE(WIFSTOPPED(status));
|
|
ATF_REQUIRE(WSTOPSIG(status) == SIGTRAP);
|
|
|
|
ATF_REQUIRE(ptrace(PT_LWPINFO, wpid, (caddr_t)&pl,
|
|
sizeof(pl)) != -1);
|
|
|
|
if (pl.pl_lwpid == lwps[0])
|
|
i = 0;
|
|
else
|
|
i = 1;
|
|
|
|
ATF_REQUIRE_MSG(lwps[i] != 0, "event for exited thread");
|
|
if (pl.pl_flags & PL_FLAG_EXITED) {
|
|
ATF_REQUIRE_MSG(hit_break[i],
|
|
"exited thread did not report breakpoint");
|
|
lwps[i] = 0;
|
|
} else {
|
|
ATF_REQUIRE((pl.pl_flags & PL_FLAG_SI) != 0);
|
|
ATF_REQUIRE(pl.pl_siginfo.si_signo == SIGTRAP &&
|
|
pl.pl_siginfo.si_code == TRAP_BRKPT);
|
|
ATF_REQUIRE_MSG(!hit_break[i],
|
|
"double breakpoint event");
|
|
hit_break[i] = true;
|
|
}
|
|
|
|
ATF_REQUIRE(ptrace(PT_CONTINUE, fpid, (caddr_t)1, 0) == 0);
|
|
}
|
|
|
|
/* Both threads should have exited. */
|
|
ATF_REQUIRE(lwps[0] == 0);
|
|
ATF_REQUIRE(lwps[1] == 0);
|
|
|
|
/* The last event should be for the child process's exit. */
|
|
wpid = waitpid(fpid, &status, 0);
|
|
ATF_REQUIRE(WIFEXITED(status));
|
|
ATF_REQUIRE(WEXITSTATUS(status) == 1);
|
|
|
|
wpid = wait(&status);
|
|
ATF_REQUIRE(wpid == -1);
|
|
ATF_REQUIRE(errno == ECHILD);
|
|
}
|
|
#endif
|
|
|
|
ATF_TP_ADD_TCS(tp)
|
|
{
|
|
|
|
ATF_TP_ADD_TC(tp, ptrace__parent_wait_after_trace_me);
|
|
ATF_TP_ADD_TC(tp, ptrace__parent_wait_after_attach);
|
|
ATF_TP_ADD_TC(tp, ptrace__parent_sees_exit_after_child_debugger);
|
|
ATF_TP_ADD_TC(tp, ptrace__parent_sees_exit_after_unrelated_debugger);
|
|
ATF_TP_ADD_TC(tp, ptrace__follow_fork_both_attached);
|
|
ATF_TP_ADD_TC(tp, ptrace__follow_fork_child_detached);
|
|
ATF_TP_ADD_TC(tp, ptrace__follow_fork_parent_detached);
|
|
ATF_TP_ADD_TC(tp, ptrace__follow_fork_both_attached_unrelated_debugger);
|
|
ATF_TP_ADD_TC(tp,
|
|
ptrace__follow_fork_child_detached_unrelated_debugger);
|
|
ATF_TP_ADD_TC(tp,
|
|
ptrace__follow_fork_parent_detached_unrelated_debugger);
|
|
ATF_TP_ADD_TC(tp, ptrace__getppid);
|
|
ATF_TP_ADD_TC(tp, ptrace__new_child_pl_syscall_code_fork);
|
|
ATF_TP_ADD_TC(tp, ptrace__new_child_pl_syscall_code_vfork);
|
|
ATF_TP_ADD_TC(tp, ptrace__new_child_pl_syscall_code_thread);
|
|
ATF_TP_ADD_TC(tp, ptrace__lwp_events);
|
|
ATF_TP_ADD_TC(tp, ptrace__lwp_events_exec);
|
|
ATF_TP_ADD_TC(tp, ptrace__siginfo);
|
|
ATF_TP_ADD_TC(tp, ptrace__ptrace_exec_disable);
|
|
ATF_TP_ADD_TC(tp, ptrace__ptrace_exec_enable);
|
|
ATF_TP_ADD_TC(tp, ptrace__event_mask);
|
|
ATF_TP_ADD_TC(tp, ptrace__ptrace_vfork);
|
|
ATF_TP_ADD_TC(tp, ptrace__ptrace_vfork_follow);
|
|
#if defined(__amd64__) || defined(__i386__) || defined(__sparc64__)
|
|
ATF_TP_ADD_TC(tp, ptrace__PT_KILL_breakpoint);
|
|
#endif
|
|
ATF_TP_ADD_TC(tp, ptrace__PT_KILL_system_call);
|
|
ATF_TP_ADD_TC(tp, ptrace__PT_KILL_threads);
|
|
ATF_TP_ADD_TC(tp, ptrace__PT_KILL_competing_signal);
|
|
ATF_TP_ADD_TC(tp, ptrace__PT_KILL_competing_stop);
|
|
ATF_TP_ADD_TC(tp, ptrace__PT_KILL_with_signal_full_sigqueue);
|
|
ATF_TP_ADD_TC(tp, ptrace__PT_CONTINUE_with_signal_system_call_entry);
|
|
ATF_TP_ADD_TC(tp,
|
|
ptrace__PT_CONTINUE_with_signal_system_call_entry_and_exit);
|
|
ATF_TP_ADD_TC(tp, ptrace__PT_CONTINUE_with_signal_full_sigqueue);
|
|
ATF_TP_ADD_TC(tp, ptrace__PT_CONTINUE_with_signal_masked_full_sigqueue);
|
|
ATF_TP_ADD_TC(tp, ptrace__PT_CONTINUE_change_sig);
|
|
ATF_TP_ADD_TC(tp, ptrace__PT_CONTINUE_with_sigtrap_system_call_entry);
|
|
ATF_TP_ADD_TC(tp, ptrace__PT_CONTINUE_with_signal_mix);
|
|
ATF_TP_ADD_TC(tp, ptrace__PT_CONTINUE_with_signal_kqueue);
|
|
ATF_TP_ADD_TC(tp, ptrace__killed_with_sigmask);
|
|
ATF_TP_ADD_TC(tp, ptrace__PT_CONTINUE_with_sigmask);
|
|
ATF_TP_ADD_TC(tp, ptrace__PT_CONTINUE_with_signal_thread_sigmask);
|
|
ATF_TP_ADD_TC(tp, ptrace__parent_terminate_with_pending_sigstop1);
|
|
ATF_TP_ADD_TC(tp, ptrace__parent_terminate_with_pending_sigstop2);
|
|
ATF_TP_ADD_TC(tp, ptrace__event_mask_sigkill_discard);
|
|
ATF_TP_ADD_TC(tp, ptrace__PT_ATTACH_with_SBDRY_thread);
|
|
ATF_TP_ADD_TC(tp, ptrace__PT_STEP_with_signal);
|
|
#if defined(__amd64__) || defined(__i386__)
|
|
ATF_TP_ADD_TC(tp, ptrace__PT_CONTINUE_different_thread);
|
|
#endif
|
|
|
|
return (atf_no_error());
|
|
}
|