freebsd-nq/sys/arm/ralink/if_fv.c
Adrian Chadd 5c99cda025 [arm] [rt1310] add initial RT1310 SoC code.
This code base on lpc code. Ralink RT1310 is oem from 5V Technologies.
RT1310 is ARM926EJS(arm5t).

Tested:

* Buffalo WZR2-G300N

Submitted by:	Hiroki Mori <yamori813@yahoo.co.jp>
Reviewed by:	mizhka
Differential Revision:	https://reviews.freebsd.org/D7238
2017-05-06 06:14:46 +00:00

1874 lines
44 KiB
C

/*-
* Copyright (c) 2016 Hiroki Mori. All rights reserved.
* Copyright (C) 2007
* Oleksandr Tymoshenko <gonzo@freebsd.org>. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWFV IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE FV DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR OR HIS RELATIVES BE LIABLE FOR ANY DIRECT,
* INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF MIND, USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
* IN ANY WAY OUT OF THE USE OF THIS SOFTWFV, EVEN IF ADVISED OF
* THE POSSIBILITY OF SUCH DAMAGE.
*
* $Id: $
*
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
/*
* FV Ethernet interface driver
* copy from mips/idt/if_kr.c and netbsd code
*/
#include <sys/param.h>
#include <sys/endian.h>
#include <sys/systm.h>
#include <sys/sockio.h>
#include <sys/mbuf.h>
#include <sys/malloc.h>
#include <sys/kernel.h>
#include <sys/lock.h>
#include <sys/module.h>
#include <sys/mutex.h>
#include <sys/socket.h>
#include <sys/taskqueue.h>
#include <net/if.h>
#include <net/if_arp.h>
#include <net/ethernet.h>
#include <net/if_dl.h>
#include <net/if_media.h>
#include <net/if_types.h>
#include <net/if_var.h>
#include <net/bpf.h>
#include <dev/ofw/ofw_bus.h>
#include <dev/ofw/ofw_bus_subr.h>
#include <machine/bus.h>
#include <machine/resource.h>
#include <sys/bus.h>
#include <sys/rman.h>
#include <dev/mii/mii.h>
#include <dev/mii/miivar.h>
/* Todo: move to options.arm */
/*#define FV_MDIO*/
#ifdef FV_MDIO
#include <dev/mdio/mdio.h>
#include <dev/etherswitch/miiproxy.h>
#include "mdio_if.h"
#endif
MODULE_DEPEND(are, ether, 1, 1, 1);
MODULE_DEPEND(are, miibus, 1, 1, 1);
#ifdef FV_MDIO
MODULE_DEPEND(are, mdio, 1, 1, 1);
#endif
#include "miibus_if.h"
#include <arm/ralink/if_fvreg.h>
#ifdef FV_DEBUG
void dump_txdesc(struct fv_softc *, int);
void dump_status_reg(struct fv_softc *);
#endif
static int fv_attach(device_t);
static int fv_detach(device_t);
static int fv_ifmedia_upd(struct ifnet *);
static void fv_ifmedia_sts(struct ifnet *, struct ifmediareq *);
static int fv_ioctl(struct ifnet *, u_long, caddr_t);
static void fv_init(void *);
static void fv_init_locked(struct fv_softc *);
static void fv_link_task(void *, int);
static int fv_miibus_readreg(device_t, int, int);
static void fv_miibus_statchg(device_t);
static int fv_miibus_writereg(device_t, int, int, int);
static int fv_probe(device_t);
static void fv_reset(struct fv_softc *);
static int fv_resume(device_t);
static int fv_rx_ring_init(struct fv_softc *);
static int fv_tx_ring_init(struct fv_softc *);
static int fv_shutdown(device_t);
static void fv_start(struct ifnet *);
static void fv_start_locked(struct ifnet *);
static void fv_stop(struct fv_softc *);
static int fv_suspend(device_t);
static void fv_rx(struct fv_softc *);
static void fv_tx(struct fv_softc *);
static void fv_intr(void *);
static void fv_tick(void *);
static void fv_dmamap_cb(void *, bus_dma_segment_t *, int, int);
static int fv_dma_alloc(struct fv_softc *);
static void fv_dma_free(struct fv_softc *);
static int fv_newbuf(struct fv_softc *, int);
static __inline void fv_fixup_rx(struct mbuf *);
static void fv_hinted_child(device_t bus, const char *dname, int dunit);
static void fv_setfilt(struct fv_softc *sc);
static device_method_t fv_methods[] = {
/* Device interface */
DEVMETHOD(device_probe, fv_probe),
DEVMETHOD(device_attach, fv_attach),
DEVMETHOD(device_detach, fv_detach),
DEVMETHOD(device_suspend, fv_suspend),
DEVMETHOD(device_resume, fv_resume),
DEVMETHOD(device_shutdown, fv_shutdown),
/* MII interface */
DEVMETHOD(miibus_readreg, fv_miibus_readreg),
DEVMETHOD(miibus_writereg, fv_miibus_writereg),
#if !defined(FV_MDIO)
DEVMETHOD(miibus_statchg, fv_miibus_statchg),
#endif
/* bus interface */
DEVMETHOD(bus_add_child, device_add_child_ordered),
DEVMETHOD(bus_hinted_child, fv_hinted_child),
DEVMETHOD_END
};
static driver_t fv_driver = {
"fv",
fv_methods,
sizeof(struct fv_softc)
};
static devclass_t fv_devclass;
DRIVER_MODULE(fv, simplebus, fv_driver, fv_devclass, 0, 0);
#ifdef MII
DRIVER_MODULE(miibus, fv, miibus_driver, miibus_devclass, 0, 0);
#endif
static struct mtx miibus_mtx;
MTX_SYSINIT(miibus_mtx, &miibus_mtx, "are mii lock", MTX_DEF);
#ifdef FV_MDIO
static int fvmdio_probe(device_t);
static int fvmdio_attach(device_t);
static int fvmdio_detach(device_t);
/*
* Declare an additional, separate driver for accessing the MDIO bus.
*/
static device_method_t fvmdio_methods[] = {
/* Device interface */
DEVMETHOD(device_probe, fvmdio_probe),
DEVMETHOD(device_attach, fvmdio_attach),
DEVMETHOD(device_detach, fvmdio_detach),
/* bus interface */
DEVMETHOD(bus_add_child, device_add_child_ordered),
/* MDIO access */
DEVMETHOD(mdio_readreg, fv_miibus_readreg),
DEVMETHOD(mdio_writereg, fv_miibus_writereg),
};
DEFINE_CLASS_0(fvmdio, fvmdio_driver, fvmdio_methods,
sizeof(struct fv_softc));
static devclass_t fvmdio_devclass;
DRIVER_MODULE(miiproxy, fv, miiproxy_driver, miiproxy_devclass, 0, 0);
DRIVER_MODULE(fvmdio, simplebus, fvmdio_driver, fvmdio_devclass, 0, 0);
DRIVER_MODULE(mdio, fvmdio, mdio_driver, mdio_devclass, 0, 0);
#endif
/* setup frame code refer dc code */
static void
fv_setfilt(struct fv_softc *sc)
{
uint16_t eaddr[(ETHER_ADDR_LEN+1)/2];
struct fv_desc *sframe;
int i;
struct ifnet *ifp;
struct ifmultiaddr *ifma;
uint16_t *sp;
uint8_t *ma;
ifp = sc->fv_ifp;
i = sc->fv_cdata.fv_tx_prod;
FV_INC(sc->fv_cdata.fv_tx_prod, FV_TX_RING_CNT);
sc->fv_cdata.fv_tx_cnt++;
sframe = &sc->fv_rdata.fv_tx_ring[i];
sp = (uint16_t *)sc->fv_cdata.fv_sf_buff;
memset(sp, 0xff, FV_SFRAME_LEN);
sframe->fv_addr = sc->fv_rdata.fv_sf_paddr;
sframe->fv_devcs = ADCTL_Tx_SETUP | FV_DMASIZE(FV_SFRAME_LEN);
i = 0;
if_maddr_rlock(ifp);
TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
if (ifma->ifma_addr->sa_family != AF_LINK)
continue;
ma = LLADDR((struct sockaddr_dl *)ifma->ifma_addr);
sp[i] = sp[i+1] = (ma[1] << 8 | ma[0]);
i += 2;
sp[i] = sp[i+1] = (ma[3] << 8 | ma[2]);
i += 2;
sp[i] = sp[i+1] = (ma[5] << 8 | ma[4]);
i += 2;
}
if_maddr_runlock(ifp);
bcopy(IF_LLADDR(sc->fv_ifp), eaddr, ETHER_ADDR_LEN);
sp[90] = sp[91] = eaddr[0];
sp[92] = sp[93] = eaddr[1];
sp[94] = sp[95] = eaddr[2];
sframe->fv_stat = ADSTAT_OWN;
bus_dmamap_sync(sc->fv_cdata.fv_tx_ring_tag,
sc->fv_cdata.fv_tx_ring_map, BUS_DMASYNC_PREWRITE);
bus_dmamap_sync(sc->fv_cdata.fv_sf_tag,
sc->fv_cdata.fv_sf_buff_map, BUS_DMASYNC_PREWRITE);
CSR_WRITE_4(sc, CSR_TXPOLL, 0xFFFFFFFF);
DELAY(10000);
}
static int
fv_probe(device_t dev)
{
if (!ofw_bus_status_okay(dev))
return (ENXIO);
if (!ofw_bus_is_compatible(dev, "fv,ethernet"))
return (ENXIO);
device_set_desc(dev, "FV Ethernet interface");
return (BUS_PROBE_DEFAULT);
}
static int
fv_attach(device_t dev)
{
struct ifnet *ifp;
struct fv_softc *sc;
int error = 0, rid;
int unit;
int i;
sc = device_get_softc(dev);
unit = device_get_unit(dev);
sc->fv_dev = dev;
sc->fv_ofw = ofw_bus_get_node(dev);
i = OF_getprop(sc->fv_ofw, "local-mac-address", (void *)&sc->fv_eaddr, 6);
if (i != 6) {
/* hardcode macaddress */
sc->fv_eaddr[0] = 0x00;
sc->fv_eaddr[1] = 0x0C;
sc->fv_eaddr[2] = 0x42;
sc->fv_eaddr[3] = 0x09;
sc->fv_eaddr[4] = 0x5E;
sc->fv_eaddr[5] = 0x6B;
}
mtx_init(&sc->fv_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
MTX_DEF);
callout_init_mtx(&sc->fv_stat_callout, &sc->fv_mtx, 0);
TASK_INIT(&sc->fv_link_task, 0, fv_link_task, sc);
/* Map control/status registers. */
sc->fv_rid = 0;
sc->fv_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &sc->fv_rid,
RF_ACTIVE | RF_SHAREABLE);
if (sc->fv_res == NULL) {
device_printf(dev, "couldn't map memory\n");
error = ENXIO;
goto fail;
}
sc->fv_btag = rman_get_bustag(sc->fv_res);
sc->fv_bhandle = rman_get_bushandle(sc->fv_res);
/* Allocate interrupts */
rid = 0;
sc->fv_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
RF_SHAREABLE | RF_ACTIVE);
if (sc->fv_irq == NULL) {
device_printf(dev, "couldn't map interrupt\n");
error = ENXIO;
goto fail;
}
/* Allocate ifnet structure. */
ifp = sc->fv_ifp = if_alloc(IFT_ETHER);
if (ifp == NULL) {
device_printf(dev, "couldn't allocate ifnet structure\n");
error = ENOSPC;
goto fail;
}
ifp->if_softc = sc;
if_initname(ifp, device_get_name(dev), device_get_unit(dev));
ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
ifp->if_ioctl = fv_ioctl;
ifp->if_start = fv_start;
ifp->if_init = fv_init;
/* ifqmaxlen is sysctl value in net/if.c */
IFQ_SET_MAXLEN(&ifp->if_snd, ifqmaxlen);
ifp->if_snd.ifq_maxlen = ifqmaxlen;
IFQ_SET_READY(&ifp->if_snd);
ifp->if_capenable = ifp->if_capabilities;
if (fv_dma_alloc(sc) != 0) {
error = ENXIO;
goto fail;
}
/* TODO: calculate prescale */
/*
CSR_WRITE_4(sc, FV_ETHMCP, (165000000 / (1250000 + 1)) & ~1);
CSR_WRITE_4(sc, FV_MIIMCFG, FV_MIIMCFG_R);
DELAY(1000);
CSR_WRITE_4(sc, FV_MIIMCFG, 0);
*/
CSR_WRITE_4(sc, CSR_BUSMODE, BUSMODE_SWR);
DELAY(1000);
#ifdef FV_MDIO
sc->fv_miiproxy = mii_attach_proxy(sc->fv_dev);
#endif
#ifdef MII
/* Do MII setup. */
error = mii_attach(dev, &sc->fv_miibus, ifp, fv_ifmedia_upd,
fv_ifmedia_sts, BMSR_DEFCAPMASK, MII_PHY_ANY, MII_OFFSET_ANY, 0);
if (error != 0) {
device_printf(dev, "attaching PHYs failed\n");
goto fail;
}
#else
ifmedia_init(&sc->fv_ifmedia, 0, fv_ifmedia_upd, fv_ifmedia_sts);
ifmedia_add(&sc->fv_ifmedia, IFM_ETHER | IFM_AUTO, 0, NULL);
ifmedia_set(&sc->fv_ifmedia, IFM_ETHER | IFM_AUTO);
#endif
/* Call MI attach routine. */
ether_ifattach(ifp, sc->fv_eaddr);
/* Hook interrupt last to avoid having to lock softc */
error = bus_setup_intr(dev, sc->fv_irq, INTR_TYPE_NET | INTR_MPSAFE,
NULL, fv_intr, sc, &sc->fv_intrhand);
if (error) {
device_printf(dev, "couldn't set up irq\n");
ether_ifdetach(ifp);
goto fail;
}
fail:
if (error)
fv_detach(dev);
return (error);
}
static int
fv_detach(device_t dev)
{
struct fv_softc *sc = device_get_softc(dev);
struct ifnet *ifp = sc->fv_ifp;
KASSERT(mtx_initialized(&sc->fv_mtx), ("vr mutex not initialized"));
/* These should only be active if attach succeeded */
if (device_is_attached(dev)) {
FV_LOCK(sc);
sc->fv_detach = 1;
fv_stop(sc);
FV_UNLOCK(sc);
taskqueue_drain(taskqueue_swi, &sc->fv_link_task);
ether_ifdetach(ifp);
}
#ifdef MII
if (sc->fv_miibus)
device_delete_child(dev, sc->fv_miibus);
#endif
bus_generic_detach(dev);
if (sc->fv_intrhand)
bus_teardown_intr(dev, sc->fv_irq, sc->fv_intrhand);
if (sc->fv_irq)
bus_release_resource(dev, SYS_RES_IRQ, 0, sc->fv_irq);
if (sc->fv_res)
bus_release_resource(dev, SYS_RES_MEMORY, sc->fv_rid,
sc->fv_res);
if (ifp)
if_free(ifp);
fv_dma_free(sc);
mtx_destroy(&sc->fv_mtx);
return (0);
}
static int
fv_suspend(device_t dev)
{
panic("%s", __func__);
return 0;
}
static int
fv_resume(device_t dev)
{
panic("%s", __func__);
return 0;
}
static int
fv_shutdown(device_t dev)
{
struct fv_softc *sc;
sc = device_get_softc(dev);
FV_LOCK(sc);
fv_stop(sc);
FV_UNLOCK(sc);
return (0);
}
static int
fv_miibus_readbits(struct fv_softc *sc, int count)
{
int result;
result = 0;
while(count--) {
result <<= 1;
CSR_WRITE_4(sc, CSR_MIIMNG, MII_RD);
DELAY(10);
CSR_WRITE_4(sc, CSR_MIIMNG, MII_RD | MII_CLK);
DELAY(10);
if (CSR_READ_4(sc, CSR_MIIMNG) & MII_DIN)
result |= 1;
}
return (result);
}
static int
fv_miibus_writebits(struct fv_softc *sc, int data, int count)
{
int bit;
while(count--) {
bit = ((data) >> count) & 0x1 ? MII_DOUT : 0;
CSR_WRITE_4(sc, CSR_MIIMNG, bit | MII_WR);
DELAY(10);
CSR_WRITE_4(sc, CSR_MIIMNG, bit | MII_WR | MII_CLK);
DELAY(10);
}
return (0);
}
static void
fv_miibus_turnaround(struct fv_softc *sc, int cmd)
{
if (cmd == MII_WRCMD) {
fv_miibus_writebits(sc, 0x02, 2);
} else {
fv_miibus_readbits(sc, 1);
}
}
static int
fv_miibus_readreg(device_t dev, int phy, int reg)
{
struct fv_softc * sc = device_get_softc(dev);
int result;
mtx_lock(&miibus_mtx);
fv_miibus_writebits(sc, MII_PREAMBLE, 32);
fv_miibus_writebits(sc, MII_RDCMD, 4);
fv_miibus_writebits(sc, phy, 5);
fv_miibus_writebits(sc, reg, 5);
fv_miibus_turnaround(sc, MII_RDCMD);
result = fv_miibus_readbits(sc, 16);
fv_miibus_turnaround(sc, MII_RDCMD);
mtx_unlock(&miibus_mtx);
return (result);
}
static int
fv_miibus_writereg(device_t dev, int phy, int reg, int data)
{
struct fv_softc * sc = device_get_softc(dev);
mtx_lock(&miibus_mtx);
fv_miibus_writebits(sc, MII_PREAMBLE, 32);
fv_miibus_writebits(sc, MII_WRCMD, 4);
fv_miibus_writebits(sc, phy, 5);
fv_miibus_writebits(sc, reg, 5);
fv_miibus_turnaround(sc, MII_WRCMD);
fv_miibus_writebits(sc, data, 16);
mtx_unlock(&miibus_mtx);
return (0);
}
#if !defined(FV_MDIO)
static void
fv_miibus_statchg(device_t dev)
{
struct fv_softc *sc;
sc = device_get_softc(dev);
taskqueue_enqueue(taskqueue_swi, &sc->fv_link_task);
}
#endif
static void
fv_link_task(void *arg, int pending)
{
#ifdef MII
struct fv_softc *sc;
struct mii_data *mii;
struct ifnet *ifp;
/* int lfdx, mfdx; */
sc = (struct fv_softc *)arg;
FV_LOCK(sc);
mii = device_get_softc(sc->fv_miibus);
ifp = sc->fv_ifp;
if (mii == NULL || ifp == NULL ||
(ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
FV_UNLOCK(sc);
return;
}
if (mii->mii_media_status & IFM_ACTIVE) {
if (IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE)
sc->fv_link_status = 1;
} else
sc->fv_link_status = 0;
FV_UNLOCK(sc);
#endif
}
static void
fv_reset(struct fv_softc *sc)
{
int i;
CSR_WRITE_4(sc, CSR_BUSMODE, BUSMODE_SWR);
/*
* The chip doesn't take itself out of reset automatically.
* We need to do so after 2us.
*/
DELAY(1000);
CSR_WRITE_4(sc, CSR_BUSMODE, 0);
for (i = 0; i < 1000; i++) {
/*
* Wait a bit for the reset to complete before peeking
* at the chip again.
*/
DELAY(1000);
if ((CSR_READ_4(sc, CSR_BUSMODE) & BUSMODE_SWR) == 0)
break;
}
if (CSR_READ_4(sc, CSR_BUSMODE) & BUSMODE_SWR)
device_printf(sc->fv_dev, "reset time out\n");
DELAY(1000);
}
static void
fv_init(void *xsc)
{
struct fv_softc *sc = xsc;
FV_LOCK(sc);
fv_init_locked(sc);
FV_UNLOCK(sc);
}
static void
fv_init_locked(struct fv_softc *sc)
{
struct ifnet *ifp = sc->fv_ifp;
#ifdef MII
struct mii_data *mii;
#endif
FV_LOCK_ASSERT(sc);
#ifdef MII
mii = device_get_softc(sc->fv_miibus);
#endif
fv_stop(sc);
fv_reset(sc);
/* Init circular RX list. */
if (fv_rx_ring_init(sc) != 0) {
device_printf(sc->fv_dev,
"initialization failed: no memory for rx buffers\n");
fv_stop(sc);
return;
}
/* Init tx descriptors. */
fv_tx_ring_init(sc);
/*
* Initialize the BUSMODE register.
*/
CSR_WRITE_4(sc, CSR_BUSMODE,
/* XXX: not sure if this is a good thing or not... */
BUSMODE_BAR | BUSMODE_PBL_32LW);
/*
* Initialize the interrupt mask and enable interrupts.
*/
/* normal interrupts */
sc->sc_inten = STATUS_TI | STATUS_TU | STATUS_RI | STATUS_NIS;
/* abnormal interrupts */
sc->sc_inten |= STATUS_TPS | STATUS_TJT | STATUS_UNF |
STATUS_RU | STATUS_RPS | STATUS_SE | STATUS_AIS;
sc->sc_rxint_mask = STATUS_RI|STATUS_RU;
sc->sc_txint_mask = STATUS_TI|STATUS_UNF|STATUS_TJT;
sc->sc_rxint_mask &= sc->sc_inten;
sc->sc_txint_mask &= sc->sc_inten;
CSR_WRITE_4(sc, CSR_INTEN, sc->sc_inten);
CSR_WRITE_4(sc, CSR_STATUS, 0xffffffff);
/*
* Give the transmit and receive rings to the chip.
*/
CSR_WRITE_4(sc, CSR_TXLIST, FV_TX_RING_ADDR(sc, 0));
CSR_WRITE_4(sc, CSR_RXLIST, FV_RX_RING_ADDR(sc, 0));
/*
* Set the station address.
*/
fv_setfilt(sc);
/*
* Write out the opmode.
*/
CSR_WRITE_4(sc, CSR_OPMODE, OPMODE_SR | OPMODE_ST |
OPMODE_TR_128 | OPMODE_FDX | OPMODE_SPEED);
/*
* Start the receive process.
*/
CSR_WRITE_4(sc, CSR_RXPOLL, RXPOLL_RPD);
sc->fv_link_status = 1;
#ifdef MII
mii_mediachg(mii);
#endif
ifp->if_drv_flags |= IFF_DRV_RUNNING;
ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
callout_reset(&sc->fv_stat_callout, hz, fv_tick, sc);
}
static void
fv_start(struct ifnet *ifp)
{
struct fv_softc *sc;
sc = ifp->if_softc;
FV_LOCK(sc);
fv_start_locked(ifp);
FV_UNLOCK(sc);
}
/*
* Encapsulate an mbuf chain in a descriptor by coupling the mbuf data
* pointers to the fragment pointers.
* Use Implicit Chain implementation.
*/
static int
fv_encap(struct fv_softc *sc, struct mbuf **m_head)
{
struct fv_txdesc *txd;
struct fv_desc *desc;
struct mbuf *m;
bus_dma_segment_t txsegs[FV_MAXFRAGS];
int error, i, nsegs, prod, si;
int padlen;
int txstat;
FV_LOCK_ASSERT(sc);
/*
* Some VIA Rhine wants packet buffers to be longword
* aligned, but very often our mbufs aren't. Rather than
* waste time trying to decide when to copy and when not
* to copy, just do it all the time.
*/
m = m_defrag(*m_head, M_NOWAIT);
if (m == NULL) {
device_printf(sc->fv_dev, "fv_encap m_defrag error\n");
m_freem(*m_head);
*m_head = NULL;
return (ENOBUFS);
}
*m_head = m;
/*
* The Rhine chip doesn't auto-pad, so we have to make
* sure to pad short frames out to the minimum frame length
* ourselves.
*/
if ((*m_head)->m_pkthdr.len < FV_MIN_FRAMELEN) {
m = *m_head;
padlen = FV_MIN_FRAMELEN - m->m_pkthdr.len;
if (M_WRITABLE(m) == 0) {
/* Get a writable copy. */
m = m_dup(*m_head, M_NOWAIT);
m_freem(*m_head);
if (m == NULL) {
device_printf(sc->fv_dev, "fv_encap m_dup error\n");
*m_head = NULL;
return (ENOBUFS);
}
*m_head = m;
}
if (m->m_next != NULL || M_TRAILINGSPACE(m) < padlen) {
m = m_defrag(m, M_NOWAIT);
if (m == NULL) {
device_printf(sc->fv_dev, "fv_encap m_defrag error\n");
m_freem(*m_head);
*m_head = NULL;
return (ENOBUFS);
}
}
/*
* Manually pad short frames, and zero the pad space
* to avoid leaking data.
*/
bzero(mtod(m, char *) + m->m_pkthdr.len, padlen);
m->m_pkthdr.len += padlen;
m->m_len = m->m_pkthdr.len;
*m_head = m;
}
prod = sc->fv_cdata.fv_tx_prod;
txd = &sc->fv_cdata.fv_txdesc[prod];
error = bus_dmamap_load_mbuf_sg(sc->fv_cdata.fv_tx_tag, txd->tx_dmamap,
*m_head, txsegs, &nsegs, BUS_DMA_NOWAIT);
if (error == EFBIG) {
device_printf(sc->fv_dev, "fv_encap EFBIG error\n");
m = m_defrag(*m_head, M_NOWAIT);
if (m == NULL) {
m_freem(*m_head);
*m_head = NULL;
return (ENOBUFS);
}
*m_head = m;
error = bus_dmamap_load_mbuf_sg(sc->fv_cdata.fv_tx_tag,
txd->tx_dmamap, *m_head, txsegs, &nsegs, BUS_DMA_NOWAIT);
if (error != 0) {
m_freem(*m_head);
*m_head = NULL;
return (error);
}
} else if (error != 0)
return (error);
if (nsegs == 0) {
m_freem(*m_head);
*m_head = NULL;
return (EIO);
}
/* Check number of available descriptors. */
if (sc->fv_cdata.fv_tx_cnt + nsegs >= (FV_TX_RING_CNT - 1)) {
bus_dmamap_unload(sc->fv_cdata.fv_tx_tag, txd->tx_dmamap);
return (ENOBUFS);
}
txd->tx_m = *m_head;
bus_dmamap_sync(sc->fv_cdata.fv_tx_tag, txd->tx_dmamap,
BUS_DMASYNC_PREWRITE);
si = prod;
/*
* Make a list of descriptors for this packet.
*/
desc = NULL;
for (i = 0; i < nsegs; i++) {
desc = &sc->fv_rdata.fv_tx_ring[prod];
desc->fv_stat = ADSTAT_OWN;
desc->fv_devcs = txsegs[i].ds_len;
/* end of descriptor */
if (prod == FV_TX_RING_CNT - 1)
desc->fv_devcs |= ADCTL_ER;
desc->fv_addr = txsegs[i].ds_addr;
++sc->fv_cdata.fv_tx_cnt;
FV_INC(prod, FV_TX_RING_CNT);
}
/*
* Set mark last fragment with Last/Intr flag
*/
if (desc) {
desc->fv_devcs |= ADCTL_Tx_IC;
desc->fv_devcs |= ADCTL_Tx_LS;
}
/* Update producer index. */
sc->fv_cdata.fv_tx_prod = prod;
/* Sync descriptors. */
bus_dmamap_sync(sc->fv_cdata.fv_tx_ring_tag,
sc->fv_cdata.fv_tx_ring_map,
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
txstat = (CSR_READ_4(sc, CSR_STATUS) >> 20) & 7;
if (txstat == 0 || txstat == 6) {
/* Transmit Process Stat is stop or suspended */
desc = &sc->fv_rdata.fv_tx_ring[si];
desc->fv_devcs |= ADCTL_Tx_FS;
}
else {
/* Get previous descriptor */
si = (si + FV_TX_RING_CNT - 1) % FV_TX_RING_CNT;
desc = &sc->fv_rdata.fv_tx_ring[si];
/* join remain data and flugs */
desc->fv_devcs &= ~ADCTL_Tx_IC;
desc->fv_devcs &= ~ADCTL_Tx_LS;
}
return (0);
}
static void
fv_start_locked(struct ifnet *ifp)
{
struct fv_softc *sc;
struct mbuf *m_head;
int enq;
int txstat;
sc = ifp->if_softc;
FV_LOCK_ASSERT(sc);
if ((ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
IFF_DRV_RUNNING || sc->fv_link_status == 0 )
return;
for (enq = 0; !IFQ_DRV_IS_EMPTY(&ifp->if_snd) &&
sc->fv_cdata.fv_tx_cnt < FV_TX_RING_CNT - 2; ) {
IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
if (m_head == NULL)
break;
/*
* Pack the data into the transmit ring. If we
* don't have room, set the OACTIVE flag and wait
* for the NIC to drain the ring.
*/
if (fv_encap(sc, &m_head)) {
if (m_head == NULL)
break;
IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
ifp->if_drv_flags |= IFF_DRV_OACTIVE;
break;
}
enq++;
/*
* If there's a BPF listener, bounce a copy of this frame
* to him.
*/
ETHER_BPF_MTAP(ifp, m_head);
}
if (enq > 0) {
txstat = (CSR_READ_4(sc, CSR_STATUS) >> 20) & 7;
if (txstat == 0 || txstat == 6)
CSR_WRITE_4(sc, CSR_TXPOLL, TXPOLL_TPD);
}
}
static void
fv_stop(struct fv_softc *sc)
{
struct ifnet *ifp;
FV_LOCK_ASSERT(sc);
ifp = sc->fv_ifp;
ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
callout_stop(&sc->fv_stat_callout);
/* Disable interrupts. */
CSR_WRITE_4(sc, CSR_INTEN, 0);
/* Stop the transmit and receive processes. */
CSR_WRITE_4(sc, CSR_OPMODE, 0);
CSR_WRITE_4(sc, CSR_RXLIST, 0);
CSR_WRITE_4(sc, CSR_TXLIST, 0);
}
static int
fv_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
{
struct fv_softc *sc = ifp->if_softc;
struct ifreq *ifr = (struct ifreq *) data;
#ifdef MII
struct mii_data *mii;
#endif
int error;
int csr;
switch (command) {
case SIOCSIFFLAGS:
FV_LOCK(sc);
if (ifp->if_flags & IFF_UP) {
if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
if ((ifp->if_flags ^ sc->fv_if_flags) &
IFF_PROMISC) {
csr = CSR_READ_4(sc, CSR_OPMODE);
CSR_WRITE_4(sc, CSR_OPMODE, csr |
OPMODE_PM | OPMODE_PR);
}
if ((ifp->if_flags ^ sc->fv_if_flags) &
IFF_ALLMULTI) {
csr = CSR_READ_4(sc, CSR_OPMODE);
CSR_WRITE_4(sc, CSR_OPMODE, csr |
OPMODE_PM);
}
} else {
if (sc->fv_detach == 0)
fv_init_locked(sc);
}
} else {
if (ifp->if_drv_flags & IFF_DRV_RUNNING)
fv_stop(sc);
}
sc->fv_if_flags = ifp->if_flags;
FV_UNLOCK(sc);
error = 0;
break;
case SIOCADDMULTI:
case SIOCDELMULTI:
#if 0
FV_LOCK(sc);
fv_set_filter(sc);
FV_UNLOCK(sc);
#endif
error = 0;
break;
case SIOCGIFMEDIA:
case SIOCSIFMEDIA:
#ifdef MII
mii = device_get_softc(sc->fv_miibus);
error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
#else
error = ifmedia_ioctl(ifp, ifr, &sc->fv_ifmedia, command);
#endif
break;
case SIOCSIFCAP:
error = 0;
#if 0
mask = ifr->ifr_reqcap ^ ifp->if_capenable;
if ((mask & IFCAP_HWCSUM) != 0) {
ifp->if_capenable ^= IFCAP_HWCSUM;
if ((IFCAP_HWCSUM & ifp->if_capenable) &&
(IFCAP_HWCSUM & ifp->if_capabilities))
ifp->if_hwassist = FV_CSUM_FEATURES;
else
ifp->if_hwassist = 0;
}
if ((mask & IFCAP_VLAN_HWTAGGING) != 0) {
ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
if (IFCAP_VLAN_HWTAGGING & ifp->if_capenable &&
IFCAP_VLAN_HWTAGGING & ifp->if_capabilities &&
ifp->if_drv_flags & IFF_DRV_RUNNING) {
FV_LOCK(sc);
fv_vlan_setup(sc);
FV_UNLOCK(sc);
}
}
VLAN_CAPABILITIES(ifp);
#endif
break;
default:
error = ether_ioctl(ifp, command, data);
break;
}
return (error);
}
/*
* Set media options.
*/
static int
fv_ifmedia_upd(struct ifnet *ifp)
{
#ifdef MII
struct fv_softc *sc;
struct mii_data *mii;
struct mii_softc *miisc;
int error;
sc = ifp->if_softc;
FV_LOCK(sc);
mii = device_get_softc(sc->fv_miibus);
LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
PHY_RESET(miisc);
error = mii_mediachg(mii);
FV_UNLOCK(sc);
return (error);
#else
return (0);
#endif
}
/*
* Report current media status.
*/
static void
fv_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
{
#ifdef MII
struct fv_softc *sc = ifp->if_softc;
struct mii_data *mii;
mii = device_get_softc(sc->fv_miibus);
FV_LOCK(sc);
mii_pollstat(mii);
ifmr->ifm_active = mii->mii_media_active;
ifmr->ifm_status = mii->mii_media_status;
FV_UNLOCK(sc);
#else
ifmr->ifm_status = IFM_AVALID | IFM_ACTIVE;
#endif
}
struct fv_dmamap_arg {
bus_addr_t fv_busaddr;
};
static void
fv_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nseg, int error)
{
struct fv_dmamap_arg *ctx;
if (error != 0)
return;
ctx = arg;
ctx->fv_busaddr = segs[0].ds_addr;
}
static int
fv_dma_alloc(struct fv_softc *sc)
{
struct fv_dmamap_arg ctx;
struct fv_txdesc *txd;
struct fv_rxdesc *rxd;
int error, i;
/* Create parent DMA tag. */
error = bus_dma_tag_create(
bus_get_dma_tag(sc->fv_dev), /* parent */
1, 0, /* alignment, boundary */
BUS_SPACE_MAXADDR_32BIT, /* lowaddr */
BUS_SPACE_MAXADDR, /* highaddr */
NULL, NULL, /* filter, filterarg */
BUS_SPACE_MAXSIZE_32BIT, /* maxsize */
0, /* nsegments */
BUS_SPACE_MAXSIZE_32BIT, /* maxsegsize */
0, /* flags */
NULL, NULL, /* lockfunc, lockarg */
&sc->fv_cdata.fv_parent_tag);
if (error != 0) {
device_printf(sc->fv_dev, "failed to create parent DMA tag\n");
goto fail;
}
/* Create tag for Tx ring. */
error = bus_dma_tag_create(
sc->fv_cdata.fv_parent_tag, /* parent */
FV_RING_ALIGN, 0, /* alignment, boundary */
BUS_SPACE_MAXADDR, /* lowaddr */
BUS_SPACE_MAXADDR, /* highaddr */
NULL, NULL, /* filter, filterarg */
FV_TX_RING_SIZE, /* maxsize */
1, /* nsegments */
FV_TX_RING_SIZE, /* maxsegsize */
0, /* flags */
NULL, NULL, /* lockfunc, lockarg */
&sc->fv_cdata.fv_tx_ring_tag);
if (error != 0) {
device_printf(sc->fv_dev, "failed to create Tx ring DMA tag\n");
goto fail;
}
/* Create tag for Rx ring. */
error = bus_dma_tag_create(
sc->fv_cdata.fv_parent_tag, /* parent */
FV_RING_ALIGN, 0, /* alignment, boundary */
BUS_SPACE_MAXADDR, /* lowaddr */
BUS_SPACE_MAXADDR, /* highaddr */
NULL, NULL, /* filter, filterarg */
FV_RX_RING_SIZE, /* maxsize */
1, /* nsegments */
FV_RX_RING_SIZE, /* maxsegsize */
0, /* flags */
NULL, NULL, /* lockfunc, lockarg */
&sc->fv_cdata.fv_rx_ring_tag);
if (error != 0) {
device_printf(sc->fv_dev, "failed to create Rx ring DMA tag\n");
goto fail;
}
/* Create tag for Tx buffers. */
error = bus_dma_tag_create(
sc->fv_cdata.fv_parent_tag, /* parent */
1, 0, /* alignment, boundary */
BUS_SPACE_MAXADDR, /* lowaddr */
BUS_SPACE_MAXADDR, /* highaddr */
NULL, NULL, /* filter, filterarg */
MCLBYTES * FV_MAXFRAGS, /* maxsize */
FV_MAXFRAGS, /* nsegments */
MCLBYTES, /* maxsegsize */
0, /* flags */
NULL, NULL, /* lockfunc, lockarg */
&sc->fv_cdata.fv_tx_tag);
if (error != 0) {
device_printf(sc->fv_dev, "failed to create Tx DMA tag\n");
goto fail;
}
/* Create tag for Rx buffers. */
error = bus_dma_tag_create(
sc->fv_cdata.fv_parent_tag, /* parent */
FV_RX_ALIGN, 0, /* alignment, boundary */
BUS_SPACE_MAXADDR, /* lowaddr */
BUS_SPACE_MAXADDR, /* highaddr */
NULL, NULL, /* filter, filterarg */
MCLBYTES, /* maxsize */
1, /* nsegments */
MCLBYTES, /* maxsegsize */
0, /* flags */
NULL, NULL, /* lockfunc, lockarg */
&sc->fv_cdata.fv_rx_tag);
if (error != 0) {
device_printf(sc->fv_dev, "failed to create Rx DMA tag\n");
goto fail;
}
/* Create tag for setup frame buffers. */
error = bus_dma_tag_create(
sc->fv_cdata.fv_parent_tag, /* parent */
sizeof(uint32_t), 0, /* alignment, boundary */
BUS_SPACE_MAXADDR, /* lowaddr */
BUS_SPACE_MAXADDR, /* highaddr */
NULL, NULL, /* filter, filterarg */
FV_SFRAME_LEN + FV_MIN_FRAMELEN, /* maxsize */
1, /* nsegments */
FV_SFRAME_LEN + FV_MIN_FRAMELEN, /* maxsegsize */
0, /* flags */
NULL, NULL, /* lockfunc, lockarg */
&sc->fv_cdata.fv_sf_tag);
if (error != 0) {
device_printf(sc->fv_dev, "failed to create setup frame DMA tag\n");
goto fail;
}
/* Allocate DMA'able memory and load the DMA map for Tx ring. */
error = bus_dmamem_alloc(sc->fv_cdata.fv_tx_ring_tag,
(void **)&sc->fv_rdata.fv_tx_ring, BUS_DMA_WAITOK |
BUS_DMA_COHERENT | BUS_DMA_ZERO, &sc->fv_cdata.fv_tx_ring_map);
if (error != 0) {
device_printf(sc->fv_dev,
"failed to allocate DMA'able memory for Tx ring\n");
goto fail;
}
ctx.fv_busaddr = 0;
error = bus_dmamap_load(sc->fv_cdata.fv_tx_ring_tag,
sc->fv_cdata.fv_tx_ring_map, sc->fv_rdata.fv_tx_ring,
FV_TX_RING_SIZE, fv_dmamap_cb, &ctx, 0);
if (error != 0 || ctx.fv_busaddr == 0) {
device_printf(sc->fv_dev,
"failed to load DMA'able memory for Tx ring\n");
goto fail;
}
sc->fv_rdata.fv_tx_ring_paddr = ctx.fv_busaddr;
/* Allocate DMA'able memory and load the DMA map for Rx ring. */
error = bus_dmamem_alloc(sc->fv_cdata.fv_rx_ring_tag,
(void **)&sc->fv_rdata.fv_rx_ring, BUS_DMA_WAITOK |
BUS_DMA_COHERENT | BUS_DMA_ZERO, &sc->fv_cdata.fv_rx_ring_map);
if (error != 0) {
device_printf(sc->fv_dev,
"failed to allocate DMA'able memory for Rx ring\n");
goto fail;
}
ctx.fv_busaddr = 0;
error = bus_dmamap_load(sc->fv_cdata.fv_rx_ring_tag,
sc->fv_cdata.fv_rx_ring_map, sc->fv_rdata.fv_rx_ring,
FV_RX_RING_SIZE, fv_dmamap_cb, &ctx, 0);
if (error != 0 || ctx.fv_busaddr == 0) {
device_printf(sc->fv_dev,
"failed to load DMA'able memory for Rx ring\n");
goto fail;
}
sc->fv_rdata.fv_rx_ring_paddr = ctx.fv_busaddr;
/* Allocate DMA'able memory and load the DMA map for setup frame. */
error = bus_dmamem_alloc(sc->fv_cdata.fv_sf_tag,
(void **)&sc->fv_cdata.fv_sf_buff, BUS_DMA_WAITOK |
BUS_DMA_COHERENT | BUS_DMA_ZERO, &sc->fv_cdata.fv_sf_buff_map);
if (error != 0) {
device_printf(sc->fv_dev,
"failed to allocate DMA'able memory for setup frame\n");
goto fail;
}
ctx.fv_busaddr = 0;
error = bus_dmamap_load(sc->fv_cdata.fv_sf_tag,
sc->fv_cdata.fv_sf_buff_map, sc->fv_cdata.fv_sf_buff,
FV_SFRAME_LEN, fv_dmamap_cb, &ctx, 0);
if (error != 0 || ctx.fv_busaddr == 0) {
device_printf(sc->fv_dev,
"failed to load DMA'able memory for setup frame\n");
goto fail;
}
sc->fv_rdata.fv_sf_paddr = ctx.fv_busaddr;
/* Create DMA maps for Tx buffers. */
for (i = 0; i < FV_TX_RING_CNT; i++) {
txd = &sc->fv_cdata.fv_txdesc[i];
txd->tx_m = NULL;
txd->tx_dmamap = NULL;
error = bus_dmamap_create(sc->fv_cdata.fv_tx_tag, 0,
&txd->tx_dmamap);
if (error != 0) {
device_printf(sc->fv_dev,
"failed to create Tx dmamap\n");
goto fail;
}
}
/* Create DMA maps for Rx buffers. */
if ((error = bus_dmamap_create(sc->fv_cdata.fv_rx_tag, 0,
&sc->fv_cdata.fv_rx_sparemap)) != 0) {
device_printf(sc->fv_dev,
"failed to create spare Rx dmamap\n");
goto fail;
}
for (i = 0; i < FV_RX_RING_CNT; i++) {
rxd = &sc->fv_cdata.fv_rxdesc[i];
rxd->rx_m = NULL;
rxd->rx_dmamap = NULL;
error = bus_dmamap_create(sc->fv_cdata.fv_rx_tag, 0,
&rxd->rx_dmamap);
if (error != 0) {
device_printf(sc->fv_dev,
"failed to create Rx dmamap\n");
goto fail;
}
}
fail:
return (error);
}
static void
fv_dma_free(struct fv_softc *sc)
{
struct fv_txdesc *txd;
struct fv_rxdesc *rxd;
int i;
/* Tx ring. */
if (sc->fv_cdata.fv_tx_ring_tag) {
if (sc->fv_rdata.fv_tx_ring_paddr)
bus_dmamap_unload(sc->fv_cdata.fv_tx_ring_tag,
sc->fv_cdata.fv_tx_ring_map);
if (sc->fv_rdata.fv_tx_ring)
bus_dmamem_free(sc->fv_cdata.fv_tx_ring_tag,
sc->fv_rdata.fv_tx_ring,
sc->fv_cdata.fv_tx_ring_map);
sc->fv_rdata.fv_tx_ring = NULL;
sc->fv_rdata.fv_tx_ring_paddr = 0;
bus_dma_tag_destroy(sc->fv_cdata.fv_tx_ring_tag);
sc->fv_cdata.fv_tx_ring_tag = NULL;
}
/* Rx ring. */
if (sc->fv_cdata.fv_rx_ring_tag) {
if (sc->fv_rdata.fv_rx_ring_paddr)
bus_dmamap_unload(sc->fv_cdata.fv_rx_ring_tag,
sc->fv_cdata.fv_rx_ring_map);
if (sc->fv_rdata.fv_rx_ring)
bus_dmamem_free(sc->fv_cdata.fv_rx_ring_tag,
sc->fv_rdata.fv_rx_ring,
sc->fv_cdata.fv_rx_ring_map);
sc->fv_rdata.fv_rx_ring = NULL;
sc->fv_rdata.fv_rx_ring_paddr = 0;
bus_dma_tag_destroy(sc->fv_cdata.fv_rx_ring_tag);
sc->fv_cdata.fv_rx_ring_tag = NULL;
}
/* Tx buffers. */
if (sc->fv_cdata.fv_tx_tag) {
for (i = 0; i < FV_TX_RING_CNT; i++) {
txd = &sc->fv_cdata.fv_txdesc[i];
if (txd->tx_dmamap) {
bus_dmamap_destroy(sc->fv_cdata.fv_tx_tag,
txd->tx_dmamap);
txd->tx_dmamap = NULL;
}
}
bus_dma_tag_destroy(sc->fv_cdata.fv_tx_tag);
sc->fv_cdata.fv_tx_tag = NULL;
}
/* Rx buffers. */
if (sc->fv_cdata.fv_rx_tag) {
for (i = 0; i < FV_RX_RING_CNT; i++) {
rxd = &sc->fv_cdata.fv_rxdesc[i];
if (rxd->rx_dmamap) {
bus_dmamap_destroy(sc->fv_cdata.fv_rx_tag,
rxd->rx_dmamap);
rxd->rx_dmamap = NULL;
}
}
if (sc->fv_cdata.fv_rx_sparemap) {
bus_dmamap_destroy(sc->fv_cdata.fv_rx_tag,
sc->fv_cdata.fv_rx_sparemap);
sc->fv_cdata.fv_rx_sparemap = 0;
}
bus_dma_tag_destroy(sc->fv_cdata.fv_rx_tag);
sc->fv_cdata.fv_rx_tag = NULL;
}
if (sc->fv_cdata.fv_parent_tag) {
bus_dma_tag_destroy(sc->fv_cdata.fv_parent_tag);
sc->fv_cdata.fv_parent_tag = NULL;
}
}
/*
* Initialize the transmit descriptors.
*/
static int
fv_tx_ring_init(struct fv_softc *sc)
{
struct fv_ring_data *rd;
struct fv_txdesc *txd;
bus_addr_t addr;
int i;
sc->fv_cdata.fv_tx_prod = 0;
sc->fv_cdata.fv_tx_cons = 0;
sc->fv_cdata.fv_tx_cnt = 0;
sc->fv_cdata.fv_tx_pkts = 0;
rd = &sc->fv_rdata;
bzero(rd->fv_tx_ring, FV_TX_RING_SIZE);
for (i = 0; i < FV_TX_RING_CNT; i++) {
if (i == FV_TX_RING_CNT - 1)
addr = FV_TX_RING_ADDR(sc, 0);
else
addr = FV_TX_RING_ADDR(sc, i + 1);
rd->fv_tx_ring[i].fv_stat = 0;
rd->fv_tx_ring[i].fv_devcs = 0;
rd->fv_tx_ring[i].fv_addr = 0;
rd->fv_tx_ring[i].fv_link = addr;
txd = &sc->fv_cdata.fv_txdesc[i];
txd->tx_m = NULL;
}
bus_dmamap_sync(sc->fv_cdata.fv_tx_ring_tag,
sc->fv_cdata.fv_tx_ring_map,
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
return (0);
}
/*
* Initialize the RX descriptors and allocate mbufs for them. Note that
* we arrange the descriptors in a closed ring, so that the last descriptor
* points back to the first.
*/
static int
fv_rx_ring_init(struct fv_softc *sc)
{
struct fv_ring_data *rd;
struct fv_rxdesc *rxd;
int i;
sc->fv_cdata.fv_rx_cons = 0;
rd = &sc->fv_rdata;
bzero(rd->fv_rx_ring, FV_RX_RING_SIZE);
for (i = 0; i < FV_RX_RING_CNT; i++) {
rxd = &sc->fv_cdata.fv_rxdesc[i];
rxd->rx_m = NULL;
rxd->desc = &rd->fv_rx_ring[i];
rd->fv_rx_ring[i].fv_stat = ADSTAT_OWN;
rd->fv_rx_ring[i].fv_devcs = 0;
if (i == FV_RX_RING_CNT - 1)
rd->fv_rx_ring[i].fv_devcs |= ADCTL_ER;
rd->fv_rx_ring[i].fv_addr = 0;
if (fv_newbuf(sc, i) != 0)
return (ENOBUFS);
}
bus_dmamap_sync(sc->fv_cdata.fv_rx_ring_tag,
sc->fv_cdata.fv_rx_ring_map,
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
return (0);
}
/*
* Initialize an RX descriptor and attach an MBUF cluster.
*/
static int
fv_newbuf(struct fv_softc *sc, int idx)
{
struct fv_desc *desc;
struct fv_rxdesc *rxd;
struct mbuf *m;
bus_dma_segment_t segs[1];
bus_dmamap_t map;
int nsegs;
m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
if (m == NULL)
return (ENOBUFS);
m->m_len = m->m_pkthdr.len = MCLBYTES;
/* tcp header boundary alignment margin */
m_adj(m, 4);
if (bus_dmamap_load_mbuf_sg(sc->fv_cdata.fv_rx_tag,
sc->fv_cdata.fv_rx_sparemap, m, segs, &nsegs, 0) != 0) {
m_freem(m);
return (ENOBUFS);
}
KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
rxd = &sc->fv_cdata.fv_rxdesc[idx];
if (rxd->rx_m != NULL) {
/* This code make bug. Make scranble on buffer data.
bus_dmamap_sync(sc->fv_cdata.fv_rx_tag, rxd->rx_dmamap,
BUS_DMASYNC_POSTREAD);
*/
bus_dmamap_unload(sc->fv_cdata.fv_rx_tag, rxd->rx_dmamap);
}
map = rxd->rx_dmamap;
rxd->rx_dmamap = sc->fv_cdata.fv_rx_sparemap;
sc->fv_cdata.fv_rx_sparemap = map;
bus_dmamap_sync(sc->fv_cdata.fv_rx_tag, rxd->rx_dmamap,
BUS_DMASYNC_PREREAD);
rxd->rx_m = m;
desc = rxd->desc;
desc->fv_addr = segs[0].ds_addr;
desc->fv_devcs |= FV_DMASIZE(segs[0].ds_len);
rxd->saved_ca = desc->fv_addr ;
rxd->saved_ctl = desc->fv_stat ;
return (0);
}
static __inline void
fv_fixup_rx(struct mbuf *m)
{
int i;
uint16_t *src, *dst;
src = mtod(m, uint16_t *);
dst = src - 1;
for (i = 0; i < m->m_len / sizeof(uint16_t); i++) {
*dst++ = *src++;
}
if (m->m_len % sizeof(uint16_t))
*(uint8_t *)dst = *(uint8_t *)src;
m->m_data -= ETHER_ALIGN;
}
static void
fv_tx(struct fv_softc *sc)
{
struct fv_txdesc *txd;
struct fv_desc *cur_tx;
struct ifnet *ifp;
uint32_t ctl, devcs;
int cons, prod, prev_cons;
FV_LOCK_ASSERT(sc);
cons = sc->fv_cdata.fv_tx_cons;
prod = sc->fv_cdata.fv_tx_prod;
if (cons == prod)
return;
bus_dmamap_sync(sc->fv_cdata.fv_tx_ring_tag,
sc->fv_cdata.fv_tx_ring_map,
BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
ifp = sc->fv_ifp;
/*
* Go through our tx list and free mbufs for those
* frames that have been transmitted.
*/
prev_cons = cons;
for (; cons != prod; FV_INC(cons, FV_TX_RING_CNT)) {
cur_tx = &sc->fv_rdata.fv_tx_ring[cons];
ctl = cur_tx->fv_stat;
devcs = cur_tx->fv_devcs;
/* Check if descriptor has "finished" flag */
if (FV_DMASIZE(devcs) == 0)
break;
sc->fv_cdata.fv_tx_cnt--;
ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
txd = &sc->fv_cdata.fv_txdesc[cons];
if ((ctl & ADSTAT_Tx_ES) == 0)
if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1);
else if (ctl & ADSTAT_Tx_UF) { /* only underflow not check collision */
if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
}
bus_dmamap_sync(sc->fv_cdata.fv_tx_tag, txd->tx_dmamap,
BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(sc->fv_cdata.fv_tx_tag, txd->tx_dmamap);
/* Free only if it's first descriptor in list */
if (txd->tx_m)
m_freem(txd->tx_m);
txd->tx_m = NULL;
/* reset descriptor */
cur_tx->fv_stat = 0;
cur_tx->fv_devcs = 0;
cur_tx->fv_addr = 0;
}
sc->fv_cdata.fv_tx_cons = cons;
bus_dmamap_sync(sc->fv_cdata.fv_tx_ring_tag,
sc->fv_cdata.fv_tx_ring_map, BUS_DMASYNC_PREWRITE);
}
static void
fv_rx(struct fv_softc *sc)
{
struct fv_rxdesc *rxd;
struct ifnet *ifp = sc->fv_ifp;
int cons, prog, packet_len, error;
struct fv_desc *cur_rx;
struct mbuf *m;
FV_LOCK_ASSERT(sc);
cons = sc->fv_cdata.fv_rx_cons;
bus_dmamap_sync(sc->fv_cdata.fv_rx_ring_tag,
sc->fv_cdata.fv_rx_ring_map,
BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
for (prog = 0; prog < FV_RX_RING_CNT; FV_INC(cons, FV_RX_RING_CNT)) {
cur_rx = &sc->fv_rdata.fv_rx_ring[cons];
rxd = &sc->fv_cdata.fv_rxdesc[cons];
m = rxd->rx_m;
if ((cur_rx->fv_stat & ADSTAT_OWN) == ADSTAT_OWN)
break;
prog++;
if (cur_rx->fv_stat & (ADSTAT_ES | ADSTAT_Rx_TL)) {
device_printf(sc->fv_dev,
"Receive Descriptor error %x\n", cur_rx->fv_stat);
if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
packet_len = 0;
} else {
packet_len = ADSTAT_Rx_LENGTH(cur_rx->fv_stat);
}
/* Assume it's error */
error = 1;
if (packet_len < 64)
if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
else if ((cur_rx->fv_stat & ADSTAT_Rx_DE) == 0) {
error = 0;
bus_dmamap_sync(sc->fv_cdata.fv_rx_tag, rxd->rx_dmamap,
BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
m = rxd->rx_m;
/* Skip 4 bytes of CRC */
m->m_pkthdr.len = m->m_len = packet_len - ETHER_CRC_LEN;
fv_fixup_rx(m);
m->m_pkthdr.rcvif = ifp;
if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1);
FV_UNLOCK(sc);
(*ifp->if_input)(ifp, m);
FV_LOCK(sc);
}
if (error) {
/* Restore CONTROL and CA values, reset DEVCS */
cur_rx->fv_stat = rxd->saved_ctl;
cur_rx->fv_addr = rxd->saved_ca;
cur_rx->fv_devcs = 0;
}
else {
/* Reinit descriptor */
cur_rx->fv_stat = ADSTAT_OWN;
cur_rx->fv_devcs = 0;
if (cons == FV_RX_RING_CNT - 1)
cur_rx->fv_devcs |= ADCTL_ER;
cur_rx->fv_addr = 0;
if (fv_newbuf(sc, cons) != 0) {
device_printf(sc->fv_dev,
"Failed to allocate buffer\n");
break;
}
}
bus_dmamap_sync(sc->fv_cdata.fv_rx_ring_tag,
sc->fv_cdata.fv_rx_ring_map,
BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
}
if (prog > 0) {
sc->fv_cdata.fv_rx_cons = cons;
bus_dmamap_sync(sc->fv_cdata.fv_rx_ring_tag,
sc->fv_cdata.fv_rx_ring_map,
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
}
}
static void
fv_intr(void *arg)
{
struct fv_softc *sc = arg;
uint32_t status;
struct ifnet *ifp = sc->fv_ifp;
FV_LOCK(sc);
status = CSR_READ_4(sc, CSR_STATUS);
/* mask out interrupts */
while((status & sc->sc_inten) != 0) {
if (status) {
CSR_WRITE_4(sc, CSR_STATUS, status);
}
if (status & STATUS_UNF) {
device_printf(sc->fv_dev, "Transmit Underflow\n");
}
if (status & sc->sc_rxint_mask) {
fv_rx(sc);
}
if (status & sc->sc_txint_mask) {
fv_tx(sc);
}
if (status & STATUS_AIS) {
device_printf(sc->fv_dev, "Abnormal Interrupt %x\n",
status);
}
CSR_WRITE_4(sc, CSR_FULLDUP, FULLDUP_CS |
(1 << FULLDUP_TT_SHIFT) | (3 << FULLDUP_NTP_SHIFT) |
(2 << FULLDUP_RT_SHIFT) | (2 << FULLDUP_NRP_SHIFT));
status = CSR_READ_4(sc, CSR_STATUS);
}
/* Try to get more packets going. */
if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
fv_start_locked(ifp);
FV_UNLOCK(sc);
}
static void
fv_tick(void *xsc)
{
struct fv_softc *sc = xsc;
#ifdef MII
struct mii_data *mii;
FV_LOCK_ASSERT(sc);
mii = device_get_softc(sc->fv_miibus);
mii_tick(mii);
#endif
callout_reset(&sc->fv_stat_callout, hz, fv_tick, sc);
}
static void
fv_hinted_child(device_t bus, const char *dname, int dunit)
{
BUS_ADD_CHILD(bus, 0, dname, dunit);
device_printf(bus, "hinted child %s%d\n", dname, dunit);
}
#ifdef FV_MDIO
static int
fvmdio_probe(device_t dev)
{
if (!ofw_bus_status_okay(dev))
return (ENXIO);
if (!ofw_bus_is_compatible(dev, "fv,mdio"))
return (ENXIO);
device_set_desc(dev, "FV built-in ethernet interface, MDIO controller");
return(0);
}
static int
fvmdio_attach(device_t dev)
{
struct fv_softc *sc;
int error;
sc = device_get_softc(dev);
sc->fv_dev = dev;
sc->fv_rid = 0;
sc->fv_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
&sc->fv_rid, RF_ACTIVE | RF_SHAREABLE);
if (sc->fv_res == NULL) {
device_printf(dev, "couldn't map memory\n");
error = ENXIO;
goto fail;
}
sc->fv_btag = rman_get_bustag(sc->fv_res);
sc->fv_bhandle = rman_get_bushandle(sc->fv_res);
bus_generic_probe(dev);
bus_enumerate_hinted_children(dev);
error = bus_generic_attach(dev);
fail:
return(error);
}
static int
fvmdio_detach(device_t dev)
{
return(0);
}
#endif
#ifdef FV_DEBUG
void
dump_txdesc(struct fv_softc *sc, int pos)
{
struct fv_desc *desc;
desc = &sc->fv_rdata.fv_tx_ring[pos];
device_printf(sc->fv_dev, "CSR_TXLIST %08x\n", CSR_READ_4(sc, CSR_TXLIST));
device_printf(sc->fv_dev, "%d TDES0:%08x TDES1:%08x TDES2:%08x TDES3:%08x\n",
pos, desc->fv_stat, desc->fv_devcs, desc->fv_addr, desc->fv_link);
}
void
dump_status_reg(struct fv_softc *sc)
{
uint32_t status;
/* mask out interrupts */
status = CSR_READ_4(sc, CSR_STATUS);
device_printf(sc->fv_dev, "CSR5 Status Register EB:%d TS:%d RS:%d NIS:%d AIS:%d ER:%d SE:%d LNF:%d TM:%d RWT:%d RPS:%d RU:%d RI:%d UNF:%d LNP/ANC:%d TJT:%d TU:%d TPS:%d TI:%d\n",
(status >> 23 ) & 7,
(status >> 20 ) & 7,
(status >> 17 ) & 7,
(status >> 16 ) & 1,
(status >> 15 ) & 1,
(status >> 14 ) & 1,
(status >> 13 ) & 1,
(status >> 12 ) & 1,
(status >> 11 ) & 1,
(status >> 9 ) & 1,
(status >> 8 ) & 1,
(status >> 7 ) & 1,
(status >> 6 ) & 1,
(status >> 5 ) & 1,
(status >> 4 ) & 1,
(status >> 3 ) & 1,
(status >> 2 ) & 1,
(status >> 1 ) & 1,
(status >> 0 ) & 1);
}
#endif