fa3ac573a2
Unbreak mips.BERI_DE4_SDROOT build, which uses device xdma. Device xdma depends on the pmap_kenter_device APIs. Reported by: tinderbox (local) Sponsored by: Dell EMC Isilon
3702 lines
88 KiB
C
3702 lines
88 KiB
C
/*-
|
|
* SPDX-License-Identifier: BSD-3-Clause
|
|
*
|
|
* Copyright (c) 1991 Regents of the University of California.
|
|
* All rights reserved.
|
|
* Copyright (c) 1994 John S. Dyson
|
|
* All rights reserved.
|
|
* Copyright (c) 1994 David Greenman
|
|
* All rights reserved.
|
|
*
|
|
* This code is derived from software contributed to Berkeley by
|
|
* the Systems Programming Group of the University of Utah Computer
|
|
* Science Department and William Jolitz of UUNET Technologies Inc.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. Neither the name of the University nor the names of its contributors
|
|
* may be used to endorse or promote products derived from this software
|
|
* without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*
|
|
* from: @(#)pmap.c 7.7 (Berkeley) 5/12/91
|
|
* from: src/sys/i386/i386/pmap.c,v 1.250.2.8 2000/11/21 00:09:14 ps
|
|
* JNPR: pmap.c,v 1.11.2.1 2007/08/16 11:51:06 girish
|
|
*/
|
|
|
|
/*
|
|
* Manages physical address maps.
|
|
*
|
|
* Since the information managed by this module is
|
|
* also stored by the logical address mapping module,
|
|
* this module may throw away valid virtual-to-physical
|
|
* mappings at almost any time. However, invalidations
|
|
* of virtual-to-physical mappings must be done as
|
|
* requested.
|
|
*
|
|
* In order to cope with hardware architectures which
|
|
* make virtual-to-physical map invalidates expensive,
|
|
* this module may delay invalidate or reduced protection
|
|
* operations until such time as they are actually
|
|
* necessary. This module is given full information as
|
|
* to which processors are currently using which maps,
|
|
* and to when physical maps must be made correct.
|
|
*/
|
|
|
|
#include <sys/cdefs.h>
|
|
__FBSDID("$FreeBSD$");
|
|
|
|
#include "opt_ddb.h"
|
|
#include "opt_pmap.h"
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/lock.h>
|
|
#include <sys/mman.h>
|
|
#include <sys/msgbuf.h>
|
|
#include <sys/mutex.h>
|
|
#include <sys/pcpu.h>
|
|
#include <sys/proc.h>
|
|
#include <sys/rwlock.h>
|
|
#include <sys/sched.h>
|
|
#include <sys/smp.h>
|
|
#include <sys/sysctl.h>
|
|
#include <sys/vmmeter.h>
|
|
|
|
#ifdef DDB
|
|
#include <ddb/ddb.h>
|
|
#endif
|
|
|
|
#include <vm/vm.h>
|
|
#include <vm/vm_param.h>
|
|
#include <vm/vm_kern.h>
|
|
#include <vm/vm_page.h>
|
|
#include <vm/vm_map.h>
|
|
#include <vm/vm_object.h>
|
|
#include <vm/vm_extern.h>
|
|
#include <vm/vm_pageout.h>
|
|
#include <vm/vm_pager.h>
|
|
#include <vm/uma.h>
|
|
|
|
#include <machine/cache.h>
|
|
#include <machine/md_var.h>
|
|
#include <machine/tlb.h>
|
|
|
|
#undef PMAP_DEBUG
|
|
|
|
#if !defined(DIAGNOSTIC)
|
|
#define PMAP_INLINE __inline
|
|
#else
|
|
#define PMAP_INLINE
|
|
#endif
|
|
|
|
#ifdef PV_STATS
|
|
#define PV_STAT(x) do { x ; } while (0)
|
|
#else
|
|
#define PV_STAT(x) do { } while (0)
|
|
#endif
|
|
|
|
/*
|
|
* Get PDEs and PTEs for user/kernel address space
|
|
*/
|
|
#define pmap_seg_index(v) (((v) >> SEGSHIFT) & (NPDEPG - 1))
|
|
#define pmap_pde_index(v) (((v) >> PDRSHIFT) & (NPDEPG - 1))
|
|
#define pmap_pte_index(v) (((v) >> PAGE_SHIFT) & (NPTEPG - 1))
|
|
#define pmap_pde_pindex(v) ((v) >> PDRSHIFT)
|
|
|
|
#ifdef __mips_n64
|
|
#define NUPDE (NPDEPG * NPDEPG)
|
|
#define NUSERPGTBLS (NUPDE + NPDEPG)
|
|
#else
|
|
#define NUPDE (NPDEPG)
|
|
#define NUSERPGTBLS (NUPDE)
|
|
#endif
|
|
|
|
#define is_kernel_pmap(x) ((x) == kernel_pmap)
|
|
|
|
struct pmap kernel_pmap_store;
|
|
pd_entry_t *kernel_segmap;
|
|
|
|
vm_offset_t virtual_avail; /* VA of first avail page (after kernel bss) */
|
|
vm_offset_t virtual_end; /* VA of last avail page (end of kernel AS) */
|
|
|
|
static int nkpt;
|
|
unsigned pmap_max_asid; /* max ASID supported by the system */
|
|
|
|
#define PMAP_ASID_RESERVED 0
|
|
|
|
vm_offset_t kernel_vm_end = VM_MIN_KERNEL_ADDRESS;
|
|
|
|
static void pmap_asid_alloc(pmap_t pmap);
|
|
|
|
static struct rwlock_padalign pvh_global_lock;
|
|
|
|
/*
|
|
* Data for the pv entry allocation mechanism
|
|
*/
|
|
static TAILQ_HEAD(pch, pv_chunk) pv_chunks = TAILQ_HEAD_INITIALIZER(pv_chunks);
|
|
static int pv_entry_count;
|
|
|
|
static void free_pv_chunk(struct pv_chunk *pc);
|
|
static void free_pv_entry(pmap_t pmap, pv_entry_t pv);
|
|
static pv_entry_t get_pv_entry(pmap_t pmap, boolean_t try);
|
|
static vm_page_t pmap_pv_reclaim(pmap_t locked_pmap);
|
|
static void pmap_pvh_free(struct md_page *pvh, pmap_t pmap, vm_offset_t va);
|
|
static pv_entry_t pmap_pvh_remove(struct md_page *pvh, pmap_t pmap,
|
|
vm_offset_t va);
|
|
static vm_page_t pmap_alloc_direct_page(unsigned int index, int req);
|
|
static vm_page_t pmap_enter_quick_locked(pmap_t pmap, vm_offset_t va,
|
|
vm_page_t m, vm_prot_t prot, vm_page_t mpte);
|
|
static void pmap_grow_direct_page(int req);
|
|
static int pmap_remove_pte(struct pmap *pmap, pt_entry_t *ptq, vm_offset_t va,
|
|
pd_entry_t pde);
|
|
static void pmap_remove_page(struct pmap *pmap, vm_offset_t va);
|
|
static void pmap_remove_entry(struct pmap *pmap, vm_page_t m, vm_offset_t va);
|
|
static boolean_t pmap_try_insert_pv_entry(pmap_t pmap, vm_page_t mpte,
|
|
vm_offset_t va, vm_page_t m);
|
|
static void pmap_update_page(pmap_t pmap, vm_offset_t va, pt_entry_t pte);
|
|
static void pmap_invalidate_all(pmap_t pmap);
|
|
static void pmap_invalidate_page(pmap_t pmap, vm_offset_t va);
|
|
static void _pmap_unwire_ptp(pmap_t pmap, vm_offset_t va, vm_page_t m);
|
|
|
|
static vm_page_t pmap_allocpte(pmap_t pmap, vm_offset_t va, u_int flags);
|
|
static vm_page_t _pmap_allocpte(pmap_t pmap, unsigned ptepindex, u_int flags);
|
|
static int pmap_unuse_pt(pmap_t, vm_offset_t, pd_entry_t);
|
|
static pt_entry_t init_pte_prot(vm_page_t m, vm_prot_t access, vm_prot_t prot);
|
|
|
|
static void pmap_invalidate_page_action(void *arg);
|
|
static void pmap_invalidate_range_action(void *arg);
|
|
static void pmap_update_page_action(void *arg);
|
|
|
|
#ifndef __mips_n64
|
|
/*
|
|
* This structure is for high memory (memory above 512Meg in 32 bit) support.
|
|
* The highmem area does not have a KSEG0 mapping, and we need a mechanism to
|
|
* do temporary per-CPU mappings for pmap_zero_page, pmap_copy_page etc.
|
|
*
|
|
* At bootup, we reserve 2 virtual pages per CPU for mapping highmem pages. To
|
|
* access a highmem physical address on a CPU, we map the physical address to
|
|
* the reserved virtual address for the CPU in the kernel pagetable. This is
|
|
* done with interrupts disabled(although a spinlock and sched_pin would be
|
|
* sufficient).
|
|
*/
|
|
struct local_sysmaps {
|
|
vm_offset_t base;
|
|
uint32_t saved_intr;
|
|
uint16_t valid1, valid2;
|
|
};
|
|
static struct local_sysmaps sysmap_lmem[MAXCPU];
|
|
|
|
static __inline void
|
|
pmap_alloc_lmem_map(void)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < MAXCPU; i++) {
|
|
sysmap_lmem[i].base = virtual_avail;
|
|
virtual_avail += PAGE_SIZE * 2;
|
|
sysmap_lmem[i].valid1 = sysmap_lmem[i].valid2 = 0;
|
|
}
|
|
}
|
|
|
|
static __inline vm_offset_t
|
|
pmap_lmem_map1(vm_paddr_t phys)
|
|
{
|
|
struct local_sysmaps *sysm;
|
|
pt_entry_t *pte, npte;
|
|
vm_offset_t va;
|
|
uint32_t intr;
|
|
int cpu;
|
|
|
|
intr = intr_disable();
|
|
cpu = PCPU_GET(cpuid);
|
|
sysm = &sysmap_lmem[cpu];
|
|
sysm->saved_intr = intr;
|
|
va = sysm->base;
|
|
npte = TLBLO_PA_TO_PFN(phys) | PTE_C_CACHE | PTE_D | PTE_V | PTE_G;
|
|
pte = pmap_pte(kernel_pmap, va);
|
|
*pte = npte;
|
|
sysm->valid1 = 1;
|
|
return (va);
|
|
}
|
|
|
|
static __inline vm_offset_t
|
|
pmap_lmem_map2(vm_paddr_t phys1, vm_paddr_t phys2)
|
|
{
|
|
struct local_sysmaps *sysm;
|
|
pt_entry_t *pte, npte;
|
|
vm_offset_t va1, va2;
|
|
uint32_t intr;
|
|
int cpu;
|
|
|
|
intr = intr_disable();
|
|
cpu = PCPU_GET(cpuid);
|
|
sysm = &sysmap_lmem[cpu];
|
|
sysm->saved_intr = intr;
|
|
va1 = sysm->base;
|
|
va2 = sysm->base + PAGE_SIZE;
|
|
npte = TLBLO_PA_TO_PFN(phys1) | PTE_C_CACHE | PTE_D | PTE_V | PTE_G;
|
|
pte = pmap_pte(kernel_pmap, va1);
|
|
*pte = npte;
|
|
npte = TLBLO_PA_TO_PFN(phys2) | PTE_C_CACHE | PTE_D | PTE_V | PTE_G;
|
|
pte = pmap_pte(kernel_pmap, va2);
|
|
*pte = npte;
|
|
sysm->valid1 = 1;
|
|
sysm->valid2 = 1;
|
|
return (va1);
|
|
}
|
|
|
|
static __inline void
|
|
pmap_lmem_unmap(void)
|
|
{
|
|
struct local_sysmaps *sysm;
|
|
pt_entry_t *pte;
|
|
int cpu;
|
|
|
|
cpu = PCPU_GET(cpuid);
|
|
sysm = &sysmap_lmem[cpu];
|
|
pte = pmap_pte(kernel_pmap, sysm->base);
|
|
*pte = PTE_G;
|
|
tlb_invalidate_address(kernel_pmap, sysm->base);
|
|
sysm->valid1 = 0;
|
|
if (sysm->valid2) {
|
|
pte = pmap_pte(kernel_pmap, sysm->base + PAGE_SIZE);
|
|
*pte = PTE_G;
|
|
tlb_invalidate_address(kernel_pmap, sysm->base + PAGE_SIZE);
|
|
sysm->valid2 = 0;
|
|
}
|
|
intr_restore(sysm->saved_intr);
|
|
}
|
|
#else /* __mips_n64 */
|
|
|
|
static __inline void
|
|
pmap_alloc_lmem_map(void)
|
|
{
|
|
}
|
|
|
|
static __inline vm_offset_t
|
|
pmap_lmem_map1(vm_paddr_t phys)
|
|
{
|
|
|
|
return (0);
|
|
}
|
|
|
|
static __inline vm_offset_t
|
|
pmap_lmem_map2(vm_paddr_t phys1, vm_paddr_t phys2)
|
|
{
|
|
|
|
return (0);
|
|
}
|
|
|
|
static __inline vm_offset_t
|
|
pmap_lmem_unmap(void)
|
|
{
|
|
|
|
return (0);
|
|
}
|
|
#endif /* !__mips_n64 */
|
|
|
|
static __inline int
|
|
pmap_pte_cache_bits(vm_paddr_t pa, vm_page_t m)
|
|
{
|
|
vm_memattr_t ma;
|
|
|
|
ma = pmap_page_get_memattr(m);
|
|
if (ma == VM_MEMATTR_WRITE_BACK && !is_cacheable_mem(pa))
|
|
ma = VM_MEMATTR_UNCACHEABLE;
|
|
return PTE_C(ma);
|
|
}
|
|
#define PMAP_PTE_SET_CACHE_BITS(pte, ps, m) { \
|
|
pte &= ~PTE_C_MASK; \
|
|
pte |= pmap_pte_cache_bits(pa, m); \
|
|
}
|
|
|
|
/*
|
|
* Page table entry lookup routines.
|
|
*/
|
|
static __inline pd_entry_t *
|
|
pmap_segmap(pmap_t pmap, vm_offset_t va)
|
|
{
|
|
|
|
return (&pmap->pm_segtab[pmap_seg_index(va)]);
|
|
}
|
|
|
|
#ifdef __mips_n64
|
|
static __inline pd_entry_t *
|
|
pmap_pdpe_to_pde(pd_entry_t *pdpe, vm_offset_t va)
|
|
{
|
|
pd_entry_t *pde;
|
|
|
|
pde = (pd_entry_t *)*pdpe;
|
|
return (&pde[pmap_pde_index(va)]);
|
|
}
|
|
|
|
static __inline pd_entry_t *
|
|
pmap_pde(pmap_t pmap, vm_offset_t va)
|
|
{
|
|
pd_entry_t *pdpe;
|
|
|
|
pdpe = pmap_segmap(pmap, va);
|
|
if (*pdpe == NULL)
|
|
return (NULL);
|
|
|
|
return (pmap_pdpe_to_pde(pdpe, va));
|
|
}
|
|
#else
|
|
static __inline pd_entry_t *
|
|
pmap_pdpe_to_pde(pd_entry_t *pdpe, vm_offset_t va)
|
|
{
|
|
|
|
return (pdpe);
|
|
}
|
|
|
|
static __inline
|
|
pd_entry_t *pmap_pde(pmap_t pmap, vm_offset_t va)
|
|
{
|
|
|
|
return (pmap_segmap(pmap, va));
|
|
}
|
|
#endif
|
|
|
|
static __inline pt_entry_t *
|
|
pmap_pde_to_pte(pd_entry_t *pde, vm_offset_t va)
|
|
{
|
|
pt_entry_t *pte;
|
|
|
|
pte = (pt_entry_t *)*pde;
|
|
return (&pte[pmap_pte_index(va)]);
|
|
}
|
|
|
|
pt_entry_t *
|
|
pmap_pte(pmap_t pmap, vm_offset_t va)
|
|
{
|
|
pd_entry_t *pde;
|
|
|
|
pde = pmap_pde(pmap, va);
|
|
if (pde == NULL || *pde == NULL)
|
|
return (NULL);
|
|
|
|
return (pmap_pde_to_pte(pde, va));
|
|
}
|
|
|
|
vm_offset_t
|
|
pmap_steal_memory(vm_size_t size)
|
|
{
|
|
vm_paddr_t bank_size, pa;
|
|
vm_offset_t va;
|
|
|
|
size = round_page(size);
|
|
bank_size = phys_avail[1] - phys_avail[0];
|
|
while (size > bank_size) {
|
|
int i;
|
|
|
|
for (i = 0; phys_avail[i + 2]; i += 2) {
|
|
phys_avail[i] = phys_avail[i + 2];
|
|
phys_avail[i + 1] = phys_avail[i + 3];
|
|
}
|
|
phys_avail[i] = 0;
|
|
phys_avail[i + 1] = 0;
|
|
if (!phys_avail[0])
|
|
panic("pmap_steal_memory: out of memory");
|
|
bank_size = phys_avail[1] - phys_avail[0];
|
|
}
|
|
|
|
pa = phys_avail[0];
|
|
phys_avail[0] += size;
|
|
if (MIPS_DIRECT_MAPPABLE(pa) == 0)
|
|
panic("Out of memory below 512Meg?");
|
|
va = MIPS_PHYS_TO_DIRECT(pa);
|
|
bzero((caddr_t)va, size);
|
|
return (va);
|
|
}
|
|
|
|
/*
|
|
* Bootstrap the system enough to run with virtual memory. This
|
|
* assumes that the phys_avail array has been initialized.
|
|
*/
|
|
static void
|
|
pmap_create_kernel_pagetable(void)
|
|
{
|
|
int i, j;
|
|
vm_offset_t ptaddr;
|
|
pt_entry_t *pte;
|
|
#ifdef __mips_n64
|
|
pd_entry_t *pde;
|
|
vm_offset_t pdaddr;
|
|
int npt, npde;
|
|
#endif
|
|
|
|
/*
|
|
* Allocate segment table for the kernel
|
|
*/
|
|
kernel_segmap = (pd_entry_t *)pmap_steal_memory(PAGE_SIZE);
|
|
|
|
/*
|
|
* Allocate second level page tables for the kernel
|
|
*/
|
|
#ifdef __mips_n64
|
|
npde = howmany(NKPT, NPDEPG);
|
|
pdaddr = pmap_steal_memory(PAGE_SIZE * npde);
|
|
#endif
|
|
nkpt = NKPT;
|
|
ptaddr = pmap_steal_memory(PAGE_SIZE * nkpt);
|
|
|
|
/*
|
|
* The R[4-7]?00 stores only one copy of the Global bit in the
|
|
* translation lookaside buffer for each 2 page entry. Thus invalid
|
|
* entrys must have the Global bit set so when Entry LO and Entry HI
|
|
* G bits are anded together they will produce a global bit to store
|
|
* in the tlb.
|
|
*/
|
|
for (i = 0, pte = (pt_entry_t *)ptaddr; i < (nkpt * NPTEPG); i++, pte++)
|
|
*pte = PTE_G;
|
|
|
|
#ifdef __mips_n64
|
|
for (i = 0, npt = nkpt; npt > 0; i++) {
|
|
kernel_segmap[i] = (pd_entry_t)(pdaddr + i * PAGE_SIZE);
|
|
pde = (pd_entry_t *)kernel_segmap[i];
|
|
|
|
for (j = 0; j < NPDEPG && npt > 0; j++, npt--)
|
|
pde[j] = (pd_entry_t)(ptaddr + (i * NPDEPG + j) * PAGE_SIZE);
|
|
}
|
|
#else
|
|
for (i = 0, j = pmap_seg_index(VM_MIN_KERNEL_ADDRESS); i < nkpt; i++, j++)
|
|
kernel_segmap[j] = (pd_entry_t)(ptaddr + (i * PAGE_SIZE));
|
|
#endif
|
|
|
|
PMAP_LOCK_INIT(kernel_pmap);
|
|
kernel_pmap->pm_segtab = kernel_segmap;
|
|
CPU_FILL(&kernel_pmap->pm_active);
|
|
TAILQ_INIT(&kernel_pmap->pm_pvchunk);
|
|
kernel_pmap->pm_asid[0].asid = PMAP_ASID_RESERVED;
|
|
kernel_pmap->pm_asid[0].gen = 0;
|
|
kernel_vm_end += nkpt * NPTEPG * PAGE_SIZE;
|
|
}
|
|
|
|
void
|
|
pmap_bootstrap(void)
|
|
{
|
|
int i;
|
|
int need_local_mappings = 0;
|
|
|
|
/* Sort. */
|
|
again:
|
|
for (i = 0; phys_avail[i + 1] != 0; i += 2) {
|
|
/*
|
|
* Keep the memory aligned on page boundary.
|
|
*/
|
|
phys_avail[i] = round_page(phys_avail[i]);
|
|
phys_avail[i + 1] = trunc_page(phys_avail[i + 1]);
|
|
|
|
if (i < 2)
|
|
continue;
|
|
if (phys_avail[i - 2] > phys_avail[i]) {
|
|
vm_paddr_t ptemp[2];
|
|
|
|
ptemp[0] = phys_avail[i + 0];
|
|
ptemp[1] = phys_avail[i + 1];
|
|
|
|
phys_avail[i + 0] = phys_avail[i - 2];
|
|
phys_avail[i + 1] = phys_avail[i - 1];
|
|
|
|
phys_avail[i - 2] = ptemp[0];
|
|
phys_avail[i - 1] = ptemp[1];
|
|
goto again;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* In 32 bit, we may have memory which cannot be mapped directly.
|
|
* This memory will need temporary mapping before it can be
|
|
* accessed.
|
|
*/
|
|
if (!MIPS_DIRECT_MAPPABLE(phys_avail[i - 1] - 1))
|
|
need_local_mappings = 1;
|
|
|
|
/*
|
|
* Copy the phys_avail[] array before we start stealing memory from it.
|
|
*/
|
|
for (i = 0; phys_avail[i + 1] != 0; i += 2) {
|
|
physmem_desc[i] = phys_avail[i];
|
|
physmem_desc[i + 1] = phys_avail[i + 1];
|
|
}
|
|
|
|
Maxmem = atop(phys_avail[i - 1]);
|
|
|
|
if (bootverbose) {
|
|
printf("Physical memory chunk(s):\n");
|
|
for (i = 0; phys_avail[i + 1] != 0; i += 2) {
|
|
vm_paddr_t size;
|
|
|
|
size = phys_avail[i + 1] - phys_avail[i];
|
|
printf("%#08jx - %#08jx, %ju bytes (%ju pages)\n",
|
|
(uintmax_t) phys_avail[i],
|
|
(uintmax_t) phys_avail[i + 1] - 1,
|
|
(uintmax_t) size, (uintmax_t) size / PAGE_SIZE);
|
|
}
|
|
printf("Maxmem is 0x%0jx\n", ptoa((uintmax_t)Maxmem));
|
|
}
|
|
/*
|
|
* Steal the message buffer from the beginning of memory.
|
|
*/
|
|
msgbufp = (struct msgbuf *)pmap_steal_memory(msgbufsize);
|
|
msgbufinit(msgbufp, msgbufsize);
|
|
|
|
/*
|
|
* Steal thread0 kstack.
|
|
*/
|
|
kstack0 = pmap_steal_memory(KSTACK_PAGES << PAGE_SHIFT);
|
|
|
|
virtual_avail = VM_MIN_KERNEL_ADDRESS;
|
|
virtual_end = VM_MAX_KERNEL_ADDRESS;
|
|
|
|
#ifdef SMP
|
|
/*
|
|
* Steal some virtual address space to map the pcpu area.
|
|
*/
|
|
virtual_avail = roundup2(virtual_avail, PAGE_SIZE * 2);
|
|
pcpup = (struct pcpu *)virtual_avail;
|
|
virtual_avail += PAGE_SIZE * 2;
|
|
|
|
/*
|
|
* Initialize the wired TLB entry mapping the pcpu region for
|
|
* the BSP at 'pcpup'. Up until this point we were operating
|
|
* with the 'pcpup' for the BSP pointing to a virtual address
|
|
* in KSEG0 so there was no need for a TLB mapping.
|
|
*/
|
|
mips_pcpu_tlb_init(PCPU_ADDR(0));
|
|
|
|
if (bootverbose)
|
|
printf("pcpu is available at virtual address %p.\n", pcpup);
|
|
#endif
|
|
|
|
if (need_local_mappings)
|
|
pmap_alloc_lmem_map();
|
|
pmap_create_kernel_pagetable();
|
|
pmap_max_asid = VMNUM_PIDS;
|
|
mips_wr_entryhi(0);
|
|
mips_wr_pagemask(0);
|
|
|
|
/*
|
|
* Initialize the global pv list lock.
|
|
*/
|
|
rw_init(&pvh_global_lock, "pmap pv global");
|
|
}
|
|
|
|
/*
|
|
* Initialize a vm_page's machine-dependent fields.
|
|
*/
|
|
void
|
|
pmap_page_init(vm_page_t m)
|
|
{
|
|
|
|
TAILQ_INIT(&m->md.pv_list);
|
|
m->md.pv_flags = VM_MEMATTR_DEFAULT << PV_MEMATTR_SHIFT;
|
|
}
|
|
|
|
/*
|
|
* Initialize the pmap module.
|
|
* Called by vm_init, to initialize any structures that the pmap
|
|
* system needs to map virtual memory.
|
|
*/
|
|
void
|
|
pmap_init(void)
|
|
{
|
|
}
|
|
|
|
/***************************************************
|
|
* Low level helper routines.....
|
|
***************************************************/
|
|
|
|
#ifdef SMP
|
|
static __inline void
|
|
pmap_call_on_active_cpus(pmap_t pmap, void (*fn)(void *), void *arg)
|
|
{
|
|
int cpuid, cpu, self;
|
|
cpuset_t active_cpus;
|
|
|
|
sched_pin();
|
|
if (is_kernel_pmap(pmap)) {
|
|
smp_rendezvous(NULL, fn, NULL, arg);
|
|
goto out;
|
|
}
|
|
/* Force ASID update on inactive CPUs */
|
|
CPU_FOREACH(cpu) {
|
|
if (!CPU_ISSET(cpu, &pmap->pm_active))
|
|
pmap->pm_asid[cpu].gen = 0;
|
|
}
|
|
cpuid = PCPU_GET(cpuid);
|
|
/*
|
|
* XXX: barrier/locking for active?
|
|
*
|
|
* Take a snapshot of active here, any further changes are ignored.
|
|
* tlb update/invalidate should be harmless on inactive CPUs
|
|
*/
|
|
active_cpus = pmap->pm_active;
|
|
self = CPU_ISSET(cpuid, &active_cpus);
|
|
CPU_CLR(cpuid, &active_cpus);
|
|
/* Optimize for the case where this cpu is the only active one */
|
|
if (CPU_EMPTY(&active_cpus)) {
|
|
if (self)
|
|
fn(arg);
|
|
} else {
|
|
if (self)
|
|
CPU_SET(cpuid, &active_cpus);
|
|
smp_rendezvous_cpus(active_cpus, NULL, fn, NULL, arg);
|
|
}
|
|
out:
|
|
sched_unpin();
|
|
}
|
|
#else /* !SMP */
|
|
static __inline void
|
|
pmap_call_on_active_cpus(pmap_t pmap, void (*fn)(void *), void *arg)
|
|
{
|
|
int cpuid;
|
|
|
|
if (is_kernel_pmap(pmap)) {
|
|
fn(arg);
|
|
return;
|
|
}
|
|
cpuid = PCPU_GET(cpuid);
|
|
if (!CPU_ISSET(cpuid, &pmap->pm_active))
|
|
pmap->pm_asid[cpuid].gen = 0;
|
|
else
|
|
fn(arg);
|
|
}
|
|
#endif /* SMP */
|
|
|
|
static void
|
|
pmap_invalidate_all(pmap_t pmap)
|
|
{
|
|
|
|
pmap_call_on_active_cpus(pmap,
|
|
(void (*)(void *))tlb_invalidate_all_user, pmap);
|
|
}
|
|
|
|
struct pmap_invalidate_page_arg {
|
|
pmap_t pmap;
|
|
vm_offset_t va;
|
|
};
|
|
|
|
static void
|
|
pmap_invalidate_page_action(void *arg)
|
|
{
|
|
struct pmap_invalidate_page_arg *p = arg;
|
|
|
|
tlb_invalidate_address(p->pmap, p->va);
|
|
}
|
|
|
|
static void
|
|
pmap_invalidate_page(pmap_t pmap, vm_offset_t va)
|
|
{
|
|
struct pmap_invalidate_page_arg arg;
|
|
|
|
arg.pmap = pmap;
|
|
arg.va = va;
|
|
pmap_call_on_active_cpus(pmap, pmap_invalidate_page_action, &arg);
|
|
}
|
|
|
|
struct pmap_invalidate_range_arg {
|
|
pmap_t pmap;
|
|
vm_offset_t sva;
|
|
vm_offset_t eva;
|
|
};
|
|
|
|
static void
|
|
pmap_invalidate_range_action(void *arg)
|
|
{
|
|
struct pmap_invalidate_range_arg *p = arg;
|
|
|
|
tlb_invalidate_range(p->pmap, p->sva, p->eva);
|
|
}
|
|
|
|
static void
|
|
pmap_invalidate_range(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
|
|
{
|
|
struct pmap_invalidate_range_arg arg;
|
|
|
|
arg.pmap = pmap;
|
|
arg.sva = sva;
|
|
arg.eva = eva;
|
|
pmap_call_on_active_cpus(pmap, pmap_invalidate_range_action, &arg);
|
|
}
|
|
|
|
struct pmap_update_page_arg {
|
|
pmap_t pmap;
|
|
vm_offset_t va;
|
|
pt_entry_t pte;
|
|
};
|
|
|
|
static void
|
|
pmap_update_page_action(void *arg)
|
|
{
|
|
struct pmap_update_page_arg *p = arg;
|
|
|
|
tlb_update(p->pmap, p->va, p->pte);
|
|
}
|
|
|
|
static void
|
|
pmap_update_page(pmap_t pmap, vm_offset_t va, pt_entry_t pte)
|
|
{
|
|
struct pmap_update_page_arg arg;
|
|
|
|
arg.pmap = pmap;
|
|
arg.va = va;
|
|
arg.pte = pte;
|
|
pmap_call_on_active_cpus(pmap, pmap_update_page_action, &arg);
|
|
}
|
|
|
|
/*
|
|
* Routine: pmap_extract
|
|
* Function:
|
|
* Extract the physical page address associated
|
|
* with the given map/virtual_address pair.
|
|
*/
|
|
vm_paddr_t
|
|
pmap_extract(pmap_t pmap, vm_offset_t va)
|
|
{
|
|
pt_entry_t *pte;
|
|
vm_offset_t retval = 0;
|
|
|
|
PMAP_LOCK(pmap);
|
|
pte = pmap_pte(pmap, va);
|
|
if (pte) {
|
|
retval = TLBLO_PTE_TO_PA(*pte) | (va & PAGE_MASK);
|
|
}
|
|
PMAP_UNLOCK(pmap);
|
|
return (retval);
|
|
}
|
|
|
|
/*
|
|
* Routine: pmap_extract_and_hold
|
|
* Function:
|
|
* Atomically extract and hold the physical page
|
|
* with the given pmap and virtual address pair
|
|
* if that mapping permits the given protection.
|
|
*/
|
|
vm_page_t
|
|
pmap_extract_and_hold(pmap_t pmap, vm_offset_t va, vm_prot_t prot)
|
|
{
|
|
pt_entry_t pte, *ptep;
|
|
vm_paddr_t pa, pte_pa;
|
|
vm_page_t m;
|
|
|
|
m = NULL;
|
|
pa = 0;
|
|
PMAP_LOCK(pmap);
|
|
retry:
|
|
ptep = pmap_pte(pmap, va);
|
|
if (ptep != NULL) {
|
|
pte = *ptep;
|
|
if (pte_test(&pte, PTE_V) && (!pte_test(&pte, PTE_RO) ||
|
|
(prot & VM_PROT_WRITE) == 0)) {
|
|
pte_pa = TLBLO_PTE_TO_PA(pte);
|
|
if (vm_page_pa_tryrelock(pmap, pte_pa, &pa))
|
|
goto retry;
|
|
m = PHYS_TO_VM_PAGE(pte_pa);
|
|
vm_page_hold(m);
|
|
}
|
|
}
|
|
PA_UNLOCK_COND(pa);
|
|
PMAP_UNLOCK(pmap);
|
|
return (m);
|
|
}
|
|
|
|
/***************************************************
|
|
* Low level mapping routines.....
|
|
***************************************************/
|
|
|
|
/*
|
|
* add a wired page to the kva
|
|
*/
|
|
void
|
|
pmap_kenter_attr(vm_offset_t va, vm_paddr_t pa, vm_memattr_t ma)
|
|
{
|
|
pt_entry_t *pte;
|
|
pt_entry_t opte, npte;
|
|
|
|
#ifdef PMAP_DEBUG
|
|
printf("pmap_kenter: va: %p -> pa: %p\n", (void *)va, (void *)pa);
|
|
#endif
|
|
|
|
pte = pmap_pte(kernel_pmap, va);
|
|
opte = *pte;
|
|
npte = TLBLO_PA_TO_PFN(pa) | PTE_C(ma) | PTE_D | PTE_V | PTE_G;
|
|
*pte = npte;
|
|
if (pte_test(&opte, PTE_V) && opte != npte)
|
|
pmap_update_page(kernel_pmap, va, npte);
|
|
}
|
|
|
|
void
|
|
pmap_kenter(vm_offset_t va, vm_paddr_t pa)
|
|
{
|
|
|
|
KASSERT(is_cacheable_mem(pa),
|
|
("pmap_kenter: memory at 0x%lx is not cacheable", (u_long)pa));
|
|
|
|
pmap_kenter_attr(va, pa, VM_MEMATTR_DEFAULT);
|
|
}
|
|
|
|
void
|
|
pmap_kenter_device(vm_offset_t va, vm_size_t size, vm_paddr_t pa)
|
|
{
|
|
|
|
KASSERT((size & PAGE_MASK) == 0,
|
|
("%s: device mapping not page-sized", __func__));
|
|
|
|
for (; size > 0; size -= PAGE_SIZE) {
|
|
/*
|
|
* XXXCEM: this is somewhat inefficient on SMP systems in that
|
|
* every single page is individually TLB-invalidated via
|
|
* rendezvous (pmap_update_page()), instead of invalidating the
|
|
* entire range via a single rendezvous.
|
|
*/
|
|
pmap_kenter_attr(va, pa, VM_MEMATTR_UNCACHEABLE);
|
|
va += PAGE_SIZE;
|
|
pa += PAGE_SIZE;
|
|
}
|
|
}
|
|
|
|
void
|
|
pmap_kremove_device(vm_offset_t va, vm_size_t size)
|
|
{
|
|
|
|
KASSERT((size & PAGE_MASK) == 0,
|
|
("%s: device mapping not page-sized", __func__));
|
|
|
|
/*
|
|
* XXXCEM: Similar to pmap_kenter_device, this is inefficient on SMP,
|
|
* in that pages are invalidated individually instead of a single range
|
|
* rendezvous.
|
|
*/
|
|
for (; size > 0; size -= PAGE_SIZE) {
|
|
pmap_kremove(va);
|
|
va += PAGE_SIZE;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* remove a page from the kernel pagetables
|
|
*/
|
|
/* PMAP_INLINE */ void
|
|
pmap_kremove(vm_offset_t va)
|
|
{
|
|
pt_entry_t *pte;
|
|
|
|
/*
|
|
* Write back all caches from the page being destroyed
|
|
*/
|
|
mips_dcache_wbinv_range_index(va, PAGE_SIZE);
|
|
|
|
pte = pmap_pte(kernel_pmap, va);
|
|
*pte = PTE_G;
|
|
pmap_invalidate_page(kernel_pmap, va);
|
|
}
|
|
|
|
/*
|
|
* Used to map a range of physical addresses into kernel
|
|
* virtual address space.
|
|
*
|
|
* The value passed in '*virt' is a suggested virtual address for
|
|
* the mapping. Architectures which can support a direct-mapped
|
|
* physical to virtual region can return the appropriate address
|
|
* within that region, leaving '*virt' unchanged. Other
|
|
* architectures should map the pages starting at '*virt' and
|
|
* update '*virt' with the first usable address after the mapped
|
|
* region.
|
|
*
|
|
* Use XKPHYS for 64 bit, and KSEG0 where possible for 32 bit.
|
|
*/
|
|
vm_offset_t
|
|
pmap_map(vm_offset_t *virt, vm_paddr_t start, vm_paddr_t end, int prot)
|
|
{
|
|
vm_offset_t va, sva;
|
|
|
|
if (MIPS_DIRECT_MAPPABLE(end - 1))
|
|
return (MIPS_PHYS_TO_DIRECT(start));
|
|
|
|
va = sva = *virt;
|
|
while (start < end) {
|
|
pmap_kenter(va, start);
|
|
va += PAGE_SIZE;
|
|
start += PAGE_SIZE;
|
|
}
|
|
*virt = va;
|
|
return (sva);
|
|
}
|
|
|
|
/*
|
|
* Add a list of wired pages to the kva
|
|
* this routine is only used for temporary
|
|
* kernel mappings that do not need to have
|
|
* page modification or references recorded.
|
|
* Note that old mappings are simply written
|
|
* over. The page *must* be wired.
|
|
*/
|
|
void
|
|
pmap_qenter(vm_offset_t va, vm_page_t *m, int count)
|
|
{
|
|
int i;
|
|
vm_offset_t origva = va;
|
|
|
|
for (i = 0; i < count; i++) {
|
|
pmap_flush_pvcache(m[i]);
|
|
pmap_kenter(va, VM_PAGE_TO_PHYS(m[i]));
|
|
va += PAGE_SIZE;
|
|
}
|
|
|
|
mips_dcache_wbinv_range_index(origva, PAGE_SIZE*count);
|
|
}
|
|
|
|
/*
|
|
* this routine jerks page mappings from the
|
|
* kernel -- it is meant only for temporary mappings.
|
|
*/
|
|
void
|
|
pmap_qremove(vm_offset_t va, int count)
|
|
{
|
|
pt_entry_t *pte;
|
|
vm_offset_t origva;
|
|
|
|
if (count < 1)
|
|
return;
|
|
mips_dcache_wbinv_range_index(va, PAGE_SIZE * count);
|
|
origva = va;
|
|
do {
|
|
pte = pmap_pte(kernel_pmap, va);
|
|
*pte = PTE_G;
|
|
va += PAGE_SIZE;
|
|
} while (--count > 0);
|
|
pmap_invalidate_range(kernel_pmap, origva, va);
|
|
}
|
|
|
|
/***************************************************
|
|
* Page table page management routines.....
|
|
***************************************************/
|
|
|
|
/*
|
|
* Decrements a page table page's wire count, which is used to record the
|
|
* number of valid page table entries within the page. If the wire count
|
|
* drops to zero, then the page table page is unmapped. Returns TRUE if the
|
|
* page table page was unmapped and FALSE otherwise.
|
|
*/
|
|
static PMAP_INLINE boolean_t
|
|
pmap_unwire_ptp(pmap_t pmap, vm_offset_t va, vm_page_t m)
|
|
{
|
|
|
|
--m->wire_count;
|
|
if (m->wire_count == 0) {
|
|
_pmap_unwire_ptp(pmap, va, m);
|
|
return (TRUE);
|
|
} else
|
|
return (FALSE);
|
|
}
|
|
|
|
static void
|
|
_pmap_unwire_ptp(pmap_t pmap, vm_offset_t va, vm_page_t m)
|
|
{
|
|
pd_entry_t *pde;
|
|
|
|
PMAP_LOCK_ASSERT(pmap, MA_OWNED);
|
|
/*
|
|
* unmap the page table page
|
|
*/
|
|
#ifdef __mips_n64
|
|
if (m->pindex < NUPDE)
|
|
pde = pmap_pde(pmap, va);
|
|
else
|
|
pde = pmap_segmap(pmap, va);
|
|
#else
|
|
pde = pmap_pde(pmap, va);
|
|
#endif
|
|
*pde = 0;
|
|
pmap->pm_stats.resident_count--;
|
|
|
|
#ifdef __mips_n64
|
|
if (m->pindex < NUPDE) {
|
|
pd_entry_t *pdp;
|
|
vm_page_t pdpg;
|
|
|
|
/*
|
|
* Recursively decrement next level pagetable refcount
|
|
*/
|
|
pdp = (pd_entry_t *)*pmap_segmap(pmap, va);
|
|
pdpg = PHYS_TO_VM_PAGE(MIPS_DIRECT_TO_PHYS(pdp));
|
|
pmap_unwire_ptp(pmap, va, pdpg);
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* If the page is finally unwired, simply free it.
|
|
*/
|
|
vm_page_free_zero(m);
|
|
vm_wire_sub(1);
|
|
}
|
|
|
|
/*
|
|
* After removing a page table entry, this routine is used to
|
|
* conditionally free the page, and manage the hold/wire counts.
|
|
*/
|
|
static int
|
|
pmap_unuse_pt(pmap_t pmap, vm_offset_t va, pd_entry_t pde)
|
|
{
|
|
vm_page_t mpte;
|
|
|
|
if (va >= VM_MAXUSER_ADDRESS)
|
|
return (0);
|
|
KASSERT(pde != 0, ("pmap_unuse_pt: pde != 0"));
|
|
mpte = PHYS_TO_VM_PAGE(MIPS_DIRECT_TO_PHYS(pde));
|
|
return (pmap_unwire_ptp(pmap, va, mpte));
|
|
}
|
|
|
|
void
|
|
pmap_pinit0(pmap_t pmap)
|
|
{
|
|
int i;
|
|
|
|
PMAP_LOCK_INIT(pmap);
|
|
pmap->pm_segtab = kernel_segmap;
|
|
CPU_ZERO(&pmap->pm_active);
|
|
for (i = 0; i < MAXCPU; i++) {
|
|
pmap->pm_asid[i].asid = PMAP_ASID_RESERVED;
|
|
pmap->pm_asid[i].gen = 0;
|
|
}
|
|
PCPU_SET(curpmap, pmap);
|
|
TAILQ_INIT(&pmap->pm_pvchunk);
|
|
bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
|
|
}
|
|
|
|
static void
|
|
pmap_grow_direct_page(int req)
|
|
{
|
|
|
|
#ifdef __mips_n64
|
|
vm_wait(NULL);
|
|
#else
|
|
if (!vm_page_reclaim_contig(req, 1, 0, MIPS_KSEG0_LARGEST_PHYS,
|
|
PAGE_SIZE, 0))
|
|
vm_wait(NULL);
|
|
#endif
|
|
}
|
|
|
|
static vm_page_t
|
|
pmap_alloc_direct_page(unsigned int index, int req)
|
|
{
|
|
vm_page_t m;
|
|
|
|
m = vm_page_alloc_freelist(VM_FREELIST_DIRECT, req | VM_ALLOC_WIRED |
|
|
VM_ALLOC_ZERO);
|
|
if (m == NULL)
|
|
return (NULL);
|
|
|
|
if ((m->flags & PG_ZERO) == 0)
|
|
pmap_zero_page(m);
|
|
|
|
m->pindex = index;
|
|
return (m);
|
|
}
|
|
|
|
/*
|
|
* Initialize a preallocated and zeroed pmap structure,
|
|
* such as one in a vmspace structure.
|
|
*/
|
|
int
|
|
pmap_pinit(pmap_t pmap)
|
|
{
|
|
vm_offset_t ptdva;
|
|
vm_page_t ptdpg;
|
|
int i, req_class;
|
|
|
|
/*
|
|
* allocate the page directory page
|
|
*/
|
|
req_class = VM_ALLOC_NORMAL;
|
|
while ((ptdpg = pmap_alloc_direct_page(NUSERPGTBLS, req_class)) ==
|
|
NULL)
|
|
pmap_grow_direct_page(req_class);
|
|
|
|
ptdva = MIPS_PHYS_TO_DIRECT(VM_PAGE_TO_PHYS(ptdpg));
|
|
pmap->pm_segtab = (pd_entry_t *)ptdva;
|
|
CPU_ZERO(&pmap->pm_active);
|
|
for (i = 0; i < MAXCPU; i++) {
|
|
pmap->pm_asid[i].asid = PMAP_ASID_RESERVED;
|
|
pmap->pm_asid[i].gen = 0;
|
|
}
|
|
TAILQ_INIT(&pmap->pm_pvchunk);
|
|
bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
|
|
|
|
return (1);
|
|
}
|
|
|
|
/*
|
|
* this routine is called if the page table page is not
|
|
* mapped correctly.
|
|
*/
|
|
static vm_page_t
|
|
_pmap_allocpte(pmap_t pmap, unsigned ptepindex, u_int flags)
|
|
{
|
|
vm_offset_t pageva;
|
|
vm_page_t m;
|
|
int req_class;
|
|
|
|
/*
|
|
* Find or fabricate a new pagetable page
|
|
*/
|
|
req_class = VM_ALLOC_NORMAL;
|
|
if ((m = pmap_alloc_direct_page(ptepindex, req_class)) == NULL) {
|
|
if ((flags & PMAP_ENTER_NOSLEEP) == 0) {
|
|
PMAP_UNLOCK(pmap);
|
|
rw_wunlock(&pvh_global_lock);
|
|
pmap_grow_direct_page(req_class);
|
|
rw_wlock(&pvh_global_lock);
|
|
PMAP_LOCK(pmap);
|
|
}
|
|
|
|
/*
|
|
* Indicate the need to retry. While waiting, the page
|
|
* table page may have been allocated.
|
|
*/
|
|
return (NULL);
|
|
}
|
|
|
|
/*
|
|
* Map the pagetable page into the process address space, if it
|
|
* isn't already there.
|
|
*/
|
|
pageva = MIPS_PHYS_TO_DIRECT(VM_PAGE_TO_PHYS(m));
|
|
|
|
#ifdef __mips_n64
|
|
if (ptepindex >= NUPDE) {
|
|
pmap->pm_segtab[ptepindex - NUPDE] = (pd_entry_t)pageva;
|
|
} else {
|
|
pd_entry_t *pdep, *pde;
|
|
int segindex = ptepindex >> (SEGSHIFT - PDRSHIFT);
|
|
int pdeindex = ptepindex & (NPDEPG - 1);
|
|
vm_page_t pg;
|
|
|
|
pdep = &pmap->pm_segtab[segindex];
|
|
if (*pdep == NULL) {
|
|
/* recurse for allocating page dir */
|
|
if (_pmap_allocpte(pmap, NUPDE + segindex,
|
|
flags) == NULL) {
|
|
/* alloc failed, release current */
|
|
vm_page_unwire_noq(m);
|
|
vm_page_free_zero(m);
|
|
return (NULL);
|
|
}
|
|
} else {
|
|
pg = PHYS_TO_VM_PAGE(MIPS_DIRECT_TO_PHYS(*pdep));
|
|
pg->wire_count++;
|
|
}
|
|
/* Next level entry */
|
|
pde = (pd_entry_t *)*pdep;
|
|
pde[pdeindex] = (pd_entry_t)pageva;
|
|
}
|
|
#else
|
|
pmap->pm_segtab[ptepindex] = (pd_entry_t)pageva;
|
|
#endif
|
|
pmap->pm_stats.resident_count++;
|
|
return (m);
|
|
}
|
|
|
|
static vm_page_t
|
|
pmap_allocpte(pmap_t pmap, vm_offset_t va, u_int flags)
|
|
{
|
|
unsigned ptepindex;
|
|
pd_entry_t *pde;
|
|
vm_page_t m;
|
|
|
|
/*
|
|
* Calculate pagetable page index
|
|
*/
|
|
ptepindex = pmap_pde_pindex(va);
|
|
retry:
|
|
/*
|
|
* Get the page directory entry
|
|
*/
|
|
pde = pmap_pde(pmap, va);
|
|
|
|
/*
|
|
* If the page table page is mapped, we just increment the hold
|
|
* count, and activate it.
|
|
*/
|
|
if (pde != NULL && *pde != NULL) {
|
|
m = PHYS_TO_VM_PAGE(MIPS_DIRECT_TO_PHYS(*pde));
|
|
m->wire_count++;
|
|
} else {
|
|
/*
|
|
* Here if the pte page isn't mapped, or if it has been
|
|
* deallocated.
|
|
*/
|
|
m = _pmap_allocpte(pmap, ptepindex, flags);
|
|
if (m == NULL && (flags & PMAP_ENTER_NOSLEEP) == 0)
|
|
goto retry;
|
|
}
|
|
return (m);
|
|
}
|
|
|
|
|
|
/***************************************************
|
|
* Pmap allocation/deallocation routines.
|
|
***************************************************/
|
|
|
|
/*
|
|
* Release any resources held by the given physical map.
|
|
* Called when a pmap initialized by pmap_pinit is being released.
|
|
* Should only be called if the map contains no valid mappings.
|
|
*/
|
|
void
|
|
pmap_release(pmap_t pmap)
|
|
{
|
|
vm_offset_t ptdva;
|
|
vm_page_t ptdpg;
|
|
|
|
KASSERT(pmap->pm_stats.resident_count == 0,
|
|
("pmap_release: pmap resident count %ld != 0",
|
|
pmap->pm_stats.resident_count));
|
|
|
|
ptdva = (vm_offset_t)pmap->pm_segtab;
|
|
ptdpg = PHYS_TO_VM_PAGE(MIPS_DIRECT_TO_PHYS(ptdva));
|
|
|
|
vm_page_unwire_noq(ptdpg);
|
|
vm_page_free_zero(ptdpg);
|
|
}
|
|
|
|
/*
|
|
* grow the number of kernel page table entries, if needed
|
|
*/
|
|
void
|
|
pmap_growkernel(vm_offset_t addr)
|
|
{
|
|
vm_page_t nkpg;
|
|
pd_entry_t *pde, *pdpe;
|
|
pt_entry_t *pte;
|
|
int i, req_class;
|
|
|
|
mtx_assert(&kernel_map->system_mtx, MA_OWNED);
|
|
req_class = VM_ALLOC_INTERRUPT;
|
|
addr = roundup2(addr, NBSEG);
|
|
if (addr - 1 >= vm_map_max(kernel_map))
|
|
addr = vm_map_max(kernel_map);
|
|
while (kernel_vm_end < addr) {
|
|
pdpe = pmap_segmap(kernel_pmap, kernel_vm_end);
|
|
#ifdef __mips_n64
|
|
if (*pdpe == 0) {
|
|
/* new intermediate page table entry */
|
|
nkpg = pmap_alloc_direct_page(nkpt, req_class);
|
|
if (nkpg == NULL)
|
|
panic("pmap_growkernel: no memory to grow kernel");
|
|
*pdpe = (pd_entry_t)MIPS_PHYS_TO_DIRECT(VM_PAGE_TO_PHYS(nkpg));
|
|
continue; /* try again */
|
|
}
|
|
#endif
|
|
pde = pmap_pdpe_to_pde(pdpe, kernel_vm_end);
|
|
if (*pde != 0) {
|
|
kernel_vm_end = (kernel_vm_end + NBPDR) & ~PDRMASK;
|
|
if (kernel_vm_end - 1 >= vm_map_max(kernel_map)) {
|
|
kernel_vm_end = vm_map_max(kernel_map);
|
|
break;
|
|
}
|
|
continue;
|
|
}
|
|
|
|
/*
|
|
* This index is bogus, but out of the way
|
|
*/
|
|
nkpg = pmap_alloc_direct_page(nkpt, req_class);
|
|
#ifndef __mips_n64
|
|
if (nkpg == NULL && vm_page_reclaim_contig(req_class, 1,
|
|
0, MIPS_KSEG0_LARGEST_PHYS, PAGE_SIZE, 0))
|
|
nkpg = pmap_alloc_direct_page(nkpt, req_class);
|
|
#endif
|
|
if (nkpg == NULL)
|
|
panic("pmap_growkernel: no memory to grow kernel");
|
|
nkpt++;
|
|
*pde = (pd_entry_t)MIPS_PHYS_TO_DIRECT(VM_PAGE_TO_PHYS(nkpg));
|
|
|
|
/*
|
|
* The R[4-7]?00 stores only one copy of the Global bit in
|
|
* the translation lookaside buffer for each 2 page entry.
|
|
* Thus invalid entrys must have the Global bit set so when
|
|
* Entry LO and Entry HI G bits are anded together they will
|
|
* produce a global bit to store in the tlb.
|
|
*/
|
|
pte = (pt_entry_t *)*pde;
|
|
for (i = 0; i < NPTEPG; i++)
|
|
pte[i] = PTE_G;
|
|
|
|
kernel_vm_end = (kernel_vm_end + NBPDR) & ~PDRMASK;
|
|
if (kernel_vm_end - 1 >= vm_map_max(kernel_map)) {
|
|
kernel_vm_end = vm_map_max(kernel_map);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
/***************************************************
|
|
* page management routines.
|
|
***************************************************/
|
|
|
|
CTASSERT(sizeof(struct pv_chunk) == PAGE_SIZE);
|
|
#ifdef __mips_n64
|
|
CTASSERT(_NPCM == 3);
|
|
CTASSERT(_NPCPV == 168);
|
|
#else
|
|
CTASSERT(_NPCM == 11);
|
|
CTASSERT(_NPCPV == 336);
|
|
#endif
|
|
|
|
static __inline struct pv_chunk *
|
|
pv_to_chunk(pv_entry_t pv)
|
|
{
|
|
|
|
return ((struct pv_chunk *)((uintptr_t)pv & ~(uintptr_t)PAGE_MASK));
|
|
}
|
|
|
|
#define PV_PMAP(pv) (pv_to_chunk(pv)->pc_pmap)
|
|
|
|
#ifdef __mips_n64
|
|
#define PC_FREE0_1 0xfffffffffffffffful
|
|
#define PC_FREE2 0x000000fffffffffful
|
|
#else
|
|
#define PC_FREE0_9 0xfffffffful /* Free values for index 0 through 9 */
|
|
#define PC_FREE10 0x0000fffful /* Free values for index 10 */
|
|
#endif
|
|
|
|
static const u_long pc_freemask[_NPCM] = {
|
|
#ifdef __mips_n64
|
|
PC_FREE0_1, PC_FREE0_1, PC_FREE2
|
|
#else
|
|
PC_FREE0_9, PC_FREE0_9, PC_FREE0_9,
|
|
PC_FREE0_9, PC_FREE0_9, PC_FREE0_9,
|
|
PC_FREE0_9, PC_FREE0_9, PC_FREE0_9,
|
|
PC_FREE0_9, PC_FREE10
|
|
#endif
|
|
};
|
|
|
|
static SYSCTL_NODE(_vm, OID_AUTO, pmap, CTLFLAG_RD, 0, "VM/pmap parameters");
|
|
|
|
SYSCTL_INT(_vm_pmap, OID_AUTO, pv_entry_count, CTLFLAG_RD, &pv_entry_count, 0,
|
|
"Current number of pv entries");
|
|
|
|
#ifdef PV_STATS
|
|
static int pc_chunk_count, pc_chunk_allocs, pc_chunk_frees, pc_chunk_tryfail;
|
|
|
|
SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_count, CTLFLAG_RD, &pc_chunk_count, 0,
|
|
"Current number of pv entry chunks");
|
|
SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_allocs, CTLFLAG_RD, &pc_chunk_allocs, 0,
|
|
"Current number of pv entry chunks allocated");
|
|
SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_frees, CTLFLAG_RD, &pc_chunk_frees, 0,
|
|
"Current number of pv entry chunks frees");
|
|
SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_tryfail, CTLFLAG_RD, &pc_chunk_tryfail, 0,
|
|
"Number of times tried to get a chunk page but failed.");
|
|
|
|
static long pv_entry_frees, pv_entry_allocs;
|
|
static int pv_entry_spare;
|
|
|
|
SYSCTL_LONG(_vm_pmap, OID_AUTO, pv_entry_frees, CTLFLAG_RD, &pv_entry_frees, 0,
|
|
"Current number of pv entry frees");
|
|
SYSCTL_LONG(_vm_pmap, OID_AUTO, pv_entry_allocs, CTLFLAG_RD, &pv_entry_allocs, 0,
|
|
"Current number of pv entry allocs");
|
|
SYSCTL_INT(_vm_pmap, OID_AUTO, pv_entry_spare, CTLFLAG_RD, &pv_entry_spare, 0,
|
|
"Current number of spare pv entries");
|
|
#endif
|
|
|
|
/*
|
|
* We are in a serious low memory condition. Resort to
|
|
* drastic measures to free some pages so we can allocate
|
|
* another pv entry chunk.
|
|
*/
|
|
static vm_page_t
|
|
pmap_pv_reclaim(pmap_t locked_pmap)
|
|
{
|
|
struct pch newtail;
|
|
struct pv_chunk *pc;
|
|
pd_entry_t *pde;
|
|
pmap_t pmap;
|
|
pt_entry_t *pte, oldpte;
|
|
pv_entry_t pv;
|
|
vm_offset_t va;
|
|
vm_page_t m, m_pc;
|
|
u_long inuse;
|
|
int bit, field, freed, idx;
|
|
|
|
PMAP_LOCK_ASSERT(locked_pmap, MA_OWNED);
|
|
pmap = NULL;
|
|
m_pc = NULL;
|
|
TAILQ_INIT(&newtail);
|
|
while ((pc = TAILQ_FIRST(&pv_chunks)) != NULL) {
|
|
TAILQ_REMOVE(&pv_chunks, pc, pc_lru);
|
|
if (pmap != pc->pc_pmap) {
|
|
if (pmap != NULL) {
|
|
pmap_invalidate_all(pmap);
|
|
if (pmap != locked_pmap)
|
|
PMAP_UNLOCK(pmap);
|
|
}
|
|
pmap = pc->pc_pmap;
|
|
/* Avoid deadlock and lock recursion. */
|
|
if (pmap > locked_pmap)
|
|
PMAP_LOCK(pmap);
|
|
else if (pmap != locked_pmap && !PMAP_TRYLOCK(pmap)) {
|
|
pmap = NULL;
|
|
TAILQ_INSERT_TAIL(&newtail, pc, pc_lru);
|
|
continue;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Destroy every non-wired, 4 KB page mapping in the chunk.
|
|
*/
|
|
freed = 0;
|
|
for (field = 0; field < _NPCM; field++) {
|
|
for (inuse = ~pc->pc_map[field] & pc_freemask[field];
|
|
inuse != 0; inuse &= ~(1UL << bit)) {
|
|
bit = ffsl(inuse) - 1;
|
|
idx = field * sizeof(inuse) * NBBY + bit;
|
|
pv = &pc->pc_pventry[idx];
|
|
va = pv->pv_va;
|
|
pde = pmap_pde(pmap, va);
|
|
KASSERT(pde != NULL && *pde != 0,
|
|
("pmap_pv_reclaim: pde"));
|
|
pte = pmap_pde_to_pte(pde, va);
|
|
oldpte = *pte;
|
|
if (pte_test(&oldpte, PTE_W))
|
|
continue;
|
|
if (is_kernel_pmap(pmap))
|
|
*pte = PTE_G;
|
|
else
|
|
*pte = 0;
|
|
m = PHYS_TO_VM_PAGE(TLBLO_PTE_TO_PA(oldpte));
|
|
if (pte_test(&oldpte, PTE_D))
|
|
vm_page_dirty(m);
|
|
if (m->md.pv_flags & PV_TABLE_REF)
|
|
vm_page_aflag_set(m, PGA_REFERENCED);
|
|
m->md.pv_flags &= ~PV_TABLE_REF;
|
|
TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
|
|
if (TAILQ_EMPTY(&m->md.pv_list))
|
|
vm_page_aflag_clear(m, PGA_WRITEABLE);
|
|
pc->pc_map[field] |= 1UL << bit;
|
|
pmap_unuse_pt(pmap, va, *pde);
|
|
freed++;
|
|
}
|
|
}
|
|
if (freed == 0) {
|
|
TAILQ_INSERT_TAIL(&newtail, pc, pc_lru);
|
|
continue;
|
|
}
|
|
/* Every freed mapping is for a 4 KB page. */
|
|
pmap->pm_stats.resident_count -= freed;
|
|
PV_STAT(pv_entry_frees += freed);
|
|
PV_STAT(pv_entry_spare += freed);
|
|
pv_entry_count -= freed;
|
|
TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
|
|
for (field = 0; field < _NPCM; field++)
|
|
if (pc->pc_map[field] != pc_freemask[field]) {
|
|
TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc,
|
|
pc_list);
|
|
TAILQ_INSERT_TAIL(&newtail, pc, pc_lru);
|
|
|
|
/*
|
|
* One freed pv entry in locked_pmap is
|
|
* sufficient.
|
|
*/
|
|
if (pmap == locked_pmap)
|
|
goto out;
|
|
break;
|
|
}
|
|
if (field == _NPCM) {
|
|
PV_STAT(pv_entry_spare -= _NPCPV);
|
|
PV_STAT(pc_chunk_count--);
|
|
PV_STAT(pc_chunk_frees++);
|
|
/* Entire chunk is free; return it. */
|
|
m_pc = PHYS_TO_VM_PAGE(MIPS_DIRECT_TO_PHYS(
|
|
(vm_offset_t)pc));
|
|
dump_drop_page(m_pc->phys_addr);
|
|
break;
|
|
}
|
|
}
|
|
out:
|
|
TAILQ_CONCAT(&pv_chunks, &newtail, pc_lru);
|
|
if (pmap != NULL) {
|
|
pmap_invalidate_all(pmap);
|
|
if (pmap != locked_pmap)
|
|
PMAP_UNLOCK(pmap);
|
|
}
|
|
return (m_pc);
|
|
}
|
|
|
|
/*
|
|
* free the pv_entry back to the free list
|
|
*/
|
|
static void
|
|
free_pv_entry(pmap_t pmap, pv_entry_t pv)
|
|
{
|
|
struct pv_chunk *pc;
|
|
int bit, field, idx;
|
|
|
|
rw_assert(&pvh_global_lock, RA_WLOCKED);
|
|
PMAP_LOCK_ASSERT(pmap, MA_OWNED);
|
|
PV_STAT(pv_entry_frees++);
|
|
PV_STAT(pv_entry_spare++);
|
|
pv_entry_count--;
|
|
pc = pv_to_chunk(pv);
|
|
idx = pv - &pc->pc_pventry[0];
|
|
field = idx / (sizeof(u_long) * NBBY);
|
|
bit = idx % (sizeof(u_long) * NBBY);
|
|
pc->pc_map[field] |= 1ul << bit;
|
|
for (idx = 0; idx < _NPCM; idx++)
|
|
if (pc->pc_map[idx] != pc_freemask[idx]) {
|
|
/*
|
|
* 98% of the time, pc is already at the head of the
|
|
* list. If it isn't already, move it to the head.
|
|
*/
|
|
if (__predict_false(TAILQ_FIRST(&pmap->pm_pvchunk) !=
|
|
pc)) {
|
|
TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
|
|
TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc,
|
|
pc_list);
|
|
}
|
|
return;
|
|
}
|
|
TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
|
|
free_pv_chunk(pc);
|
|
}
|
|
|
|
static void
|
|
free_pv_chunk(struct pv_chunk *pc)
|
|
{
|
|
vm_page_t m;
|
|
|
|
TAILQ_REMOVE(&pv_chunks, pc, pc_lru);
|
|
PV_STAT(pv_entry_spare -= _NPCPV);
|
|
PV_STAT(pc_chunk_count--);
|
|
PV_STAT(pc_chunk_frees++);
|
|
/* entire chunk is free, return it */
|
|
m = PHYS_TO_VM_PAGE(MIPS_DIRECT_TO_PHYS((vm_offset_t)pc));
|
|
dump_drop_page(m->phys_addr);
|
|
vm_page_unwire(m, PQ_NONE);
|
|
vm_page_free(m);
|
|
}
|
|
|
|
/*
|
|
* get a new pv_entry, allocating a block from the system
|
|
* when needed.
|
|
*/
|
|
static pv_entry_t
|
|
get_pv_entry(pmap_t pmap, boolean_t try)
|
|
{
|
|
struct pv_chunk *pc;
|
|
pv_entry_t pv;
|
|
vm_page_t m;
|
|
int bit, field, idx;
|
|
|
|
rw_assert(&pvh_global_lock, RA_WLOCKED);
|
|
PMAP_LOCK_ASSERT(pmap, MA_OWNED);
|
|
PV_STAT(pv_entry_allocs++);
|
|
pv_entry_count++;
|
|
retry:
|
|
pc = TAILQ_FIRST(&pmap->pm_pvchunk);
|
|
if (pc != NULL) {
|
|
for (field = 0; field < _NPCM; field++) {
|
|
if (pc->pc_map[field]) {
|
|
bit = ffsl(pc->pc_map[field]) - 1;
|
|
break;
|
|
}
|
|
}
|
|
if (field < _NPCM) {
|
|
idx = field * sizeof(pc->pc_map[field]) * NBBY + bit;
|
|
pv = &pc->pc_pventry[idx];
|
|
pc->pc_map[field] &= ~(1ul << bit);
|
|
/* If this was the last item, move it to tail */
|
|
for (field = 0; field < _NPCM; field++)
|
|
if (pc->pc_map[field] != 0) {
|
|
PV_STAT(pv_entry_spare--);
|
|
return (pv); /* not full, return */
|
|
}
|
|
TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
|
|
TAILQ_INSERT_TAIL(&pmap->pm_pvchunk, pc, pc_list);
|
|
PV_STAT(pv_entry_spare--);
|
|
return (pv);
|
|
}
|
|
}
|
|
/* No free items, allocate another chunk */
|
|
m = vm_page_alloc_freelist(VM_FREELIST_DIRECT, VM_ALLOC_NORMAL |
|
|
VM_ALLOC_WIRED);
|
|
if (m == NULL) {
|
|
if (try) {
|
|
pv_entry_count--;
|
|
PV_STAT(pc_chunk_tryfail++);
|
|
return (NULL);
|
|
}
|
|
m = pmap_pv_reclaim(pmap);
|
|
if (m == NULL)
|
|
goto retry;
|
|
}
|
|
PV_STAT(pc_chunk_count++);
|
|
PV_STAT(pc_chunk_allocs++);
|
|
dump_add_page(m->phys_addr);
|
|
pc = (struct pv_chunk *)MIPS_PHYS_TO_DIRECT(VM_PAGE_TO_PHYS(m));
|
|
pc->pc_pmap = pmap;
|
|
pc->pc_map[0] = pc_freemask[0] & ~1ul; /* preallocated bit 0 */
|
|
for (field = 1; field < _NPCM; field++)
|
|
pc->pc_map[field] = pc_freemask[field];
|
|
TAILQ_INSERT_TAIL(&pv_chunks, pc, pc_lru);
|
|
pv = &pc->pc_pventry[0];
|
|
TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc, pc_list);
|
|
PV_STAT(pv_entry_spare += _NPCPV - 1);
|
|
return (pv);
|
|
}
|
|
|
|
static pv_entry_t
|
|
pmap_pvh_remove(struct md_page *pvh, pmap_t pmap, vm_offset_t va)
|
|
{
|
|
pv_entry_t pv;
|
|
|
|
rw_assert(&pvh_global_lock, RA_WLOCKED);
|
|
TAILQ_FOREACH(pv, &pvh->pv_list, pv_list) {
|
|
if (pmap == PV_PMAP(pv) && va == pv->pv_va) {
|
|
TAILQ_REMOVE(&pvh->pv_list, pv, pv_list);
|
|
break;
|
|
}
|
|
}
|
|
return (pv);
|
|
}
|
|
|
|
static void
|
|
pmap_pvh_free(struct md_page *pvh, pmap_t pmap, vm_offset_t va)
|
|
{
|
|
pv_entry_t pv;
|
|
|
|
pv = pmap_pvh_remove(pvh, pmap, va);
|
|
KASSERT(pv != NULL, ("pmap_pvh_free: pv not found, pa %lx va %lx",
|
|
(u_long)VM_PAGE_TO_PHYS(__containerof(pvh, struct vm_page, md)),
|
|
(u_long)va));
|
|
free_pv_entry(pmap, pv);
|
|
}
|
|
|
|
static void
|
|
pmap_remove_entry(pmap_t pmap, vm_page_t m, vm_offset_t va)
|
|
{
|
|
|
|
rw_assert(&pvh_global_lock, RA_WLOCKED);
|
|
pmap_pvh_free(&m->md, pmap, va);
|
|
if (TAILQ_EMPTY(&m->md.pv_list))
|
|
vm_page_aflag_clear(m, PGA_WRITEABLE);
|
|
}
|
|
|
|
/*
|
|
* Conditionally create a pv entry.
|
|
*/
|
|
static boolean_t
|
|
pmap_try_insert_pv_entry(pmap_t pmap, vm_page_t mpte, vm_offset_t va,
|
|
vm_page_t m)
|
|
{
|
|
pv_entry_t pv;
|
|
|
|
rw_assert(&pvh_global_lock, RA_WLOCKED);
|
|
PMAP_LOCK_ASSERT(pmap, MA_OWNED);
|
|
if ((pv = get_pv_entry(pmap, TRUE)) != NULL) {
|
|
pv->pv_va = va;
|
|
TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_list);
|
|
return (TRUE);
|
|
} else
|
|
return (FALSE);
|
|
}
|
|
|
|
/*
|
|
* pmap_remove_pte: do the things to unmap a page in a process
|
|
*/
|
|
static int
|
|
pmap_remove_pte(struct pmap *pmap, pt_entry_t *ptq, vm_offset_t va,
|
|
pd_entry_t pde)
|
|
{
|
|
pt_entry_t oldpte;
|
|
vm_page_t m;
|
|
vm_paddr_t pa;
|
|
|
|
rw_assert(&pvh_global_lock, RA_WLOCKED);
|
|
PMAP_LOCK_ASSERT(pmap, MA_OWNED);
|
|
|
|
/*
|
|
* Write back all cache lines from the page being unmapped.
|
|
*/
|
|
mips_dcache_wbinv_range_index(va, PAGE_SIZE);
|
|
|
|
oldpte = *ptq;
|
|
if (is_kernel_pmap(pmap))
|
|
*ptq = PTE_G;
|
|
else
|
|
*ptq = 0;
|
|
|
|
if (pte_test(&oldpte, PTE_W))
|
|
pmap->pm_stats.wired_count -= 1;
|
|
|
|
pmap->pm_stats.resident_count -= 1;
|
|
|
|
if (pte_test(&oldpte, PTE_MANAGED)) {
|
|
pa = TLBLO_PTE_TO_PA(oldpte);
|
|
m = PHYS_TO_VM_PAGE(pa);
|
|
if (pte_test(&oldpte, PTE_D)) {
|
|
KASSERT(!pte_test(&oldpte, PTE_RO),
|
|
("%s: modified page not writable: va: %p, pte: %#jx",
|
|
__func__, (void *)va, (uintmax_t)oldpte));
|
|
vm_page_dirty(m);
|
|
}
|
|
if (m->md.pv_flags & PV_TABLE_REF)
|
|
vm_page_aflag_set(m, PGA_REFERENCED);
|
|
m->md.pv_flags &= ~PV_TABLE_REF;
|
|
|
|
pmap_remove_entry(pmap, m, va);
|
|
}
|
|
return (pmap_unuse_pt(pmap, va, pde));
|
|
}
|
|
|
|
/*
|
|
* Remove a single page from a process address space
|
|
*/
|
|
static void
|
|
pmap_remove_page(struct pmap *pmap, vm_offset_t va)
|
|
{
|
|
pd_entry_t *pde;
|
|
pt_entry_t *ptq;
|
|
|
|
rw_assert(&pvh_global_lock, RA_WLOCKED);
|
|
PMAP_LOCK_ASSERT(pmap, MA_OWNED);
|
|
pde = pmap_pde(pmap, va);
|
|
if (pde == NULL || *pde == 0)
|
|
return;
|
|
ptq = pmap_pde_to_pte(pde, va);
|
|
|
|
/*
|
|
* If there is no pte for this address, just skip it!
|
|
*/
|
|
if (!pte_test(ptq, PTE_V))
|
|
return;
|
|
|
|
(void)pmap_remove_pte(pmap, ptq, va, *pde);
|
|
pmap_invalidate_page(pmap, va);
|
|
}
|
|
|
|
/*
|
|
* Remove the given range of addresses from the specified map.
|
|
*
|
|
* It is assumed that the start and end are properly
|
|
* rounded to the page size.
|
|
*/
|
|
void
|
|
pmap_remove(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
|
|
{
|
|
pd_entry_t *pde, *pdpe;
|
|
pt_entry_t *pte;
|
|
vm_offset_t va, va_next;
|
|
|
|
/*
|
|
* Perform an unsynchronized read. This is, however, safe.
|
|
*/
|
|
if (pmap->pm_stats.resident_count == 0)
|
|
return;
|
|
|
|
rw_wlock(&pvh_global_lock);
|
|
PMAP_LOCK(pmap);
|
|
|
|
/*
|
|
* special handling of removing one page. a very common operation
|
|
* and easy to short circuit some code.
|
|
*/
|
|
if ((sva + PAGE_SIZE) == eva) {
|
|
pmap_remove_page(pmap, sva);
|
|
goto out;
|
|
}
|
|
for (; sva < eva; sva = va_next) {
|
|
pdpe = pmap_segmap(pmap, sva);
|
|
#ifdef __mips_n64
|
|
if (*pdpe == 0) {
|
|
va_next = (sva + NBSEG) & ~SEGMASK;
|
|
if (va_next < sva)
|
|
va_next = eva;
|
|
continue;
|
|
}
|
|
#endif
|
|
va_next = (sva + NBPDR) & ~PDRMASK;
|
|
if (va_next < sva)
|
|
va_next = eva;
|
|
|
|
pde = pmap_pdpe_to_pde(pdpe, sva);
|
|
if (*pde == NULL)
|
|
continue;
|
|
|
|
/*
|
|
* Limit our scan to either the end of the va represented
|
|
* by the current page table page, or to the end of the
|
|
* range being removed.
|
|
*/
|
|
if (va_next > eva)
|
|
va_next = eva;
|
|
|
|
va = va_next;
|
|
for (pte = pmap_pde_to_pte(pde, sva); sva != va_next; pte++,
|
|
sva += PAGE_SIZE) {
|
|
if (!pte_test(pte, PTE_V)) {
|
|
if (va != va_next) {
|
|
pmap_invalidate_range(pmap, va, sva);
|
|
va = va_next;
|
|
}
|
|
continue;
|
|
}
|
|
if (va == va_next)
|
|
va = sva;
|
|
if (pmap_remove_pte(pmap, pte, sva, *pde)) {
|
|
sva += PAGE_SIZE;
|
|
break;
|
|
}
|
|
}
|
|
if (va != va_next)
|
|
pmap_invalidate_range(pmap, va, sva);
|
|
}
|
|
out:
|
|
rw_wunlock(&pvh_global_lock);
|
|
PMAP_UNLOCK(pmap);
|
|
}
|
|
|
|
/*
|
|
* Routine: pmap_remove_all
|
|
* Function:
|
|
* Removes this physical page from
|
|
* all physical maps in which it resides.
|
|
* Reflects back modify bits to the pager.
|
|
*
|
|
* Notes:
|
|
* Original versions of this routine were very
|
|
* inefficient because they iteratively called
|
|
* pmap_remove (slow...)
|
|
*/
|
|
|
|
void
|
|
pmap_remove_all(vm_page_t m)
|
|
{
|
|
pv_entry_t pv;
|
|
pmap_t pmap;
|
|
pd_entry_t *pde;
|
|
pt_entry_t *pte, tpte;
|
|
|
|
KASSERT((m->oflags & VPO_UNMANAGED) == 0,
|
|
("pmap_remove_all: page %p is not managed", m));
|
|
rw_wlock(&pvh_global_lock);
|
|
|
|
if (m->md.pv_flags & PV_TABLE_REF)
|
|
vm_page_aflag_set(m, PGA_REFERENCED);
|
|
|
|
while ((pv = TAILQ_FIRST(&m->md.pv_list)) != NULL) {
|
|
pmap = PV_PMAP(pv);
|
|
PMAP_LOCK(pmap);
|
|
|
|
/*
|
|
* If it's last mapping writeback all caches from
|
|
* the page being destroyed
|
|
*/
|
|
if (TAILQ_NEXT(pv, pv_list) == NULL)
|
|
mips_dcache_wbinv_range_index(pv->pv_va, PAGE_SIZE);
|
|
|
|
pmap->pm_stats.resident_count--;
|
|
|
|
pde = pmap_pde(pmap, pv->pv_va);
|
|
KASSERT(pde != NULL && *pde != 0, ("pmap_remove_all: pde"));
|
|
pte = pmap_pde_to_pte(pde, pv->pv_va);
|
|
|
|
tpte = *pte;
|
|
if (is_kernel_pmap(pmap))
|
|
*pte = PTE_G;
|
|
else
|
|
*pte = 0;
|
|
|
|
if (pte_test(&tpte, PTE_W))
|
|
pmap->pm_stats.wired_count--;
|
|
|
|
/*
|
|
* Update the vm_page_t clean and reference bits.
|
|
*/
|
|
if (pte_test(&tpte, PTE_D)) {
|
|
KASSERT(!pte_test(&tpte, PTE_RO),
|
|
("%s: modified page not writable: va: %p, pte: %#jx",
|
|
__func__, (void *)pv->pv_va, (uintmax_t)tpte));
|
|
vm_page_dirty(m);
|
|
}
|
|
pmap_invalidate_page(pmap, pv->pv_va);
|
|
|
|
TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
|
|
pmap_unuse_pt(pmap, pv->pv_va, *pde);
|
|
free_pv_entry(pmap, pv);
|
|
PMAP_UNLOCK(pmap);
|
|
}
|
|
|
|
vm_page_aflag_clear(m, PGA_WRITEABLE);
|
|
m->md.pv_flags &= ~PV_TABLE_REF;
|
|
rw_wunlock(&pvh_global_lock);
|
|
}
|
|
|
|
/*
|
|
* Set the physical protection on the
|
|
* specified range of this map as requested.
|
|
*/
|
|
void
|
|
pmap_protect(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, vm_prot_t prot)
|
|
{
|
|
pt_entry_t pbits, *pte;
|
|
pd_entry_t *pde, *pdpe;
|
|
vm_offset_t va, va_next;
|
|
vm_paddr_t pa;
|
|
vm_page_t m;
|
|
|
|
if ((prot & VM_PROT_READ) == VM_PROT_NONE) {
|
|
pmap_remove(pmap, sva, eva);
|
|
return;
|
|
}
|
|
if (prot & VM_PROT_WRITE)
|
|
return;
|
|
|
|
PMAP_LOCK(pmap);
|
|
for (; sva < eva; sva = va_next) {
|
|
pdpe = pmap_segmap(pmap, sva);
|
|
#ifdef __mips_n64
|
|
if (*pdpe == 0) {
|
|
va_next = (sva + NBSEG) & ~SEGMASK;
|
|
if (va_next < sva)
|
|
va_next = eva;
|
|
continue;
|
|
}
|
|
#endif
|
|
va_next = (sva + NBPDR) & ~PDRMASK;
|
|
if (va_next < sva)
|
|
va_next = eva;
|
|
|
|
pde = pmap_pdpe_to_pde(pdpe, sva);
|
|
if (*pde == NULL)
|
|
continue;
|
|
|
|
/*
|
|
* Limit our scan to either the end of the va represented
|
|
* by the current page table page, or to the end of the
|
|
* range being write protected.
|
|
*/
|
|
if (va_next > eva)
|
|
va_next = eva;
|
|
|
|
va = va_next;
|
|
for (pte = pmap_pde_to_pte(pde, sva); sva != va_next; pte++,
|
|
sva += PAGE_SIZE) {
|
|
pbits = *pte;
|
|
if (!pte_test(&pbits, PTE_V) || pte_test(&pbits,
|
|
PTE_RO)) {
|
|
if (va != va_next) {
|
|
pmap_invalidate_range(pmap, va, sva);
|
|
va = va_next;
|
|
}
|
|
continue;
|
|
}
|
|
pte_set(&pbits, PTE_RO);
|
|
if (pte_test(&pbits, PTE_D)) {
|
|
pte_clear(&pbits, PTE_D);
|
|
if (pte_test(&pbits, PTE_MANAGED)) {
|
|
pa = TLBLO_PTE_TO_PA(pbits);
|
|
m = PHYS_TO_VM_PAGE(pa);
|
|
vm_page_dirty(m);
|
|
}
|
|
if (va == va_next)
|
|
va = sva;
|
|
} else {
|
|
/*
|
|
* Unless PTE_D is set, any TLB entries
|
|
* mapping "sva" don't allow write access, so
|
|
* they needn't be invalidated.
|
|
*/
|
|
if (va != va_next) {
|
|
pmap_invalidate_range(pmap, va, sva);
|
|
va = va_next;
|
|
}
|
|
}
|
|
*pte = pbits;
|
|
}
|
|
if (va != va_next)
|
|
pmap_invalidate_range(pmap, va, sva);
|
|
}
|
|
PMAP_UNLOCK(pmap);
|
|
}
|
|
|
|
/*
|
|
* Insert the given physical page (p) at
|
|
* the specified virtual address (v) in the
|
|
* target physical map with the protection requested.
|
|
*
|
|
* If specified, the page will be wired down, meaning
|
|
* that the related pte can not be reclaimed.
|
|
*
|
|
* NB: This is the only routine which MAY NOT lazy-evaluate
|
|
* or lose information. That is, this routine must actually
|
|
* insert this page into the given map NOW.
|
|
*/
|
|
int
|
|
pmap_enter(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot,
|
|
u_int flags, int8_t psind __unused)
|
|
{
|
|
vm_paddr_t pa, opa;
|
|
pt_entry_t *pte;
|
|
pt_entry_t origpte, newpte;
|
|
pv_entry_t pv;
|
|
vm_page_t mpte, om;
|
|
|
|
va &= ~PAGE_MASK;
|
|
KASSERT(va <= VM_MAX_KERNEL_ADDRESS, ("pmap_enter: toobig"));
|
|
KASSERT((m->oflags & VPO_UNMANAGED) != 0 || va < kmi.clean_sva ||
|
|
va >= kmi.clean_eva,
|
|
("pmap_enter: managed mapping within the clean submap"));
|
|
if ((m->oflags & VPO_UNMANAGED) == 0 && !vm_page_xbusied(m))
|
|
VM_OBJECT_ASSERT_LOCKED(m->object);
|
|
pa = VM_PAGE_TO_PHYS(m);
|
|
newpte = TLBLO_PA_TO_PFN(pa) | init_pte_prot(m, flags, prot);
|
|
if ((flags & PMAP_ENTER_WIRED) != 0)
|
|
newpte |= PTE_W;
|
|
if (is_kernel_pmap(pmap))
|
|
newpte |= PTE_G;
|
|
PMAP_PTE_SET_CACHE_BITS(newpte, pa, m);
|
|
if ((m->oflags & VPO_UNMANAGED) == 0)
|
|
newpte |= PTE_MANAGED;
|
|
|
|
mpte = NULL;
|
|
|
|
rw_wlock(&pvh_global_lock);
|
|
PMAP_LOCK(pmap);
|
|
|
|
/*
|
|
* In the case that a page table page is not resident, we are
|
|
* creating it here.
|
|
*/
|
|
if (va < VM_MAXUSER_ADDRESS) {
|
|
mpte = pmap_allocpte(pmap, va, flags);
|
|
if (mpte == NULL) {
|
|
KASSERT((flags & PMAP_ENTER_NOSLEEP) != 0,
|
|
("pmap_allocpte failed with sleep allowed"));
|
|
rw_wunlock(&pvh_global_lock);
|
|
PMAP_UNLOCK(pmap);
|
|
return (KERN_RESOURCE_SHORTAGE);
|
|
}
|
|
}
|
|
pte = pmap_pte(pmap, va);
|
|
|
|
/*
|
|
* Page Directory table entry not valid, we need a new PT page
|
|
*/
|
|
if (pte == NULL) {
|
|
panic("pmap_enter: invalid page directory, pdir=%p, va=%p",
|
|
(void *)pmap->pm_segtab, (void *)va);
|
|
}
|
|
|
|
origpte = *pte;
|
|
KASSERT(!pte_test(&origpte, PTE_D | PTE_RO | PTE_V),
|
|
("pmap_enter: modified page not writable: va: %p, pte: %#jx",
|
|
(void *)va, (uintmax_t)origpte));
|
|
opa = TLBLO_PTE_TO_PA(origpte);
|
|
|
|
/*
|
|
* Mapping has not changed, must be protection or wiring change.
|
|
*/
|
|
if (pte_test(&origpte, PTE_V) && opa == pa) {
|
|
/*
|
|
* Wiring change, just update stats. We don't worry about
|
|
* wiring PT pages as they remain resident as long as there
|
|
* are valid mappings in them. Hence, if a user page is
|
|
* wired, the PT page will be also.
|
|
*/
|
|
if (pte_test(&newpte, PTE_W) && !pte_test(&origpte, PTE_W))
|
|
pmap->pm_stats.wired_count++;
|
|
else if (!pte_test(&newpte, PTE_W) && pte_test(&origpte,
|
|
PTE_W))
|
|
pmap->pm_stats.wired_count--;
|
|
|
|
/*
|
|
* Remove extra pte reference
|
|
*/
|
|
if (mpte)
|
|
mpte->wire_count--;
|
|
|
|
if (pte_test(&origpte, PTE_MANAGED)) {
|
|
m->md.pv_flags |= PV_TABLE_REF;
|
|
if (!pte_test(&newpte, PTE_RO))
|
|
vm_page_aflag_set(m, PGA_WRITEABLE);
|
|
}
|
|
goto validate;
|
|
}
|
|
|
|
pv = NULL;
|
|
|
|
/*
|
|
* Mapping has changed, invalidate old range and fall through to
|
|
* handle validating new mapping.
|
|
*/
|
|
if (opa) {
|
|
if (is_kernel_pmap(pmap))
|
|
*pte = PTE_G;
|
|
else
|
|
*pte = 0;
|
|
if (pte_test(&origpte, PTE_W))
|
|
pmap->pm_stats.wired_count--;
|
|
if (pte_test(&origpte, PTE_MANAGED)) {
|
|
om = PHYS_TO_VM_PAGE(opa);
|
|
if (pte_test(&origpte, PTE_D))
|
|
vm_page_dirty(om);
|
|
if ((om->md.pv_flags & PV_TABLE_REF) != 0) {
|
|
om->md.pv_flags &= ~PV_TABLE_REF;
|
|
vm_page_aflag_set(om, PGA_REFERENCED);
|
|
}
|
|
pv = pmap_pvh_remove(&om->md, pmap, va);
|
|
if (!pte_test(&newpte, PTE_MANAGED))
|
|
free_pv_entry(pmap, pv);
|
|
if ((om->aflags & PGA_WRITEABLE) != 0 &&
|
|
TAILQ_EMPTY(&om->md.pv_list))
|
|
vm_page_aflag_clear(om, PGA_WRITEABLE);
|
|
}
|
|
pmap_invalidate_page(pmap, va);
|
|
origpte = 0;
|
|
if (mpte != NULL) {
|
|
mpte->wire_count--;
|
|
KASSERT(mpte->wire_count > 0,
|
|
("pmap_enter: missing reference to page table page,"
|
|
" va: %p", (void *)va));
|
|
}
|
|
} else
|
|
pmap->pm_stats.resident_count++;
|
|
|
|
/*
|
|
* Enter on the PV list if part of our managed memory.
|
|
*/
|
|
if (pte_test(&newpte, PTE_MANAGED)) {
|
|
m->md.pv_flags |= PV_TABLE_REF;
|
|
if (pv == NULL) {
|
|
pv = get_pv_entry(pmap, FALSE);
|
|
pv->pv_va = va;
|
|
}
|
|
TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_list);
|
|
if (!pte_test(&newpte, PTE_RO))
|
|
vm_page_aflag_set(m, PGA_WRITEABLE);
|
|
}
|
|
|
|
/*
|
|
* Increment counters
|
|
*/
|
|
if (pte_test(&newpte, PTE_W))
|
|
pmap->pm_stats.wired_count++;
|
|
|
|
validate:
|
|
|
|
#ifdef PMAP_DEBUG
|
|
printf("pmap_enter: va: %p -> pa: %p\n", (void *)va, (void *)pa);
|
|
#endif
|
|
|
|
/*
|
|
* if the mapping or permission bits are different, we need to
|
|
* update the pte.
|
|
*/
|
|
if (origpte != newpte) {
|
|
*pte = newpte;
|
|
if (pte_test(&origpte, PTE_V)) {
|
|
KASSERT(opa == pa, ("pmap_enter: invalid update"));
|
|
if (pte_test(&origpte, PTE_D)) {
|
|
if (pte_test(&origpte, PTE_MANAGED))
|
|
vm_page_dirty(m);
|
|
}
|
|
pmap_update_page(pmap, va, newpte);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Sync I & D caches for executable pages. Do this only if the
|
|
* target pmap belongs to the current process. Otherwise, an
|
|
* unresolvable TLB miss may occur.
|
|
*/
|
|
if (!is_kernel_pmap(pmap) && (pmap == &curproc->p_vmspace->vm_pmap) &&
|
|
(prot & VM_PROT_EXECUTE)) {
|
|
mips_icache_sync_range(va, PAGE_SIZE);
|
|
mips_dcache_wbinv_range(va, PAGE_SIZE);
|
|
}
|
|
rw_wunlock(&pvh_global_lock);
|
|
PMAP_UNLOCK(pmap);
|
|
return (KERN_SUCCESS);
|
|
}
|
|
|
|
/*
|
|
* this code makes some *MAJOR* assumptions:
|
|
* 1. Current pmap & pmap exists.
|
|
* 2. Not wired.
|
|
* 3. Read access.
|
|
* 4. No page table pages.
|
|
* but is *MUCH* faster than pmap_enter...
|
|
*/
|
|
|
|
void
|
|
pmap_enter_quick(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot)
|
|
{
|
|
|
|
rw_wlock(&pvh_global_lock);
|
|
PMAP_LOCK(pmap);
|
|
(void)pmap_enter_quick_locked(pmap, va, m, prot, NULL);
|
|
rw_wunlock(&pvh_global_lock);
|
|
PMAP_UNLOCK(pmap);
|
|
}
|
|
|
|
static vm_page_t
|
|
pmap_enter_quick_locked(pmap_t pmap, vm_offset_t va, vm_page_t m,
|
|
vm_prot_t prot, vm_page_t mpte)
|
|
{
|
|
pt_entry_t *pte, npte;
|
|
vm_paddr_t pa;
|
|
|
|
KASSERT(va < kmi.clean_sva || va >= kmi.clean_eva ||
|
|
(m->oflags & VPO_UNMANAGED) != 0,
|
|
("pmap_enter_quick_locked: managed mapping within the clean submap"));
|
|
rw_assert(&pvh_global_lock, RA_WLOCKED);
|
|
PMAP_LOCK_ASSERT(pmap, MA_OWNED);
|
|
|
|
/*
|
|
* In the case that a page table page is not resident, we are
|
|
* creating it here.
|
|
*/
|
|
if (va < VM_MAXUSER_ADDRESS) {
|
|
pd_entry_t *pde;
|
|
unsigned ptepindex;
|
|
|
|
/*
|
|
* Calculate pagetable page index
|
|
*/
|
|
ptepindex = pmap_pde_pindex(va);
|
|
if (mpte && (mpte->pindex == ptepindex)) {
|
|
mpte->wire_count++;
|
|
} else {
|
|
/*
|
|
* Get the page directory entry
|
|
*/
|
|
pde = pmap_pde(pmap, va);
|
|
|
|
/*
|
|
* If the page table page is mapped, we just
|
|
* increment the hold count, and activate it.
|
|
*/
|
|
if (pde && *pde != 0) {
|
|
mpte = PHYS_TO_VM_PAGE(
|
|
MIPS_DIRECT_TO_PHYS(*pde));
|
|
mpte->wire_count++;
|
|
} else {
|
|
mpte = _pmap_allocpte(pmap, ptepindex,
|
|
PMAP_ENTER_NOSLEEP);
|
|
if (mpte == NULL)
|
|
return (mpte);
|
|
}
|
|
}
|
|
} else {
|
|
mpte = NULL;
|
|
}
|
|
|
|
pte = pmap_pte(pmap, va);
|
|
if (pte_test(pte, PTE_V)) {
|
|
if (mpte != NULL) {
|
|
mpte->wire_count--;
|
|
mpte = NULL;
|
|
}
|
|
return (mpte);
|
|
}
|
|
|
|
/*
|
|
* Enter on the PV list if part of our managed memory.
|
|
*/
|
|
if ((m->oflags & VPO_UNMANAGED) == 0 &&
|
|
!pmap_try_insert_pv_entry(pmap, mpte, va, m)) {
|
|
if (mpte != NULL) {
|
|
pmap_unwire_ptp(pmap, va, mpte);
|
|
mpte = NULL;
|
|
}
|
|
return (mpte);
|
|
}
|
|
|
|
/*
|
|
* Increment counters
|
|
*/
|
|
pmap->pm_stats.resident_count++;
|
|
|
|
pa = VM_PAGE_TO_PHYS(m);
|
|
|
|
/*
|
|
* Now validate mapping with RO protection
|
|
*/
|
|
npte = PTE_RO | TLBLO_PA_TO_PFN(pa) | PTE_V;
|
|
if ((m->oflags & VPO_UNMANAGED) == 0)
|
|
npte |= PTE_MANAGED;
|
|
|
|
PMAP_PTE_SET_CACHE_BITS(npte, pa, m);
|
|
|
|
if (is_kernel_pmap(pmap))
|
|
*pte = npte | PTE_G;
|
|
else {
|
|
*pte = npte;
|
|
/*
|
|
* Sync I & D caches. Do this only if the target pmap
|
|
* belongs to the current process. Otherwise, an
|
|
* unresolvable TLB miss may occur. */
|
|
if (pmap == &curproc->p_vmspace->vm_pmap) {
|
|
va &= ~PAGE_MASK;
|
|
mips_icache_sync_range(va, PAGE_SIZE);
|
|
mips_dcache_wbinv_range(va, PAGE_SIZE);
|
|
}
|
|
}
|
|
return (mpte);
|
|
}
|
|
|
|
/*
|
|
* Make a temporary mapping for a physical address. This is only intended
|
|
* to be used for panic dumps.
|
|
*
|
|
* Use XKPHYS for 64 bit, and KSEG0 where possible for 32 bit.
|
|
*/
|
|
void *
|
|
pmap_kenter_temporary(vm_paddr_t pa, int i)
|
|
{
|
|
vm_offset_t va;
|
|
|
|
if (i != 0)
|
|
printf("%s: ERROR!!! More than one page of virtual address mapping not supported\n",
|
|
__func__);
|
|
|
|
if (MIPS_DIRECT_MAPPABLE(pa)) {
|
|
va = MIPS_PHYS_TO_DIRECT(pa);
|
|
} else {
|
|
#ifndef __mips_n64 /* XXX : to be converted to new style */
|
|
int cpu;
|
|
register_t intr;
|
|
struct local_sysmaps *sysm;
|
|
pt_entry_t *pte, npte;
|
|
|
|
/* If this is used other than for dumps, we may need to leave
|
|
* interrupts disasbled on return. If crash dumps don't work when
|
|
* we get to this point, we might want to consider this (leaving things
|
|
* disabled as a starting point ;-)
|
|
*/
|
|
intr = intr_disable();
|
|
cpu = PCPU_GET(cpuid);
|
|
sysm = &sysmap_lmem[cpu];
|
|
/* Since this is for the debugger, no locks or any other fun */
|
|
npte = TLBLO_PA_TO_PFN(pa) | PTE_C_CACHE | PTE_D | PTE_V |
|
|
PTE_G;
|
|
pte = pmap_pte(kernel_pmap, sysm->base);
|
|
*pte = npte;
|
|
sysm->valid1 = 1;
|
|
pmap_update_page(kernel_pmap, sysm->base, npte);
|
|
va = sysm->base;
|
|
intr_restore(intr);
|
|
#endif
|
|
}
|
|
return ((void *)va);
|
|
}
|
|
|
|
void
|
|
pmap_kenter_temporary_free(vm_paddr_t pa)
|
|
{
|
|
#ifndef __mips_n64 /* XXX : to be converted to new style */
|
|
int cpu;
|
|
register_t intr;
|
|
struct local_sysmaps *sysm;
|
|
#endif
|
|
|
|
if (MIPS_DIRECT_MAPPABLE(pa)) {
|
|
/* nothing to do for this case */
|
|
return;
|
|
}
|
|
#ifndef __mips_n64 /* XXX : to be converted to new style */
|
|
cpu = PCPU_GET(cpuid);
|
|
sysm = &sysmap_lmem[cpu];
|
|
if (sysm->valid1) {
|
|
pt_entry_t *pte;
|
|
|
|
intr = intr_disable();
|
|
pte = pmap_pte(kernel_pmap, sysm->base);
|
|
*pte = PTE_G;
|
|
pmap_invalidate_page(kernel_pmap, sysm->base);
|
|
intr_restore(intr);
|
|
sysm->valid1 = 0;
|
|
}
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
* Maps a sequence of resident pages belonging to the same object.
|
|
* The sequence begins with the given page m_start. This page is
|
|
* mapped at the given virtual address start. Each subsequent page is
|
|
* mapped at a virtual address that is offset from start by the same
|
|
* amount as the page is offset from m_start within the object. The
|
|
* last page in the sequence is the page with the largest offset from
|
|
* m_start that can be mapped at a virtual address less than the given
|
|
* virtual address end. Not every virtual page between start and end
|
|
* is mapped; only those for which a resident page exists with the
|
|
* corresponding offset from m_start are mapped.
|
|
*/
|
|
void
|
|
pmap_enter_object(pmap_t pmap, vm_offset_t start, vm_offset_t end,
|
|
vm_page_t m_start, vm_prot_t prot)
|
|
{
|
|
vm_page_t m, mpte;
|
|
vm_pindex_t diff, psize;
|
|
|
|
VM_OBJECT_ASSERT_LOCKED(m_start->object);
|
|
|
|
psize = atop(end - start);
|
|
mpte = NULL;
|
|
m = m_start;
|
|
rw_wlock(&pvh_global_lock);
|
|
PMAP_LOCK(pmap);
|
|
while (m != NULL && (diff = m->pindex - m_start->pindex) < psize) {
|
|
mpte = pmap_enter_quick_locked(pmap, start + ptoa(diff), m,
|
|
prot, mpte);
|
|
m = TAILQ_NEXT(m, listq);
|
|
}
|
|
rw_wunlock(&pvh_global_lock);
|
|
PMAP_UNLOCK(pmap);
|
|
}
|
|
|
|
/*
|
|
* pmap_object_init_pt preloads the ptes for a given object
|
|
* into the specified pmap. This eliminates the blast of soft
|
|
* faults on process startup and immediately after an mmap.
|
|
*/
|
|
void
|
|
pmap_object_init_pt(pmap_t pmap, vm_offset_t addr,
|
|
vm_object_t object, vm_pindex_t pindex, vm_size_t size)
|
|
{
|
|
VM_OBJECT_ASSERT_WLOCKED(object);
|
|
KASSERT(object->type == OBJT_DEVICE || object->type == OBJT_SG,
|
|
("pmap_object_init_pt: non-device object"));
|
|
}
|
|
|
|
/*
|
|
* Clear the wired attribute from the mappings for the specified range of
|
|
* addresses in the given pmap. Every valid mapping within that range
|
|
* must have the wired attribute set. In contrast, invalid mappings
|
|
* cannot have the wired attribute set, so they are ignored.
|
|
*
|
|
* The wired attribute of the page table entry is not a hardware feature,
|
|
* so there is no need to invalidate any TLB entries.
|
|
*/
|
|
void
|
|
pmap_unwire(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
|
|
{
|
|
pd_entry_t *pde, *pdpe;
|
|
pt_entry_t *pte;
|
|
vm_offset_t va_next;
|
|
|
|
PMAP_LOCK(pmap);
|
|
for (; sva < eva; sva = va_next) {
|
|
pdpe = pmap_segmap(pmap, sva);
|
|
#ifdef __mips_n64
|
|
if (*pdpe == NULL) {
|
|
va_next = (sva + NBSEG) & ~SEGMASK;
|
|
if (va_next < sva)
|
|
va_next = eva;
|
|
continue;
|
|
}
|
|
#endif
|
|
va_next = (sva + NBPDR) & ~PDRMASK;
|
|
if (va_next < sva)
|
|
va_next = eva;
|
|
pde = pmap_pdpe_to_pde(pdpe, sva);
|
|
if (*pde == NULL)
|
|
continue;
|
|
if (va_next > eva)
|
|
va_next = eva;
|
|
for (pte = pmap_pde_to_pte(pde, sva); sva != va_next; pte++,
|
|
sva += PAGE_SIZE) {
|
|
if (!pte_test(pte, PTE_V))
|
|
continue;
|
|
if (!pte_test(pte, PTE_W))
|
|
panic("pmap_unwire: pte %#jx is missing PG_W",
|
|
(uintmax_t)*pte);
|
|
pte_clear(pte, PTE_W);
|
|
pmap->pm_stats.wired_count--;
|
|
}
|
|
}
|
|
PMAP_UNLOCK(pmap);
|
|
}
|
|
|
|
/*
|
|
* Copy the range specified by src_addr/len
|
|
* from the source map to the range dst_addr/len
|
|
* in the destination map.
|
|
*
|
|
* This routine is only advisory and need not do anything.
|
|
*/
|
|
|
|
void
|
|
pmap_copy(pmap_t dst_pmap, pmap_t src_pmap, vm_offset_t dst_addr,
|
|
vm_size_t len, vm_offset_t src_addr)
|
|
{
|
|
}
|
|
|
|
/*
|
|
* pmap_zero_page zeros the specified hardware page by mapping
|
|
* the page into KVM and using bzero to clear its contents.
|
|
*
|
|
* Use XKPHYS for 64 bit, and KSEG0 where possible for 32 bit.
|
|
*/
|
|
void
|
|
pmap_zero_page(vm_page_t m)
|
|
{
|
|
vm_offset_t va;
|
|
vm_paddr_t phys = VM_PAGE_TO_PHYS(m);
|
|
|
|
if (MIPS_DIRECT_MAPPABLE(phys)) {
|
|
va = MIPS_PHYS_TO_DIRECT(phys);
|
|
bzero((caddr_t)va, PAGE_SIZE);
|
|
mips_dcache_wbinv_range(va, PAGE_SIZE);
|
|
} else {
|
|
va = pmap_lmem_map1(phys);
|
|
bzero((caddr_t)va, PAGE_SIZE);
|
|
mips_dcache_wbinv_range(va, PAGE_SIZE);
|
|
pmap_lmem_unmap();
|
|
}
|
|
}
|
|
|
|
/*
|
|
* pmap_zero_page_area zeros the specified hardware page by mapping
|
|
* the page into KVM and using bzero to clear its contents.
|
|
*
|
|
* off and size may not cover an area beyond a single hardware page.
|
|
*/
|
|
void
|
|
pmap_zero_page_area(vm_page_t m, int off, int size)
|
|
{
|
|
vm_offset_t va;
|
|
vm_paddr_t phys = VM_PAGE_TO_PHYS(m);
|
|
|
|
if (MIPS_DIRECT_MAPPABLE(phys)) {
|
|
va = MIPS_PHYS_TO_DIRECT(phys);
|
|
bzero((char *)(caddr_t)va + off, size);
|
|
mips_dcache_wbinv_range(va + off, size);
|
|
} else {
|
|
va = pmap_lmem_map1(phys);
|
|
bzero((char *)va + off, size);
|
|
mips_dcache_wbinv_range(va + off, size);
|
|
pmap_lmem_unmap();
|
|
}
|
|
}
|
|
|
|
/*
|
|
* pmap_copy_page copies the specified (machine independent)
|
|
* page by mapping the page into virtual memory and using
|
|
* bcopy to copy the page, one machine dependent page at a
|
|
* time.
|
|
*
|
|
* Use XKPHYS for 64 bit, and KSEG0 where possible for 32 bit.
|
|
*/
|
|
void
|
|
pmap_copy_page(vm_page_t src, vm_page_t dst)
|
|
{
|
|
vm_offset_t va_src, va_dst;
|
|
vm_paddr_t phys_src = VM_PAGE_TO_PHYS(src);
|
|
vm_paddr_t phys_dst = VM_PAGE_TO_PHYS(dst);
|
|
|
|
if (MIPS_DIRECT_MAPPABLE(phys_src) && MIPS_DIRECT_MAPPABLE(phys_dst)) {
|
|
/* easy case, all can be accessed via KSEG0 */
|
|
/*
|
|
* Flush all caches for VA that are mapped to this page
|
|
* to make sure that data in SDRAM is up to date
|
|
*/
|
|
pmap_flush_pvcache(src);
|
|
mips_dcache_wbinv_range_index(
|
|
MIPS_PHYS_TO_DIRECT(phys_dst), PAGE_SIZE);
|
|
va_src = MIPS_PHYS_TO_DIRECT(phys_src);
|
|
va_dst = MIPS_PHYS_TO_DIRECT(phys_dst);
|
|
bcopy((caddr_t)va_src, (caddr_t)va_dst, PAGE_SIZE);
|
|
mips_dcache_wbinv_range(va_dst, PAGE_SIZE);
|
|
} else {
|
|
va_src = pmap_lmem_map2(phys_src, phys_dst);
|
|
va_dst = va_src + PAGE_SIZE;
|
|
bcopy((void *)va_src, (void *)va_dst, PAGE_SIZE);
|
|
mips_dcache_wbinv_range(va_dst, PAGE_SIZE);
|
|
pmap_lmem_unmap();
|
|
}
|
|
}
|
|
|
|
int unmapped_buf_allowed;
|
|
|
|
void
|
|
pmap_copy_pages(vm_page_t ma[], vm_offset_t a_offset, vm_page_t mb[],
|
|
vm_offset_t b_offset, int xfersize)
|
|
{
|
|
char *a_cp, *b_cp;
|
|
vm_page_t a_m, b_m;
|
|
vm_offset_t a_pg_offset, b_pg_offset;
|
|
vm_paddr_t a_phys, b_phys;
|
|
int cnt;
|
|
|
|
while (xfersize > 0) {
|
|
a_pg_offset = a_offset & PAGE_MASK;
|
|
cnt = min(xfersize, PAGE_SIZE - a_pg_offset);
|
|
a_m = ma[a_offset >> PAGE_SHIFT];
|
|
a_phys = VM_PAGE_TO_PHYS(a_m);
|
|
b_pg_offset = b_offset & PAGE_MASK;
|
|
cnt = min(cnt, PAGE_SIZE - b_pg_offset);
|
|
b_m = mb[b_offset >> PAGE_SHIFT];
|
|
b_phys = VM_PAGE_TO_PHYS(b_m);
|
|
if (MIPS_DIRECT_MAPPABLE(a_phys) &&
|
|
MIPS_DIRECT_MAPPABLE(b_phys)) {
|
|
pmap_flush_pvcache(a_m);
|
|
mips_dcache_wbinv_range_index(
|
|
MIPS_PHYS_TO_DIRECT(b_phys), PAGE_SIZE);
|
|
a_cp = (char *)MIPS_PHYS_TO_DIRECT(a_phys) +
|
|
a_pg_offset;
|
|
b_cp = (char *)MIPS_PHYS_TO_DIRECT(b_phys) +
|
|
b_pg_offset;
|
|
bcopy(a_cp, b_cp, cnt);
|
|
mips_dcache_wbinv_range((vm_offset_t)b_cp, cnt);
|
|
} else {
|
|
a_cp = (char *)pmap_lmem_map2(a_phys, b_phys);
|
|
b_cp = (char *)a_cp + PAGE_SIZE;
|
|
a_cp += a_pg_offset;
|
|
b_cp += b_pg_offset;
|
|
bcopy(a_cp, b_cp, cnt);
|
|
mips_dcache_wbinv_range((vm_offset_t)b_cp, cnt);
|
|
pmap_lmem_unmap();
|
|
}
|
|
a_offset += cnt;
|
|
b_offset += cnt;
|
|
xfersize -= cnt;
|
|
}
|
|
}
|
|
|
|
vm_offset_t
|
|
pmap_quick_enter_page(vm_page_t m)
|
|
{
|
|
#if defined(__mips_n64)
|
|
return MIPS_PHYS_TO_DIRECT(VM_PAGE_TO_PHYS(m));
|
|
#else
|
|
vm_paddr_t pa;
|
|
struct local_sysmaps *sysm;
|
|
pt_entry_t *pte, npte;
|
|
|
|
pa = VM_PAGE_TO_PHYS(m);
|
|
|
|
if (MIPS_DIRECT_MAPPABLE(pa)) {
|
|
if (pmap_page_get_memattr(m) != VM_MEMATTR_WRITE_BACK)
|
|
return (MIPS_PHYS_TO_DIRECT_UNCACHED(pa));
|
|
else
|
|
return (MIPS_PHYS_TO_DIRECT(pa));
|
|
}
|
|
critical_enter();
|
|
sysm = &sysmap_lmem[PCPU_GET(cpuid)];
|
|
|
|
KASSERT(sysm->valid1 == 0, ("pmap_quick_enter_page: PTE busy"));
|
|
|
|
pte = pmap_pte(kernel_pmap, sysm->base);
|
|
npte = TLBLO_PA_TO_PFN(pa) | PTE_D | PTE_V | PTE_G;
|
|
PMAP_PTE_SET_CACHE_BITS(npte, pa, m);
|
|
*pte = npte;
|
|
sysm->valid1 = 1;
|
|
|
|
return (sysm->base);
|
|
#endif
|
|
}
|
|
|
|
void
|
|
pmap_quick_remove_page(vm_offset_t addr)
|
|
{
|
|
mips_dcache_wbinv_range(addr, PAGE_SIZE);
|
|
|
|
#if !defined(__mips_n64)
|
|
struct local_sysmaps *sysm;
|
|
pt_entry_t *pte;
|
|
|
|
if (addr >= MIPS_KSEG0_START && addr < MIPS_KSEG0_END)
|
|
return;
|
|
|
|
sysm = &sysmap_lmem[PCPU_GET(cpuid)];
|
|
|
|
KASSERT(sysm->valid1 != 0,
|
|
("pmap_quick_remove_page: PTE not in use"));
|
|
KASSERT(sysm->base == addr,
|
|
("pmap_quick_remove_page: invalid address"));
|
|
|
|
pte = pmap_pte(kernel_pmap, addr);
|
|
*pte = PTE_G;
|
|
tlb_invalidate_address(kernel_pmap, addr);
|
|
sysm->valid1 = 0;
|
|
critical_exit();
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
* Returns true if the pmap's pv is one of the first
|
|
* 16 pvs linked to from this page. This count may
|
|
* be changed upwards or downwards in the future; it
|
|
* is only necessary that true be returned for a small
|
|
* subset of pmaps for proper page aging.
|
|
*/
|
|
boolean_t
|
|
pmap_page_exists_quick(pmap_t pmap, vm_page_t m)
|
|
{
|
|
pv_entry_t pv;
|
|
int loops = 0;
|
|
boolean_t rv;
|
|
|
|
KASSERT((m->oflags & VPO_UNMANAGED) == 0,
|
|
("pmap_page_exists_quick: page %p is not managed", m));
|
|
rv = FALSE;
|
|
rw_wlock(&pvh_global_lock);
|
|
TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
|
|
if (PV_PMAP(pv) == pmap) {
|
|
rv = TRUE;
|
|
break;
|
|
}
|
|
loops++;
|
|
if (loops >= 16)
|
|
break;
|
|
}
|
|
rw_wunlock(&pvh_global_lock);
|
|
return (rv);
|
|
}
|
|
|
|
/*
|
|
* Remove all pages from specified address space
|
|
* this aids process exit speeds. Also, this code
|
|
* is special cased for current process only, but
|
|
* can have the more generic (and slightly slower)
|
|
* mode enabled. This is much faster than pmap_remove
|
|
* in the case of running down an entire address space.
|
|
*/
|
|
void
|
|
pmap_remove_pages(pmap_t pmap)
|
|
{
|
|
pd_entry_t *pde;
|
|
pt_entry_t *pte, tpte;
|
|
pv_entry_t pv;
|
|
vm_page_t m;
|
|
struct pv_chunk *pc, *npc;
|
|
u_long inuse, bitmask;
|
|
int allfree, bit, field, idx;
|
|
|
|
if (pmap != vmspace_pmap(curthread->td_proc->p_vmspace)) {
|
|
printf("warning: pmap_remove_pages called with non-current pmap\n");
|
|
return;
|
|
}
|
|
rw_wlock(&pvh_global_lock);
|
|
PMAP_LOCK(pmap);
|
|
TAILQ_FOREACH_SAFE(pc, &pmap->pm_pvchunk, pc_list, npc) {
|
|
allfree = 1;
|
|
for (field = 0; field < _NPCM; field++) {
|
|
inuse = ~pc->pc_map[field] & pc_freemask[field];
|
|
while (inuse != 0) {
|
|
bit = ffsl(inuse) - 1;
|
|
bitmask = 1UL << bit;
|
|
idx = field * sizeof(inuse) * NBBY + bit;
|
|
pv = &pc->pc_pventry[idx];
|
|
inuse &= ~bitmask;
|
|
|
|
pde = pmap_pde(pmap, pv->pv_va);
|
|
KASSERT(pde != NULL && *pde != 0,
|
|
("pmap_remove_pages: pde"));
|
|
pte = pmap_pde_to_pte(pde, pv->pv_va);
|
|
if (!pte_test(pte, PTE_V))
|
|
panic("pmap_remove_pages: bad pte");
|
|
tpte = *pte;
|
|
|
|
/*
|
|
* We cannot remove wired pages from a process' mapping at this time
|
|
*/
|
|
if (pte_test(&tpte, PTE_W)) {
|
|
allfree = 0;
|
|
continue;
|
|
}
|
|
*pte = is_kernel_pmap(pmap) ? PTE_G : 0;
|
|
|
|
m = PHYS_TO_VM_PAGE(TLBLO_PTE_TO_PA(tpte));
|
|
KASSERT(m != NULL,
|
|
("pmap_remove_pages: bad tpte %#jx",
|
|
(uintmax_t)tpte));
|
|
|
|
/*
|
|
* Update the vm_page_t clean and reference bits.
|
|
*/
|
|
if (pte_test(&tpte, PTE_D))
|
|
vm_page_dirty(m);
|
|
|
|
/* Mark free */
|
|
PV_STAT(pv_entry_frees++);
|
|
PV_STAT(pv_entry_spare++);
|
|
pv_entry_count--;
|
|
pc->pc_map[field] |= bitmask;
|
|
pmap->pm_stats.resident_count--;
|
|
TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
|
|
if (TAILQ_EMPTY(&m->md.pv_list))
|
|
vm_page_aflag_clear(m, PGA_WRITEABLE);
|
|
pmap_unuse_pt(pmap, pv->pv_va, *pde);
|
|
}
|
|
}
|
|
if (allfree) {
|
|
TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
|
|
free_pv_chunk(pc);
|
|
}
|
|
}
|
|
pmap_invalidate_all(pmap);
|
|
PMAP_UNLOCK(pmap);
|
|
rw_wunlock(&pvh_global_lock);
|
|
}
|
|
|
|
/*
|
|
* pmap_testbit tests bits in pte's
|
|
*/
|
|
static boolean_t
|
|
pmap_testbit(vm_page_t m, int bit)
|
|
{
|
|
pv_entry_t pv;
|
|
pmap_t pmap;
|
|
pt_entry_t *pte;
|
|
boolean_t rv = FALSE;
|
|
|
|
if (m->oflags & VPO_UNMANAGED)
|
|
return (rv);
|
|
|
|
rw_assert(&pvh_global_lock, RA_WLOCKED);
|
|
TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
|
|
pmap = PV_PMAP(pv);
|
|
PMAP_LOCK(pmap);
|
|
pte = pmap_pte(pmap, pv->pv_va);
|
|
rv = pte_test(pte, bit);
|
|
PMAP_UNLOCK(pmap);
|
|
if (rv)
|
|
break;
|
|
}
|
|
return (rv);
|
|
}
|
|
|
|
/*
|
|
* pmap_page_wired_mappings:
|
|
*
|
|
* Return the number of managed mappings to the given physical page
|
|
* that are wired.
|
|
*/
|
|
int
|
|
pmap_page_wired_mappings(vm_page_t m)
|
|
{
|
|
pv_entry_t pv;
|
|
pmap_t pmap;
|
|
pt_entry_t *pte;
|
|
int count;
|
|
|
|
count = 0;
|
|
if ((m->oflags & VPO_UNMANAGED) != 0)
|
|
return (count);
|
|
rw_wlock(&pvh_global_lock);
|
|
TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
|
|
pmap = PV_PMAP(pv);
|
|
PMAP_LOCK(pmap);
|
|
pte = pmap_pte(pmap, pv->pv_va);
|
|
if (pte_test(pte, PTE_W))
|
|
count++;
|
|
PMAP_UNLOCK(pmap);
|
|
}
|
|
rw_wunlock(&pvh_global_lock);
|
|
return (count);
|
|
}
|
|
|
|
/*
|
|
* Clear the write and modified bits in each of the given page's mappings.
|
|
*/
|
|
void
|
|
pmap_remove_write(vm_page_t m)
|
|
{
|
|
pmap_t pmap;
|
|
pt_entry_t pbits, *pte;
|
|
pv_entry_t pv;
|
|
|
|
KASSERT((m->oflags & VPO_UNMANAGED) == 0,
|
|
("pmap_remove_write: page %p is not managed", m));
|
|
|
|
/*
|
|
* If the page is not exclusive busied, then PGA_WRITEABLE cannot be
|
|
* set by another thread while the object is locked. Thus,
|
|
* if PGA_WRITEABLE is clear, no page table entries need updating.
|
|
*/
|
|
VM_OBJECT_ASSERT_WLOCKED(m->object);
|
|
if (!vm_page_xbusied(m) && (m->aflags & PGA_WRITEABLE) == 0)
|
|
return;
|
|
rw_wlock(&pvh_global_lock);
|
|
TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
|
|
pmap = PV_PMAP(pv);
|
|
PMAP_LOCK(pmap);
|
|
pte = pmap_pte(pmap, pv->pv_va);
|
|
KASSERT(pte != NULL && pte_test(pte, PTE_V),
|
|
("page on pv_list has no pte"));
|
|
pbits = *pte;
|
|
if (pte_test(&pbits, PTE_D)) {
|
|
pte_clear(&pbits, PTE_D);
|
|
vm_page_dirty(m);
|
|
}
|
|
pte_set(&pbits, PTE_RO);
|
|
if (pbits != *pte) {
|
|
*pte = pbits;
|
|
pmap_update_page(pmap, pv->pv_va, pbits);
|
|
}
|
|
PMAP_UNLOCK(pmap);
|
|
}
|
|
vm_page_aflag_clear(m, PGA_WRITEABLE);
|
|
rw_wunlock(&pvh_global_lock);
|
|
}
|
|
|
|
/*
|
|
* pmap_ts_referenced:
|
|
*
|
|
* Return the count of reference bits for a page, clearing all of them.
|
|
*/
|
|
int
|
|
pmap_ts_referenced(vm_page_t m)
|
|
{
|
|
|
|
KASSERT((m->oflags & VPO_UNMANAGED) == 0,
|
|
("pmap_ts_referenced: page %p is not managed", m));
|
|
if (m->md.pv_flags & PV_TABLE_REF) {
|
|
rw_wlock(&pvh_global_lock);
|
|
m->md.pv_flags &= ~PV_TABLE_REF;
|
|
rw_wunlock(&pvh_global_lock);
|
|
return (1);
|
|
}
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* pmap_is_modified:
|
|
*
|
|
* Return whether or not the specified physical page was modified
|
|
* in any physical maps.
|
|
*/
|
|
boolean_t
|
|
pmap_is_modified(vm_page_t m)
|
|
{
|
|
boolean_t rv;
|
|
|
|
KASSERT((m->oflags & VPO_UNMANAGED) == 0,
|
|
("pmap_is_modified: page %p is not managed", m));
|
|
|
|
/*
|
|
* If the page is not exclusive busied, then PGA_WRITEABLE cannot be
|
|
* concurrently set while the object is locked. Thus, if PGA_WRITEABLE
|
|
* is clear, no PTEs can have PTE_D set.
|
|
*/
|
|
VM_OBJECT_ASSERT_WLOCKED(m->object);
|
|
if (!vm_page_xbusied(m) && (m->aflags & PGA_WRITEABLE) == 0)
|
|
return (FALSE);
|
|
rw_wlock(&pvh_global_lock);
|
|
rv = pmap_testbit(m, PTE_D);
|
|
rw_wunlock(&pvh_global_lock);
|
|
return (rv);
|
|
}
|
|
|
|
/* N/C */
|
|
|
|
/*
|
|
* pmap_is_prefaultable:
|
|
*
|
|
* Return whether or not the specified virtual address is elgible
|
|
* for prefault.
|
|
*/
|
|
boolean_t
|
|
pmap_is_prefaultable(pmap_t pmap, vm_offset_t addr)
|
|
{
|
|
pd_entry_t *pde;
|
|
pt_entry_t *pte;
|
|
boolean_t rv;
|
|
|
|
rv = FALSE;
|
|
PMAP_LOCK(pmap);
|
|
pde = pmap_pde(pmap, addr);
|
|
if (pde != NULL && *pde != 0) {
|
|
pte = pmap_pde_to_pte(pde, addr);
|
|
rv = (*pte == 0);
|
|
}
|
|
PMAP_UNLOCK(pmap);
|
|
return (rv);
|
|
}
|
|
|
|
/*
|
|
* Apply the given advice to the specified range of addresses within the
|
|
* given pmap. Depending on the advice, clear the referenced and/or
|
|
* modified flags in each mapping and set the mapped page's dirty field.
|
|
*/
|
|
void
|
|
pmap_advise(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, int advice)
|
|
{
|
|
pd_entry_t *pde, *pdpe;
|
|
pt_entry_t *pte;
|
|
vm_offset_t va, va_next;
|
|
vm_paddr_t pa;
|
|
vm_page_t m;
|
|
|
|
if (advice != MADV_DONTNEED && advice != MADV_FREE)
|
|
return;
|
|
rw_wlock(&pvh_global_lock);
|
|
PMAP_LOCK(pmap);
|
|
for (; sva < eva; sva = va_next) {
|
|
pdpe = pmap_segmap(pmap, sva);
|
|
#ifdef __mips_n64
|
|
if (*pdpe == 0) {
|
|
va_next = (sva + NBSEG) & ~SEGMASK;
|
|
if (va_next < sva)
|
|
va_next = eva;
|
|
continue;
|
|
}
|
|
#endif
|
|
va_next = (sva + NBPDR) & ~PDRMASK;
|
|
if (va_next < sva)
|
|
va_next = eva;
|
|
|
|
pde = pmap_pdpe_to_pde(pdpe, sva);
|
|
if (*pde == NULL)
|
|
continue;
|
|
|
|
/*
|
|
* Limit our scan to either the end of the va represented
|
|
* by the current page table page, or to the end of the
|
|
* range being write protected.
|
|
*/
|
|
if (va_next > eva)
|
|
va_next = eva;
|
|
|
|
va = va_next;
|
|
for (pte = pmap_pde_to_pte(pde, sva); sva != va_next; pte++,
|
|
sva += PAGE_SIZE) {
|
|
if (!pte_test(pte, PTE_MANAGED | PTE_V)) {
|
|
if (va != va_next) {
|
|
pmap_invalidate_range(pmap, va, sva);
|
|
va = va_next;
|
|
}
|
|
continue;
|
|
}
|
|
pa = TLBLO_PTE_TO_PA(*pte);
|
|
m = PHYS_TO_VM_PAGE(pa);
|
|
m->md.pv_flags &= ~PV_TABLE_REF;
|
|
if (pte_test(pte, PTE_D)) {
|
|
if (advice == MADV_DONTNEED) {
|
|
/*
|
|
* Future calls to pmap_is_modified()
|
|
* can be avoided by making the page
|
|
* dirty now.
|
|
*/
|
|
vm_page_dirty(m);
|
|
} else {
|
|
pte_clear(pte, PTE_D);
|
|
if (va == va_next)
|
|
va = sva;
|
|
}
|
|
} else {
|
|
/*
|
|
* Unless PTE_D is set, any TLB entries
|
|
* mapping "sva" don't allow write access, so
|
|
* they needn't be invalidated.
|
|
*/
|
|
if (va != va_next) {
|
|
pmap_invalidate_range(pmap, va, sva);
|
|
va = va_next;
|
|
}
|
|
}
|
|
}
|
|
if (va != va_next)
|
|
pmap_invalidate_range(pmap, va, sva);
|
|
}
|
|
rw_wunlock(&pvh_global_lock);
|
|
PMAP_UNLOCK(pmap);
|
|
}
|
|
|
|
/*
|
|
* Clear the modify bits on the specified physical page.
|
|
*/
|
|
void
|
|
pmap_clear_modify(vm_page_t m)
|
|
{
|
|
pmap_t pmap;
|
|
pt_entry_t *pte;
|
|
pv_entry_t pv;
|
|
|
|
KASSERT((m->oflags & VPO_UNMANAGED) == 0,
|
|
("pmap_clear_modify: page %p is not managed", m));
|
|
VM_OBJECT_ASSERT_WLOCKED(m->object);
|
|
KASSERT(!vm_page_xbusied(m),
|
|
("pmap_clear_modify: page %p is exclusive busied", m));
|
|
|
|
/*
|
|
* If the page is not PGA_WRITEABLE, then no PTEs can have PTE_D set.
|
|
* If the object containing the page is locked and the page is not
|
|
* write busied, then PGA_WRITEABLE cannot be concurrently set.
|
|
*/
|
|
if ((m->aflags & PGA_WRITEABLE) == 0)
|
|
return;
|
|
rw_wlock(&pvh_global_lock);
|
|
TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
|
|
pmap = PV_PMAP(pv);
|
|
PMAP_LOCK(pmap);
|
|
pte = pmap_pte(pmap, pv->pv_va);
|
|
if (pte_test(pte, PTE_D)) {
|
|
pte_clear(pte, PTE_D);
|
|
pmap_update_page(pmap, pv->pv_va, *pte);
|
|
}
|
|
PMAP_UNLOCK(pmap);
|
|
}
|
|
rw_wunlock(&pvh_global_lock);
|
|
}
|
|
|
|
/*
|
|
* pmap_is_referenced:
|
|
*
|
|
* Return whether or not the specified physical page was referenced
|
|
* in any physical maps.
|
|
*/
|
|
boolean_t
|
|
pmap_is_referenced(vm_page_t m)
|
|
{
|
|
|
|
KASSERT((m->oflags & VPO_UNMANAGED) == 0,
|
|
("pmap_is_referenced: page %p is not managed", m));
|
|
return ((m->md.pv_flags & PV_TABLE_REF) != 0);
|
|
}
|
|
|
|
/*
|
|
* Miscellaneous support routines follow
|
|
*/
|
|
|
|
/*
|
|
* Map a set of physical memory pages into the kernel virtual
|
|
* address space. Return a pointer to where it is mapped. This
|
|
* routine is intended to be used for mapping device memory,
|
|
* NOT real memory.
|
|
*
|
|
* Use XKPHYS uncached for 64 bit, and KSEG1 where possible for 32 bit.
|
|
*/
|
|
void *
|
|
pmap_mapdev_attr(vm_paddr_t pa, vm_size_t size, vm_memattr_t ma)
|
|
{
|
|
vm_offset_t va, tmpva, offset;
|
|
|
|
/*
|
|
* KSEG1 maps only first 512M of phys address space. For
|
|
* pa > 0x20000000 we should make proper mapping * using pmap_kenter.
|
|
*/
|
|
if (MIPS_DIRECT_MAPPABLE(pa + size - 1) && ma == VM_MEMATTR_UNCACHEABLE)
|
|
return ((void *)MIPS_PHYS_TO_DIRECT_UNCACHED(pa));
|
|
else {
|
|
offset = pa & PAGE_MASK;
|
|
size = roundup(size + offset, PAGE_SIZE);
|
|
|
|
va = kva_alloc(size);
|
|
if (!va)
|
|
panic("pmap_mapdev: Couldn't alloc kernel virtual memory");
|
|
pa = trunc_page(pa);
|
|
for (tmpva = va; size > 0;) {
|
|
pmap_kenter_attr(tmpva, pa, ma);
|
|
size -= PAGE_SIZE;
|
|
tmpva += PAGE_SIZE;
|
|
pa += PAGE_SIZE;
|
|
}
|
|
}
|
|
|
|
return ((void *)(va + offset));
|
|
}
|
|
|
|
void *
|
|
pmap_mapdev(vm_paddr_t pa, vm_size_t size)
|
|
{
|
|
return pmap_mapdev_attr(pa, size, VM_MEMATTR_UNCACHEABLE);
|
|
}
|
|
|
|
void
|
|
pmap_unmapdev(vm_offset_t va, vm_size_t size)
|
|
{
|
|
#ifndef __mips_n64
|
|
vm_offset_t base, offset;
|
|
|
|
/* If the address is within KSEG1 then there is nothing to do */
|
|
if (va >= MIPS_KSEG1_START && va <= MIPS_KSEG1_END)
|
|
return;
|
|
|
|
base = trunc_page(va);
|
|
offset = va & PAGE_MASK;
|
|
size = roundup(size + offset, PAGE_SIZE);
|
|
kva_free(base, size);
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
* perform the pmap work for mincore
|
|
*/
|
|
int
|
|
pmap_mincore(pmap_t pmap, vm_offset_t addr, vm_paddr_t *locked_pa)
|
|
{
|
|
pt_entry_t *ptep, pte;
|
|
vm_paddr_t pa;
|
|
vm_page_t m;
|
|
int val;
|
|
|
|
PMAP_LOCK(pmap);
|
|
retry:
|
|
ptep = pmap_pte(pmap, addr);
|
|
pte = (ptep != NULL) ? *ptep : 0;
|
|
if (!pte_test(&pte, PTE_V)) {
|
|
val = 0;
|
|
goto out;
|
|
}
|
|
val = MINCORE_INCORE;
|
|
if (pte_test(&pte, PTE_D))
|
|
val |= MINCORE_MODIFIED | MINCORE_MODIFIED_OTHER;
|
|
pa = TLBLO_PTE_TO_PA(pte);
|
|
if (pte_test(&pte, PTE_MANAGED)) {
|
|
/*
|
|
* This may falsely report the given address as
|
|
* MINCORE_REFERENCED. Unfortunately, due to the lack of
|
|
* per-PTE reference information, it is impossible to
|
|
* determine if the address is MINCORE_REFERENCED.
|
|
*/
|
|
m = PHYS_TO_VM_PAGE(pa);
|
|
if ((m->aflags & PGA_REFERENCED) != 0)
|
|
val |= MINCORE_REFERENCED | MINCORE_REFERENCED_OTHER;
|
|
}
|
|
if ((val & (MINCORE_MODIFIED_OTHER | MINCORE_REFERENCED_OTHER)) !=
|
|
(MINCORE_MODIFIED_OTHER | MINCORE_REFERENCED_OTHER) &&
|
|
pte_test(&pte, PTE_MANAGED)) {
|
|
/* Ensure that "PHYS_TO_VM_PAGE(pa)->object" doesn't change. */
|
|
if (vm_page_pa_tryrelock(pmap, pa, locked_pa))
|
|
goto retry;
|
|
} else
|
|
out:
|
|
PA_UNLOCK_COND(*locked_pa);
|
|
PMAP_UNLOCK(pmap);
|
|
return (val);
|
|
}
|
|
|
|
void
|
|
pmap_activate(struct thread *td)
|
|
{
|
|
pmap_t pmap, oldpmap;
|
|
struct proc *p = td->td_proc;
|
|
u_int cpuid;
|
|
|
|
critical_enter();
|
|
|
|
pmap = vmspace_pmap(p->p_vmspace);
|
|
oldpmap = PCPU_GET(curpmap);
|
|
cpuid = PCPU_GET(cpuid);
|
|
|
|
if (oldpmap)
|
|
CPU_CLR_ATOMIC(cpuid, &oldpmap->pm_active);
|
|
CPU_SET_ATOMIC(cpuid, &pmap->pm_active);
|
|
pmap_asid_alloc(pmap);
|
|
if (td == curthread) {
|
|
PCPU_SET(segbase, pmap->pm_segtab);
|
|
mips_wr_entryhi(pmap->pm_asid[cpuid].asid);
|
|
}
|
|
|
|
PCPU_SET(curpmap, pmap);
|
|
critical_exit();
|
|
}
|
|
|
|
static void
|
|
pmap_sync_icache_one(void *arg __unused)
|
|
{
|
|
|
|
mips_icache_sync_all();
|
|
mips_dcache_wbinv_all();
|
|
}
|
|
|
|
void
|
|
pmap_sync_icache(pmap_t pm, vm_offset_t va, vm_size_t sz)
|
|
{
|
|
|
|
smp_rendezvous(NULL, pmap_sync_icache_one, NULL, NULL);
|
|
}
|
|
|
|
/*
|
|
* Increase the starting virtual address of the given mapping if a
|
|
* different alignment might result in more superpage mappings.
|
|
*/
|
|
void
|
|
pmap_align_superpage(vm_object_t object, vm_ooffset_t offset,
|
|
vm_offset_t *addr, vm_size_t size)
|
|
{
|
|
vm_offset_t superpage_offset;
|
|
|
|
if (size < PDRSIZE)
|
|
return;
|
|
if (object != NULL && (object->flags & OBJ_COLORED) != 0)
|
|
offset += ptoa(object->pg_color);
|
|
superpage_offset = offset & PDRMASK;
|
|
if (size - ((PDRSIZE - superpage_offset) & PDRMASK) < PDRSIZE ||
|
|
(*addr & PDRMASK) == superpage_offset)
|
|
return;
|
|
if ((*addr & PDRMASK) < superpage_offset)
|
|
*addr = (*addr & ~PDRMASK) + superpage_offset;
|
|
else
|
|
*addr = ((*addr + PDRMASK) & ~PDRMASK) + superpage_offset;
|
|
}
|
|
|
|
#ifdef DDB
|
|
DB_SHOW_COMMAND(ptable, ddb_pid_dump)
|
|
{
|
|
pmap_t pmap;
|
|
struct thread *td = NULL;
|
|
struct proc *p;
|
|
int i, j, k;
|
|
vm_paddr_t pa;
|
|
vm_offset_t va;
|
|
|
|
if (have_addr) {
|
|
td = db_lookup_thread(addr, true);
|
|
if (td == NULL) {
|
|
db_printf("Invalid pid or tid");
|
|
return;
|
|
}
|
|
p = td->td_proc;
|
|
if (p->p_vmspace == NULL) {
|
|
db_printf("No vmspace for process");
|
|
return;
|
|
}
|
|
pmap = vmspace_pmap(p->p_vmspace);
|
|
} else
|
|
pmap = kernel_pmap;
|
|
|
|
db_printf("pmap:%p segtab:%p asid:%x generation:%x\n",
|
|
pmap, pmap->pm_segtab, pmap->pm_asid[0].asid,
|
|
pmap->pm_asid[0].gen);
|
|
for (i = 0; i < NPDEPG; i++) {
|
|
pd_entry_t *pdpe;
|
|
pt_entry_t *pde;
|
|
pt_entry_t pte;
|
|
|
|
pdpe = (pd_entry_t *)pmap->pm_segtab[i];
|
|
if (pdpe == NULL)
|
|
continue;
|
|
db_printf("[%4d] %p\n", i, pdpe);
|
|
#ifdef __mips_n64
|
|
for (j = 0; j < NPDEPG; j++) {
|
|
pde = (pt_entry_t *)pdpe[j];
|
|
if (pde == NULL)
|
|
continue;
|
|
db_printf("\t[%4d] %p\n", j, pde);
|
|
#else
|
|
{
|
|
j = 0;
|
|
pde = (pt_entry_t *)pdpe;
|
|
#endif
|
|
for (k = 0; k < NPTEPG; k++) {
|
|
pte = pde[k];
|
|
if (pte == 0 || !pte_test(&pte, PTE_V))
|
|
continue;
|
|
pa = TLBLO_PTE_TO_PA(pte);
|
|
va = ((u_long)i << SEGSHIFT) | (j << PDRSHIFT) | (k << PAGE_SHIFT);
|
|
db_printf("\t\t[%04d] va: %p pte: %8jx pa:%jx\n",
|
|
k, (void *)va, (uintmax_t)pte, (uintmax_t)pa);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* Allocate TLB address space tag (called ASID or TLBPID) and return it.
|
|
* It takes almost as much or more time to search the TLB for a
|
|
* specific ASID and flush those entries as it does to flush the entire TLB.
|
|
* Therefore, when we allocate a new ASID, we just take the next number. When
|
|
* we run out of numbers, we flush the TLB, increment the generation count
|
|
* and start over. ASID zero is reserved for kernel use.
|
|
*/
|
|
static void
|
|
pmap_asid_alloc(pmap)
|
|
pmap_t pmap;
|
|
{
|
|
if (pmap->pm_asid[PCPU_GET(cpuid)].asid != PMAP_ASID_RESERVED &&
|
|
pmap->pm_asid[PCPU_GET(cpuid)].gen == PCPU_GET(asid_generation));
|
|
else {
|
|
if (PCPU_GET(next_asid) == pmap_max_asid) {
|
|
tlb_invalidate_all_user(NULL);
|
|
PCPU_SET(asid_generation,
|
|
(PCPU_GET(asid_generation) + 1) & ASIDGEN_MASK);
|
|
if (PCPU_GET(asid_generation) == 0) {
|
|
PCPU_SET(asid_generation, 1);
|
|
}
|
|
PCPU_SET(next_asid, 1); /* 0 means invalid */
|
|
}
|
|
pmap->pm_asid[PCPU_GET(cpuid)].asid = PCPU_GET(next_asid);
|
|
pmap->pm_asid[PCPU_GET(cpuid)].gen = PCPU_GET(asid_generation);
|
|
PCPU_SET(next_asid, PCPU_GET(next_asid) + 1);
|
|
}
|
|
}
|
|
|
|
static pt_entry_t
|
|
init_pte_prot(vm_page_t m, vm_prot_t access, vm_prot_t prot)
|
|
{
|
|
pt_entry_t rw;
|
|
|
|
if (!(prot & VM_PROT_WRITE))
|
|
rw = PTE_V | PTE_RO;
|
|
else if ((m->oflags & VPO_UNMANAGED) == 0) {
|
|
if ((access & VM_PROT_WRITE) != 0)
|
|
rw = PTE_V | PTE_D;
|
|
else
|
|
rw = PTE_V;
|
|
} else
|
|
/* Needn't emulate a modified bit for unmanaged pages. */
|
|
rw = PTE_V | PTE_D;
|
|
return (rw);
|
|
}
|
|
|
|
/*
|
|
* pmap_emulate_modified : do dirty bit emulation
|
|
*
|
|
* On SMP, update just the local TLB, other CPUs will update their
|
|
* TLBs from PTE lazily, if they get the exception.
|
|
* Returns 0 in case of sucess, 1 if the page is read only and we
|
|
* need to fault.
|
|
*/
|
|
int
|
|
pmap_emulate_modified(pmap_t pmap, vm_offset_t va)
|
|
{
|
|
pt_entry_t *pte;
|
|
|
|
PMAP_LOCK(pmap);
|
|
pte = pmap_pte(pmap, va);
|
|
if (pte == NULL)
|
|
panic("pmap_emulate_modified: can't find PTE");
|
|
#ifdef SMP
|
|
/* It is possible that some other CPU changed m-bit */
|
|
if (!pte_test(pte, PTE_V) || pte_test(pte, PTE_D)) {
|
|
tlb_update(pmap, va, *pte);
|
|
PMAP_UNLOCK(pmap);
|
|
return (0);
|
|
}
|
|
#else
|
|
if (!pte_test(pte, PTE_V) || pte_test(pte, PTE_D))
|
|
panic("pmap_emulate_modified: invalid pte");
|
|
#endif
|
|
if (pte_test(pte, PTE_RO)) {
|
|
PMAP_UNLOCK(pmap);
|
|
return (1);
|
|
}
|
|
pte_set(pte, PTE_D);
|
|
tlb_update(pmap, va, *pte);
|
|
if (!pte_test(pte, PTE_MANAGED))
|
|
panic("pmap_emulate_modified: unmanaged page");
|
|
PMAP_UNLOCK(pmap);
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Routine: pmap_kextract
|
|
* Function:
|
|
* Extract the physical page address associated
|
|
* virtual address.
|
|
*/
|
|
vm_paddr_t
|
|
pmap_kextract(vm_offset_t va)
|
|
{
|
|
int mapped;
|
|
|
|
/*
|
|
* First, the direct-mapped regions.
|
|
*/
|
|
#if defined(__mips_n64)
|
|
if (va >= MIPS_XKPHYS_START && va < MIPS_XKPHYS_END)
|
|
return (MIPS_XKPHYS_TO_PHYS(va));
|
|
#endif
|
|
if (va >= MIPS_KSEG0_START && va < MIPS_KSEG0_END)
|
|
return (MIPS_KSEG0_TO_PHYS(va));
|
|
|
|
if (va >= MIPS_KSEG1_START && va < MIPS_KSEG1_END)
|
|
return (MIPS_KSEG1_TO_PHYS(va));
|
|
|
|
/*
|
|
* User virtual addresses.
|
|
*/
|
|
if (va < VM_MAXUSER_ADDRESS) {
|
|
pt_entry_t *ptep;
|
|
|
|
if (curproc && curproc->p_vmspace) {
|
|
ptep = pmap_pte(&curproc->p_vmspace->vm_pmap, va);
|
|
if (ptep) {
|
|
return (TLBLO_PTE_TO_PA(*ptep) |
|
|
(va & PAGE_MASK));
|
|
}
|
|
return (0);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Should be kernel virtual here, otherwise fail
|
|
*/
|
|
mapped = (va >= MIPS_KSEG2_START || va < MIPS_KSEG2_END);
|
|
#if defined(__mips_n64)
|
|
mapped = mapped || (va >= MIPS_XKSEG_START || va < MIPS_XKSEG_END);
|
|
#endif
|
|
/*
|
|
* Kernel virtual.
|
|
*/
|
|
|
|
if (mapped) {
|
|
pt_entry_t *ptep;
|
|
|
|
/* Is the kernel pmap initialized? */
|
|
if (!CPU_EMPTY(&kernel_pmap->pm_active)) {
|
|
/* It's inside the virtual address range */
|
|
ptep = pmap_pte(kernel_pmap, va);
|
|
if (ptep) {
|
|
return (TLBLO_PTE_TO_PA(*ptep) |
|
|
(va & PAGE_MASK));
|
|
}
|
|
}
|
|
return (0);
|
|
}
|
|
|
|
panic("%s for unknown address space %p.", __func__, (void *)va);
|
|
}
|
|
|
|
|
|
void
|
|
pmap_flush_pvcache(vm_page_t m)
|
|
{
|
|
pv_entry_t pv;
|
|
|
|
if (m != NULL) {
|
|
for (pv = TAILQ_FIRST(&m->md.pv_list); pv;
|
|
pv = TAILQ_NEXT(pv, pv_list)) {
|
|
mips_dcache_wbinv_range_index(pv->pv_va, PAGE_SIZE);
|
|
}
|
|
}
|
|
}
|
|
|
|
void
|
|
pmap_page_set_memattr(vm_page_t m, vm_memattr_t ma)
|
|
{
|
|
|
|
/*
|
|
* It appears that this function can only be called before any mappings
|
|
* for the page are established. If this ever changes, this code will
|
|
* need to walk the pv_list and make each of the existing mappings
|
|
* uncacheable, being careful to sync caches and PTEs (and maybe
|
|
* invalidate TLB?) for any current mapping it modifies.
|
|
*/
|
|
if (TAILQ_FIRST(&m->md.pv_list) != NULL)
|
|
panic("Can't change memattr on page with existing mappings");
|
|
|
|
/* Clean memattr portion of pv_flags */
|
|
m->md.pv_flags &= ~PV_MEMATTR_MASK;
|
|
m->md.pv_flags |= (ma << PV_MEMATTR_SHIFT) & PV_MEMATTR_MASK;
|
|
}
|
|
|
|
static __inline void
|
|
pmap_pte_attr(pt_entry_t *pte, vm_memattr_t ma)
|
|
{
|
|
u_int npte;
|
|
|
|
npte = *(u_int *)pte;
|
|
npte &= ~PTE_C_MASK;
|
|
npte |= PTE_C(ma);
|
|
*pte = npte;
|
|
}
|
|
|
|
int
|
|
pmap_change_attr(vm_offset_t sva, vm_size_t size, vm_memattr_t ma)
|
|
{
|
|
pd_entry_t *pde, *pdpe;
|
|
pt_entry_t *pte;
|
|
vm_offset_t ova, eva, va, va_next;
|
|
pmap_t pmap;
|
|
|
|
ova = sva;
|
|
eva = sva + size;
|
|
if (eva < sva)
|
|
return (EINVAL);
|
|
|
|
pmap = kernel_pmap;
|
|
PMAP_LOCK(pmap);
|
|
|
|
for (; sva < eva; sva = va_next) {
|
|
pdpe = pmap_segmap(pmap, sva);
|
|
#ifdef __mips_n64
|
|
if (*pdpe == 0) {
|
|
va_next = (sva + NBSEG) & ~SEGMASK;
|
|
if (va_next < sva)
|
|
va_next = eva;
|
|
continue;
|
|
}
|
|
#endif
|
|
va_next = (sva + NBPDR) & ~PDRMASK;
|
|
if (va_next < sva)
|
|
va_next = eva;
|
|
|
|
pde = pmap_pdpe_to_pde(pdpe, sva);
|
|
if (*pde == NULL)
|
|
continue;
|
|
|
|
/*
|
|
* Limit our scan to either the end of the va represented
|
|
* by the current page table page, or to the end of the
|
|
* range being removed.
|
|
*/
|
|
if (va_next > eva)
|
|
va_next = eva;
|
|
|
|
va = va_next;
|
|
for (pte = pmap_pde_to_pte(pde, sva); sva != va_next; pte++,
|
|
sva += PAGE_SIZE) {
|
|
if (!pte_test(pte, PTE_V) || pte_cache_bits(pte) == ma) {
|
|
if (va != va_next) {
|
|
pmap_invalidate_range(pmap, va, sva);
|
|
va = va_next;
|
|
}
|
|
continue;
|
|
}
|
|
if (va == va_next)
|
|
va = sva;
|
|
|
|
pmap_pte_attr(pte, ma);
|
|
}
|
|
if (va != va_next)
|
|
pmap_invalidate_range(pmap, va, sva);
|
|
}
|
|
PMAP_UNLOCK(pmap);
|
|
|
|
/* Flush caches to be in the safe side */
|
|
mips_dcache_wbinv_range(ova, size);
|
|
return 0;
|
|
}
|
|
|
|
boolean_t
|
|
pmap_is_valid_memattr(pmap_t pmap __unused, vm_memattr_t mode)
|
|
{
|
|
|
|
switch (mode) {
|
|
case VM_MEMATTR_UNCACHEABLE:
|
|
case VM_MEMATTR_WRITE_BACK:
|
|
#ifdef MIPS_CCA_WC
|
|
case VM_MEMATTR_WRITE_COMBINING:
|
|
#endif
|
|
return (TRUE);
|
|
default:
|
|
return (FALSE);
|
|
}
|
|
}
|