freebsd-nq/sys/mips/mips/pmap.c
Conrad Meyer fa3ac573a2 mips: Implement basic pmap_kenter_device, pmap_kremove_device
Unbreak mips.BERI_DE4_SDROOT build, which uses device xdma. Device xdma
depends on the pmap_kenter_device APIs.

Reported by:	tinderbox (local)
Sponsored by:	Dell EMC Isilon
2019-05-16 19:10:48 +00:00

3702 lines
88 KiB
C

/*-
* SPDX-License-Identifier: BSD-3-Clause
*
* Copyright (c) 1991 Regents of the University of California.
* All rights reserved.
* Copyright (c) 1994 John S. Dyson
* All rights reserved.
* Copyright (c) 1994 David Greenman
* All rights reserved.
*
* This code is derived from software contributed to Berkeley by
* the Systems Programming Group of the University of Utah Computer
* Science Department and William Jolitz of UUNET Technologies Inc.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* from: @(#)pmap.c 7.7 (Berkeley) 5/12/91
* from: src/sys/i386/i386/pmap.c,v 1.250.2.8 2000/11/21 00:09:14 ps
* JNPR: pmap.c,v 1.11.2.1 2007/08/16 11:51:06 girish
*/
/*
* Manages physical address maps.
*
* Since the information managed by this module is
* also stored by the logical address mapping module,
* this module may throw away valid virtual-to-physical
* mappings at almost any time. However, invalidations
* of virtual-to-physical mappings must be done as
* requested.
*
* In order to cope with hardware architectures which
* make virtual-to-physical map invalidates expensive,
* this module may delay invalidate or reduced protection
* operations until such time as they are actually
* necessary. This module is given full information as
* to which processors are currently using which maps,
* and to when physical maps must be made correct.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include "opt_ddb.h"
#include "opt_pmap.h"
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/lock.h>
#include <sys/mman.h>
#include <sys/msgbuf.h>
#include <sys/mutex.h>
#include <sys/pcpu.h>
#include <sys/proc.h>
#include <sys/rwlock.h>
#include <sys/sched.h>
#include <sys/smp.h>
#include <sys/sysctl.h>
#include <sys/vmmeter.h>
#ifdef DDB
#include <ddb/ddb.h>
#endif
#include <vm/vm.h>
#include <vm/vm_param.h>
#include <vm/vm_kern.h>
#include <vm/vm_page.h>
#include <vm/vm_map.h>
#include <vm/vm_object.h>
#include <vm/vm_extern.h>
#include <vm/vm_pageout.h>
#include <vm/vm_pager.h>
#include <vm/uma.h>
#include <machine/cache.h>
#include <machine/md_var.h>
#include <machine/tlb.h>
#undef PMAP_DEBUG
#if !defined(DIAGNOSTIC)
#define PMAP_INLINE __inline
#else
#define PMAP_INLINE
#endif
#ifdef PV_STATS
#define PV_STAT(x) do { x ; } while (0)
#else
#define PV_STAT(x) do { } while (0)
#endif
/*
* Get PDEs and PTEs for user/kernel address space
*/
#define pmap_seg_index(v) (((v) >> SEGSHIFT) & (NPDEPG - 1))
#define pmap_pde_index(v) (((v) >> PDRSHIFT) & (NPDEPG - 1))
#define pmap_pte_index(v) (((v) >> PAGE_SHIFT) & (NPTEPG - 1))
#define pmap_pde_pindex(v) ((v) >> PDRSHIFT)
#ifdef __mips_n64
#define NUPDE (NPDEPG * NPDEPG)
#define NUSERPGTBLS (NUPDE + NPDEPG)
#else
#define NUPDE (NPDEPG)
#define NUSERPGTBLS (NUPDE)
#endif
#define is_kernel_pmap(x) ((x) == kernel_pmap)
struct pmap kernel_pmap_store;
pd_entry_t *kernel_segmap;
vm_offset_t virtual_avail; /* VA of first avail page (after kernel bss) */
vm_offset_t virtual_end; /* VA of last avail page (end of kernel AS) */
static int nkpt;
unsigned pmap_max_asid; /* max ASID supported by the system */
#define PMAP_ASID_RESERVED 0
vm_offset_t kernel_vm_end = VM_MIN_KERNEL_ADDRESS;
static void pmap_asid_alloc(pmap_t pmap);
static struct rwlock_padalign pvh_global_lock;
/*
* Data for the pv entry allocation mechanism
*/
static TAILQ_HEAD(pch, pv_chunk) pv_chunks = TAILQ_HEAD_INITIALIZER(pv_chunks);
static int pv_entry_count;
static void free_pv_chunk(struct pv_chunk *pc);
static void free_pv_entry(pmap_t pmap, pv_entry_t pv);
static pv_entry_t get_pv_entry(pmap_t pmap, boolean_t try);
static vm_page_t pmap_pv_reclaim(pmap_t locked_pmap);
static void pmap_pvh_free(struct md_page *pvh, pmap_t pmap, vm_offset_t va);
static pv_entry_t pmap_pvh_remove(struct md_page *pvh, pmap_t pmap,
vm_offset_t va);
static vm_page_t pmap_alloc_direct_page(unsigned int index, int req);
static vm_page_t pmap_enter_quick_locked(pmap_t pmap, vm_offset_t va,
vm_page_t m, vm_prot_t prot, vm_page_t mpte);
static void pmap_grow_direct_page(int req);
static int pmap_remove_pte(struct pmap *pmap, pt_entry_t *ptq, vm_offset_t va,
pd_entry_t pde);
static void pmap_remove_page(struct pmap *pmap, vm_offset_t va);
static void pmap_remove_entry(struct pmap *pmap, vm_page_t m, vm_offset_t va);
static boolean_t pmap_try_insert_pv_entry(pmap_t pmap, vm_page_t mpte,
vm_offset_t va, vm_page_t m);
static void pmap_update_page(pmap_t pmap, vm_offset_t va, pt_entry_t pte);
static void pmap_invalidate_all(pmap_t pmap);
static void pmap_invalidate_page(pmap_t pmap, vm_offset_t va);
static void _pmap_unwire_ptp(pmap_t pmap, vm_offset_t va, vm_page_t m);
static vm_page_t pmap_allocpte(pmap_t pmap, vm_offset_t va, u_int flags);
static vm_page_t _pmap_allocpte(pmap_t pmap, unsigned ptepindex, u_int flags);
static int pmap_unuse_pt(pmap_t, vm_offset_t, pd_entry_t);
static pt_entry_t init_pte_prot(vm_page_t m, vm_prot_t access, vm_prot_t prot);
static void pmap_invalidate_page_action(void *arg);
static void pmap_invalidate_range_action(void *arg);
static void pmap_update_page_action(void *arg);
#ifndef __mips_n64
/*
* This structure is for high memory (memory above 512Meg in 32 bit) support.
* The highmem area does not have a KSEG0 mapping, and we need a mechanism to
* do temporary per-CPU mappings for pmap_zero_page, pmap_copy_page etc.
*
* At bootup, we reserve 2 virtual pages per CPU for mapping highmem pages. To
* access a highmem physical address on a CPU, we map the physical address to
* the reserved virtual address for the CPU in the kernel pagetable. This is
* done with interrupts disabled(although a spinlock and sched_pin would be
* sufficient).
*/
struct local_sysmaps {
vm_offset_t base;
uint32_t saved_intr;
uint16_t valid1, valid2;
};
static struct local_sysmaps sysmap_lmem[MAXCPU];
static __inline void
pmap_alloc_lmem_map(void)
{
int i;
for (i = 0; i < MAXCPU; i++) {
sysmap_lmem[i].base = virtual_avail;
virtual_avail += PAGE_SIZE * 2;
sysmap_lmem[i].valid1 = sysmap_lmem[i].valid2 = 0;
}
}
static __inline vm_offset_t
pmap_lmem_map1(vm_paddr_t phys)
{
struct local_sysmaps *sysm;
pt_entry_t *pte, npte;
vm_offset_t va;
uint32_t intr;
int cpu;
intr = intr_disable();
cpu = PCPU_GET(cpuid);
sysm = &sysmap_lmem[cpu];
sysm->saved_intr = intr;
va = sysm->base;
npte = TLBLO_PA_TO_PFN(phys) | PTE_C_CACHE | PTE_D | PTE_V | PTE_G;
pte = pmap_pte(kernel_pmap, va);
*pte = npte;
sysm->valid1 = 1;
return (va);
}
static __inline vm_offset_t
pmap_lmem_map2(vm_paddr_t phys1, vm_paddr_t phys2)
{
struct local_sysmaps *sysm;
pt_entry_t *pte, npte;
vm_offset_t va1, va2;
uint32_t intr;
int cpu;
intr = intr_disable();
cpu = PCPU_GET(cpuid);
sysm = &sysmap_lmem[cpu];
sysm->saved_intr = intr;
va1 = sysm->base;
va2 = sysm->base + PAGE_SIZE;
npte = TLBLO_PA_TO_PFN(phys1) | PTE_C_CACHE | PTE_D | PTE_V | PTE_G;
pte = pmap_pte(kernel_pmap, va1);
*pte = npte;
npte = TLBLO_PA_TO_PFN(phys2) | PTE_C_CACHE | PTE_D | PTE_V | PTE_G;
pte = pmap_pte(kernel_pmap, va2);
*pte = npte;
sysm->valid1 = 1;
sysm->valid2 = 1;
return (va1);
}
static __inline void
pmap_lmem_unmap(void)
{
struct local_sysmaps *sysm;
pt_entry_t *pte;
int cpu;
cpu = PCPU_GET(cpuid);
sysm = &sysmap_lmem[cpu];
pte = pmap_pte(kernel_pmap, sysm->base);
*pte = PTE_G;
tlb_invalidate_address(kernel_pmap, sysm->base);
sysm->valid1 = 0;
if (sysm->valid2) {
pte = pmap_pte(kernel_pmap, sysm->base + PAGE_SIZE);
*pte = PTE_G;
tlb_invalidate_address(kernel_pmap, sysm->base + PAGE_SIZE);
sysm->valid2 = 0;
}
intr_restore(sysm->saved_intr);
}
#else /* __mips_n64 */
static __inline void
pmap_alloc_lmem_map(void)
{
}
static __inline vm_offset_t
pmap_lmem_map1(vm_paddr_t phys)
{
return (0);
}
static __inline vm_offset_t
pmap_lmem_map2(vm_paddr_t phys1, vm_paddr_t phys2)
{
return (0);
}
static __inline vm_offset_t
pmap_lmem_unmap(void)
{
return (0);
}
#endif /* !__mips_n64 */
static __inline int
pmap_pte_cache_bits(vm_paddr_t pa, vm_page_t m)
{
vm_memattr_t ma;
ma = pmap_page_get_memattr(m);
if (ma == VM_MEMATTR_WRITE_BACK && !is_cacheable_mem(pa))
ma = VM_MEMATTR_UNCACHEABLE;
return PTE_C(ma);
}
#define PMAP_PTE_SET_CACHE_BITS(pte, ps, m) { \
pte &= ~PTE_C_MASK; \
pte |= pmap_pte_cache_bits(pa, m); \
}
/*
* Page table entry lookup routines.
*/
static __inline pd_entry_t *
pmap_segmap(pmap_t pmap, vm_offset_t va)
{
return (&pmap->pm_segtab[pmap_seg_index(va)]);
}
#ifdef __mips_n64
static __inline pd_entry_t *
pmap_pdpe_to_pde(pd_entry_t *pdpe, vm_offset_t va)
{
pd_entry_t *pde;
pde = (pd_entry_t *)*pdpe;
return (&pde[pmap_pde_index(va)]);
}
static __inline pd_entry_t *
pmap_pde(pmap_t pmap, vm_offset_t va)
{
pd_entry_t *pdpe;
pdpe = pmap_segmap(pmap, va);
if (*pdpe == NULL)
return (NULL);
return (pmap_pdpe_to_pde(pdpe, va));
}
#else
static __inline pd_entry_t *
pmap_pdpe_to_pde(pd_entry_t *pdpe, vm_offset_t va)
{
return (pdpe);
}
static __inline
pd_entry_t *pmap_pde(pmap_t pmap, vm_offset_t va)
{
return (pmap_segmap(pmap, va));
}
#endif
static __inline pt_entry_t *
pmap_pde_to_pte(pd_entry_t *pde, vm_offset_t va)
{
pt_entry_t *pte;
pte = (pt_entry_t *)*pde;
return (&pte[pmap_pte_index(va)]);
}
pt_entry_t *
pmap_pte(pmap_t pmap, vm_offset_t va)
{
pd_entry_t *pde;
pde = pmap_pde(pmap, va);
if (pde == NULL || *pde == NULL)
return (NULL);
return (pmap_pde_to_pte(pde, va));
}
vm_offset_t
pmap_steal_memory(vm_size_t size)
{
vm_paddr_t bank_size, pa;
vm_offset_t va;
size = round_page(size);
bank_size = phys_avail[1] - phys_avail[0];
while (size > bank_size) {
int i;
for (i = 0; phys_avail[i + 2]; i += 2) {
phys_avail[i] = phys_avail[i + 2];
phys_avail[i + 1] = phys_avail[i + 3];
}
phys_avail[i] = 0;
phys_avail[i + 1] = 0;
if (!phys_avail[0])
panic("pmap_steal_memory: out of memory");
bank_size = phys_avail[1] - phys_avail[0];
}
pa = phys_avail[0];
phys_avail[0] += size;
if (MIPS_DIRECT_MAPPABLE(pa) == 0)
panic("Out of memory below 512Meg?");
va = MIPS_PHYS_TO_DIRECT(pa);
bzero((caddr_t)va, size);
return (va);
}
/*
* Bootstrap the system enough to run with virtual memory. This
* assumes that the phys_avail array has been initialized.
*/
static void
pmap_create_kernel_pagetable(void)
{
int i, j;
vm_offset_t ptaddr;
pt_entry_t *pte;
#ifdef __mips_n64
pd_entry_t *pde;
vm_offset_t pdaddr;
int npt, npde;
#endif
/*
* Allocate segment table for the kernel
*/
kernel_segmap = (pd_entry_t *)pmap_steal_memory(PAGE_SIZE);
/*
* Allocate second level page tables for the kernel
*/
#ifdef __mips_n64
npde = howmany(NKPT, NPDEPG);
pdaddr = pmap_steal_memory(PAGE_SIZE * npde);
#endif
nkpt = NKPT;
ptaddr = pmap_steal_memory(PAGE_SIZE * nkpt);
/*
* The R[4-7]?00 stores only one copy of the Global bit in the
* translation lookaside buffer for each 2 page entry. Thus invalid
* entrys must have the Global bit set so when Entry LO and Entry HI
* G bits are anded together they will produce a global bit to store
* in the tlb.
*/
for (i = 0, pte = (pt_entry_t *)ptaddr; i < (nkpt * NPTEPG); i++, pte++)
*pte = PTE_G;
#ifdef __mips_n64
for (i = 0, npt = nkpt; npt > 0; i++) {
kernel_segmap[i] = (pd_entry_t)(pdaddr + i * PAGE_SIZE);
pde = (pd_entry_t *)kernel_segmap[i];
for (j = 0; j < NPDEPG && npt > 0; j++, npt--)
pde[j] = (pd_entry_t)(ptaddr + (i * NPDEPG + j) * PAGE_SIZE);
}
#else
for (i = 0, j = pmap_seg_index(VM_MIN_KERNEL_ADDRESS); i < nkpt; i++, j++)
kernel_segmap[j] = (pd_entry_t)(ptaddr + (i * PAGE_SIZE));
#endif
PMAP_LOCK_INIT(kernel_pmap);
kernel_pmap->pm_segtab = kernel_segmap;
CPU_FILL(&kernel_pmap->pm_active);
TAILQ_INIT(&kernel_pmap->pm_pvchunk);
kernel_pmap->pm_asid[0].asid = PMAP_ASID_RESERVED;
kernel_pmap->pm_asid[0].gen = 0;
kernel_vm_end += nkpt * NPTEPG * PAGE_SIZE;
}
void
pmap_bootstrap(void)
{
int i;
int need_local_mappings = 0;
/* Sort. */
again:
for (i = 0; phys_avail[i + 1] != 0; i += 2) {
/*
* Keep the memory aligned on page boundary.
*/
phys_avail[i] = round_page(phys_avail[i]);
phys_avail[i + 1] = trunc_page(phys_avail[i + 1]);
if (i < 2)
continue;
if (phys_avail[i - 2] > phys_avail[i]) {
vm_paddr_t ptemp[2];
ptemp[0] = phys_avail[i + 0];
ptemp[1] = phys_avail[i + 1];
phys_avail[i + 0] = phys_avail[i - 2];
phys_avail[i + 1] = phys_avail[i - 1];
phys_avail[i - 2] = ptemp[0];
phys_avail[i - 1] = ptemp[1];
goto again;
}
}
/*
* In 32 bit, we may have memory which cannot be mapped directly.
* This memory will need temporary mapping before it can be
* accessed.
*/
if (!MIPS_DIRECT_MAPPABLE(phys_avail[i - 1] - 1))
need_local_mappings = 1;
/*
* Copy the phys_avail[] array before we start stealing memory from it.
*/
for (i = 0; phys_avail[i + 1] != 0; i += 2) {
physmem_desc[i] = phys_avail[i];
physmem_desc[i + 1] = phys_avail[i + 1];
}
Maxmem = atop(phys_avail[i - 1]);
if (bootverbose) {
printf("Physical memory chunk(s):\n");
for (i = 0; phys_avail[i + 1] != 0; i += 2) {
vm_paddr_t size;
size = phys_avail[i + 1] - phys_avail[i];
printf("%#08jx - %#08jx, %ju bytes (%ju pages)\n",
(uintmax_t) phys_avail[i],
(uintmax_t) phys_avail[i + 1] - 1,
(uintmax_t) size, (uintmax_t) size / PAGE_SIZE);
}
printf("Maxmem is 0x%0jx\n", ptoa((uintmax_t)Maxmem));
}
/*
* Steal the message buffer from the beginning of memory.
*/
msgbufp = (struct msgbuf *)pmap_steal_memory(msgbufsize);
msgbufinit(msgbufp, msgbufsize);
/*
* Steal thread0 kstack.
*/
kstack0 = pmap_steal_memory(KSTACK_PAGES << PAGE_SHIFT);
virtual_avail = VM_MIN_KERNEL_ADDRESS;
virtual_end = VM_MAX_KERNEL_ADDRESS;
#ifdef SMP
/*
* Steal some virtual address space to map the pcpu area.
*/
virtual_avail = roundup2(virtual_avail, PAGE_SIZE * 2);
pcpup = (struct pcpu *)virtual_avail;
virtual_avail += PAGE_SIZE * 2;
/*
* Initialize the wired TLB entry mapping the pcpu region for
* the BSP at 'pcpup'. Up until this point we were operating
* with the 'pcpup' for the BSP pointing to a virtual address
* in KSEG0 so there was no need for a TLB mapping.
*/
mips_pcpu_tlb_init(PCPU_ADDR(0));
if (bootverbose)
printf("pcpu is available at virtual address %p.\n", pcpup);
#endif
if (need_local_mappings)
pmap_alloc_lmem_map();
pmap_create_kernel_pagetable();
pmap_max_asid = VMNUM_PIDS;
mips_wr_entryhi(0);
mips_wr_pagemask(0);
/*
* Initialize the global pv list lock.
*/
rw_init(&pvh_global_lock, "pmap pv global");
}
/*
* Initialize a vm_page's machine-dependent fields.
*/
void
pmap_page_init(vm_page_t m)
{
TAILQ_INIT(&m->md.pv_list);
m->md.pv_flags = VM_MEMATTR_DEFAULT << PV_MEMATTR_SHIFT;
}
/*
* Initialize the pmap module.
* Called by vm_init, to initialize any structures that the pmap
* system needs to map virtual memory.
*/
void
pmap_init(void)
{
}
/***************************************************
* Low level helper routines.....
***************************************************/
#ifdef SMP
static __inline void
pmap_call_on_active_cpus(pmap_t pmap, void (*fn)(void *), void *arg)
{
int cpuid, cpu, self;
cpuset_t active_cpus;
sched_pin();
if (is_kernel_pmap(pmap)) {
smp_rendezvous(NULL, fn, NULL, arg);
goto out;
}
/* Force ASID update on inactive CPUs */
CPU_FOREACH(cpu) {
if (!CPU_ISSET(cpu, &pmap->pm_active))
pmap->pm_asid[cpu].gen = 0;
}
cpuid = PCPU_GET(cpuid);
/*
* XXX: barrier/locking for active?
*
* Take a snapshot of active here, any further changes are ignored.
* tlb update/invalidate should be harmless on inactive CPUs
*/
active_cpus = pmap->pm_active;
self = CPU_ISSET(cpuid, &active_cpus);
CPU_CLR(cpuid, &active_cpus);
/* Optimize for the case where this cpu is the only active one */
if (CPU_EMPTY(&active_cpus)) {
if (self)
fn(arg);
} else {
if (self)
CPU_SET(cpuid, &active_cpus);
smp_rendezvous_cpus(active_cpus, NULL, fn, NULL, arg);
}
out:
sched_unpin();
}
#else /* !SMP */
static __inline void
pmap_call_on_active_cpus(pmap_t pmap, void (*fn)(void *), void *arg)
{
int cpuid;
if (is_kernel_pmap(pmap)) {
fn(arg);
return;
}
cpuid = PCPU_GET(cpuid);
if (!CPU_ISSET(cpuid, &pmap->pm_active))
pmap->pm_asid[cpuid].gen = 0;
else
fn(arg);
}
#endif /* SMP */
static void
pmap_invalidate_all(pmap_t pmap)
{
pmap_call_on_active_cpus(pmap,
(void (*)(void *))tlb_invalidate_all_user, pmap);
}
struct pmap_invalidate_page_arg {
pmap_t pmap;
vm_offset_t va;
};
static void
pmap_invalidate_page_action(void *arg)
{
struct pmap_invalidate_page_arg *p = arg;
tlb_invalidate_address(p->pmap, p->va);
}
static void
pmap_invalidate_page(pmap_t pmap, vm_offset_t va)
{
struct pmap_invalidate_page_arg arg;
arg.pmap = pmap;
arg.va = va;
pmap_call_on_active_cpus(pmap, pmap_invalidate_page_action, &arg);
}
struct pmap_invalidate_range_arg {
pmap_t pmap;
vm_offset_t sva;
vm_offset_t eva;
};
static void
pmap_invalidate_range_action(void *arg)
{
struct pmap_invalidate_range_arg *p = arg;
tlb_invalidate_range(p->pmap, p->sva, p->eva);
}
static void
pmap_invalidate_range(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
{
struct pmap_invalidate_range_arg arg;
arg.pmap = pmap;
arg.sva = sva;
arg.eva = eva;
pmap_call_on_active_cpus(pmap, pmap_invalidate_range_action, &arg);
}
struct pmap_update_page_arg {
pmap_t pmap;
vm_offset_t va;
pt_entry_t pte;
};
static void
pmap_update_page_action(void *arg)
{
struct pmap_update_page_arg *p = arg;
tlb_update(p->pmap, p->va, p->pte);
}
static void
pmap_update_page(pmap_t pmap, vm_offset_t va, pt_entry_t pte)
{
struct pmap_update_page_arg arg;
arg.pmap = pmap;
arg.va = va;
arg.pte = pte;
pmap_call_on_active_cpus(pmap, pmap_update_page_action, &arg);
}
/*
* Routine: pmap_extract
* Function:
* Extract the physical page address associated
* with the given map/virtual_address pair.
*/
vm_paddr_t
pmap_extract(pmap_t pmap, vm_offset_t va)
{
pt_entry_t *pte;
vm_offset_t retval = 0;
PMAP_LOCK(pmap);
pte = pmap_pte(pmap, va);
if (pte) {
retval = TLBLO_PTE_TO_PA(*pte) | (va & PAGE_MASK);
}
PMAP_UNLOCK(pmap);
return (retval);
}
/*
* Routine: pmap_extract_and_hold
* Function:
* Atomically extract and hold the physical page
* with the given pmap and virtual address pair
* if that mapping permits the given protection.
*/
vm_page_t
pmap_extract_and_hold(pmap_t pmap, vm_offset_t va, vm_prot_t prot)
{
pt_entry_t pte, *ptep;
vm_paddr_t pa, pte_pa;
vm_page_t m;
m = NULL;
pa = 0;
PMAP_LOCK(pmap);
retry:
ptep = pmap_pte(pmap, va);
if (ptep != NULL) {
pte = *ptep;
if (pte_test(&pte, PTE_V) && (!pte_test(&pte, PTE_RO) ||
(prot & VM_PROT_WRITE) == 0)) {
pte_pa = TLBLO_PTE_TO_PA(pte);
if (vm_page_pa_tryrelock(pmap, pte_pa, &pa))
goto retry;
m = PHYS_TO_VM_PAGE(pte_pa);
vm_page_hold(m);
}
}
PA_UNLOCK_COND(pa);
PMAP_UNLOCK(pmap);
return (m);
}
/***************************************************
* Low level mapping routines.....
***************************************************/
/*
* add a wired page to the kva
*/
void
pmap_kenter_attr(vm_offset_t va, vm_paddr_t pa, vm_memattr_t ma)
{
pt_entry_t *pte;
pt_entry_t opte, npte;
#ifdef PMAP_DEBUG
printf("pmap_kenter: va: %p -> pa: %p\n", (void *)va, (void *)pa);
#endif
pte = pmap_pte(kernel_pmap, va);
opte = *pte;
npte = TLBLO_PA_TO_PFN(pa) | PTE_C(ma) | PTE_D | PTE_V | PTE_G;
*pte = npte;
if (pte_test(&opte, PTE_V) && opte != npte)
pmap_update_page(kernel_pmap, va, npte);
}
void
pmap_kenter(vm_offset_t va, vm_paddr_t pa)
{
KASSERT(is_cacheable_mem(pa),
("pmap_kenter: memory at 0x%lx is not cacheable", (u_long)pa));
pmap_kenter_attr(va, pa, VM_MEMATTR_DEFAULT);
}
void
pmap_kenter_device(vm_offset_t va, vm_size_t size, vm_paddr_t pa)
{
KASSERT((size & PAGE_MASK) == 0,
("%s: device mapping not page-sized", __func__));
for (; size > 0; size -= PAGE_SIZE) {
/*
* XXXCEM: this is somewhat inefficient on SMP systems in that
* every single page is individually TLB-invalidated via
* rendezvous (pmap_update_page()), instead of invalidating the
* entire range via a single rendezvous.
*/
pmap_kenter_attr(va, pa, VM_MEMATTR_UNCACHEABLE);
va += PAGE_SIZE;
pa += PAGE_SIZE;
}
}
void
pmap_kremove_device(vm_offset_t va, vm_size_t size)
{
KASSERT((size & PAGE_MASK) == 0,
("%s: device mapping not page-sized", __func__));
/*
* XXXCEM: Similar to pmap_kenter_device, this is inefficient on SMP,
* in that pages are invalidated individually instead of a single range
* rendezvous.
*/
for (; size > 0; size -= PAGE_SIZE) {
pmap_kremove(va);
va += PAGE_SIZE;
}
}
/*
* remove a page from the kernel pagetables
*/
/* PMAP_INLINE */ void
pmap_kremove(vm_offset_t va)
{
pt_entry_t *pte;
/*
* Write back all caches from the page being destroyed
*/
mips_dcache_wbinv_range_index(va, PAGE_SIZE);
pte = pmap_pte(kernel_pmap, va);
*pte = PTE_G;
pmap_invalidate_page(kernel_pmap, va);
}
/*
* Used to map a range of physical addresses into kernel
* virtual address space.
*
* The value passed in '*virt' is a suggested virtual address for
* the mapping. Architectures which can support a direct-mapped
* physical to virtual region can return the appropriate address
* within that region, leaving '*virt' unchanged. Other
* architectures should map the pages starting at '*virt' and
* update '*virt' with the first usable address after the mapped
* region.
*
* Use XKPHYS for 64 bit, and KSEG0 where possible for 32 bit.
*/
vm_offset_t
pmap_map(vm_offset_t *virt, vm_paddr_t start, vm_paddr_t end, int prot)
{
vm_offset_t va, sva;
if (MIPS_DIRECT_MAPPABLE(end - 1))
return (MIPS_PHYS_TO_DIRECT(start));
va = sva = *virt;
while (start < end) {
pmap_kenter(va, start);
va += PAGE_SIZE;
start += PAGE_SIZE;
}
*virt = va;
return (sva);
}
/*
* Add a list of wired pages to the kva
* this routine is only used for temporary
* kernel mappings that do not need to have
* page modification or references recorded.
* Note that old mappings are simply written
* over. The page *must* be wired.
*/
void
pmap_qenter(vm_offset_t va, vm_page_t *m, int count)
{
int i;
vm_offset_t origva = va;
for (i = 0; i < count; i++) {
pmap_flush_pvcache(m[i]);
pmap_kenter(va, VM_PAGE_TO_PHYS(m[i]));
va += PAGE_SIZE;
}
mips_dcache_wbinv_range_index(origva, PAGE_SIZE*count);
}
/*
* this routine jerks page mappings from the
* kernel -- it is meant only for temporary mappings.
*/
void
pmap_qremove(vm_offset_t va, int count)
{
pt_entry_t *pte;
vm_offset_t origva;
if (count < 1)
return;
mips_dcache_wbinv_range_index(va, PAGE_SIZE * count);
origva = va;
do {
pte = pmap_pte(kernel_pmap, va);
*pte = PTE_G;
va += PAGE_SIZE;
} while (--count > 0);
pmap_invalidate_range(kernel_pmap, origva, va);
}
/***************************************************
* Page table page management routines.....
***************************************************/
/*
* Decrements a page table page's wire count, which is used to record the
* number of valid page table entries within the page. If the wire count
* drops to zero, then the page table page is unmapped. Returns TRUE if the
* page table page was unmapped and FALSE otherwise.
*/
static PMAP_INLINE boolean_t
pmap_unwire_ptp(pmap_t pmap, vm_offset_t va, vm_page_t m)
{
--m->wire_count;
if (m->wire_count == 0) {
_pmap_unwire_ptp(pmap, va, m);
return (TRUE);
} else
return (FALSE);
}
static void
_pmap_unwire_ptp(pmap_t pmap, vm_offset_t va, vm_page_t m)
{
pd_entry_t *pde;
PMAP_LOCK_ASSERT(pmap, MA_OWNED);
/*
* unmap the page table page
*/
#ifdef __mips_n64
if (m->pindex < NUPDE)
pde = pmap_pde(pmap, va);
else
pde = pmap_segmap(pmap, va);
#else
pde = pmap_pde(pmap, va);
#endif
*pde = 0;
pmap->pm_stats.resident_count--;
#ifdef __mips_n64
if (m->pindex < NUPDE) {
pd_entry_t *pdp;
vm_page_t pdpg;
/*
* Recursively decrement next level pagetable refcount
*/
pdp = (pd_entry_t *)*pmap_segmap(pmap, va);
pdpg = PHYS_TO_VM_PAGE(MIPS_DIRECT_TO_PHYS(pdp));
pmap_unwire_ptp(pmap, va, pdpg);
}
#endif
/*
* If the page is finally unwired, simply free it.
*/
vm_page_free_zero(m);
vm_wire_sub(1);
}
/*
* After removing a page table entry, this routine is used to
* conditionally free the page, and manage the hold/wire counts.
*/
static int
pmap_unuse_pt(pmap_t pmap, vm_offset_t va, pd_entry_t pde)
{
vm_page_t mpte;
if (va >= VM_MAXUSER_ADDRESS)
return (0);
KASSERT(pde != 0, ("pmap_unuse_pt: pde != 0"));
mpte = PHYS_TO_VM_PAGE(MIPS_DIRECT_TO_PHYS(pde));
return (pmap_unwire_ptp(pmap, va, mpte));
}
void
pmap_pinit0(pmap_t pmap)
{
int i;
PMAP_LOCK_INIT(pmap);
pmap->pm_segtab = kernel_segmap;
CPU_ZERO(&pmap->pm_active);
for (i = 0; i < MAXCPU; i++) {
pmap->pm_asid[i].asid = PMAP_ASID_RESERVED;
pmap->pm_asid[i].gen = 0;
}
PCPU_SET(curpmap, pmap);
TAILQ_INIT(&pmap->pm_pvchunk);
bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
}
static void
pmap_grow_direct_page(int req)
{
#ifdef __mips_n64
vm_wait(NULL);
#else
if (!vm_page_reclaim_contig(req, 1, 0, MIPS_KSEG0_LARGEST_PHYS,
PAGE_SIZE, 0))
vm_wait(NULL);
#endif
}
static vm_page_t
pmap_alloc_direct_page(unsigned int index, int req)
{
vm_page_t m;
m = vm_page_alloc_freelist(VM_FREELIST_DIRECT, req | VM_ALLOC_WIRED |
VM_ALLOC_ZERO);
if (m == NULL)
return (NULL);
if ((m->flags & PG_ZERO) == 0)
pmap_zero_page(m);
m->pindex = index;
return (m);
}
/*
* Initialize a preallocated and zeroed pmap structure,
* such as one in a vmspace structure.
*/
int
pmap_pinit(pmap_t pmap)
{
vm_offset_t ptdva;
vm_page_t ptdpg;
int i, req_class;
/*
* allocate the page directory page
*/
req_class = VM_ALLOC_NORMAL;
while ((ptdpg = pmap_alloc_direct_page(NUSERPGTBLS, req_class)) ==
NULL)
pmap_grow_direct_page(req_class);
ptdva = MIPS_PHYS_TO_DIRECT(VM_PAGE_TO_PHYS(ptdpg));
pmap->pm_segtab = (pd_entry_t *)ptdva;
CPU_ZERO(&pmap->pm_active);
for (i = 0; i < MAXCPU; i++) {
pmap->pm_asid[i].asid = PMAP_ASID_RESERVED;
pmap->pm_asid[i].gen = 0;
}
TAILQ_INIT(&pmap->pm_pvchunk);
bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
return (1);
}
/*
* this routine is called if the page table page is not
* mapped correctly.
*/
static vm_page_t
_pmap_allocpte(pmap_t pmap, unsigned ptepindex, u_int flags)
{
vm_offset_t pageva;
vm_page_t m;
int req_class;
/*
* Find or fabricate a new pagetable page
*/
req_class = VM_ALLOC_NORMAL;
if ((m = pmap_alloc_direct_page(ptepindex, req_class)) == NULL) {
if ((flags & PMAP_ENTER_NOSLEEP) == 0) {
PMAP_UNLOCK(pmap);
rw_wunlock(&pvh_global_lock);
pmap_grow_direct_page(req_class);
rw_wlock(&pvh_global_lock);
PMAP_LOCK(pmap);
}
/*
* Indicate the need to retry. While waiting, the page
* table page may have been allocated.
*/
return (NULL);
}
/*
* Map the pagetable page into the process address space, if it
* isn't already there.
*/
pageva = MIPS_PHYS_TO_DIRECT(VM_PAGE_TO_PHYS(m));
#ifdef __mips_n64
if (ptepindex >= NUPDE) {
pmap->pm_segtab[ptepindex - NUPDE] = (pd_entry_t)pageva;
} else {
pd_entry_t *pdep, *pde;
int segindex = ptepindex >> (SEGSHIFT - PDRSHIFT);
int pdeindex = ptepindex & (NPDEPG - 1);
vm_page_t pg;
pdep = &pmap->pm_segtab[segindex];
if (*pdep == NULL) {
/* recurse for allocating page dir */
if (_pmap_allocpte(pmap, NUPDE + segindex,
flags) == NULL) {
/* alloc failed, release current */
vm_page_unwire_noq(m);
vm_page_free_zero(m);
return (NULL);
}
} else {
pg = PHYS_TO_VM_PAGE(MIPS_DIRECT_TO_PHYS(*pdep));
pg->wire_count++;
}
/* Next level entry */
pde = (pd_entry_t *)*pdep;
pde[pdeindex] = (pd_entry_t)pageva;
}
#else
pmap->pm_segtab[ptepindex] = (pd_entry_t)pageva;
#endif
pmap->pm_stats.resident_count++;
return (m);
}
static vm_page_t
pmap_allocpte(pmap_t pmap, vm_offset_t va, u_int flags)
{
unsigned ptepindex;
pd_entry_t *pde;
vm_page_t m;
/*
* Calculate pagetable page index
*/
ptepindex = pmap_pde_pindex(va);
retry:
/*
* Get the page directory entry
*/
pde = pmap_pde(pmap, va);
/*
* If the page table page is mapped, we just increment the hold
* count, and activate it.
*/
if (pde != NULL && *pde != NULL) {
m = PHYS_TO_VM_PAGE(MIPS_DIRECT_TO_PHYS(*pde));
m->wire_count++;
} else {
/*
* Here if the pte page isn't mapped, or if it has been
* deallocated.
*/
m = _pmap_allocpte(pmap, ptepindex, flags);
if (m == NULL && (flags & PMAP_ENTER_NOSLEEP) == 0)
goto retry;
}
return (m);
}
/***************************************************
* Pmap allocation/deallocation routines.
***************************************************/
/*
* Release any resources held by the given physical map.
* Called when a pmap initialized by pmap_pinit is being released.
* Should only be called if the map contains no valid mappings.
*/
void
pmap_release(pmap_t pmap)
{
vm_offset_t ptdva;
vm_page_t ptdpg;
KASSERT(pmap->pm_stats.resident_count == 0,
("pmap_release: pmap resident count %ld != 0",
pmap->pm_stats.resident_count));
ptdva = (vm_offset_t)pmap->pm_segtab;
ptdpg = PHYS_TO_VM_PAGE(MIPS_DIRECT_TO_PHYS(ptdva));
vm_page_unwire_noq(ptdpg);
vm_page_free_zero(ptdpg);
}
/*
* grow the number of kernel page table entries, if needed
*/
void
pmap_growkernel(vm_offset_t addr)
{
vm_page_t nkpg;
pd_entry_t *pde, *pdpe;
pt_entry_t *pte;
int i, req_class;
mtx_assert(&kernel_map->system_mtx, MA_OWNED);
req_class = VM_ALLOC_INTERRUPT;
addr = roundup2(addr, NBSEG);
if (addr - 1 >= vm_map_max(kernel_map))
addr = vm_map_max(kernel_map);
while (kernel_vm_end < addr) {
pdpe = pmap_segmap(kernel_pmap, kernel_vm_end);
#ifdef __mips_n64
if (*pdpe == 0) {
/* new intermediate page table entry */
nkpg = pmap_alloc_direct_page(nkpt, req_class);
if (nkpg == NULL)
panic("pmap_growkernel: no memory to grow kernel");
*pdpe = (pd_entry_t)MIPS_PHYS_TO_DIRECT(VM_PAGE_TO_PHYS(nkpg));
continue; /* try again */
}
#endif
pde = pmap_pdpe_to_pde(pdpe, kernel_vm_end);
if (*pde != 0) {
kernel_vm_end = (kernel_vm_end + NBPDR) & ~PDRMASK;
if (kernel_vm_end - 1 >= vm_map_max(kernel_map)) {
kernel_vm_end = vm_map_max(kernel_map);
break;
}
continue;
}
/*
* This index is bogus, but out of the way
*/
nkpg = pmap_alloc_direct_page(nkpt, req_class);
#ifndef __mips_n64
if (nkpg == NULL && vm_page_reclaim_contig(req_class, 1,
0, MIPS_KSEG0_LARGEST_PHYS, PAGE_SIZE, 0))
nkpg = pmap_alloc_direct_page(nkpt, req_class);
#endif
if (nkpg == NULL)
panic("pmap_growkernel: no memory to grow kernel");
nkpt++;
*pde = (pd_entry_t)MIPS_PHYS_TO_DIRECT(VM_PAGE_TO_PHYS(nkpg));
/*
* The R[4-7]?00 stores only one copy of the Global bit in
* the translation lookaside buffer for each 2 page entry.
* Thus invalid entrys must have the Global bit set so when
* Entry LO and Entry HI G bits are anded together they will
* produce a global bit to store in the tlb.
*/
pte = (pt_entry_t *)*pde;
for (i = 0; i < NPTEPG; i++)
pte[i] = PTE_G;
kernel_vm_end = (kernel_vm_end + NBPDR) & ~PDRMASK;
if (kernel_vm_end - 1 >= vm_map_max(kernel_map)) {
kernel_vm_end = vm_map_max(kernel_map);
break;
}
}
}
/***************************************************
* page management routines.
***************************************************/
CTASSERT(sizeof(struct pv_chunk) == PAGE_SIZE);
#ifdef __mips_n64
CTASSERT(_NPCM == 3);
CTASSERT(_NPCPV == 168);
#else
CTASSERT(_NPCM == 11);
CTASSERT(_NPCPV == 336);
#endif
static __inline struct pv_chunk *
pv_to_chunk(pv_entry_t pv)
{
return ((struct pv_chunk *)((uintptr_t)pv & ~(uintptr_t)PAGE_MASK));
}
#define PV_PMAP(pv) (pv_to_chunk(pv)->pc_pmap)
#ifdef __mips_n64
#define PC_FREE0_1 0xfffffffffffffffful
#define PC_FREE2 0x000000fffffffffful
#else
#define PC_FREE0_9 0xfffffffful /* Free values for index 0 through 9 */
#define PC_FREE10 0x0000fffful /* Free values for index 10 */
#endif
static const u_long pc_freemask[_NPCM] = {
#ifdef __mips_n64
PC_FREE0_1, PC_FREE0_1, PC_FREE2
#else
PC_FREE0_9, PC_FREE0_9, PC_FREE0_9,
PC_FREE0_9, PC_FREE0_9, PC_FREE0_9,
PC_FREE0_9, PC_FREE0_9, PC_FREE0_9,
PC_FREE0_9, PC_FREE10
#endif
};
static SYSCTL_NODE(_vm, OID_AUTO, pmap, CTLFLAG_RD, 0, "VM/pmap parameters");
SYSCTL_INT(_vm_pmap, OID_AUTO, pv_entry_count, CTLFLAG_RD, &pv_entry_count, 0,
"Current number of pv entries");
#ifdef PV_STATS
static int pc_chunk_count, pc_chunk_allocs, pc_chunk_frees, pc_chunk_tryfail;
SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_count, CTLFLAG_RD, &pc_chunk_count, 0,
"Current number of pv entry chunks");
SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_allocs, CTLFLAG_RD, &pc_chunk_allocs, 0,
"Current number of pv entry chunks allocated");
SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_frees, CTLFLAG_RD, &pc_chunk_frees, 0,
"Current number of pv entry chunks frees");
SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_tryfail, CTLFLAG_RD, &pc_chunk_tryfail, 0,
"Number of times tried to get a chunk page but failed.");
static long pv_entry_frees, pv_entry_allocs;
static int pv_entry_spare;
SYSCTL_LONG(_vm_pmap, OID_AUTO, pv_entry_frees, CTLFLAG_RD, &pv_entry_frees, 0,
"Current number of pv entry frees");
SYSCTL_LONG(_vm_pmap, OID_AUTO, pv_entry_allocs, CTLFLAG_RD, &pv_entry_allocs, 0,
"Current number of pv entry allocs");
SYSCTL_INT(_vm_pmap, OID_AUTO, pv_entry_spare, CTLFLAG_RD, &pv_entry_spare, 0,
"Current number of spare pv entries");
#endif
/*
* We are in a serious low memory condition. Resort to
* drastic measures to free some pages so we can allocate
* another pv entry chunk.
*/
static vm_page_t
pmap_pv_reclaim(pmap_t locked_pmap)
{
struct pch newtail;
struct pv_chunk *pc;
pd_entry_t *pde;
pmap_t pmap;
pt_entry_t *pte, oldpte;
pv_entry_t pv;
vm_offset_t va;
vm_page_t m, m_pc;
u_long inuse;
int bit, field, freed, idx;
PMAP_LOCK_ASSERT(locked_pmap, MA_OWNED);
pmap = NULL;
m_pc = NULL;
TAILQ_INIT(&newtail);
while ((pc = TAILQ_FIRST(&pv_chunks)) != NULL) {
TAILQ_REMOVE(&pv_chunks, pc, pc_lru);
if (pmap != pc->pc_pmap) {
if (pmap != NULL) {
pmap_invalidate_all(pmap);
if (pmap != locked_pmap)
PMAP_UNLOCK(pmap);
}
pmap = pc->pc_pmap;
/* Avoid deadlock and lock recursion. */
if (pmap > locked_pmap)
PMAP_LOCK(pmap);
else if (pmap != locked_pmap && !PMAP_TRYLOCK(pmap)) {
pmap = NULL;
TAILQ_INSERT_TAIL(&newtail, pc, pc_lru);
continue;
}
}
/*
* Destroy every non-wired, 4 KB page mapping in the chunk.
*/
freed = 0;
for (field = 0; field < _NPCM; field++) {
for (inuse = ~pc->pc_map[field] & pc_freemask[field];
inuse != 0; inuse &= ~(1UL << bit)) {
bit = ffsl(inuse) - 1;
idx = field * sizeof(inuse) * NBBY + bit;
pv = &pc->pc_pventry[idx];
va = pv->pv_va;
pde = pmap_pde(pmap, va);
KASSERT(pde != NULL && *pde != 0,
("pmap_pv_reclaim: pde"));
pte = pmap_pde_to_pte(pde, va);
oldpte = *pte;
if (pte_test(&oldpte, PTE_W))
continue;
if (is_kernel_pmap(pmap))
*pte = PTE_G;
else
*pte = 0;
m = PHYS_TO_VM_PAGE(TLBLO_PTE_TO_PA(oldpte));
if (pte_test(&oldpte, PTE_D))
vm_page_dirty(m);
if (m->md.pv_flags & PV_TABLE_REF)
vm_page_aflag_set(m, PGA_REFERENCED);
m->md.pv_flags &= ~PV_TABLE_REF;
TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
if (TAILQ_EMPTY(&m->md.pv_list))
vm_page_aflag_clear(m, PGA_WRITEABLE);
pc->pc_map[field] |= 1UL << bit;
pmap_unuse_pt(pmap, va, *pde);
freed++;
}
}
if (freed == 0) {
TAILQ_INSERT_TAIL(&newtail, pc, pc_lru);
continue;
}
/* Every freed mapping is for a 4 KB page. */
pmap->pm_stats.resident_count -= freed;
PV_STAT(pv_entry_frees += freed);
PV_STAT(pv_entry_spare += freed);
pv_entry_count -= freed;
TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
for (field = 0; field < _NPCM; field++)
if (pc->pc_map[field] != pc_freemask[field]) {
TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc,
pc_list);
TAILQ_INSERT_TAIL(&newtail, pc, pc_lru);
/*
* One freed pv entry in locked_pmap is
* sufficient.
*/
if (pmap == locked_pmap)
goto out;
break;
}
if (field == _NPCM) {
PV_STAT(pv_entry_spare -= _NPCPV);
PV_STAT(pc_chunk_count--);
PV_STAT(pc_chunk_frees++);
/* Entire chunk is free; return it. */
m_pc = PHYS_TO_VM_PAGE(MIPS_DIRECT_TO_PHYS(
(vm_offset_t)pc));
dump_drop_page(m_pc->phys_addr);
break;
}
}
out:
TAILQ_CONCAT(&pv_chunks, &newtail, pc_lru);
if (pmap != NULL) {
pmap_invalidate_all(pmap);
if (pmap != locked_pmap)
PMAP_UNLOCK(pmap);
}
return (m_pc);
}
/*
* free the pv_entry back to the free list
*/
static void
free_pv_entry(pmap_t pmap, pv_entry_t pv)
{
struct pv_chunk *pc;
int bit, field, idx;
rw_assert(&pvh_global_lock, RA_WLOCKED);
PMAP_LOCK_ASSERT(pmap, MA_OWNED);
PV_STAT(pv_entry_frees++);
PV_STAT(pv_entry_spare++);
pv_entry_count--;
pc = pv_to_chunk(pv);
idx = pv - &pc->pc_pventry[0];
field = idx / (sizeof(u_long) * NBBY);
bit = idx % (sizeof(u_long) * NBBY);
pc->pc_map[field] |= 1ul << bit;
for (idx = 0; idx < _NPCM; idx++)
if (pc->pc_map[idx] != pc_freemask[idx]) {
/*
* 98% of the time, pc is already at the head of the
* list. If it isn't already, move it to the head.
*/
if (__predict_false(TAILQ_FIRST(&pmap->pm_pvchunk) !=
pc)) {
TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc,
pc_list);
}
return;
}
TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
free_pv_chunk(pc);
}
static void
free_pv_chunk(struct pv_chunk *pc)
{
vm_page_t m;
TAILQ_REMOVE(&pv_chunks, pc, pc_lru);
PV_STAT(pv_entry_spare -= _NPCPV);
PV_STAT(pc_chunk_count--);
PV_STAT(pc_chunk_frees++);
/* entire chunk is free, return it */
m = PHYS_TO_VM_PAGE(MIPS_DIRECT_TO_PHYS((vm_offset_t)pc));
dump_drop_page(m->phys_addr);
vm_page_unwire(m, PQ_NONE);
vm_page_free(m);
}
/*
* get a new pv_entry, allocating a block from the system
* when needed.
*/
static pv_entry_t
get_pv_entry(pmap_t pmap, boolean_t try)
{
struct pv_chunk *pc;
pv_entry_t pv;
vm_page_t m;
int bit, field, idx;
rw_assert(&pvh_global_lock, RA_WLOCKED);
PMAP_LOCK_ASSERT(pmap, MA_OWNED);
PV_STAT(pv_entry_allocs++);
pv_entry_count++;
retry:
pc = TAILQ_FIRST(&pmap->pm_pvchunk);
if (pc != NULL) {
for (field = 0; field < _NPCM; field++) {
if (pc->pc_map[field]) {
bit = ffsl(pc->pc_map[field]) - 1;
break;
}
}
if (field < _NPCM) {
idx = field * sizeof(pc->pc_map[field]) * NBBY + bit;
pv = &pc->pc_pventry[idx];
pc->pc_map[field] &= ~(1ul << bit);
/* If this was the last item, move it to tail */
for (field = 0; field < _NPCM; field++)
if (pc->pc_map[field] != 0) {
PV_STAT(pv_entry_spare--);
return (pv); /* not full, return */
}
TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
TAILQ_INSERT_TAIL(&pmap->pm_pvchunk, pc, pc_list);
PV_STAT(pv_entry_spare--);
return (pv);
}
}
/* No free items, allocate another chunk */
m = vm_page_alloc_freelist(VM_FREELIST_DIRECT, VM_ALLOC_NORMAL |
VM_ALLOC_WIRED);
if (m == NULL) {
if (try) {
pv_entry_count--;
PV_STAT(pc_chunk_tryfail++);
return (NULL);
}
m = pmap_pv_reclaim(pmap);
if (m == NULL)
goto retry;
}
PV_STAT(pc_chunk_count++);
PV_STAT(pc_chunk_allocs++);
dump_add_page(m->phys_addr);
pc = (struct pv_chunk *)MIPS_PHYS_TO_DIRECT(VM_PAGE_TO_PHYS(m));
pc->pc_pmap = pmap;
pc->pc_map[0] = pc_freemask[0] & ~1ul; /* preallocated bit 0 */
for (field = 1; field < _NPCM; field++)
pc->pc_map[field] = pc_freemask[field];
TAILQ_INSERT_TAIL(&pv_chunks, pc, pc_lru);
pv = &pc->pc_pventry[0];
TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc, pc_list);
PV_STAT(pv_entry_spare += _NPCPV - 1);
return (pv);
}
static pv_entry_t
pmap_pvh_remove(struct md_page *pvh, pmap_t pmap, vm_offset_t va)
{
pv_entry_t pv;
rw_assert(&pvh_global_lock, RA_WLOCKED);
TAILQ_FOREACH(pv, &pvh->pv_list, pv_list) {
if (pmap == PV_PMAP(pv) && va == pv->pv_va) {
TAILQ_REMOVE(&pvh->pv_list, pv, pv_list);
break;
}
}
return (pv);
}
static void
pmap_pvh_free(struct md_page *pvh, pmap_t pmap, vm_offset_t va)
{
pv_entry_t pv;
pv = pmap_pvh_remove(pvh, pmap, va);
KASSERT(pv != NULL, ("pmap_pvh_free: pv not found, pa %lx va %lx",
(u_long)VM_PAGE_TO_PHYS(__containerof(pvh, struct vm_page, md)),
(u_long)va));
free_pv_entry(pmap, pv);
}
static void
pmap_remove_entry(pmap_t pmap, vm_page_t m, vm_offset_t va)
{
rw_assert(&pvh_global_lock, RA_WLOCKED);
pmap_pvh_free(&m->md, pmap, va);
if (TAILQ_EMPTY(&m->md.pv_list))
vm_page_aflag_clear(m, PGA_WRITEABLE);
}
/*
* Conditionally create a pv entry.
*/
static boolean_t
pmap_try_insert_pv_entry(pmap_t pmap, vm_page_t mpte, vm_offset_t va,
vm_page_t m)
{
pv_entry_t pv;
rw_assert(&pvh_global_lock, RA_WLOCKED);
PMAP_LOCK_ASSERT(pmap, MA_OWNED);
if ((pv = get_pv_entry(pmap, TRUE)) != NULL) {
pv->pv_va = va;
TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_list);
return (TRUE);
} else
return (FALSE);
}
/*
* pmap_remove_pte: do the things to unmap a page in a process
*/
static int
pmap_remove_pte(struct pmap *pmap, pt_entry_t *ptq, vm_offset_t va,
pd_entry_t pde)
{
pt_entry_t oldpte;
vm_page_t m;
vm_paddr_t pa;
rw_assert(&pvh_global_lock, RA_WLOCKED);
PMAP_LOCK_ASSERT(pmap, MA_OWNED);
/*
* Write back all cache lines from the page being unmapped.
*/
mips_dcache_wbinv_range_index(va, PAGE_SIZE);
oldpte = *ptq;
if (is_kernel_pmap(pmap))
*ptq = PTE_G;
else
*ptq = 0;
if (pte_test(&oldpte, PTE_W))
pmap->pm_stats.wired_count -= 1;
pmap->pm_stats.resident_count -= 1;
if (pte_test(&oldpte, PTE_MANAGED)) {
pa = TLBLO_PTE_TO_PA(oldpte);
m = PHYS_TO_VM_PAGE(pa);
if (pte_test(&oldpte, PTE_D)) {
KASSERT(!pte_test(&oldpte, PTE_RO),
("%s: modified page not writable: va: %p, pte: %#jx",
__func__, (void *)va, (uintmax_t)oldpte));
vm_page_dirty(m);
}
if (m->md.pv_flags & PV_TABLE_REF)
vm_page_aflag_set(m, PGA_REFERENCED);
m->md.pv_flags &= ~PV_TABLE_REF;
pmap_remove_entry(pmap, m, va);
}
return (pmap_unuse_pt(pmap, va, pde));
}
/*
* Remove a single page from a process address space
*/
static void
pmap_remove_page(struct pmap *pmap, vm_offset_t va)
{
pd_entry_t *pde;
pt_entry_t *ptq;
rw_assert(&pvh_global_lock, RA_WLOCKED);
PMAP_LOCK_ASSERT(pmap, MA_OWNED);
pde = pmap_pde(pmap, va);
if (pde == NULL || *pde == 0)
return;
ptq = pmap_pde_to_pte(pde, va);
/*
* If there is no pte for this address, just skip it!
*/
if (!pte_test(ptq, PTE_V))
return;
(void)pmap_remove_pte(pmap, ptq, va, *pde);
pmap_invalidate_page(pmap, va);
}
/*
* Remove the given range of addresses from the specified map.
*
* It is assumed that the start and end are properly
* rounded to the page size.
*/
void
pmap_remove(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
{
pd_entry_t *pde, *pdpe;
pt_entry_t *pte;
vm_offset_t va, va_next;
/*
* Perform an unsynchronized read. This is, however, safe.
*/
if (pmap->pm_stats.resident_count == 0)
return;
rw_wlock(&pvh_global_lock);
PMAP_LOCK(pmap);
/*
* special handling of removing one page. a very common operation
* and easy to short circuit some code.
*/
if ((sva + PAGE_SIZE) == eva) {
pmap_remove_page(pmap, sva);
goto out;
}
for (; sva < eva; sva = va_next) {
pdpe = pmap_segmap(pmap, sva);
#ifdef __mips_n64
if (*pdpe == 0) {
va_next = (sva + NBSEG) & ~SEGMASK;
if (va_next < sva)
va_next = eva;
continue;
}
#endif
va_next = (sva + NBPDR) & ~PDRMASK;
if (va_next < sva)
va_next = eva;
pde = pmap_pdpe_to_pde(pdpe, sva);
if (*pde == NULL)
continue;
/*
* Limit our scan to either the end of the va represented
* by the current page table page, or to the end of the
* range being removed.
*/
if (va_next > eva)
va_next = eva;
va = va_next;
for (pte = pmap_pde_to_pte(pde, sva); sva != va_next; pte++,
sva += PAGE_SIZE) {
if (!pte_test(pte, PTE_V)) {
if (va != va_next) {
pmap_invalidate_range(pmap, va, sva);
va = va_next;
}
continue;
}
if (va == va_next)
va = sva;
if (pmap_remove_pte(pmap, pte, sva, *pde)) {
sva += PAGE_SIZE;
break;
}
}
if (va != va_next)
pmap_invalidate_range(pmap, va, sva);
}
out:
rw_wunlock(&pvh_global_lock);
PMAP_UNLOCK(pmap);
}
/*
* Routine: pmap_remove_all
* Function:
* Removes this physical page from
* all physical maps in which it resides.
* Reflects back modify bits to the pager.
*
* Notes:
* Original versions of this routine were very
* inefficient because they iteratively called
* pmap_remove (slow...)
*/
void
pmap_remove_all(vm_page_t m)
{
pv_entry_t pv;
pmap_t pmap;
pd_entry_t *pde;
pt_entry_t *pte, tpte;
KASSERT((m->oflags & VPO_UNMANAGED) == 0,
("pmap_remove_all: page %p is not managed", m));
rw_wlock(&pvh_global_lock);
if (m->md.pv_flags & PV_TABLE_REF)
vm_page_aflag_set(m, PGA_REFERENCED);
while ((pv = TAILQ_FIRST(&m->md.pv_list)) != NULL) {
pmap = PV_PMAP(pv);
PMAP_LOCK(pmap);
/*
* If it's last mapping writeback all caches from
* the page being destroyed
*/
if (TAILQ_NEXT(pv, pv_list) == NULL)
mips_dcache_wbinv_range_index(pv->pv_va, PAGE_SIZE);
pmap->pm_stats.resident_count--;
pde = pmap_pde(pmap, pv->pv_va);
KASSERT(pde != NULL && *pde != 0, ("pmap_remove_all: pde"));
pte = pmap_pde_to_pte(pde, pv->pv_va);
tpte = *pte;
if (is_kernel_pmap(pmap))
*pte = PTE_G;
else
*pte = 0;
if (pte_test(&tpte, PTE_W))
pmap->pm_stats.wired_count--;
/*
* Update the vm_page_t clean and reference bits.
*/
if (pte_test(&tpte, PTE_D)) {
KASSERT(!pte_test(&tpte, PTE_RO),
("%s: modified page not writable: va: %p, pte: %#jx",
__func__, (void *)pv->pv_va, (uintmax_t)tpte));
vm_page_dirty(m);
}
pmap_invalidate_page(pmap, pv->pv_va);
TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
pmap_unuse_pt(pmap, pv->pv_va, *pde);
free_pv_entry(pmap, pv);
PMAP_UNLOCK(pmap);
}
vm_page_aflag_clear(m, PGA_WRITEABLE);
m->md.pv_flags &= ~PV_TABLE_REF;
rw_wunlock(&pvh_global_lock);
}
/*
* Set the physical protection on the
* specified range of this map as requested.
*/
void
pmap_protect(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, vm_prot_t prot)
{
pt_entry_t pbits, *pte;
pd_entry_t *pde, *pdpe;
vm_offset_t va, va_next;
vm_paddr_t pa;
vm_page_t m;
if ((prot & VM_PROT_READ) == VM_PROT_NONE) {
pmap_remove(pmap, sva, eva);
return;
}
if (prot & VM_PROT_WRITE)
return;
PMAP_LOCK(pmap);
for (; sva < eva; sva = va_next) {
pdpe = pmap_segmap(pmap, sva);
#ifdef __mips_n64
if (*pdpe == 0) {
va_next = (sva + NBSEG) & ~SEGMASK;
if (va_next < sva)
va_next = eva;
continue;
}
#endif
va_next = (sva + NBPDR) & ~PDRMASK;
if (va_next < sva)
va_next = eva;
pde = pmap_pdpe_to_pde(pdpe, sva);
if (*pde == NULL)
continue;
/*
* Limit our scan to either the end of the va represented
* by the current page table page, or to the end of the
* range being write protected.
*/
if (va_next > eva)
va_next = eva;
va = va_next;
for (pte = pmap_pde_to_pte(pde, sva); sva != va_next; pte++,
sva += PAGE_SIZE) {
pbits = *pte;
if (!pte_test(&pbits, PTE_V) || pte_test(&pbits,
PTE_RO)) {
if (va != va_next) {
pmap_invalidate_range(pmap, va, sva);
va = va_next;
}
continue;
}
pte_set(&pbits, PTE_RO);
if (pte_test(&pbits, PTE_D)) {
pte_clear(&pbits, PTE_D);
if (pte_test(&pbits, PTE_MANAGED)) {
pa = TLBLO_PTE_TO_PA(pbits);
m = PHYS_TO_VM_PAGE(pa);
vm_page_dirty(m);
}
if (va == va_next)
va = sva;
} else {
/*
* Unless PTE_D is set, any TLB entries
* mapping "sva" don't allow write access, so
* they needn't be invalidated.
*/
if (va != va_next) {
pmap_invalidate_range(pmap, va, sva);
va = va_next;
}
}
*pte = pbits;
}
if (va != va_next)
pmap_invalidate_range(pmap, va, sva);
}
PMAP_UNLOCK(pmap);
}
/*
* Insert the given physical page (p) at
* the specified virtual address (v) in the
* target physical map with the protection requested.
*
* If specified, the page will be wired down, meaning
* that the related pte can not be reclaimed.
*
* NB: This is the only routine which MAY NOT lazy-evaluate
* or lose information. That is, this routine must actually
* insert this page into the given map NOW.
*/
int
pmap_enter(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot,
u_int flags, int8_t psind __unused)
{
vm_paddr_t pa, opa;
pt_entry_t *pte;
pt_entry_t origpte, newpte;
pv_entry_t pv;
vm_page_t mpte, om;
va &= ~PAGE_MASK;
KASSERT(va <= VM_MAX_KERNEL_ADDRESS, ("pmap_enter: toobig"));
KASSERT((m->oflags & VPO_UNMANAGED) != 0 || va < kmi.clean_sva ||
va >= kmi.clean_eva,
("pmap_enter: managed mapping within the clean submap"));
if ((m->oflags & VPO_UNMANAGED) == 0 && !vm_page_xbusied(m))
VM_OBJECT_ASSERT_LOCKED(m->object);
pa = VM_PAGE_TO_PHYS(m);
newpte = TLBLO_PA_TO_PFN(pa) | init_pte_prot(m, flags, prot);
if ((flags & PMAP_ENTER_WIRED) != 0)
newpte |= PTE_W;
if (is_kernel_pmap(pmap))
newpte |= PTE_G;
PMAP_PTE_SET_CACHE_BITS(newpte, pa, m);
if ((m->oflags & VPO_UNMANAGED) == 0)
newpte |= PTE_MANAGED;
mpte = NULL;
rw_wlock(&pvh_global_lock);
PMAP_LOCK(pmap);
/*
* In the case that a page table page is not resident, we are
* creating it here.
*/
if (va < VM_MAXUSER_ADDRESS) {
mpte = pmap_allocpte(pmap, va, flags);
if (mpte == NULL) {
KASSERT((flags & PMAP_ENTER_NOSLEEP) != 0,
("pmap_allocpte failed with sleep allowed"));
rw_wunlock(&pvh_global_lock);
PMAP_UNLOCK(pmap);
return (KERN_RESOURCE_SHORTAGE);
}
}
pte = pmap_pte(pmap, va);
/*
* Page Directory table entry not valid, we need a new PT page
*/
if (pte == NULL) {
panic("pmap_enter: invalid page directory, pdir=%p, va=%p",
(void *)pmap->pm_segtab, (void *)va);
}
origpte = *pte;
KASSERT(!pte_test(&origpte, PTE_D | PTE_RO | PTE_V),
("pmap_enter: modified page not writable: va: %p, pte: %#jx",
(void *)va, (uintmax_t)origpte));
opa = TLBLO_PTE_TO_PA(origpte);
/*
* Mapping has not changed, must be protection or wiring change.
*/
if (pte_test(&origpte, PTE_V) && opa == pa) {
/*
* Wiring change, just update stats. We don't worry about
* wiring PT pages as they remain resident as long as there
* are valid mappings in them. Hence, if a user page is
* wired, the PT page will be also.
*/
if (pte_test(&newpte, PTE_W) && !pte_test(&origpte, PTE_W))
pmap->pm_stats.wired_count++;
else if (!pte_test(&newpte, PTE_W) && pte_test(&origpte,
PTE_W))
pmap->pm_stats.wired_count--;
/*
* Remove extra pte reference
*/
if (mpte)
mpte->wire_count--;
if (pte_test(&origpte, PTE_MANAGED)) {
m->md.pv_flags |= PV_TABLE_REF;
if (!pte_test(&newpte, PTE_RO))
vm_page_aflag_set(m, PGA_WRITEABLE);
}
goto validate;
}
pv = NULL;
/*
* Mapping has changed, invalidate old range and fall through to
* handle validating new mapping.
*/
if (opa) {
if (is_kernel_pmap(pmap))
*pte = PTE_G;
else
*pte = 0;
if (pte_test(&origpte, PTE_W))
pmap->pm_stats.wired_count--;
if (pte_test(&origpte, PTE_MANAGED)) {
om = PHYS_TO_VM_PAGE(opa);
if (pte_test(&origpte, PTE_D))
vm_page_dirty(om);
if ((om->md.pv_flags & PV_TABLE_REF) != 0) {
om->md.pv_flags &= ~PV_TABLE_REF;
vm_page_aflag_set(om, PGA_REFERENCED);
}
pv = pmap_pvh_remove(&om->md, pmap, va);
if (!pte_test(&newpte, PTE_MANAGED))
free_pv_entry(pmap, pv);
if ((om->aflags & PGA_WRITEABLE) != 0 &&
TAILQ_EMPTY(&om->md.pv_list))
vm_page_aflag_clear(om, PGA_WRITEABLE);
}
pmap_invalidate_page(pmap, va);
origpte = 0;
if (mpte != NULL) {
mpte->wire_count--;
KASSERT(mpte->wire_count > 0,
("pmap_enter: missing reference to page table page,"
" va: %p", (void *)va));
}
} else
pmap->pm_stats.resident_count++;
/*
* Enter on the PV list if part of our managed memory.
*/
if (pte_test(&newpte, PTE_MANAGED)) {
m->md.pv_flags |= PV_TABLE_REF;
if (pv == NULL) {
pv = get_pv_entry(pmap, FALSE);
pv->pv_va = va;
}
TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_list);
if (!pte_test(&newpte, PTE_RO))
vm_page_aflag_set(m, PGA_WRITEABLE);
}
/*
* Increment counters
*/
if (pte_test(&newpte, PTE_W))
pmap->pm_stats.wired_count++;
validate:
#ifdef PMAP_DEBUG
printf("pmap_enter: va: %p -> pa: %p\n", (void *)va, (void *)pa);
#endif
/*
* if the mapping or permission bits are different, we need to
* update the pte.
*/
if (origpte != newpte) {
*pte = newpte;
if (pte_test(&origpte, PTE_V)) {
KASSERT(opa == pa, ("pmap_enter: invalid update"));
if (pte_test(&origpte, PTE_D)) {
if (pte_test(&origpte, PTE_MANAGED))
vm_page_dirty(m);
}
pmap_update_page(pmap, va, newpte);
}
}
/*
* Sync I & D caches for executable pages. Do this only if the
* target pmap belongs to the current process. Otherwise, an
* unresolvable TLB miss may occur.
*/
if (!is_kernel_pmap(pmap) && (pmap == &curproc->p_vmspace->vm_pmap) &&
(prot & VM_PROT_EXECUTE)) {
mips_icache_sync_range(va, PAGE_SIZE);
mips_dcache_wbinv_range(va, PAGE_SIZE);
}
rw_wunlock(&pvh_global_lock);
PMAP_UNLOCK(pmap);
return (KERN_SUCCESS);
}
/*
* this code makes some *MAJOR* assumptions:
* 1. Current pmap & pmap exists.
* 2. Not wired.
* 3. Read access.
* 4. No page table pages.
* but is *MUCH* faster than pmap_enter...
*/
void
pmap_enter_quick(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot)
{
rw_wlock(&pvh_global_lock);
PMAP_LOCK(pmap);
(void)pmap_enter_quick_locked(pmap, va, m, prot, NULL);
rw_wunlock(&pvh_global_lock);
PMAP_UNLOCK(pmap);
}
static vm_page_t
pmap_enter_quick_locked(pmap_t pmap, vm_offset_t va, vm_page_t m,
vm_prot_t prot, vm_page_t mpte)
{
pt_entry_t *pte, npte;
vm_paddr_t pa;
KASSERT(va < kmi.clean_sva || va >= kmi.clean_eva ||
(m->oflags & VPO_UNMANAGED) != 0,
("pmap_enter_quick_locked: managed mapping within the clean submap"));
rw_assert(&pvh_global_lock, RA_WLOCKED);
PMAP_LOCK_ASSERT(pmap, MA_OWNED);
/*
* In the case that a page table page is not resident, we are
* creating it here.
*/
if (va < VM_MAXUSER_ADDRESS) {
pd_entry_t *pde;
unsigned ptepindex;
/*
* Calculate pagetable page index
*/
ptepindex = pmap_pde_pindex(va);
if (mpte && (mpte->pindex == ptepindex)) {
mpte->wire_count++;
} else {
/*
* Get the page directory entry
*/
pde = pmap_pde(pmap, va);
/*
* If the page table page is mapped, we just
* increment the hold count, and activate it.
*/
if (pde && *pde != 0) {
mpte = PHYS_TO_VM_PAGE(
MIPS_DIRECT_TO_PHYS(*pde));
mpte->wire_count++;
} else {
mpte = _pmap_allocpte(pmap, ptepindex,
PMAP_ENTER_NOSLEEP);
if (mpte == NULL)
return (mpte);
}
}
} else {
mpte = NULL;
}
pte = pmap_pte(pmap, va);
if (pte_test(pte, PTE_V)) {
if (mpte != NULL) {
mpte->wire_count--;
mpte = NULL;
}
return (mpte);
}
/*
* Enter on the PV list if part of our managed memory.
*/
if ((m->oflags & VPO_UNMANAGED) == 0 &&
!pmap_try_insert_pv_entry(pmap, mpte, va, m)) {
if (mpte != NULL) {
pmap_unwire_ptp(pmap, va, mpte);
mpte = NULL;
}
return (mpte);
}
/*
* Increment counters
*/
pmap->pm_stats.resident_count++;
pa = VM_PAGE_TO_PHYS(m);
/*
* Now validate mapping with RO protection
*/
npte = PTE_RO | TLBLO_PA_TO_PFN(pa) | PTE_V;
if ((m->oflags & VPO_UNMANAGED) == 0)
npte |= PTE_MANAGED;
PMAP_PTE_SET_CACHE_BITS(npte, pa, m);
if (is_kernel_pmap(pmap))
*pte = npte | PTE_G;
else {
*pte = npte;
/*
* Sync I & D caches. Do this only if the target pmap
* belongs to the current process. Otherwise, an
* unresolvable TLB miss may occur. */
if (pmap == &curproc->p_vmspace->vm_pmap) {
va &= ~PAGE_MASK;
mips_icache_sync_range(va, PAGE_SIZE);
mips_dcache_wbinv_range(va, PAGE_SIZE);
}
}
return (mpte);
}
/*
* Make a temporary mapping for a physical address. This is only intended
* to be used for panic dumps.
*
* Use XKPHYS for 64 bit, and KSEG0 where possible for 32 bit.
*/
void *
pmap_kenter_temporary(vm_paddr_t pa, int i)
{
vm_offset_t va;
if (i != 0)
printf("%s: ERROR!!! More than one page of virtual address mapping not supported\n",
__func__);
if (MIPS_DIRECT_MAPPABLE(pa)) {
va = MIPS_PHYS_TO_DIRECT(pa);
} else {
#ifndef __mips_n64 /* XXX : to be converted to new style */
int cpu;
register_t intr;
struct local_sysmaps *sysm;
pt_entry_t *pte, npte;
/* If this is used other than for dumps, we may need to leave
* interrupts disasbled on return. If crash dumps don't work when
* we get to this point, we might want to consider this (leaving things
* disabled as a starting point ;-)
*/
intr = intr_disable();
cpu = PCPU_GET(cpuid);
sysm = &sysmap_lmem[cpu];
/* Since this is for the debugger, no locks or any other fun */
npte = TLBLO_PA_TO_PFN(pa) | PTE_C_CACHE | PTE_D | PTE_V |
PTE_G;
pte = pmap_pte(kernel_pmap, sysm->base);
*pte = npte;
sysm->valid1 = 1;
pmap_update_page(kernel_pmap, sysm->base, npte);
va = sysm->base;
intr_restore(intr);
#endif
}
return ((void *)va);
}
void
pmap_kenter_temporary_free(vm_paddr_t pa)
{
#ifndef __mips_n64 /* XXX : to be converted to new style */
int cpu;
register_t intr;
struct local_sysmaps *sysm;
#endif
if (MIPS_DIRECT_MAPPABLE(pa)) {
/* nothing to do for this case */
return;
}
#ifndef __mips_n64 /* XXX : to be converted to new style */
cpu = PCPU_GET(cpuid);
sysm = &sysmap_lmem[cpu];
if (sysm->valid1) {
pt_entry_t *pte;
intr = intr_disable();
pte = pmap_pte(kernel_pmap, sysm->base);
*pte = PTE_G;
pmap_invalidate_page(kernel_pmap, sysm->base);
intr_restore(intr);
sysm->valid1 = 0;
}
#endif
}
/*
* Maps a sequence of resident pages belonging to the same object.
* The sequence begins with the given page m_start. This page is
* mapped at the given virtual address start. Each subsequent page is
* mapped at a virtual address that is offset from start by the same
* amount as the page is offset from m_start within the object. The
* last page in the sequence is the page with the largest offset from
* m_start that can be mapped at a virtual address less than the given
* virtual address end. Not every virtual page between start and end
* is mapped; only those for which a resident page exists with the
* corresponding offset from m_start are mapped.
*/
void
pmap_enter_object(pmap_t pmap, vm_offset_t start, vm_offset_t end,
vm_page_t m_start, vm_prot_t prot)
{
vm_page_t m, mpte;
vm_pindex_t diff, psize;
VM_OBJECT_ASSERT_LOCKED(m_start->object);
psize = atop(end - start);
mpte = NULL;
m = m_start;
rw_wlock(&pvh_global_lock);
PMAP_LOCK(pmap);
while (m != NULL && (diff = m->pindex - m_start->pindex) < psize) {
mpte = pmap_enter_quick_locked(pmap, start + ptoa(diff), m,
prot, mpte);
m = TAILQ_NEXT(m, listq);
}
rw_wunlock(&pvh_global_lock);
PMAP_UNLOCK(pmap);
}
/*
* pmap_object_init_pt preloads the ptes for a given object
* into the specified pmap. This eliminates the blast of soft
* faults on process startup and immediately after an mmap.
*/
void
pmap_object_init_pt(pmap_t pmap, vm_offset_t addr,
vm_object_t object, vm_pindex_t pindex, vm_size_t size)
{
VM_OBJECT_ASSERT_WLOCKED(object);
KASSERT(object->type == OBJT_DEVICE || object->type == OBJT_SG,
("pmap_object_init_pt: non-device object"));
}
/*
* Clear the wired attribute from the mappings for the specified range of
* addresses in the given pmap. Every valid mapping within that range
* must have the wired attribute set. In contrast, invalid mappings
* cannot have the wired attribute set, so they are ignored.
*
* The wired attribute of the page table entry is not a hardware feature,
* so there is no need to invalidate any TLB entries.
*/
void
pmap_unwire(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
{
pd_entry_t *pde, *pdpe;
pt_entry_t *pte;
vm_offset_t va_next;
PMAP_LOCK(pmap);
for (; sva < eva; sva = va_next) {
pdpe = pmap_segmap(pmap, sva);
#ifdef __mips_n64
if (*pdpe == NULL) {
va_next = (sva + NBSEG) & ~SEGMASK;
if (va_next < sva)
va_next = eva;
continue;
}
#endif
va_next = (sva + NBPDR) & ~PDRMASK;
if (va_next < sva)
va_next = eva;
pde = pmap_pdpe_to_pde(pdpe, sva);
if (*pde == NULL)
continue;
if (va_next > eva)
va_next = eva;
for (pte = pmap_pde_to_pte(pde, sva); sva != va_next; pte++,
sva += PAGE_SIZE) {
if (!pte_test(pte, PTE_V))
continue;
if (!pte_test(pte, PTE_W))
panic("pmap_unwire: pte %#jx is missing PG_W",
(uintmax_t)*pte);
pte_clear(pte, PTE_W);
pmap->pm_stats.wired_count--;
}
}
PMAP_UNLOCK(pmap);
}
/*
* Copy the range specified by src_addr/len
* from the source map to the range dst_addr/len
* in the destination map.
*
* This routine is only advisory and need not do anything.
*/
void
pmap_copy(pmap_t dst_pmap, pmap_t src_pmap, vm_offset_t dst_addr,
vm_size_t len, vm_offset_t src_addr)
{
}
/*
* pmap_zero_page zeros the specified hardware page by mapping
* the page into KVM and using bzero to clear its contents.
*
* Use XKPHYS for 64 bit, and KSEG0 where possible for 32 bit.
*/
void
pmap_zero_page(vm_page_t m)
{
vm_offset_t va;
vm_paddr_t phys = VM_PAGE_TO_PHYS(m);
if (MIPS_DIRECT_MAPPABLE(phys)) {
va = MIPS_PHYS_TO_DIRECT(phys);
bzero((caddr_t)va, PAGE_SIZE);
mips_dcache_wbinv_range(va, PAGE_SIZE);
} else {
va = pmap_lmem_map1(phys);
bzero((caddr_t)va, PAGE_SIZE);
mips_dcache_wbinv_range(va, PAGE_SIZE);
pmap_lmem_unmap();
}
}
/*
* pmap_zero_page_area zeros the specified hardware page by mapping
* the page into KVM and using bzero to clear its contents.
*
* off and size may not cover an area beyond a single hardware page.
*/
void
pmap_zero_page_area(vm_page_t m, int off, int size)
{
vm_offset_t va;
vm_paddr_t phys = VM_PAGE_TO_PHYS(m);
if (MIPS_DIRECT_MAPPABLE(phys)) {
va = MIPS_PHYS_TO_DIRECT(phys);
bzero((char *)(caddr_t)va + off, size);
mips_dcache_wbinv_range(va + off, size);
} else {
va = pmap_lmem_map1(phys);
bzero((char *)va + off, size);
mips_dcache_wbinv_range(va + off, size);
pmap_lmem_unmap();
}
}
/*
* pmap_copy_page copies the specified (machine independent)
* page by mapping the page into virtual memory and using
* bcopy to copy the page, one machine dependent page at a
* time.
*
* Use XKPHYS for 64 bit, and KSEG0 where possible for 32 bit.
*/
void
pmap_copy_page(vm_page_t src, vm_page_t dst)
{
vm_offset_t va_src, va_dst;
vm_paddr_t phys_src = VM_PAGE_TO_PHYS(src);
vm_paddr_t phys_dst = VM_PAGE_TO_PHYS(dst);
if (MIPS_DIRECT_MAPPABLE(phys_src) && MIPS_DIRECT_MAPPABLE(phys_dst)) {
/* easy case, all can be accessed via KSEG0 */
/*
* Flush all caches for VA that are mapped to this page
* to make sure that data in SDRAM is up to date
*/
pmap_flush_pvcache(src);
mips_dcache_wbinv_range_index(
MIPS_PHYS_TO_DIRECT(phys_dst), PAGE_SIZE);
va_src = MIPS_PHYS_TO_DIRECT(phys_src);
va_dst = MIPS_PHYS_TO_DIRECT(phys_dst);
bcopy((caddr_t)va_src, (caddr_t)va_dst, PAGE_SIZE);
mips_dcache_wbinv_range(va_dst, PAGE_SIZE);
} else {
va_src = pmap_lmem_map2(phys_src, phys_dst);
va_dst = va_src + PAGE_SIZE;
bcopy((void *)va_src, (void *)va_dst, PAGE_SIZE);
mips_dcache_wbinv_range(va_dst, PAGE_SIZE);
pmap_lmem_unmap();
}
}
int unmapped_buf_allowed;
void
pmap_copy_pages(vm_page_t ma[], vm_offset_t a_offset, vm_page_t mb[],
vm_offset_t b_offset, int xfersize)
{
char *a_cp, *b_cp;
vm_page_t a_m, b_m;
vm_offset_t a_pg_offset, b_pg_offset;
vm_paddr_t a_phys, b_phys;
int cnt;
while (xfersize > 0) {
a_pg_offset = a_offset & PAGE_MASK;
cnt = min(xfersize, PAGE_SIZE - a_pg_offset);
a_m = ma[a_offset >> PAGE_SHIFT];
a_phys = VM_PAGE_TO_PHYS(a_m);
b_pg_offset = b_offset & PAGE_MASK;
cnt = min(cnt, PAGE_SIZE - b_pg_offset);
b_m = mb[b_offset >> PAGE_SHIFT];
b_phys = VM_PAGE_TO_PHYS(b_m);
if (MIPS_DIRECT_MAPPABLE(a_phys) &&
MIPS_DIRECT_MAPPABLE(b_phys)) {
pmap_flush_pvcache(a_m);
mips_dcache_wbinv_range_index(
MIPS_PHYS_TO_DIRECT(b_phys), PAGE_SIZE);
a_cp = (char *)MIPS_PHYS_TO_DIRECT(a_phys) +
a_pg_offset;
b_cp = (char *)MIPS_PHYS_TO_DIRECT(b_phys) +
b_pg_offset;
bcopy(a_cp, b_cp, cnt);
mips_dcache_wbinv_range((vm_offset_t)b_cp, cnt);
} else {
a_cp = (char *)pmap_lmem_map2(a_phys, b_phys);
b_cp = (char *)a_cp + PAGE_SIZE;
a_cp += a_pg_offset;
b_cp += b_pg_offset;
bcopy(a_cp, b_cp, cnt);
mips_dcache_wbinv_range((vm_offset_t)b_cp, cnt);
pmap_lmem_unmap();
}
a_offset += cnt;
b_offset += cnt;
xfersize -= cnt;
}
}
vm_offset_t
pmap_quick_enter_page(vm_page_t m)
{
#if defined(__mips_n64)
return MIPS_PHYS_TO_DIRECT(VM_PAGE_TO_PHYS(m));
#else
vm_paddr_t pa;
struct local_sysmaps *sysm;
pt_entry_t *pte, npte;
pa = VM_PAGE_TO_PHYS(m);
if (MIPS_DIRECT_MAPPABLE(pa)) {
if (pmap_page_get_memattr(m) != VM_MEMATTR_WRITE_BACK)
return (MIPS_PHYS_TO_DIRECT_UNCACHED(pa));
else
return (MIPS_PHYS_TO_DIRECT(pa));
}
critical_enter();
sysm = &sysmap_lmem[PCPU_GET(cpuid)];
KASSERT(sysm->valid1 == 0, ("pmap_quick_enter_page: PTE busy"));
pte = pmap_pte(kernel_pmap, sysm->base);
npte = TLBLO_PA_TO_PFN(pa) | PTE_D | PTE_V | PTE_G;
PMAP_PTE_SET_CACHE_BITS(npte, pa, m);
*pte = npte;
sysm->valid1 = 1;
return (sysm->base);
#endif
}
void
pmap_quick_remove_page(vm_offset_t addr)
{
mips_dcache_wbinv_range(addr, PAGE_SIZE);
#if !defined(__mips_n64)
struct local_sysmaps *sysm;
pt_entry_t *pte;
if (addr >= MIPS_KSEG0_START && addr < MIPS_KSEG0_END)
return;
sysm = &sysmap_lmem[PCPU_GET(cpuid)];
KASSERT(sysm->valid1 != 0,
("pmap_quick_remove_page: PTE not in use"));
KASSERT(sysm->base == addr,
("pmap_quick_remove_page: invalid address"));
pte = pmap_pte(kernel_pmap, addr);
*pte = PTE_G;
tlb_invalidate_address(kernel_pmap, addr);
sysm->valid1 = 0;
critical_exit();
#endif
}
/*
* Returns true if the pmap's pv is one of the first
* 16 pvs linked to from this page. This count may
* be changed upwards or downwards in the future; it
* is only necessary that true be returned for a small
* subset of pmaps for proper page aging.
*/
boolean_t
pmap_page_exists_quick(pmap_t pmap, vm_page_t m)
{
pv_entry_t pv;
int loops = 0;
boolean_t rv;
KASSERT((m->oflags & VPO_UNMANAGED) == 0,
("pmap_page_exists_quick: page %p is not managed", m));
rv = FALSE;
rw_wlock(&pvh_global_lock);
TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
if (PV_PMAP(pv) == pmap) {
rv = TRUE;
break;
}
loops++;
if (loops >= 16)
break;
}
rw_wunlock(&pvh_global_lock);
return (rv);
}
/*
* Remove all pages from specified address space
* this aids process exit speeds. Also, this code
* is special cased for current process only, but
* can have the more generic (and slightly slower)
* mode enabled. This is much faster than pmap_remove
* in the case of running down an entire address space.
*/
void
pmap_remove_pages(pmap_t pmap)
{
pd_entry_t *pde;
pt_entry_t *pte, tpte;
pv_entry_t pv;
vm_page_t m;
struct pv_chunk *pc, *npc;
u_long inuse, bitmask;
int allfree, bit, field, idx;
if (pmap != vmspace_pmap(curthread->td_proc->p_vmspace)) {
printf("warning: pmap_remove_pages called with non-current pmap\n");
return;
}
rw_wlock(&pvh_global_lock);
PMAP_LOCK(pmap);
TAILQ_FOREACH_SAFE(pc, &pmap->pm_pvchunk, pc_list, npc) {
allfree = 1;
for (field = 0; field < _NPCM; field++) {
inuse = ~pc->pc_map[field] & pc_freemask[field];
while (inuse != 0) {
bit = ffsl(inuse) - 1;
bitmask = 1UL << bit;
idx = field * sizeof(inuse) * NBBY + bit;
pv = &pc->pc_pventry[idx];
inuse &= ~bitmask;
pde = pmap_pde(pmap, pv->pv_va);
KASSERT(pde != NULL && *pde != 0,
("pmap_remove_pages: pde"));
pte = pmap_pde_to_pte(pde, pv->pv_va);
if (!pte_test(pte, PTE_V))
panic("pmap_remove_pages: bad pte");
tpte = *pte;
/*
* We cannot remove wired pages from a process' mapping at this time
*/
if (pte_test(&tpte, PTE_W)) {
allfree = 0;
continue;
}
*pte = is_kernel_pmap(pmap) ? PTE_G : 0;
m = PHYS_TO_VM_PAGE(TLBLO_PTE_TO_PA(tpte));
KASSERT(m != NULL,
("pmap_remove_pages: bad tpte %#jx",
(uintmax_t)tpte));
/*
* Update the vm_page_t clean and reference bits.
*/
if (pte_test(&tpte, PTE_D))
vm_page_dirty(m);
/* Mark free */
PV_STAT(pv_entry_frees++);
PV_STAT(pv_entry_spare++);
pv_entry_count--;
pc->pc_map[field] |= bitmask;
pmap->pm_stats.resident_count--;
TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
if (TAILQ_EMPTY(&m->md.pv_list))
vm_page_aflag_clear(m, PGA_WRITEABLE);
pmap_unuse_pt(pmap, pv->pv_va, *pde);
}
}
if (allfree) {
TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
free_pv_chunk(pc);
}
}
pmap_invalidate_all(pmap);
PMAP_UNLOCK(pmap);
rw_wunlock(&pvh_global_lock);
}
/*
* pmap_testbit tests bits in pte's
*/
static boolean_t
pmap_testbit(vm_page_t m, int bit)
{
pv_entry_t pv;
pmap_t pmap;
pt_entry_t *pte;
boolean_t rv = FALSE;
if (m->oflags & VPO_UNMANAGED)
return (rv);
rw_assert(&pvh_global_lock, RA_WLOCKED);
TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
pmap = PV_PMAP(pv);
PMAP_LOCK(pmap);
pte = pmap_pte(pmap, pv->pv_va);
rv = pte_test(pte, bit);
PMAP_UNLOCK(pmap);
if (rv)
break;
}
return (rv);
}
/*
* pmap_page_wired_mappings:
*
* Return the number of managed mappings to the given physical page
* that are wired.
*/
int
pmap_page_wired_mappings(vm_page_t m)
{
pv_entry_t pv;
pmap_t pmap;
pt_entry_t *pte;
int count;
count = 0;
if ((m->oflags & VPO_UNMANAGED) != 0)
return (count);
rw_wlock(&pvh_global_lock);
TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
pmap = PV_PMAP(pv);
PMAP_LOCK(pmap);
pte = pmap_pte(pmap, pv->pv_va);
if (pte_test(pte, PTE_W))
count++;
PMAP_UNLOCK(pmap);
}
rw_wunlock(&pvh_global_lock);
return (count);
}
/*
* Clear the write and modified bits in each of the given page's mappings.
*/
void
pmap_remove_write(vm_page_t m)
{
pmap_t pmap;
pt_entry_t pbits, *pte;
pv_entry_t pv;
KASSERT((m->oflags & VPO_UNMANAGED) == 0,
("pmap_remove_write: page %p is not managed", m));
/*
* If the page is not exclusive busied, then PGA_WRITEABLE cannot be
* set by another thread while the object is locked. Thus,
* if PGA_WRITEABLE is clear, no page table entries need updating.
*/
VM_OBJECT_ASSERT_WLOCKED(m->object);
if (!vm_page_xbusied(m) && (m->aflags & PGA_WRITEABLE) == 0)
return;
rw_wlock(&pvh_global_lock);
TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
pmap = PV_PMAP(pv);
PMAP_LOCK(pmap);
pte = pmap_pte(pmap, pv->pv_va);
KASSERT(pte != NULL && pte_test(pte, PTE_V),
("page on pv_list has no pte"));
pbits = *pte;
if (pte_test(&pbits, PTE_D)) {
pte_clear(&pbits, PTE_D);
vm_page_dirty(m);
}
pte_set(&pbits, PTE_RO);
if (pbits != *pte) {
*pte = pbits;
pmap_update_page(pmap, pv->pv_va, pbits);
}
PMAP_UNLOCK(pmap);
}
vm_page_aflag_clear(m, PGA_WRITEABLE);
rw_wunlock(&pvh_global_lock);
}
/*
* pmap_ts_referenced:
*
* Return the count of reference bits for a page, clearing all of them.
*/
int
pmap_ts_referenced(vm_page_t m)
{
KASSERT((m->oflags & VPO_UNMANAGED) == 0,
("pmap_ts_referenced: page %p is not managed", m));
if (m->md.pv_flags & PV_TABLE_REF) {
rw_wlock(&pvh_global_lock);
m->md.pv_flags &= ~PV_TABLE_REF;
rw_wunlock(&pvh_global_lock);
return (1);
}
return (0);
}
/*
* pmap_is_modified:
*
* Return whether or not the specified physical page was modified
* in any physical maps.
*/
boolean_t
pmap_is_modified(vm_page_t m)
{
boolean_t rv;
KASSERT((m->oflags & VPO_UNMANAGED) == 0,
("pmap_is_modified: page %p is not managed", m));
/*
* If the page is not exclusive busied, then PGA_WRITEABLE cannot be
* concurrently set while the object is locked. Thus, if PGA_WRITEABLE
* is clear, no PTEs can have PTE_D set.
*/
VM_OBJECT_ASSERT_WLOCKED(m->object);
if (!vm_page_xbusied(m) && (m->aflags & PGA_WRITEABLE) == 0)
return (FALSE);
rw_wlock(&pvh_global_lock);
rv = pmap_testbit(m, PTE_D);
rw_wunlock(&pvh_global_lock);
return (rv);
}
/* N/C */
/*
* pmap_is_prefaultable:
*
* Return whether or not the specified virtual address is elgible
* for prefault.
*/
boolean_t
pmap_is_prefaultable(pmap_t pmap, vm_offset_t addr)
{
pd_entry_t *pde;
pt_entry_t *pte;
boolean_t rv;
rv = FALSE;
PMAP_LOCK(pmap);
pde = pmap_pde(pmap, addr);
if (pde != NULL && *pde != 0) {
pte = pmap_pde_to_pte(pde, addr);
rv = (*pte == 0);
}
PMAP_UNLOCK(pmap);
return (rv);
}
/*
* Apply the given advice to the specified range of addresses within the
* given pmap. Depending on the advice, clear the referenced and/or
* modified flags in each mapping and set the mapped page's dirty field.
*/
void
pmap_advise(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, int advice)
{
pd_entry_t *pde, *pdpe;
pt_entry_t *pte;
vm_offset_t va, va_next;
vm_paddr_t pa;
vm_page_t m;
if (advice != MADV_DONTNEED && advice != MADV_FREE)
return;
rw_wlock(&pvh_global_lock);
PMAP_LOCK(pmap);
for (; sva < eva; sva = va_next) {
pdpe = pmap_segmap(pmap, sva);
#ifdef __mips_n64
if (*pdpe == 0) {
va_next = (sva + NBSEG) & ~SEGMASK;
if (va_next < sva)
va_next = eva;
continue;
}
#endif
va_next = (sva + NBPDR) & ~PDRMASK;
if (va_next < sva)
va_next = eva;
pde = pmap_pdpe_to_pde(pdpe, sva);
if (*pde == NULL)
continue;
/*
* Limit our scan to either the end of the va represented
* by the current page table page, or to the end of the
* range being write protected.
*/
if (va_next > eva)
va_next = eva;
va = va_next;
for (pte = pmap_pde_to_pte(pde, sva); sva != va_next; pte++,
sva += PAGE_SIZE) {
if (!pte_test(pte, PTE_MANAGED | PTE_V)) {
if (va != va_next) {
pmap_invalidate_range(pmap, va, sva);
va = va_next;
}
continue;
}
pa = TLBLO_PTE_TO_PA(*pte);
m = PHYS_TO_VM_PAGE(pa);
m->md.pv_flags &= ~PV_TABLE_REF;
if (pte_test(pte, PTE_D)) {
if (advice == MADV_DONTNEED) {
/*
* Future calls to pmap_is_modified()
* can be avoided by making the page
* dirty now.
*/
vm_page_dirty(m);
} else {
pte_clear(pte, PTE_D);
if (va == va_next)
va = sva;
}
} else {
/*
* Unless PTE_D is set, any TLB entries
* mapping "sva" don't allow write access, so
* they needn't be invalidated.
*/
if (va != va_next) {
pmap_invalidate_range(pmap, va, sva);
va = va_next;
}
}
}
if (va != va_next)
pmap_invalidate_range(pmap, va, sva);
}
rw_wunlock(&pvh_global_lock);
PMAP_UNLOCK(pmap);
}
/*
* Clear the modify bits on the specified physical page.
*/
void
pmap_clear_modify(vm_page_t m)
{
pmap_t pmap;
pt_entry_t *pte;
pv_entry_t pv;
KASSERT((m->oflags & VPO_UNMANAGED) == 0,
("pmap_clear_modify: page %p is not managed", m));
VM_OBJECT_ASSERT_WLOCKED(m->object);
KASSERT(!vm_page_xbusied(m),
("pmap_clear_modify: page %p is exclusive busied", m));
/*
* If the page is not PGA_WRITEABLE, then no PTEs can have PTE_D set.
* If the object containing the page is locked and the page is not
* write busied, then PGA_WRITEABLE cannot be concurrently set.
*/
if ((m->aflags & PGA_WRITEABLE) == 0)
return;
rw_wlock(&pvh_global_lock);
TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
pmap = PV_PMAP(pv);
PMAP_LOCK(pmap);
pte = pmap_pte(pmap, pv->pv_va);
if (pte_test(pte, PTE_D)) {
pte_clear(pte, PTE_D);
pmap_update_page(pmap, pv->pv_va, *pte);
}
PMAP_UNLOCK(pmap);
}
rw_wunlock(&pvh_global_lock);
}
/*
* pmap_is_referenced:
*
* Return whether or not the specified physical page was referenced
* in any physical maps.
*/
boolean_t
pmap_is_referenced(vm_page_t m)
{
KASSERT((m->oflags & VPO_UNMANAGED) == 0,
("pmap_is_referenced: page %p is not managed", m));
return ((m->md.pv_flags & PV_TABLE_REF) != 0);
}
/*
* Miscellaneous support routines follow
*/
/*
* Map a set of physical memory pages into the kernel virtual
* address space. Return a pointer to where it is mapped. This
* routine is intended to be used for mapping device memory,
* NOT real memory.
*
* Use XKPHYS uncached for 64 bit, and KSEG1 where possible for 32 bit.
*/
void *
pmap_mapdev_attr(vm_paddr_t pa, vm_size_t size, vm_memattr_t ma)
{
vm_offset_t va, tmpva, offset;
/*
* KSEG1 maps only first 512M of phys address space. For
* pa > 0x20000000 we should make proper mapping * using pmap_kenter.
*/
if (MIPS_DIRECT_MAPPABLE(pa + size - 1) && ma == VM_MEMATTR_UNCACHEABLE)
return ((void *)MIPS_PHYS_TO_DIRECT_UNCACHED(pa));
else {
offset = pa & PAGE_MASK;
size = roundup(size + offset, PAGE_SIZE);
va = kva_alloc(size);
if (!va)
panic("pmap_mapdev: Couldn't alloc kernel virtual memory");
pa = trunc_page(pa);
for (tmpva = va; size > 0;) {
pmap_kenter_attr(tmpva, pa, ma);
size -= PAGE_SIZE;
tmpva += PAGE_SIZE;
pa += PAGE_SIZE;
}
}
return ((void *)(va + offset));
}
void *
pmap_mapdev(vm_paddr_t pa, vm_size_t size)
{
return pmap_mapdev_attr(pa, size, VM_MEMATTR_UNCACHEABLE);
}
void
pmap_unmapdev(vm_offset_t va, vm_size_t size)
{
#ifndef __mips_n64
vm_offset_t base, offset;
/* If the address is within KSEG1 then there is nothing to do */
if (va >= MIPS_KSEG1_START && va <= MIPS_KSEG1_END)
return;
base = trunc_page(va);
offset = va & PAGE_MASK;
size = roundup(size + offset, PAGE_SIZE);
kva_free(base, size);
#endif
}
/*
* perform the pmap work for mincore
*/
int
pmap_mincore(pmap_t pmap, vm_offset_t addr, vm_paddr_t *locked_pa)
{
pt_entry_t *ptep, pte;
vm_paddr_t pa;
vm_page_t m;
int val;
PMAP_LOCK(pmap);
retry:
ptep = pmap_pte(pmap, addr);
pte = (ptep != NULL) ? *ptep : 0;
if (!pte_test(&pte, PTE_V)) {
val = 0;
goto out;
}
val = MINCORE_INCORE;
if (pte_test(&pte, PTE_D))
val |= MINCORE_MODIFIED | MINCORE_MODIFIED_OTHER;
pa = TLBLO_PTE_TO_PA(pte);
if (pte_test(&pte, PTE_MANAGED)) {
/*
* This may falsely report the given address as
* MINCORE_REFERENCED. Unfortunately, due to the lack of
* per-PTE reference information, it is impossible to
* determine if the address is MINCORE_REFERENCED.
*/
m = PHYS_TO_VM_PAGE(pa);
if ((m->aflags & PGA_REFERENCED) != 0)
val |= MINCORE_REFERENCED | MINCORE_REFERENCED_OTHER;
}
if ((val & (MINCORE_MODIFIED_OTHER | MINCORE_REFERENCED_OTHER)) !=
(MINCORE_MODIFIED_OTHER | MINCORE_REFERENCED_OTHER) &&
pte_test(&pte, PTE_MANAGED)) {
/* Ensure that "PHYS_TO_VM_PAGE(pa)->object" doesn't change. */
if (vm_page_pa_tryrelock(pmap, pa, locked_pa))
goto retry;
} else
out:
PA_UNLOCK_COND(*locked_pa);
PMAP_UNLOCK(pmap);
return (val);
}
void
pmap_activate(struct thread *td)
{
pmap_t pmap, oldpmap;
struct proc *p = td->td_proc;
u_int cpuid;
critical_enter();
pmap = vmspace_pmap(p->p_vmspace);
oldpmap = PCPU_GET(curpmap);
cpuid = PCPU_GET(cpuid);
if (oldpmap)
CPU_CLR_ATOMIC(cpuid, &oldpmap->pm_active);
CPU_SET_ATOMIC(cpuid, &pmap->pm_active);
pmap_asid_alloc(pmap);
if (td == curthread) {
PCPU_SET(segbase, pmap->pm_segtab);
mips_wr_entryhi(pmap->pm_asid[cpuid].asid);
}
PCPU_SET(curpmap, pmap);
critical_exit();
}
static void
pmap_sync_icache_one(void *arg __unused)
{
mips_icache_sync_all();
mips_dcache_wbinv_all();
}
void
pmap_sync_icache(pmap_t pm, vm_offset_t va, vm_size_t sz)
{
smp_rendezvous(NULL, pmap_sync_icache_one, NULL, NULL);
}
/*
* Increase the starting virtual address of the given mapping if a
* different alignment might result in more superpage mappings.
*/
void
pmap_align_superpage(vm_object_t object, vm_ooffset_t offset,
vm_offset_t *addr, vm_size_t size)
{
vm_offset_t superpage_offset;
if (size < PDRSIZE)
return;
if (object != NULL && (object->flags & OBJ_COLORED) != 0)
offset += ptoa(object->pg_color);
superpage_offset = offset & PDRMASK;
if (size - ((PDRSIZE - superpage_offset) & PDRMASK) < PDRSIZE ||
(*addr & PDRMASK) == superpage_offset)
return;
if ((*addr & PDRMASK) < superpage_offset)
*addr = (*addr & ~PDRMASK) + superpage_offset;
else
*addr = ((*addr + PDRMASK) & ~PDRMASK) + superpage_offset;
}
#ifdef DDB
DB_SHOW_COMMAND(ptable, ddb_pid_dump)
{
pmap_t pmap;
struct thread *td = NULL;
struct proc *p;
int i, j, k;
vm_paddr_t pa;
vm_offset_t va;
if (have_addr) {
td = db_lookup_thread(addr, true);
if (td == NULL) {
db_printf("Invalid pid or tid");
return;
}
p = td->td_proc;
if (p->p_vmspace == NULL) {
db_printf("No vmspace for process");
return;
}
pmap = vmspace_pmap(p->p_vmspace);
} else
pmap = kernel_pmap;
db_printf("pmap:%p segtab:%p asid:%x generation:%x\n",
pmap, pmap->pm_segtab, pmap->pm_asid[0].asid,
pmap->pm_asid[0].gen);
for (i = 0; i < NPDEPG; i++) {
pd_entry_t *pdpe;
pt_entry_t *pde;
pt_entry_t pte;
pdpe = (pd_entry_t *)pmap->pm_segtab[i];
if (pdpe == NULL)
continue;
db_printf("[%4d] %p\n", i, pdpe);
#ifdef __mips_n64
for (j = 0; j < NPDEPG; j++) {
pde = (pt_entry_t *)pdpe[j];
if (pde == NULL)
continue;
db_printf("\t[%4d] %p\n", j, pde);
#else
{
j = 0;
pde = (pt_entry_t *)pdpe;
#endif
for (k = 0; k < NPTEPG; k++) {
pte = pde[k];
if (pte == 0 || !pte_test(&pte, PTE_V))
continue;
pa = TLBLO_PTE_TO_PA(pte);
va = ((u_long)i << SEGSHIFT) | (j << PDRSHIFT) | (k << PAGE_SHIFT);
db_printf("\t\t[%04d] va: %p pte: %8jx pa:%jx\n",
k, (void *)va, (uintmax_t)pte, (uintmax_t)pa);
}
}
}
}
#endif
/*
* Allocate TLB address space tag (called ASID or TLBPID) and return it.
* It takes almost as much or more time to search the TLB for a
* specific ASID and flush those entries as it does to flush the entire TLB.
* Therefore, when we allocate a new ASID, we just take the next number. When
* we run out of numbers, we flush the TLB, increment the generation count
* and start over. ASID zero is reserved for kernel use.
*/
static void
pmap_asid_alloc(pmap)
pmap_t pmap;
{
if (pmap->pm_asid[PCPU_GET(cpuid)].asid != PMAP_ASID_RESERVED &&
pmap->pm_asid[PCPU_GET(cpuid)].gen == PCPU_GET(asid_generation));
else {
if (PCPU_GET(next_asid) == pmap_max_asid) {
tlb_invalidate_all_user(NULL);
PCPU_SET(asid_generation,
(PCPU_GET(asid_generation) + 1) & ASIDGEN_MASK);
if (PCPU_GET(asid_generation) == 0) {
PCPU_SET(asid_generation, 1);
}
PCPU_SET(next_asid, 1); /* 0 means invalid */
}
pmap->pm_asid[PCPU_GET(cpuid)].asid = PCPU_GET(next_asid);
pmap->pm_asid[PCPU_GET(cpuid)].gen = PCPU_GET(asid_generation);
PCPU_SET(next_asid, PCPU_GET(next_asid) + 1);
}
}
static pt_entry_t
init_pte_prot(vm_page_t m, vm_prot_t access, vm_prot_t prot)
{
pt_entry_t rw;
if (!(prot & VM_PROT_WRITE))
rw = PTE_V | PTE_RO;
else if ((m->oflags & VPO_UNMANAGED) == 0) {
if ((access & VM_PROT_WRITE) != 0)
rw = PTE_V | PTE_D;
else
rw = PTE_V;
} else
/* Needn't emulate a modified bit for unmanaged pages. */
rw = PTE_V | PTE_D;
return (rw);
}
/*
* pmap_emulate_modified : do dirty bit emulation
*
* On SMP, update just the local TLB, other CPUs will update their
* TLBs from PTE lazily, if they get the exception.
* Returns 0 in case of sucess, 1 if the page is read only and we
* need to fault.
*/
int
pmap_emulate_modified(pmap_t pmap, vm_offset_t va)
{
pt_entry_t *pte;
PMAP_LOCK(pmap);
pte = pmap_pte(pmap, va);
if (pte == NULL)
panic("pmap_emulate_modified: can't find PTE");
#ifdef SMP
/* It is possible that some other CPU changed m-bit */
if (!pte_test(pte, PTE_V) || pte_test(pte, PTE_D)) {
tlb_update(pmap, va, *pte);
PMAP_UNLOCK(pmap);
return (0);
}
#else
if (!pte_test(pte, PTE_V) || pte_test(pte, PTE_D))
panic("pmap_emulate_modified: invalid pte");
#endif
if (pte_test(pte, PTE_RO)) {
PMAP_UNLOCK(pmap);
return (1);
}
pte_set(pte, PTE_D);
tlb_update(pmap, va, *pte);
if (!pte_test(pte, PTE_MANAGED))
panic("pmap_emulate_modified: unmanaged page");
PMAP_UNLOCK(pmap);
return (0);
}
/*
* Routine: pmap_kextract
* Function:
* Extract the physical page address associated
* virtual address.
*/
vm_paddr_t
pmap_kextract(vm_offset_t va)
{
int mapped;
/*
* First, the direct-mapped regions.
*/
#if defined(__mips_n64)
if (va >= MIPS_XKPHYS_START && va < MIPS_XKPHYS_END)
return (MIPS_XKPHYS_TO_PHYS(va));
#endif
if (va >= MIPS_KSEG0_START && va < MIPS_KSEG0_END)
return (MIPS_KSEG0_TO_PHYS(va));
if (va >= MIPS_KSEG1_START && va < MIPS_KSEG1_END)
return (MIPS_KSEG1_TO_PHYS(va));
/*
* User virtual addresses.
*/
if (va < VM_MAXUSER_ADDRESS) {
pt_entry_t *ptep;
if (curproc && curproc->p_vmspace) {
ptep = pmap_pte(&curproc->p_vmspace->vm_pmap, va);
if (ptep) {
return (TLBLO_PTE_TO_PA(*ptep) |
(va & PAGE_MASK));
}
return (0);
}
}
/*
* Should be kernel virtual here, otherwise fail
*/
mapped = (va >= MIPS_KSEG2_START || va < MIPS_KSEG2_END);
#if defined(__mips_n64)
mapped = mapped || (va >= MIPS_XKSEG_START || va < MIPS_XKSEG_END);
#endif
/*
* Kernel virtual.
*/
if (mapped) {
pt_entry_t *ptep;
/* Is the kernel pmap initialized? */
if (!CPU_EMPTY(&kernel_pmap->pm_active)) {
/* It's inside the virtual address range */
ptep = pmap_pte(kernel_pmap, va);
if (ptep) {
return (TLBLO_PTE_TO_PA(*ptep) |
(va & PAGE_MASK));
}
}
return (0);
}
panic("%s for unknown address space %p.", __func__, (void *)va);
}
void
pmap_flush_pvcache(vm_page_t m)
{
pv_entry_t pv;
if (m != NULL) {
for (pv = TAILQ_FIRST(&m->md.pv_list); pv;
pv = TAILQ_NEXT(pv, pv_list)) {
mips_dcache_wbinv_range_index(pv->pv_va, PAGE_SIZE);
}
}
}
void
pmap_page_set_memattr(vm_page_t m, vm_memattr_t ma)
{
/*
* It appears that this function can only be called before any mappings
* for the page are established. If this ever changes, this code will
* need to walk the pv_list and make each of the existing mappings
* uncacheable, being careful to sync caches and PTEs (and maybe
* invalidate TLB?) for any current mapping it modifies.
*/
if (TAILQ_FIRST(&m->md.pv_list) != NULL)
panic("Can't change memattr on page with existing mappings");
/* Clean memattr portion of pv_flags */
m->md.pv_flags &= ~PV_MEMATTR_MASK;
m->md.pv_flags |= (ma << PV_MEMATTR_SHIFT) & PV_MEMATTR_MASK;
}
static __inline void
pmap_pte_attr(pt_entry_t *pte, vm_memattr_t ma)
{
u_int npte;
npte = *(u_int *)pte;
npte &= ~PTE_C_MASK;
npte |= PTE_C(ma);
*pte = npte;
}
int
pmap_change_attr(vm_offset_t sva, vm_size_t size, vm_memattr_t ma)
{
pd_entry_t *pde, *pdpe;
pt_entry_t *pte;
vm_offset_t ova, eva, va, va_next;
pmap_t pmap;
ova = sva;
eva = sva + size;
if (eva < sva)
return (EINVAL);
pmap = kernel_pmap;
PMAP_LOCK(pmap);
for (; sva < eva; sva = va_next) {
pdpe = pmap_segmap(pmap, sva);
#ifdef __mips_n64
if (*pdpe == 0) {
va_next = (sva + NBSEG) & ~SEGMASK;
if (va_next < sva)
va_next = eva;
continue;
}
#endif
va_next = (sva + NBPDR) & ~PDRMASK;
if (va_next < sva)
va_next = eva;
pde = pmap_pdpe_to_pde(pdpe, sva);
if (*pde == NULL)
continue;
/*
* Limit our scan to either the end of the va represented
* by the current page table page, or to the end of the
* range being removed.
*/
if (va_next > eva)
va_next = eva;
va = va_next;
for (pte = pmap_pde_to_pte(pde, sva); sva != va_next; pte++,
sva += PAGE_SIZE) {
if (!pte_test(pte, PTE_V) || pte_cache_bits(pte) == ma) {
if (va != va_next) {
pmap_invalidate_range(pmap, va, sva);
va = va_next;
}
continue;
}
if (va == va_next)
va = sva;
pmap_pte_attr(pte, ma);
}
if (va != va_next)
pmap_invalidate_range(pmap, va, sva);
}
PMAP_UNLOCK(pmap);
/* Flush caches to be in the safe side */
mips_dcache_wbinv_range(ova, size);
return 0;
}
boolean_t
pmap_is_valid_memattr(pmap_t pmap __unused, vm_memattr_t mode)
{
switch (mode) {
case VM_MEMATTR_UNCACHEABLE:
case VM_MEMATTR_WRITE_BACK:
#ifdef MIPS_CCA_WC
case VM_MEMATTR_WRITE_COMBINING:
#endif
return (TRUE);
default:
return (FALSE);
}
}