2012-04-19 03:20:13 +00:00

162 lines
5.3 KiB
Plaintext

#------------------------------------------------------------------------------
# $File: jpeg,v 1.16 2011/01/04 19:29:32 rrt Exp $
# JPEG images
# SunOS 5.5.1 had
#
# 0 string \377\330\377\340 JPEG file
# 0 string \377\330\377\356 JPG file
#
# both of which turn into "JPEG image data" here.
#
0 beshort 0xffd8 JPEG image data
!:mime image/jpeg
!:apple 8BIMJPEG
!:strength +1
>6 string JFIF \b, JFIF standard
# The following added by Erik Rossen <rossen@freesurf.ch> 1999-09-06
# in a vain attempt to add image size reporting for JFIF. Note that these
# tests are not fool-proof since some perfectly valid JPEGs are currently
# impossible to specify in magic(4) format.
# First, a little JFIF version info:
>>11 byte x \b %d.
>>12 byte x \b%02d
# Next, the resolution or aspect ratio of the image:
#>>13 byte 0 \b, aspect ratio
#>>13 byte 1 \b, resolution (DPI)
#>>13 byte 2 \b, resolution (DPCM)
#>>4 beshort x \b, segment length %d
# Next, show thumbnail info, if it exists:
>>18 byte !0 \b, thumbnail %dx
>>>19 byte x \b%d
# EXIF moved down here to avoid reporting a bogus version number,
# and EXIF version number printing added.
# - Patrik R=E5dman <patrik+file-magic@iki.fi>
>6 string Exif \b, EXIF standard
# Look for EXIF IFD offset in IFD 0, and then look for EXIF version tag in EXIF IFD.
# All possible combinations of entries have to be enumerated, since no looping
# is possible. And both endians are possible...
# The combinations included below are from real-world JPEGs.
# Little-endian
>>12 string II
# IFD 0 Entry #5:
>>>70 leshort 0x8769
# EXIF IFD Entry #1:
>>>>(78.l+14) leshort 0x9000
>>>>>(78.l+23) byte x %c
>>>>>(78.l+24) byte x \b.%c
>>>>>(78.l+25) byte !0x30 \b%c
# IFD 0 Entry #9:
>>>118 leshort 0x8769
# EXIF IFD Entry #3:
>>>>(126.l+38) leshort 0x9000
>>>>>(126.l+47) byte x %c
>>>>>(126.l+48) byte x \b.%c
>>>>>(126.l+49) byte !0x30 \b%c
# IFD 0 Entry #10
>>>130 leshort 0x8769
# EXIF IFD Entry #3:
>>>>(138.l+38) leshort 0x9000
>>>>>(138.l+47) byte x %c
>>>>>(138.l+48) byte x \b.%c
>>>>>(138.l+49) byte !0x30 \b%c
# EXIF IFD Entry #4:
>>>>(138.l+50) leshort 0x9000
>>>>>(138.l+59) byte x %c
>>>>>(138.l+60) byte x \b.%c
>>>>>(138.l+61) byte !0x30 \b%c
# EXIF IFD Entry #5:
>>>>(138.l+62) leshort 0x9000
>>>>>(138.l+71) byte x %c
>>>>>(138.l+72) byte x \b.%c
>>>>>(138.l+73) byte !0x30 \b%c
# IFD 0 Entry #11
>>>142 leshort 0x8769
# EXIF IFD Entry #3:
>>>>(150.l+38) leshort 0x9000
>>>>>(150.l+47) byte x %c
>>>>>(150.l+48) byte x \b.%c
>>>>>(150.l+49) byte !0x30 \b%c
# EXIF IFD Entry #4:
>>>>(150.l+50) leshort 0x9000
>>>>>(150.l+59) byte x %c
>>>>>(150.l+60) byte x \b.%c
>>>>>(150.l+61) byte !0x30 \b%c
# EXIF IFD Entry #5:
>>>>(150.l+62) leshort 0x9000
>>>>>(150.l+71) byte x %c
>>>>>(150.l+72) byte x \b.%c
>>>>>(150.l+73) byte !0x30 \b%c
# Big-endian
>>12 string MM
# IFD 0 Entry #9:
>>>118 beshort 0x8769
# EXIF IFD Entry #1:
>>>>(126.L+14) beshort 0x9000
>>>>>(126.L+23) byte x %c
>>>>>(126.L+24) byte x \b.%c
>>>>>(126.L+25) byte !0x30 \b%c
# EXIF IFD Entry #3:
>>>>(126.L+38) beshort 0x9000
>>>>>(126.L+47) byte x %c
>>>>>(126.L+48) byte x \b.%c
>>>>>(126.L+49) byte !0x30 \b%c
# IFD 0 Entry #10
>>>130 beshort 0x8769
# EXIF IFD Entry #3:
>>>>(138.L+38) beshort 0x9000
>>>>>(138.L+47) byte x %c
>>>>>(138.L+48) byte x \b.%c
>>>>>(138.L+49) byte !0x30 \b%c
# EXIF IFD Entry #5:
>>>>(138.L+62) beshort 0x9000
>>>>>(138.L+71) byte x %c
>>>>>(138.L+72) byte x \b.%c
>>>>>(138.L+73) byte !0x30 \b%c
# IFD 0 Entry #11
>>>142 beshort 0x8769
# EXIF IFD Entry #4:
>>>>(150.L+50) beshort 0x9000
>>>>>(150.L+59) byte x %c
>>>>>(150.L+60) byte x \b.%c
>>>>>(150.L+61) byte !0x30 \b%c
# Here things get sticky. We can do ONE MORE marker segment with
# indirect addressing, and that's all. It would be great if we could
# do pointer arithemetic like in an assembler language. Christos?
# And if there was some sort of looping construct to do searches, plus a few
# named accumulators, it would be even more effective...
# At least we can show a comment if no other segments got inserted before:
>(4.S+5) byte 0xFE \b, comment:
>>(4.S+6) pstring/HJ x "%s"
# Or, we can show the encoding type (I've included only the three most common)
# and image dimensions if we are lucky and the SOFn (image segment) is here:
>(4.S+5) byte 0xC0 \b, baseline
>>(4.S+6) byte x \b, precision %d
>>(4.S+7) beshort x \b, %dx
>>(4.S+9) beshort x \b%d
>(4.S+5) byte 0xC1 \b, extended sequential
>>(4.S+6) byte x \b, precision %d
>>(4.S+7) beshort x \b, %dx
>>(4.S+9) beshort x \b%d
>(4.S+5) byte 0xC2 \b, progressive
>>(4.S+6) byte x \b, precision %d
>>(4.S+7) beshort x \b, %dx
>>(4.S+9) beshort x \b%d
# I've commented-out quantisation table reporting. I doubt anyone cares yet.
#>(4.S+5) byte 0xDB \b, quantisation table
#>>(4.S+6) beshort x \b length=%d
#>14 beshort x \b, %d x
#>16 beshort x \b %d
# HSI is Handmade Software's proprietary JPEG encoding scheme
0 string hsi1 JPEG image data, HSI proprietary
# From: David Santinoli <david@santinoli.com>
0 string \x00\x00\x00\x0C\x6A\x50\x20\x20\x0D\x0A\x87\x0A JPEG 2000 image data
# Type: JPEG 2000 codesream
# From: Mathieu Malaterre <mathieu.malaterre@gmail.com>
0 belong 0xff4fff51 JPEG 2000 codestream
45 beshort 0xff52