db17bf38c5
build glue.
489 lines
19 KiB
C++
489 lines
19 KiB
C++
//===-- MemorySSAUpdater.cpp - Memory SSA Updater--------------------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------===//
|
|
//
|
|
// This file implements the MemorySSAUpdater class.
|
|
//
|
|
//===----------------------------------------------------------------===//
|
|
#include "llvm/Analysis/MemorySSAUpdater.h"
|
|
#include "llvm/ADT/STLExtras.h"
|
|
#include "llvm/ADT/SmallPtrSet.h"
|
|
#include "llvm/ADT/SmallSet.h"
|
|
#include "llvm/Analysis/MemorySSA.h"
|
|
#include "llvm/IR/DataLayout.h"
|
|
#include "llvm/IR/Dominators.h"
|
|
#include "llvm/IR/GlobalVariable.h"
|
|
#include "llvm/IR/IRBuilder.h"
|
|
#include "llvm/IR/IntrinsicInst.h"
|
|
#include "llvm/IR/LLVMContext.h"
|
|
#include "llvm/IR/Metadata.h"
|
|
#include "llvm/IR/Module.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/FormattedStream.h"
|
|
#include <algorithm>
|
|
|
|
#define DEBUG_TYPE "memoryssa"
|
|
using namespace llvm;
|
|
|
|
// This is the marker algorithm from "Simple and Efficient Construction of
|
|
// Static Single Assignment Form"
|
|
// The simple, non-marker algorithm places phi nodes at any join
|
|
// Here, we place markers, and only place phi nodes if they end up necessary.
|
|
// They are only necessary if they break a cycle (IE we recursively visit
|
|
// ourselves again), or we discover, while getting the value of the operands,
|
|
// that there are two or more definitions needing to be merged.
|
|
// This still will leave non-minimal form in the case of irreducible control
|
|
// flow, where phi nodes may be in cycles with themselves, but unnecessary.
|
|
MemoryAccess *MemorySSAUpdater::getPreviousDefRecursive(BasicBlock *BB) {
|
|
// Single predecessor case, just recurse, we can only have one definition.
|
|
if (BasicBlock *Pred = BB->getSinglePredecessor()) {
|
|
return getPreviousDefFromEnd(Pred);
|
|
} else if (VisitedBlocks.count(BB)) {
|
|
// We hit our node again, meaning we had a cycle, we must insert a phi
|
|
// node to break it so we have an operand. The only case this will
|
|
// insert useless phis is if we have irreducible control flow.
|
|
return MSSA->createMemoryPhi(BB);
|
|
} else if (VisitedBlocks.insert(BB).second) {
|
|
// Mark us visited so we can detect a cycle
|
|
SmallVector<MemoryAccess *, 8> PhiOps;
|
|
|
|
// Recurse to get the values in our predecessors for placement of a
|
|
// potential phi node. This will insert phi nodes if we cycle in order to
|
|
// break the cycle and have an operand.
|
|
for (auto *Pred : predecessors(BB))
|
|
PhiOps.push_back(getPreviousDefFromEnd(Pred));
|
|
|
|
// Now try to simplify the ops to avoid placing a phi.
|
|
// This may return null if we never created a phi yet, that's okay
|
|
MemoryPhi *Phi = dyn_cast_or_null<MemoryPhi>(MSSA->getMemoryAccess(BB));
|
|
bool PHIExistsButNeedsUpdate = false;
|
|
// See if the existing phi operands match what we need.
|
|
// Unlike normal SSA, we only allow one phi node per block, so we can't just
|
|
// create a new one.
|
|
if (Phi && Phi->getNumOperands() != 0)
|
|
if (!std::equal(Phi->op_begin(), Phi->op_end(), PhiOps.begin())) {
|
|
PHIExistsButNeedsUpdate = true;
|
|
}
|
|
|
|
// See if we can avoid the phi by simplifying it.
|
|
auto *Result = tryRemoveTrivialPhi(Phi, PhiOps);
|
|
// If we couldn't simplify, we may have to create a phi
|
|
if (Result == Phi) {
|
|
if (!Phi)
|
|
Phi = MSSA->createMemoryPhi(BB);
|
|
|
|
// These will have been filled in by the recursive read we did above.
|
|
if (PHIExistsButNeedsUpdate) {
|
|
std::copy(PhiOps.begin(), PhiOps.end(), Phi->op_begin());
|
|
std::copy(pred_begin(BB), pred_end(BB), Phi->block_begin());
|
|
} else {
|
|
unsigned i = 0;
|
|
for (auto *Pred : predecessors(BB))
|
|
Phi->addIncoming(PhiOps[i++], Pred);
|
|
}
|
|
|
|
Result = Phi;
|
|
}
|
|
if (MemoryPhi *MP = dyn_cast<MemoryPhi>(Result))
|
|
InsertedPHIs.push_back(MP);
|
|
// Set ourselves up for the next variable by resetting visited state.
|
|
VisitedBlocks.erase(BB);
|
|
return Result;
|
|
}
|
|
llvm_unreachable("Should have hit one of the three cases above");
|
|
}
|
|
|
|
// This starts at the memory access, and goes backwards in the block to find the
|
|
// previous definition. If a definition is not found the block of the access,
|
|
// it continues globally, creating phi nodes to ensure we have a single
|
|
// definition.
|
|
MemoryAccess *MemorySSAUpdater::getPreviousDef(MemoryAccess *MA) {
|
|
auto *LocalResult = getPreviousDefInBlock(MA);
|
|
|
|
return LocalResult ? LocalResult : getPreviousDefRecursive(MA->getBlock());
|
|
}
|
|
|
|
// This starts at the memory access, and goes backwards in the block to the find
|
|
// the previous definition. If the definition is not found in the block of the
|
|
// access, it returns nullptr.
|
|
MemoryAccess *MemorySSAUpdater::getPreviousDefInBlock(MemoryAccess *MA) {
|
|
auto *Defs = MSSA->getWritableBlockDefs(MA->getBlock());
|
|
|
|
// It's possible there are no defs, or we got handed the first def to start.
|
|
if (Defs) {
|
|
// If this is a def, we can just use the def iterators.
|
|
if (!isa<MemoryUse>(MA)) {
|
|
auto Iter = MA->getReverseDefsIterator();
|
|
++Iter;
|
|
if (Iter != Defs->rend())
|
|
return &*Iter;
|
|
} else {
|
|
// Otherwise, have to walk the all access iterator.
|
|
auto End = MSSA->getWritableBlockAccesses(MA->getBlock())->rend();
|
|
for (auto &U : make_range(++MA->getReverseIterator(), End))
|
|
if (!isa<MemoryUse>(U))
|
|
return cast<MemoryAccess>(&U);
|
|
// Note that if MA comes before Defs->begin(), we won't hit a def.
|
|
return nullptr;
|
|
}
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
// This starts at the end of block
|
|
MemoryAccess *MemorySSAUpdater::getPreviousDefFromEnd(BasicBlock *BB) {
|
|
auto *Defs = MSSA->getWritableBlockDefs(BB);
|
|
|
|
if (Defs)
|
|
return &*Defs->rbegin();
|
|
|
|
return getPreviousDefRecursive(BB);
|
|
}
|
|
// Recurse over a set of phi uses to eliminate the trivial ones
|
|
MemoryAccess *MemorySSAUpdater::recursePhi(MemoryAccess *Phi) {
|
|
if (!Phi)
|
|
return nullptr;
|
|
TrackingVH<MemoryAccess> Res(Phi);
|
|
SmallVector<TrackingVH<Value>, 8> Uses;
|
|
std::copy(Phi->user_begin(), Phi->user_end(), std::back_inserter(Uses));
|
|
for (auto &U : Uses) {
|
|
if (MemoryPhi *UsePhi = dyn_cast<MemoryPhi>(&*U)) {
|
|
auto OperRange = UsePhi->operands();
|
|
tryRemoveTrivialPhi(UsePhi, OperRange);
|
|
}
|
|
}
|
|
return Res;
|
|
}
|
|
|
|
// Eliminate trivial phis
|
|
// Phis are trivial if they are defined either by themselves, or all the same
|
|
// argument.
|
|
// IE phi(a, a) or b = phi(a, b) or c = phi(a, a, c)
|
|
// We recursively try to remove them.
|
|
template <class RangeType>
|
|
MemoryAccess *MemorySSAUpdater::tryRemoveTrivialPhi(MemoryPhi *Phi,
|
|
RangeType &Operands) {
|
|
// Detect equal or self arguments
|
|
MemoryAccess *Same = nullptr;
|
|
for (auto &Op : Operands) {
|
|
// If the same or self, good so far
|
|
if (Op == Phi || Op == Same)
|
|
continue;
|
|
// not the same, return the phi since it's not eliminatable by us
|
|
if (Same)
|
|
return Phi;
|
|
Same = cast<MemoryAccess>(Op);
|
|
}
|
|
// Never found a non-self reference, the phi is undef
|
|
if (Same == nullptr)
|
|
return MSSA->getLiveOnEntryDef();
|
|
if (Phi) {
|
|
Phi->replaceAllUsesWith(Same);
|
|
removeMemoryAccess(Phi);
|
|
}
|
|
|
|
// We should only end up recursing in case we replaced something, in which
|
|
// case, we may have made other Phis trivial.
|
|
return recursePhi(Same);
|
|
}
|
|
|
|
void MemorySSAUpdater::insertUse(MemoryUse *MU) {
|
|
InsertedPHIs.clear();
|
|
MU->setDefiningAccess(getPreviousDef(MU));
|
|
// Unlike for defs, there is no extra work to do. Because uses do not create
|
|
// new may-defs, there are only two cases:
|
|
//
|
|
// 1. There was a def already below us, and therefore, we should not have
|
|
// created a phi node because it was already needed for the def.
|
|
//
|
|
// 2. There is no def below us, and therefore, there is no extra renaming work
|
|
// to do.
|
|
}
|
|
|
|
// Set every incoming edge {BB, MP->getBlock()} of MemoryPhi MP to NewDef.
|
|
static void setMemoryPhiValueForBlock(MemoryPhi *MP, const BasicBlock *BB,
|
|
MemoryAccess *NewDef) {
|
|
// Replace any operand with us an incoming block with the new defining
|
|
// access.
|
|
int i = MP->getBasicBlockIndex(BB);
|
|
assert(i != -1 && "Should have found the basic block in the phi");
|
|
// We can't just compare i against getNumOperands since one is signed and the
|
|
// other not. So use it to index into the block iterator.
|
|
for (auto BBIter = MP->block_begin() + i; BBIter != MP->block_end();
|
|
++BBIter) {
|
|
if (*BBIter != BB)
|
|
break;
|
|
MP->setIncomingValue(i, NewDef);
|
|
++i;
|
|
}
|
|
}
|
|
|
|
// A brief description of the algorithm:
|
|
// First, we compute what should define the new def, using the SSA
|
|
// construction algorithm.
|
|
// Then, we update the defs below us (and any new phi nodes) in the graph to
|
|
// point to the correct new defs, to ensure we only have one variable, and no
|
|
// disconnected stores.
|
|
void MemorySSAUpdater::insertDef(MemoryDef *MD, bool RenameUses) {
|
|
InsertedPHIs.clear();
|
|
|
|
// See if we had a local def, and if not, go hunting.
|
|
MemoryAccess *DefBefore = getPreviousDefInBlock(MD);
|
|
bool DefBeforeSameBlock = DefBefore != nullptr;
|
|
if (!DefBefore)
|
|
DefBefore = getPreviousDefRecursive(MD->getBlock());
|
|
|
|
// There is a def before us, which means we can replace any store/phi uses
|
|
// of that thing with us, since we are in the way of whatever was there
|
|
// before.
|
|
// We now define that def's memorydefs and memoryphis
|
|
if (DefBeforeSameBlock) {
|
|
for (auto UI = DefBefore->use_begin(), UE = DefBefore->use_end();
|
|
UI != UE;) {
|
|
Use &U = *UI++;
|
|
// Leave the uses alone
|
|
if (isa<MemoryUse>(U.getUser()))
|
|
continue;
|
|
U.set(MD);
|
|
}
|
|
}
|
|
|
|
// and that def is now our defining access.
|
|
// We change them in this order otherwise we will appear in the use list
|
|
// above and reset ourselves.
|
|
MD->setDefiningAccess(DefBefore);
|
|
|
|
SmallVector<MemoryAccess *, 8> FixupList(InsertedPHIs.begin(),
|
|
InsertedPHIs.end());
|
|
if (!DefBeforeSameBlock) {
|
|
// If there was a local def before us, we must have the same effect it
|
|
// did. Because every may-def is the same, any phis/etc we would create, it
|
|
// would also have created. If there was no local def before us, we
|
|
// performed a global update, and have to search all successors and make
|
|
// sure we update the first def in each of them (following all paths until
|
|
// we hit the first def along each path). This may also insert phi nodes.
|
|
// TODO: There are other cases we can skip this work, such as when we have a
|
|
// single successor, and only used a straight line of single pred blocks
|
|
// backwards to find the def. To make that work, we'd have to track whether
|
|
// getDefRecursive only ever used the single predecessor case. These types
|
|
// of paths also only exist in between CFG simplifications.
|
|
FixupList.push_back(MD);
|
|
}
|
|
|
|
while (!FixupList.empty()) {
|
|
unsigned StartingPHISize = InsertedPHIs.size();
|
|
fixupDefs(FixupList);
|
|
FixupList.clear();
|
|
// Put any new phis on the fixup list, and process them
|
|
FixupList.append(InsertedPHIs.end() - StartingPHISize, InsertedPHIs.end());
|
|
}
|
|
// Now that all fixups are done, rename all uses if we are asked.
|
|
if (RenameUses) {
|
|
SmallPtrSet<BasicBlock *, 16> Visited;
|
|
BasicBlock *StartBlock = MD->getBlock();
|
|
// We are guaranteed there is a def in the block, because we just got it
|
|
// handed to us in this function.
|
|
MemoryAccess *FirstDef = &*MSSA->getWritableBlockDefs(StartBlock)->begin();
|
|
// Convert to incoming value if it's a memorydef. A phi *is* already an
|
|
// incoming value.
|
|
if (auto *MD = dyn_cast<MemoryDef>(FirstDef))
|
|
FirstDef = MD->getDefiningAccess();
|
|
|
|
MSSA->renamePass(MD->getBlock(), FirstDef, Visited);
|
|
// We just inserted a phi into this block, so the incoming value will become
|
|
// the phi anyway, so it does not matter what we pass.
|
|
for (auto *MP : InsertedPHIs)
|
|
MSSA->renamePass(MP->getBlock(), nullptr, Visited);
|
|
}
|
|
}
|
|
|
|
void MemorySSAUpdater::fixupDefs(const SmallVectorImpl<MemoryAccess *> &Vars) {
|
|
SmallPtrSet<const BasicBlock *, 8> Seen;
|
|
SmallVector<const BasicBlock *, 16> Worklist;
|
|
for (auto *NewDef : Vars) {
|
|
// First, see if there is a local def after the operand.
|
|
auto *Defs = MSSA->getWritableBlockDefs(NewDef->getBlock());
|
|
auto DefIter = NewDef->getDefsIterator();
|
|
|
|
// If there is a local def after us, we only have to rename that.
|
|
if (++DefIter != Defs->end()) {
|
|
cast<MemoryDef>(DefIter)->setDefiningAccess(NewDef);
|
|
continue;
|
|
}
|
|
|
|
// Otherwise, we need to search down through the CFG.
|
|
// For each of our successors, handle it directly if their is a phi, or
|
|
// place on the fixup worklist.
|
|
for (const auto *S : successors(NewDef->getBlock())) {
|
|
if (auto *MP = MSSA->getMemoryAccess(S))
|
|
setMemoryPhiValueForBlock(MP, NewDef->getBlock(), NewDef);
|
|
else
|
|
Worklist.push_back(S);
|
|
}
|
|
|
|
while (!Worklist.empty()) {
|
|
const BasicBlock *FixupBlock = Worklist.back();
|
|
Worklist.pop_back();
|
|
|
|
// Get the first def in the block that isn't a phi node.
|
|
if (auto *Defs = MSSA->getWritableBlockDefs(FixupBlock)) {
|
|
auto *FirstDef = &*Defs->begin();
|
|
// The loop above and below should have taken care of phi nodes
|
|
assert(!isa<MemoryPhi>(FirstDef) &&
|
|
"Should have already handled phi nodes!");
|
|
// We are now this def's defining access, make sure we actually dominate
|
|
// it
|
|
assert(MSSA->dominates(NewDef, FirstDef) &&
|
|
"Should have dominated the new access");
|
|
|
|
// This may insert new phi nodes, because we are not guaranteed the
|
|
// block we are processing has a single pred, and depending where the
|
|
// store was inserted, it may require phi nodes below it.
|
|
cast<MemoryDef>(FirstDef)->setDefiningAccess(getPreviousDef(FirstDef));
|
|
return;
|
|
}
|
|
// We didn't find a def, so we must continue.
|
|
for (const auto *S : successors(FixupBlock)) {
|
|
// If there is a phi node, handle it.
|
|
// Otherwise, put the block on the worklist
|
|
if (auto *MP = MSSA->getMemoryAccess(S))
|
|
setMemoryPhiValueForBlock(MP, FixupBlock, NewDef);
|
|
else {
|
|
// If we cycle, we should have ended up at a phi node that we already
|
|
// processed. FIXME: Double check this
|
|
if (!Seen.insert(S).second)
|
|
continue;
|
|
Worklist.push_back(S);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Move What before Where in the MemorySSA IR.
|
|
template <class WhereType>
|
|
void MemorySSAUpdater::moveTo(MemoryUseOrDef *What, BasicBlock *BB,
|
|
WhereType Where) {
|
|
// Replace all our users with our defining access.
|
|
What->replaceAllUsesWith(What->getDefiningAccess());
|
|
|
|
// Let MemorySSA take care of moving it around in the lists.
|
|
MSSA->moveTo(What, BB, Where);
|
|
|
|
// Now reinsert it into the IR and do whatever fixups needed.
|
|
if (auto *MD = dyn_cast<MemoryDef>(What))
|
|
insertDef(MD);
|
|
else
|
|
insertUse(cast<MemoryUse>(What));
|
|
}
|
|
|
|
// Move What before Where in the MemorySSA IR.
|
|
void MemorySSAUpdater::moveBefore(MemoryUseOrDef *What, MemoryUseOrDef *Where) {
|
|
moveTo(What, Where->getBlock(), Where->getIterator());
|
|
}
|
|
|
|
// Move What after Where in the MemorySSA IR.
|
|
void MemorySSAUpdater::moveAfter(MemoryUseOrDef *What, MemoryUseOrDef *Where) {
|
|
moveTo(What, Where->getBlock(), ++Where->getIterator());
|
|
}
|
|
|
|
void MemorySSAUpdater::moveToPlace(MemoryUseOrDef *What, BasicBlock *BB,
|
|
MemorySSA::InsertionPlace Where) {
|
|
return moveTo(What, BB, Where);
|
|
}
|
|
|
|
/// \brief If all arguments of a MemoryPHI are defined by the same incoming
|
|
/// argument, return that argument.
|
|
static MemoryAccess *onlySingleValue(MemoryPhi *MP) {
|
|
MemoryAccess *MA = nullptr;
|
|
|
|
for (auto &Arg : MP->operands()) {
|
|
if (!MA)
|
|
MA = cast<MemoryAccess>(Arg);
|
|
else if (MA != Arg)
|
|
return nullptr;
|
|
}
|
|
return MA;
|
|
}
|
|
|
|
void MemorySSAUpdater::removeMemoryAccess(MemoryAccess *MA) {
|
|
assert(!MSSA->isLiveOnEntryDef(MA) &&
|
|
"Trying to remove the live on entry def");
|
|
// We can only delete phi nodes if they have no uses, or we can replace all
|
|
// uses with a single definition.
|
|
MemoryAccess *NewDefTarget = nullptr;
|
|
if (MemoryPhi *MP = dyn_cast<MemoryPhi>(MA)) {
|
|
// Note that it is sufficient to know that all edges of the phi node have
|
|
// the same argument. If they do, by the definition of dominance frontiers
|
|
// (which we used to place this phi), that argument must dominate this phi,
|
|
// and thus, must dominate the phi's uses, and so we will not hit the assert
|
|
// below.
|
|
NewDefTarget = onlySingleValue(MP);
|
|
assert((NewDefTarget || MP->use_empty()) &&
|
|
"We can't delete this memory phi");
|
|
} else {
|
|
NewDefTarget = cast<MemoryUseOrDef>(MA)->getDefiningAccess();
|
|
}
|
|
|
|
// Re-point the uses at our defining access
|
|
if (!isa<MemoryUse>(MA) && !MA->use_empty()) {
|
|
// Reset optimized on users of this store, and reset the uses.
|
|
// A few notes:
|
|
// 1. This is a slightly modified version of RAUW to avoid walking the
|
|
// uses twice here.
|
|
// 2. If we wanted to be complete, we would have to reset the optimized
|
|
// flags on users of phi nodes if doing the below makes a phi node have all
|
|
// the same arguments. Instead, we prefer users to removeMemoryAccess those
|
|
// phi nodes, because doing it here would be N^3.
|
|
if (MA->hasValueHandle())
|
|
ValueHandleBase::ValueIsRAUWd(MA, NewDefTarget);
|
|
// Note: We assume MemorySSA is not used in metadata since it's not really
|
|
// part of the IR.
|
|
|
|
while (!MA->use_empty()) {
|
|
Use &U = *MA->use_begin();
|
|
if (auto *MUD = dyn_cast<MemoryUseOrDef>(U.getUser()))
|
|
MUD->resetOptimized();
|
|
U.set(NewDefTarget);
|
|
}
|
|
}
|
|
|
|
// The call below to erase will destroy MA, so we can't change the order we
|
|
// are doing things here
|
|
MSSA->removeFromLookups(MA);
|
|
MSSA->removeFromLists(MA);
|
|
}
|
|
|
|
MemoryAccess *MemorySSAUpdater::createMemoryAccessInBB(
|
|
Instruction *I, MemoryAccess *Definition, const BasicBlock *BB,
|
|
MemorySSA::InsertionPlace Point) {
|
|
MemoryUseOrDef *NewAccess = MSSA->createDefinedAccess(I, Definition);
|
|
MSSA->insertIntoListsForBlock(NewAccess, BB, Point);
|
|
return NewAccess;
|
|
}
|
|
|
|
MemoryUseOrDef *MemorySSAUpdater::createMemoryAccessBefore(
|
|
Instruction *I, MemoryAccess *Definition, MemoryUseOrDef *InsertPt) {
|
|
assert(I->getParent() == InsertPt->getBlock() &&
|
|
"New and old access must be in the same block");
|
|
MemoryUseOrDef *NewAccess = MSSA->createDefinedAccess(I, Definition);
|
|
MSSA->insertIntoListsBefore(NewAccess, InsertPt->getBlock(),
|
|
InsertPt->getIterator());
|
|
return NewAccess;
|
|
}
|
|
|
|
MemoryUseOrDef *MemorySSAUpdater::createMemoryAccessAfter(
|
|
Instruction *I, MemoryAccess *Definition, MemoryAccess *InsertPt) {
|
|
assert(I->getParent() == InsertPt->getBlock() &&
|
|
"New and old access must be in the same block");
|
|
MemoryUseOrDef *NewAccess = MSSA->createDefinedAccess(I, Definition);
|
|
MSSA->insertIntoListsBefore(NewAccess, InsertPt->getBlock(),
|
|
++InsertPt->getIterator());
|
|
return NewAccess;
|
|
}
|