Oleksandr Tymoshenko fdf78e7823 Switch default cache type for ARMv6/ARMv7 from write-through to
writeback-writeallocate
2013-01-08 02:40:20 +00:00

671 lines
21 KiB
C

/*-
* Copyright (c) 1991 Regents of the University of California.
* All rights reserved.
*
* This code is derived from software contributed to Berkeley by
* the Systems Programming Group of the University of Utah Computer
* Science Department and William Jolitz of UUNET Technologies Inc.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the University of
* California, Berkeley and its contributors.
* 4. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* Derived from hp300 version by Mike Hibler, this version by William
* Jolitz uses a recursive map [a pde points to the page directory] to
* map the page tables using the pagetables themselves. This is done to
* reduce the impact on kernel virtual memory for lots of sparse address
* space, and to reduce the cost of memory to each process.
*
* from: hp300: @(#)pmap.h 7.2 (Berkeley) 12/16/90
* from: @(#)pmap.h 7.4 (Berkeley) 5/12/91
* from: FreeBSD: src/sys/i386/include/pmap.h,v 1.70 2000/11/30
*
* $FreeBSD$
*/
#ifndef _MACHINE_PMAP_H_
#define _MACHINE_PMAP_H_
#include <machine/pte.h>
#include <machine/cpuconf.h>
/*
* Pte related macros
*/
#if ARM_ARCH_6 || ARM_ARCH_7A
#ifdef SMP
#define PTE_NOCACHE 2
#else
#define PTE_NOCACHE 1
#endif
#define PTE_CACHE 6
#define PTE_DEVICE 2
#define PTE_PAGETABLE 4
#else
#define PTE_NOCACHE 1
#define PTE_CACHE 2
#define PTE_PAGETABLE 3
#endif
enum mem_type {
STRONG_ORD = 0,
DEVICE_NOSHARE,
DEVICE_SHARE,
NRML_NOCACHE,
NRML_IWT_OWT,
NRML_IWB_OWB,
NRML_IWBA_OWBA
};
#ifndef LOCORE
#include <sys/queue.h>
#include <sys/_cpuset.h>
#include <sys/_lock.h>
#include <sys/_mutex.h>
#define PDESIZE sizeof(pd_entry_t) /* for assembly files */
#define PTESIZE sizeof(pt_entry_t) /* for assembly files */
#ifdef _KERNEL
#define vtophys(va) pmap_kextract((vm_offset_t)(va))
#endif
#define pmap_page_get_memattr(m) ((m)->md.pv_memattr)
#define pmap_page_is_mapped(m) (!TAILQ_EMPTY(&(m)->md.pv_list))
#define pmap_page_is_write_mapped(m) (((m)->aflags & PGA_WRITEABLE) != 0)
void pmap_page_set_memattr(vm_page_t m, vm_memattr_t ma);
/*
* Pmap stuff
*/
/*
* This structure is used to hold a virtual<->physical address
* association and is used mostly by bootstrap code
*/
struct pv_addr {
SLIST_ENTRY(pv_addr) pv_list;
vm_offset_t pv_va;
vm_paddr_t pv_pa;
};
struct pv_entry;
struct md_page {
int pvh_attrs;
vm_memattr_t pv_memattr;
vm_offset_t pv_kva; /* first kernel VA mapping */
TAILQ_HEAD(,pv_entry) pv_list;
};
struct l1_ttable;
struct l2_dtable;
/*
* The number of L2 descriptor tables which can be tracked by an l2_dtable.
* A bucket size of 16 provides for 16MB of contiguous virtual address
* space per l2_dtable. Most processes will, therefore, require only two or
* three of these to map their whole working set.
*/
#define L2_BUCKET_LOG2 4
#define L2_BUCKET_SIZE (1 << L2_BUCKET_LOG2)
/*
* Given the above "L2-descriptors-per-l2_dtable" constant, the number
* of l2_dtable structures required to track all possible page descriptors
* mappable by an L1 translation table is given by the following constants:
*/
#define L2_LOG2 ((32 - L1_S_SHIFT) - L2_BUCKET_LOG2)
#define L2_SIZE (1 << L2_LOG2)
struct pmap {
struct mtx pm_mtx;
u_int8_t pm_domain;
struct l1_ttable *pm_l1;
struct l2_dtable *pm_l2[L2_SIZE];
pd_entry_t *pm_pdir; /* KVA of page directory */
cpuset_t pm_active; /* active on cpus */
struct pmap_statistics pm_stats; /* pmap statictics */
TAILQ_HEAD(,pv_entry) pm_pvlist; /* list of mappings in pmap */
};
typedef struct pmap *pmap_t;
#ifdef _KERNEL
extern struct pmap kernel_pmap_store;
#define kernel_pmap (&kernel_pmap_store)
#define pmap_kernel() kernel_pmap
#define PMAP_ASSERT_LOCKED(pmap) \
mtx_assert(&(pmap)->pm_mtx, MA_OWNED)
#define PMAP_LOCK(pmap) mtx_lock(&(pmap)->pm_mtx)
#define PMAP_LOCK_DESTROY(pmap) mtx_destroy(&(pmap)->pm_mtx)
#define PMAP_LOCK_INIT(pmap) mtx_init(&(pmap)->pm_mtx, "pmap", \
NULL, MTX_DEF | MTX_DUPOK)
#define PMAP_OWNED(pmap) mtx_owned(&(pmap)->pm_mtx)
#define PMAP_MTX(pmap) (&(pmap)->pm_mtx)
#define PMAP_TRYLOCK(pmap) mtx_trylock(&(pmap)->pm_mtx)
#define PMAP_UNLOCK(pmap) mtx_unlock(&(pmap)->pm_mtx)
#endif
/*
* For each vm_page_t, there is a list of all currently valid virtual
* mappings of that page. An entry is a pv_entry_t, the list is pv_list.
*/
typedef struct pv_entry {
pmap_t pv_pmap; /* pmap where mapping lies */
vm_offset_t pv_va; /* virtual address for mapping */
TAILQ_ENTRY(pv_entry) pv_list;
TAILQ_ENTRY(pv_entry) pv_plist;
int pv_flags; /* flags (wired, etc...) */
} *pv_entry_t;
#ifdef _KERNEL
boolean_t pmap_get_pde_pte(pmap_t, vm_offset_t, pd_entry_t **, pt_entry_t **);
/*
* virtual address to page table entry and
* to physical address. Likewise for alternate address space.
* Note: these work recursively, thus vtopte of a pte will give
* the corresponding pde that in turn maps it.
*/
/*
* The current top of kernel VM.
*/
extern vm_offset_t pmap_curmaxkvaddr;
struct pcb;
void pmap_set_pcb_pagedir(pmap_t, struct pcb *);
/* Virtual address to page table entry */
static __inline pt_entry_t *
vtopte(vm_offset_t va)
{
pd_entry_t *pdep;
pt_entry_t *ptep;
if (pmap_get_pde_pte(pmap_kernel(), va, &pdep, &ptep) == FALSE)
return (NULL);
return (ptep);
}
extern vm_paddr_t phys_avail[];
extern vm_offset_t virtual_avail;
extern vm_offset_t virtual_end;
void pmap_bootstrap(vm_offset_t, vm_offset_t, struct pv_addr *);
int pmap_change_attr(vm_offset_t, vm_size_t, int);
void pmap_kenter(vm_offset_t va, vm_paddr_t pa);
void pmap_kenter_nocache(vm_offset_t va, vm_paddr_t pa);
void *pmap_kenter_temp(vm_paddr_t pa, int i);
void pmap_kenter_user(vm_offset_t va, vm_paddr_t pa);
vm_paddr_t pmap_kextract(vm_offset_t va);
void pmap_kremove(vm_offset_t);
void *pmap_mapdev(vm_offset_t, vm_size_t);
void pmap_unmapdev(vm_offset_t, vm_size_t);
vm_page_t pmap_use_pt(pmap_t, vm_offset_t);
void pmap_debug(int);
void pmap_map_section(vm_offset_t, vm_offset_t, vm_offset_t, int, int);
void pmap_link_l2pt(vm_offset_t, vm_offset_t, struct pv_addr *);
vm_size_t pmap_map_chunk(vm_offset_t, vm_offset_t, vm_offset_t, vm_size_t, int, int);
void
pmap_map_entry(vm_offset_t l1pt, vm_offset_t va, vm_offset_t pa, int prot,
int cache);
int pmap_fault_fixup(pmap_t, vm_offset_t, vm_prot_t, int);
int pmap_dmap_iscurrent(pmap_t pmap);
/*
* Definitions for MMU domains
*/
#define PMAP_DOMAINS 15 /* 15 'user' domains (1-15) */
#define PMAP_DOMAIN_KERNEL 0 /* The kernel uses domain #0 */
/*
* The new pmap ensures that page-tables are always mapping Write-Thru.
* Thus, on some platforms we can run fast and loose and avoid syncing PTEs
* on every change.
*
* Unfortunately, not all CPUs have a write-through cache mode. So we
* define PMAP_NEEDS_PTE_SYNC for C code to conditionally do PTE syncs,
* and if there is the chance for PTE syncs to be needed, we define
* PMAP_INCLUDE_PTE_SYNC so e.g. assembly code can include (and run)
* the code.
*/
extern int pmap_needs_pte_sync;
/*
* These macros define the various bit masks in the PTE.
*
* We use these macros since we use different bits on different processor
* models.
*/
#define L1_S_CACHE_MASK_generic (L1_S_B|L1_S_C)
#define L1_S_CACHE_MASK_xscale (L1_S_B|L1_S_C|L1_S_XSCALE_TEX(TEX_XSCALE_X)|\
L1_S_XSCALE_TEX(TEX_XSCALE_T))
#define L2_L_CACHE_MASK_generic (L2_B|L2_C)
#define L2_L_CACHE_MASK_xscale (L2_B|L2_C|L2_XSCALE_L_TEX(TEX_XSCALE_X) | \
L2_XSCALE_L_TEX(TEX_XSCALE_T))
#define L2_S_PROT_U_generic (L2_AP(AP_U))
#define L2_S_PROT_W_generic (L2_AP(AP_W))
#define L2_S_PROT_MASK_generic (L2_S_PROT_U|L2_S_PROT_W)
#define L2_S_PROT_U_xscale (L2_AP0(AP_U))
#define L2_S_PROT_W_xscale (L2_AP0(AP_W))
#define L2_S_PROT_MASK_xscale (L2_S_PROT_U|L2_S_PROT_W)
#define L2_S_CACHE_MASK_generic (L2_B|L2_C)
#define L2_S_CACHE_MASK_xscale (L2_B|L2_C|L2_XSCALE_T_TEX(TEX_XSCALE_X)| \
L2_XSCALE_T_TEX(TEX_XSCALE_X))
#define L1_S_PROTO_generic (L1_TYPE_S | L1_S_IMP)
#define L1_S_PROTO_xscale (L1_TYPE_S)
#define L1_C_PROTO_generic (L1_TYPE_C | L1_C_IMP2)
#define L1_C_PROTO_xscale (L1_TYPE_C)
#define L2_L_PROTO (L2_TYPE_L)
#define L2_S_PROTO_generic (L2_TYPE_S)
#define L2_S_PROTO_xscale (L2_TYPE_XSCALE_XS)
/*
* User-visible names for the ones that vary with MMU class.
*/
#if (ARM_MMU_V6 + ARM_MMU_V7) != 0
#define L2_AP(x) (L2_AP0(x))
#else
#define L2_AP(x) (L2_AP0(x) | L2_AP1(x) | L2_AP2(x) | L2_AP3(x))
#endif
#if ARM_NMMUS > 1
/* More than one MMU class configured; use variables. */
#define L2_S_PROT_U pte_l2_s_prot_u
#define L2_S_PROT_W pte_l2_s_prot_w
#define L2_S_PROT_MASK pte_l2_s_prot_mask
#define L1_S_CACHE_MASK pte_l1_s_cache_mask
#define L2_L_CACHE_MASK pte_l2_l_cache_mask
#define L2_S_CACHE_MASK pte_l2_s_cache_mask
#define L1_S_PROTO pte_l1_s_proto
#define L1_C_PROTO pte_l1_c_proto
#define L2_S_PROTO pte_l2_s_proto
#elif (ARM_MMU_GENERIC + ARM_MMU_SA1) != 0
#define L2_S_PROT_U L2_S_PROT_U_generic
#define L2_S_PROT_W L2_S_PROT_W_generic
#define L2_S_PROT_MASK L2_S_PROT_MASK_generic
#define L1_S_CACHE_MASK L1_S_CACHE_MASK_generic
#define L2_L_CACHE_MASK L2_L_CACHE_MASK_generic
#define L2_S_CACHE_MASK L2_S_CACHE_MASK_generic
#define L1_S_PROTO L1_S_PROTO_generic
#define L1_C_PROTO L1_C_PROTO_generic
#define L2_S_PROTO L2_S_PROTO_generic
#elif ARM_MMU_XSCALE == 1
#define L2_S_PROT_U L2_S_PROT_U_xscale
#define L2_S_PROT_W L2_S_PROT_W_xscale
#define L2_S_PROT_MASK L2_S_PROT_MASK_xscale
#define L1_S_CACHE_MASK L1_S_CACHE_MASK_xscale
#define L2_L_CACHE_MASK L2_L_CACHE_MASK_xscale
#define L2_S_CACHE_MASK L2_S_CACHE_MASK_xscale
#define L1_S_PROTO L1_S_PROTO_xscale
#define L1_C_PROTO L1_C_PROTO_xscale
#define L2_S_PROTO L2_S_PROTO_xscale
#elif (ARM_MMU_V6 + ARM_MMU_V7) != 0
#define L2_S_PROT_U (L2_AP0(2)) /* user access */
#define L2_S_PROT_R (L2_APX|L2_AP0(1)) /* read access */
#define L2_S_PROT_MASK (L2_S_PROT_U|L2_S_PROT_R)
#define L2_S_WRITABLE(pte) (!(pte & L2_APX))
#ifndef SMP
#define L1_S_CACHE_MASK (L1_S_TEX_MASK|L1_S_B|L1_S_C)
#define L2_L_CACHE_MASK (L2_L_TEX_MASK|L2_B|L2_C)
#define L2_S_CACHE_MASK (L2_S_TEX_MASK|L2_B|L2_C)
#else
#define L1_S_CACHE_MASK (L1_S_TEX_MASK|L1_S_B|L1_S_C|L1_SHARED)
#define L2_L_CACHE_MASK (L2_L_TEX_MASK|L2_B|L2_C|L2_SHARED)
#define L2_S_CACHE_MASK (L2_S_TEX_MASK|L2_B|L2_C|L2_SHARED)
#endif /* SMP */
#define L1_S_PROTO (L1_TYPE_S)
#define L1_C_PROTO (L1_TYPE_C)
#define L2_S_PROTO (L2_TYPE_S)
#ifndef SMP
#define ARM_L1S_STRONG_ORD (0)
#define ARM_L1S_DEVICE_NOSHARE (L1_S_TEX(2))
#define ARM_L1S_DEVICE_SHARE (L1_S_B)
#define ARM_L1S_NRML_NOCACHE (L1_S_TEX(1))
#define ARM_L1S_NRML_IWT_OWT (L1_S_C)
#define ARM_L1S_NRML_IWB_OWB (L1_S_C|L1_S_B)
#define ARM_L1S_NRML_IWBA_OWBA (L1_S_TEX(1)|L1_S_C|L1_S_B)
#define ARM_L2L_STRONG_ORD (0)
#define ARM_L2L_DEVICE_NOSHARE (L2_L_TEX(2))
#define ARM_L2L_DEVICE_SHARE (L2_B)
#define ARM_L2L_NRML_NOCACHE (L2_L_TEX(1))
#define ARM_L2L_NRML_IWT_OWT (L2_C)
#define ARM_L2L_NRML_IWB_OWB (L2_C|L2_B)
#define ARM_L2L_NRML_IWBA_OWBA (L2_L_TEX(1)|L2_C|L2_B)
#define ARM_L2S_STRONG_ORD (0)
#define ARM_L2S_DEVICE_NOSHARE (L2_S_TEX(2))
#define ARM_L2S_DEVICE_SHARE (L2_B)
#define ARM_L2S_NRML_NOCACHE (L2_S_TEX(1))
#define ARM_L2S_NRML_IWT_OWT (L2_C)
#define ARM_L2S_NRML_IWB_OWB (L2_C|L2_B)
#define ARM_L2S_NRML_IWBA_OWBA (L2_S_TEX(1)|L2_C|L2_B)
#else
#define ARM_L1S_STRONG_ORD (0)
#define ARM_L1S_DEVICE_NOSHARE (L1_S_TEX(2))
#define ARM_L1S_DEVICE_SHARE (L1_S_B)
#define ARM_L1S_NRML_NOCACHE (L1_S_TEX(1)|L1_SHARED)
#define ARM_L1S_NRML_IWT_OWT (L1_S_C|L1_SHARED)
#define ARM_L1S_NRML_IWB_OWB (L1_S_C|L1_S_B|L1_SHARED)
#define ARM_L1S_NRML_IWBA_OWBA (L1_S_TEX(1)|L1_S_C|L1_S_B|L1_SHARED)
#define ARM_L2L_STRONG_ORD (0)
#define ARM_L2L_DEVICE_NOSHARE (L2_L_TEX(2))
#define ARM_L2L_DEVICE_SHARE (L2_B)
#define ARM_L2L_NRML_NOCACHE (L2_L_TEX(1)|L2_SHARED)
#define ARM_L2L_NRML_IWT_OWT (L2_C|L2_SHARED)
#define ARM_L2L_NRML_IWB_OWB (L2_C|L2_B|L2_SHARED)
#define ARM_L2L_NRML_IWBA_OWBA (L2_L_TEX(1)|L2_C|L2_B|L2_SHARED)
#define ARM_L2S_STRONG_ORD (0)
#define ARM_L2S_DEVICE_NOSHARE (L2_S_TEX(2))
#define ARM_L2S_DEVICE_SHARE (L2_B)
#define ARM_L2S_NRML_NOCACHE (L2_S_TEX(1)|L2_SHARED)
#define ARM_L2S_NRML_IWT_OWT (L2_C|L2_SHARED)
#define ARM_L2S_NRML_IWB_OWB (L2_C|L2_B|L2_SHARED)
#define ARM_L2S_NRML_IWBA_OWBA (L2_S_TEX(1)|L2_C|L2_B|L2_SHARED)
#endif /* SMP */
#endif /* ARM_NMMUS > 1 */
#if (ARM_MMU_SA1 == 1) && (ARM_NMMUS == 1)
#define PMAP_NEEDS_PTE_SYNC 1
#define PMAP_INCLUDE_PTE_SYNC
#elif defined(CPU_XSCALE_81342)
#define PMAP_NEEDS_PTE_SYNC 1
#define PMAP_INCLUDE_PTE_SYNC
#elif (ARM_MMU_SA1 == 0)
#define PMAP_NEEDS_PTE_SYNC 0
#endif
/*
* These macros return various bits based on kernel/user and protection.
* Note that the compiler will usually fold these at compile time.
*/
#if (ARM_MMU_V6 + ARM_MMU_V7) == 0
#define L1_S_PROT_U (L1_S_AP(AP_U))
#define L1_S_PROT_W (L1_S_AP(AP_W))
#define L1_S_PROT_MASK (L1_S_PROT_U|L1_S_PROT_W)
#define L1_S_WRITABLE(pd) ((pd) & L1_S_PROT_W)
#define L1_S_PROT(ku, pr) ((((ku) == PTE_USER) ? L1_S_PROT_U : 0) | \
(((pr) & VM_PROT_WRITE) ? L1_S_PROT_W : 0))
#define L2_L_PROT_U (L2_AP(AP_U))
#define L2_L_PROT_W (L2_AP(AP_W))
#define L2_L_PROT_MASK (L2_L_PROT_U|L2_L_PROT_W)
#define L2_L_PROT(ku, pr) ((((ku) == PTE_USER) ? L2_L_PROT_U : 0) | \
(((pr) & VM_PROT_WRITE) ? L2_L_PROT_W : 0))
#define L2_S_PROT(ku, pr) ((((ku) == PTE_USER) ? L2_S_PROT_U : 0) | \
(((pr) & VM_PROT_WRITE) ? L2_S_PROT_W : 0))
#else
#define L1_S_PROT_U (L1_S_AP(AP_U))
#define L1_S_PROT_MASK (L1_S_APX|L1_S_AP(0x3))
#define L1_S_WRITABLE(pd) (!((pd) & L1_S_APX))
#define L1_S_PROT(ku, pr) (L1_S_PROT_MASK & ~((((ku) == PTE_KERNEL) ? L1_S_PROT_U : 0) | \
(((pr) & VM_PROT_WRITE) ? L1_S_APX : 0)))
#define L2_L_PROT_MASK (L2_APX|L2_AP0(0x3))
#define L2_L_PROT(ku, pr) (L2_L_PROT_MASK & ~((((ku) == PTE_KERNEL) ? L2_S_PROT_U : 0) | \
(((pr) & VM_PROT_WRITE) ? L2_APX : 0)))
#define L2_S_PROT(ku, pr) (L2_S_PROT_MASK & ~((((ku) == PTE_KERNEL) ? L2_S_PROT_U : 0) | \
(((pr) & VM_PROT_WRITE) ? L2_APX : 0)))
#endif
/*
* Macros to test if a mapping is mappable with an L1 Section mapping
* or an L2 Large Page mapping.
*/
#define L1_S_MAPPABLE_P(va, pa, size) \
((((va) | (pa)) & L1_S_OFFSET) == 0 && (size) >= L1_S_SIZE)
#define L2_L_MAPPABLE_P(va, pa, size) \
((((va) | (pa)) & L2_L_OFFSET) == 0 && (size) >= L2_L_SIZE)
/*
* Provide a fallback in case we were not able to determine it at
* compile-time.
*/
#ifndef PMAP_NEEDS_PTE_SYNC
#define PMAP_NEEDS_PTE_SYNC pmap_needs_pte_sync
#define PMAP_INCLUDE_PTE_SYNC
#endif
#define PTE_SYNC(pte) \
do { \
if (PMAP_NEEDS_PTE_SYNC) { \
cpu_dcache_wb_range((vm_offset_t)(pte), sizeof(pt_entry_t));\
cpu_l2cache_wb_range((vm_offset_t)(pte), sizeof(pt_entry_t));\
} else \
cpu_drain_writebuf(); \
} while (/*CONSTCOND*/0)
#define PTE_SYNC_RANGE(pte, cnt) \
do { \
if (PMAP_NEEDS_PTE_SYNC) { \
cpu_dcache_wb_range((vm_offset_t)(pte), \
(cnt) << 2); /* * sizeof(pt_entry_t) */ \
cpu_l2cache_wb_range((vm_offset_t)(pte), \
(cnt) << 2); /* * sizeof(pt_entry_t) */ \
} else \
cpu_drain_writebuf(); \
} while (/*CONSTCOND*/0)
extern pt_entry_t pte_l1_s_cache_mode;
extern pt_entry_t pte_l1_s_cache_mask;
extern pt_entry_t pte_l2_l_cache_mode;
extern pt_entry_t pte_l2_l_cache_mask;
extern pt_entry_t pte_l2_s_cache_mode;
extern pt_entry_t pte_l2_s_cache_mask;
extern pt_entry_t pte_l1_s_cache_mode_pt;
extern pt_entry_t pte_l2_l_cache_mode_pt;
extern pt_entry_t pte_l2_s_cache_mode_pt;
extern pt_entry_t pte_l2_s_prot_u;
extern pt_entry_t pte_l2_s_prot_w;
extern pt_entry_t pte_l2_s_prot_mask;
extern pt_entry_t pte_l1_s_proto;
extern pt_entry_t pte_l1_c_proto;
extern pt_entry_t pte_l2_s_proto;
extern void (*pmap_copy_page_func)(vm_paddr_t, vm_paddr_t);
extern void (*pmap_zero_page_func)(vm_paddr_t, int, int);
#if (ARM_MMU_GENERIC + ARM_MMU_V6 + ARM_MMU_V7 + ARM_MMU_SA1) != 0 || defined(CPU_XSCALE_81342)
void pmap_copy_page_generic(vm_paddr_t, vm_paddr_t);
void pmap_zero_page_generic(vm_paddr_t, int, int);
void pmap_pte_init_generic(void);
#if defined(CPU_ARM8)
void pmap_pte_init_arm8(void);
#endif
#if defined(CPU_ARM9)
void pmap_pte_init_arm9(void);
#endif /* CPU_ARM9 */
#if defined(CPU_ARM10)
void pmap_pte_init_arm10(void);
#endif /* CPU_ARM10 */
#if (ARM_MMU_V6 + ARM_MMU_V7) != 0
void pmap_pte_init_mmu_v6(void);
#endif /* (ARM_MMU_V6 + ARM_MMU_V7) != 0 */
#endif /* (ARM_MMU_GENERIC + ARM_MMU_SA1) != 0 */
#if /* ARM_MMU_SA1 == */1
void pmap_pte_init_sa1(void);
#endif /* ARM_MMU_SA1 == 1 */
#if ARM_MMU_XSCALE == 1
void pmap_copy_page_xscale(vm_paddr_t, vm_paddr_t);
void pmap_zero_page_xscale(vm_paddr_t, int, int);
void pmap_pte_init_xscale(void);
void xscale_setup_minidata(vm_offset_t, vm_offset_t, vm_offset_t);
void pmap_use_minicache(vm_offset_t, vm_size_t);
#endif /* ARM_MMU_XSCALE == 1 */
#if defined(CPU_XSCALE_81342)
#define ARM_HAVE_SUPERSECTIONS
#endif
#define PTE_KERNEL 0
#define PTE_USER 1
#define l1pte_valid(pde) ((pde) != 0)
#define l1pte_section_p(pde) (((pde) & L1_TYPE_MASK) == L1_TYPE_S)
#define l1pte_page_p(pde) (((pde) & L1_TYPE_MASK) == L1_TYPE_C)
#define l1pte_fpage_p(pde) (((pde) & L1_TYPE_MASK) == L1_TYPE_F)
#define l2pte_index(v) (((v) & L2_ADDR_BITS) >> L2_S_SHIFT)
#define l2pte_valid(pte) ((pte) != 0)
#define l2pte_pa(pte) ((pte) & L2_S_FRAME)
#define l2pte_minidata(pte) (((pte) & \
(L2_B | L2_C | L2_XSCALE_T_TEX(TEX_XSCALE_X)))\
== (L2_C | L2_XSCALE_T_TEX(TEX_XSCALE_X)))
/* L1 and L2 page table macros */
#define pmap_pde_v(pde) l1pte_valid(*(pde))
#define pmap_pde_section(pde) l1pte_section_p(*(pde))
#define pmap_pde_page(pde) l1pte_page_p(*(pde))
#define pmap_pde_fpage(pde) l1pte_fpage_p(*(pde))
#define pmap_pte_v(pte) l2pte_valid(*(pte))
#define pmap_pte_pa(pte) l2pte_pa(*(pte))
/*
* Flags that indicate attributes of pages or mappings of pages.
*
* The PVF_MOD and PVF_REF flags are stored in the mdpage for each
* page. PVF_WIRED, PVF_WRITE, and PVF_NC are kept in individual
* pv_entry's for each page. They live in the same "namespace" so
* that we can clear multiple attributes at a time.
*
* Note the "non-cacheable" flag generally means the page has
* multiple mappings in a given address space.
*/
#define PVF_MOD 0x01 /* page is modified */
#define PVF_REF 0x02 /* page is referenced */
#define PVF_WIRED 0x04 /* mapping is wired */
#define PVF_WRITE 0x08 /* mapping is writable */
#define PVF_EXEC 0x10 /* mapping is executable */
#define PVF_NC 0x20 /* mapping is non-cacheable */
#define PVF_MWC 0x40 /* mapping is used multiple times in userland */
#define PVF_UNMAN 0x80 /* mapping is unmanaged */
void vector_page_setprot(int);
/*
* This structure is used by machine-dependent code to describe
* static mappings of devices, created at bootstrap time.
*/
struct pmap_devmap {
vm_offset_t pd_va; /* virtual address */
vm_paddr_t pd_pa; /* physical address */
vm_size_t pd_size; /* size of region */
vm_prot_t pd_prot; /* protection code */
int pd_cache; /* cache attributes */
};
const struct pmap_devmap *pmap_devmap_find_pa(vm_paddr_t, vm_size_t);
const struct pmap_devmap *pmap_devmap_find_va(vm_offset_t, vm_size_t);
void pmap_devmap_bootstrap(vm_offset_t, const struct pmap_devmap *);
void pmap_devmap_register(const struct pmap_devmap *);
#define SECTION_CACHE 0x1
#define SECTION_PT 0x2
void pmap_kenter_section(vm_offset_t, vm_paddr_t, int flags);
#ifdef ARM_HAVE_SUPERSECTIONS
void pmap_kenter_supersection(vm_offset_t, uint64_t, int flags);
#endif
extern char *_tmppt;
void pmap_postinit(void);
#ifdef ARM_USE_SMALL_ALLOC
void arm_add_smallalloc_pages(void *, void *, int, int);
vm_offset_t arm_ptovirt(vm_paddr_t);
void arm_init_smallalloc(void);
struct arm_small_page {
void *addr;
TAILQ_ENTRY(arm_small_page) pg_list;
};
#endif
#define ARM_NOCACHE_KVA_SIZE 0x1000000
extern vm_offset_t arm_nocache_startaddr;
void *arm_remap_nocache(void *, vm_size_t);
void arm_unmap_nocache(void *, vm_size_t);
extern vm_paddr_t dump_avail[];
#endif /* _KERNEL */
#endif /* !LOCORE */
#endif /* !_MACHINE_PMAP_H_ */