05884511b0
change should make et(4) work on any architectures. o Remove m_getl inline function and replace it with stanard mbuf interfaces. Previous code tried to minimize code duplication but this came from incorrect use of common DMA tag. Driver may be still use a common RX allocation handler with additional structure changes but I don't see much point to do that it would make it hard to understand the code. o Remove DragonflyBSD specific constant EVL_ENCAPLEN, use ETHER_VLAN_ENCAP_LEN instead. o Add bunch of new RX status definition. It seems controller supports RX checksum offloading but I was not able to make the feature work yet. Currently driver checks whether recevied frame is good one or not. o Avoid a typedef ending in '_t' as style(9) says. o Controller has no restriction on DMA address space, so there is no reason to limit the DMA address to 32bit. Descriptor rings, status blocks and TX/RX buffers now use full 64bit DMA addressing. o Allocate DMA memory shared between host and controller as coherent. o Create 3 separate DMA tags to be used as TX, mini RX ring and stanard RX ring. Previously it created a single DMA tag and it was used to all three rings. o et(4) does not support jumbo frame at this moment and I still don't quite understand how jumbo frame works on this controller so use two RX rings to handle small sized frame and normal sized frame respectively. The mini RX ring will be used to receive frames that are less than or equal to 127 bytes. The second RX ring is used to receive frames that are not handled by the first RX ring. If jumbo frame support is implemented, driver may have to choose better RX scheme by letting the second RX ring handle jumbo frames. This scheme will mimic Broadcom's efficient jumbo frame handling feature. However RAM buffer size(16KB) of the controller is too small to hold 2 jumbo frames, if 9KB jumbo frame is used, I'm not sure how good performance would it have. o In et_rxeof(), make sure to check whether controller received good frame or not. Passing corrupted frame to upper layer is bad idea. o If driver receives a bad frame or driver fails to allocate RX buffer due to resource shortage condition, reuse previously loaded DMA map for RX buffer instead of unloading/loading RX buffer again. o et_init_tx_ring() never fails so change return type to void. o In watchdog handler, show TX DMA write back status of errored frame which could be used as a clue to debug watchdog timeout. o Add missing bus_dmamap_sync() in various places such that et(4) should work with bounce buffers(e.g. PAE). o TX side bus_dmamap_load_mbuf_sg(9) support. o RX side bus_dmamap_load_mbuf_sg(9) support. o Controller has no DMA alignment limit in RX buffer so use m_adj(9) in RX buffer allocation to make IP header align on 2 bytes boundary. Otherwise it would trigger unaligned access error in upper layer on strict alignment architectures. One of down side of controller is it provides limited set of RX buffer length like most Intel controllers. This is not problem at this moment because driver does not support jumbo frame yet but it may require alignment fixup code to support jumbo frame on strict alignment architectures. o In et_txeof(), don't zero TX descriptors for transmitted frames. TX descriptors don't need write access after transmission. Driver sets IFF_DRV_OACTIVE when the number of available TX descriptors are less than or equal to ET_NSEG_SPARE. Make sure to clear IFF_DRV_OACTIVE only when the number of available TX descriptor is greater than ET_NSEG_SPARE.
2451 lines
60 KiB
C
2451 lines
60 KiB
C
/*-
|
|
* Copyright (c) 2007 Sepherosa Ziehau. All rights reserved.
|
|
*
|
|
* This code is derived from software contributed to The DragonFly Project
|
|
* by Sepherosa Ziehau <sepherosa@gmail.com>
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
*
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in
|
|
* the documentation and/or other materials provided with the
|
|
* distribution.
|
|
* 3. Neither the name of The DragonFly Project nor the names of its
|
|
* contributors may be used to endorse or promote products derived
|
|
* from this software without specific, prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
|
|
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
|
|
* COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
|
|
* INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
|
|
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
|
|
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
|
|
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
|
|
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
|
|
* OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*
|
|
* $DragonFly: src/sys/dev/netif/et/if_et.c,v 1.10 2008/05/18 07:47:14 sephe Exp $
|
|
*/
|
|
|
|
#include <sys/cdefs.h>
|
|
__FBSDID("$FreeBSD$");
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/endian.h>
|
|
#include <sys/kernel.h>
|
|
#include <sys/bus.h>
|
|
#include <sys/malloc.h>
|
|
#include <sys/mbuf.h>
|
|
#include <sys/proc.h>
|
|
#include <sys/rman.h>
|
|
#include <sys/module.h>
|
|
#include <sys/socket.h>
|
|
#include <sys/sockio.h>
|
|
#include <sys/sysctl.h>
|
|
|
|
#include <net/ethernet.h>
|
|
#include <net/if.h>
|
|
#include <net/if_dl.h>
|
|
#include <net/if_types.h>
|
|
#include <net/bpf.h>
|
|
#include <net/if_arp.h>
|
|
#include <net/if_media.h>
|
|
#include <net/if_vlan_var.h>
|
|
|
|
#include <machine/bus.h>
|
|
|
|
#include <dev/mii/mii.h>
|
|
#include <dev/mii/miivar.h>
|
|
|
|
#include <dev/pci/pcireg.h>
|
|
#include <dev/pci/pcivar.h>
|
|
|
|
#include <dev/et/if_etreg.h>
|
|
#include <dev/et/if_etvar.h>
|
|
|
|
#include "miibus_if.h"
|
|
|
|
MODULE_DEPEND(et, pci, 1, 1, 1);
|
|
MODULE_DEPEND(et, ether, 1, 1, 1);
|
|
MODULE_DEPEND(et, miibus, 1, 1, 1);
|
|
|
|
/* Tunables. */
|
|
static int msi_disable = 0;
|
|
TUNABLE_INT("hw.et.msi_disable", &msi_disable);
|
|
|
|
#define ET_CSUM_FEATURES (CSUM_IP | CSUM_TCP | CSUM_UDP)
|
|
|
|
static int et_probe(device_t);
|
|
static int et_attach(device_t);
|
|
static int et_detach(device_t);
|
|
static int et_shutdown(device_t);
|
|
static int et_suspend(device_t);
|
|
static int et_resume(device_t);
|
|
|
|
static int et_miibus_readreg(device_t, int, int);
|
|
static int et_miibus_writereg(device_t, int, int, int);
|
|
static void et_miibus_statchg(device_t);
|
|
|
|
static void et_init_locked(struct et_softc *);
|
|
static void et_init(void *);
|
|
static int et_ioctl(struct ifnet *, u_long, caddr_t);
|
|
static void et_start_locked(struct ifnet *);
|
|
static void et_start(struct ifnet *);
|
|
static int et_watchdog(struct et_softc *);
|
|
static int et_ifmedia_upd_locked(struct ifnet *);
|
|
static int et_ifmedia_upd(struct ifnet *);
|
|
static void et_ifmedia_sts(struct ifnet *, struct ifmediareq *);
|
|
|
|
static void et_add_sysctls(struct et_softc *);
|
|
static int et_sysctl_rx_intr_npkts(SYSCTL_HANDLER_ARGS);
|
|
static int et_sysctl_rx_intr_delay(SYSCTL_HANDLER_ARGS);
|
|
|
|
static void et_intr(void *);
|
|
static void et_enable_intrs(struct et_softc *, uint32_t);
|
|
static void et_disable_intrs(struct et_softc *);
|
|
static void et_rxeof(struct et_softc *);
|
|
static void et_txeof(struct et_softc *);
|
|
|
|
static int et_dma_alloc(struct et_softc *);
|
|
static void et_dma_free(struct et_softc *);
|
|
static void et_dma_map_addr(void *, bus_dma_segment_t *, int, int);
|
|
static int et_dma_ring_alloc(struct et_softc *, bus_size_t, bus_size_t,
|
|
bus_dma_tag_t *, uint8_t **, bus_dmamap_t *, bus_addr_t *,
|
|
const char *);
|
|
static void et_dma_ring_free(struct et_softc *, bus_dma_tag_t *, uint8_t **,
|
|
bus_dmamap_t *);
|
|
static void et_init_tx_ring(struct et_softc *);
|
|
static int et_init_rx_ring(struct et_softc *);
|
|
static void et_free_tx_ring(struct et_softc *);
|
|
static void et_free_rx_ring(struct et_softc *);
|
|
static int et_encap(struct et_softc *, struct mbuf **);
|
|
static int et_newbuf_cluster(struct et_rxbuf_data *, int);
|
|
static int et_newbuf_hdr(struct et_rxbuf_data *, int);
|
|
static void et_rxbuf_discard(struct et_rxbuf_data *, int);
|
|
|
|
static void et_stop(struct et_softc *);
|
|
static int et_chip_init(struct et_softc *);
|
|
static void et_chip_attach(struct et_softc *);
|
|
static void et_init_mac(struct et_softc *);
|
|
static void et_init_rxmac(struct et_softc *);
|
|
static void et_init_txmac(struct et_softc *);
|
|
static int et_init_rxdma(struct et_softc *);
|
|
static int et_init_txdma(struct et_softc *);
|
|
static int et_start_rxdma(struct et_softc *);
|
|
static int et_start_txdma(struct et_softc *);
|
|
static int et_stop_rxdma(struct et_softc *);
|
|
static int et_stop_txdma(struct et_softc *);
|
|
static int et_enable_txrx(struct et_softc *, int);
|
|
static void et_reset(struct et_softc *);
|
|
static int et_bus_config(struct et_softc *);
|
|
static void et_get_eaddr(device_t, uint8_t[]);
|
|
static void et_setmulti(struct et_softc *);
|
|
static void et_tick(void *);
|
|
static void et_setmedia(struct et_softc *);
|
|
|
|
static const struct et_dev {
|
|
uint16_t vid;
|
|
uint16_t did;
|
|
const char *desc;
|
|
} et_devices[] = {
|
|
{ PCI_VENDOR_LUCENT, PCI_PRODUCT_LUCENT_ET1310,
|
|
"Agere ET1310 Gigabit Ethernet" },
|
|
{ PCI_VENDOR_LUCENT, PCI_PRODUCT_LUCENT_ET1310_FAST,
|
|
"Agere ET1310 Fast Ethernet" },
|
|
{ 0, 0, NULL }
|
|
};
|
|
|
|
static device_method_t et_methods[] = {
|
|
DEVMETHOD(device_probe, et_probe),
|
|
DEVMETHOD(device_attach, et_attach),
|
|
DEVMETHOD(device_detach, et_detach),
|
|
DEVMETHOD(device_shutdown, et_shutdown),
|
|
DEVMETHOD(device_suspend, et_suspend),
|
|
DEVMETHOD(device_resume, et_resume),
|
|
|
|
DEVMETHOD(miibus_readreg, et_miibus_readreg),
|
|
DEVMETHOD(miibus_writereg, et_miibus_writereg),
|
|
DEVMETHOD(miibus_statchg, et_miibus_statchg),
|
|
|
|
DEVMETHOD_END
|
|
};
|
|
|
|
static driver_t et_driver = {
|
|
"et",
|
|
et_methods,
|
|
sizeof(struct et_softc)
|
|
};
|
|
|
|
static devclass_t et_devclass;
|
|
|
|
DRIVER_MODULE(et, pci, et_driver, et_devclass, 0, 0);
|
|
DRIVER_MODULE(miibus, et, miibus_driver, miibus_devclass, 0, 0);
|
|
|
|
static int et_rx_intr_npkts = 32;
|
|
static int et_rx_intr_delay = 20; /* x10 usec */
|
|
static int et_tx_intr_nsegs = 126;
|
|
static uint32_t et_timer = 1000 * 1000 * 1000; /* nanosec */
|
|
|
|
TUNABLE_INT("hw.et.timer", &et_timer);
|
|
TUNABLE_INT("hw.et.rx_intr_npkts", &et_rx_intr_npkts);
|
|
TUNABLE_INT("hw.et.rx_intr_delay", &et_rx_intr_delay);
|
|
TUNABLE_INT("hw.et.tx_intr_nsegs", &et_tx_intr_nsegs);
|
|
|
|
static int
|
|
et_probe(device_t dev)
|
|
{
|
|
const struct et_dev *d;
|
|
uint16_t did, vid;
|
|
|
|
vid = pci_get_vendor(dev);
|
|
did = pci_get_device(dev);
|
|
|
|
for (d = et_devices; d->desc != NULL; ++d) {
|
|
if (vid == d->vid && did == d->did) {
|
|
device_set_desc(dev, d->desc);
|
|
return (BUS_PROBE_DEFAULT);
|
|
}
|
|
}
|
|
return (ENXIO);
|
|
}
|
|
|
|
static int
|
|
et_attach(device_t dev)
|
|
{
|
|
struct et_softc *sc;
|
|
struct ifnet *ifp;
|
|
uint8_t eaddr[ETHER_ADDR_LEN];
|
|
int cap, error, msic;
|
|
|
|
sc = device_get_softc(dev);
|
|
sc->dev = dev;
|
|
mtx_init(&sc->sc_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
|
|
MTX_DEF);
|
|
callout_init_mtx(&sc->sc_tick, &sc->sc_mtx, 0);
|
|
|
|
ifp = sc->ifp = if_alloc(IFT_ETHER);
|
|
if (ifp == NULL) {
|
|
device_printf(dev, "can not if_alloc()\n");
|
|
error = ENOSPC;
|
|
goto fail;
|
|
}
|
|
|
|
/*
|
|
* Initialize tunables
|
|
*/
|
|
sc->sc_rx_intr_npkts = et_rx_intr_npkts;
|
|
sc->sc_rx_intr_delay = et_rx_intr_delay;
|
|
sc->sc_tx_intr_nsegs = et_tx_intr_nsegs;
|
|
sc->sc_timer = et_timer;
|
|
|
|
/* Enable bus mastering */
|
|
pci_enable_busmaster(dev);
|
|
|
|
/*
|
|
* Allocate IO memory
|
|
*/
|
|
sc->sc_mem_rid = ET_PCIR_BAR;
|
|
sc->sc_mem_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
|
|
&sc->sc_mem_rid, RF_ACTIVE);
|
|
if (sc->sc_mem_res == NULL) {
|
|
device_printf(dev, "can't allocate IO memory\n");
|
|
return (ENXIO);
|
|
}
|
|
|
|
msic = 0;
|
|
if (pci_find_cap(dev, PCIY_EXPRESS, &cap) == 0) {
|
|
sc->sc_expcap = cap;
|
|
sc->sc_flags |= ET_FLAG_PCIE;
|
|
msic = pci_msi_count(dev);
|
|
if (bootverbose)
|
|
device_printf(dev, "MSI count: %d\n", msic);
|
|
}
|
|
if (msic > 0 && msi_disable == 0) {
|
|
msic = 1;
|
|
if (pci_alloc_msi(dev, &msic) == 0) {
|
|
if (msic == 1) {
|
|
device_printf(dev, "Using %d MSI message\n",
|
|
msic);
|
|
sc->sc_flags |= ET_FLAG_MSI;
|
|
} else
|
|
pci_release_msi(dev);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Allocate IRQ
|
|
*/
|
|
if ((sc->sc_flags & ET_FLAG_MSI) == 0) {
|
|
sc->sc_irq_rid = 0;
|
|
sc->sc_irq_res = bus_alloc_resource_any(dev, SYS_RES_IRQ,
|
|
&sc->sc_irq_rid, RF_SHAREABLE | RF_ACTIVE);
|
|
} else {
|
|
sc->sc_irq_rid = 1;
|
|
sc->sc_irq_res = bus_alloc_resource_any(dev, SYS_RES_IRQ,
|
|
&sc->sc_irq_rid, RF_ACTIVE);
|
|
}
|
|
if (sc->sc_irq_res == NULL) {
|
|
device_printf(dev, "can't allocate irq\n");
|
|
error = ENXIO;
|
|
goto fail;
|
|
}
|
|
|
|
error = et_bus_config(sc);
|
|
if (error)
|
|
goto fail;
|
|
|
|
et_get_eaddr(dev, eaddr);
|
|
|
|
CSR_WRITE_4(sc, ET_PM,
|
|
ET_PM_SYSCLK_GATE | ET_PM_TXCLK_GATE | ET_PM_RXCLK_GATE);
|
|
|
|
et_reset(sc);
|
|
|
|
et_disable_intrs(sc);
|
|
|
|
error = et_dma_alloc(sc);
|
|
if (error)
|
|
goto fail;
|
|
|
|
ifp->if_softc = sc;
|
|
if_initname(ifp, device_get_name(dev), device_get_unit(dev));
|
|
ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
|
|
ifp->if_init = et_init;
|
|
ifp->if_ioctl = et_ioctl;
|
|
ifp->if_start = et_start;
|
|
ifp->if_capabilities = IFCAP_TXCSUM | IFCAP_VLAN_MTU;
|
|
ifp->if_capenable = ifp->if_capabilities;
|
|
ifp->if_snd.ifq_drv_maxlen = ET_TX_NDESC - 1;
|
|
IFQ_SET_MAXLEN(&ifp->if_snd, ET_TX_NDESC - 1);
|
|
IFQ_SET_READY(&ifp->if_snd);
|
|
|
|
et_chip_attach(sc);
|
|
|
|
error = mii_attach(dev, &sc->sc_miibus, ifp, et_ifmedia_upd,
|
|
et_ifmedia_sts, BMSR_DEFCAPMASK, MII_PHY_ANY, MII_OFFSET_ANY, 0);
|
|
if (error) {
|
|
device_printf(dev, "attaching PHYs failed\n");
|
|
goto fail;
|
|
}
|
|
|
|
ether_ifattach(ifp, eaddr);
|
|
|
|
/* Tell the upper layer(s) we support long frames. */
|
|
ifp->if_hdrlen = sizeof(struct ether_vlan_header);
|
|
|
|
error = bus_setup_intr(dev, sc->sc_irq_res, INTR_TYPE_NET | INTR_MPSAFE,
|
|
NULL, et_intr, sc, &sc->sc_irq_handle);
|
|
if (error) {
|
|
ether_ifdetach(ifp);
|
|
device_printf(dev, "can't setup intr\n");
|
|
goto fail;
|
|
}
|
|
|
|
et_add_sysctls(sc);
|
|
|
|
return (0);
|
|
fail:
|
|
et_detach(dev);
|
|
return (error);
|
|
}
|
|
|
|
static int
|
|
et_detach(device_t dev)
|
|
{
|
|
struct et_softc *sc = device_get_softc(dev);
|
|
|
|
if (device_is_attached(dev)) {
|
|
ether_ifdetach(sc->ifp);
|
|
ET_LOCK(sc);
|
|
et_stop(sc);
|
|
ET_UNLOCK(sc);
|
|
callout_drain(&sc->sc_tick);
|
|
}
|
|
|
|
if (sc->sc_miibus != NULL)
|
|
device_delete_child(dev, sc->sc_miibus);
|
|
bus_generic_detach(dev);
|
|
|
|
if (sc->sc_irq_handle != NULL)
|
|
bus_teardown_intr(dev, sc->sc_irq_res, sc->sc_irq_handle);
|
|
if (sc->sc_irq_res != NULL)
|
|
bus_release_resource(dev, SYS_RES_IRQ,
|
|
rman_get_rid(sc->sc_irq_res), sc->sc_irq_res);
|
|
if ((sc->sc_flags & ET_FLAG_MSI) != 0)
|
|
pci_release_msi(dev);
|
|
if (sc->sc_mem_res != NULL)
|
|
bus_release_resource(dev, SYS_RES_MEMORY,
|
|
rman_get_rid(sc->sc_mem_res), sc->sc_mem_res);
|
|
|
|
if (sc->ifp != NULL)
|
|
if_free(sc->ifp);
|
|
|
|
et_dma_free(sc);
|
|
|
|
mtx_destroy(&sc->sc_mtx);
|
|
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
et_shutdown(device_t dev)
|
|
{
|
|
struct et_softc *sc = device_get_softc(dev);
|
|
|
|
ET_LOCK(sc);
|
|
et_stop(sc);
|
|
ET_UNLOCK(sc);
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
et_miibus_readreg(device_t dev, int phy, int reg)
|
|
{
|
|
struct et_softc *sc = device_get_softc(dev);
|
|
uint32_t val;
|
|
int i, ret;
|
|
|
|
/* Stop any pending operations */
|
|
CSR_WRITE_4(sc, ET_MII_CMD, 0);
|
|
|
|
val = (phy << ET_MII_ADDR_PHY_SHIFT) & ET_MII_ADDR_PHY_MASK;
|
|
val |= (reg << ET_MII_ADDR_REG_SHIFT) & ET_MII_ADDR_REG_MASK;
|
|
CSR_WRITE_4(sc, ET_MII_ADDR, val);
|
|
|
|
/* Start reading */
|
|
CSR_WRITE_4(sc, ET_MII_CMD, ET_MII_CMD_READ);
|
|
|
|
#define NRETRY 50
|
|
|
|
for (i = 0; i < NRETRY; ++i) {
|
|
val = CSR_READ_4(sc, ET_MII_IND);
|
|
if ((val & (ET_MII_IND_BUSY | ET_MII_IND_INVALID)) == 0)
|
|
break;
|
|
DELAY(50);
|
|
}
|
|
if (i == NRETRY) {
|
|
if_printf(sc->ifp,
|
|
"read phy %d, reg %d timed out\n", phy, reg);
|
|
ret = 0;
|
|
goto back;
|
|
}
|
|
|
|
#undef NRETRY
|
|
|
|
val = CSR_READ_4(sc, ET_MII_STAT);
|
|
ret = val & ET_MII_STAT_VALUE_MASK;
|
|
|
|
back:
|
|
/* Make sure that the current operation is stopped */
|
|
CSR_WRITE_4(sc, ET_MII_CMD, 0);
|
|
return (ret);
|
|
}
|
|
|
|
static int
|
|
et_miibus_writereg(device_t dev, int phy, int reg, int val0)
|
|
{
|
|
struct et_softc *sc = device_get_softc(dev);
|
|
uint32_t val;
|
|
int i;
|
|
|
|
/* Stop any pending operations */
|
|
CSR_WRITE_4(sc, ET_MII_CMD, 0);
|
|
|
|
val = (phy << ET_MII_ADDR_PHY_SHIFT) & ET_MII_ADDR_PHY_MASK;
|
|
val |= (reg << ET_MII_ADDR_REG_SHIFT) & ET_MII_ADDR_REG_MASK;
|
|
CSR_WRITE_4(sc, ET_MII_ADDR, val);
|
|
|
|
/* Start writing */
|
|
CSR_WRITE_4(sc, ET_MII_CTRL,
|
|
(val0 << ET_MII_CTRL_VALUE_SHIFT) & ET_MII_CTRL_VALUE_MASK);
|
|
|
|
#define NRETRY 100
|
|
|
|
for (i = 0; i < NRETRY; ++i) {
|
|
val = CSR_READ_4(sc, ET_MII_IND);
|
|
if ((val & ET_MII_IND_BUSY) == 0)
|
|
break;
|
|
DELAY(50);
|
|
}
|
|
if (i == NRETRY) {
|
|
if_printf(sc->ifp,
|
|
"write phy %d, reg %d timed out\n", phy, reg);
|
|
et_miibus_readreg(dev, phy, reg);
|
|
}
|
|
|
|
#undef NRETRY
|
|
|
|
/* Make sure that the current operation is stopped */
|
|
CSR_WRITE_4(sc, ET_MII_CMD, 0);
|
|
return (0);
|
|
}
|
|
|
|
static void
|
|
et_miibus_statchg(device_t dev)
|
|
{
|
|
et_setmedia(device_get_softc(dev));
|
|
}
|
|
|
|
static int
|
|
et_ifmedia_upd_locked(struct ifnet *ifp)
|
|
{
|
|
struct et_softc *sc = ifp->if_softc;
|
|
struct mii_data *mii = device_get_softc(sc->sc_miibus);
|
|
struct mii_softc *miisc;
|
|
|
|
LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
|
|
PHY_RESET(miisc);
|
|
return (mii_mediachg(mii));
|
|
}
|
|
|
|
static int
|
|
et_ifmedia_upd(struct ifnet *ifp)
|
|
{
|
|
struct et_softc *sc = ifp->if_softc;
|
|
int res;
|
|
|
|
ET_LOCK(sc);
|
|
res = et_ifmedia_upd_locked(ifp);
|
|
ET_UNLOCK(sc);
|
|
|
|
return (res);
|
|
}
|
|
|
|
static void
|
|
et_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
|
|
{
|
|
struct et_softc *sc = ifp->if_softc;
|
|
struct mii_data *mii = device_get_softc(sc->sc_miibus);
|
|
|
|
ET_LOCK(sc);
|
|
mii_pollstat(mii);
|
|
ifmr->ifm_active = mii->mii_media_active;
|
|
ifmr->ifm_status = mii->mii_media_status;
|
|
ET_UNLOCK(sc);
|
|
}
|
|
|
|
static void
|
|
et_stop(struct et_softc *sc)
|
|
{
|
|
struct ifnet *ifp = sc->ifp;
|
|
|
|
ET_LOCK_ASSERT(sc);
|
|
|
|
callout_stop(&sc->sc_tick);
|
|
|
|
et_stop_rxdma(sc);
|
|
et_stop_txdma(sc);
|
|
|
|
et_disable_intrs(sc);
|
|
|
|
et_free_tx_ring(sc);
|
|
et_free_rx_ring(sc);
|
|
|
|
et_reset(sc);
|
|
|
|
sc->sc_tx = 0;
|
|
sc->sc_tx_intr = 0;
|
|
sc->sc_flags &= ~ET_FLAG_TXRX_ENABLED;
|
|
|
|
sc->watchdog_timer = 0;
|
|
ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
|
|
}
|
|
|
|
static int
|
|
et_bus_config(struct et_softc *sc)
|
|
{
|
|
uint32_t val, max_plsz;
|
|
uint16_t ack_latency, replay_timer;
|
|
|
|
/*
|
|
* Test whether EEPROM is valid
|
|
* NOTE: Read twice to get the correct value
|
|
*/
|
|
pci_read_config(sc->dev, ET_PCIR_EEPROM_STATUS, 1);
|
|
val = pci_read_config(sc->dev, ET_PCIR_EEPROM_STATUS, 1);
|
|
if (val & ET_PCIM_EEPROM_STATUS_ERROR) {
|
|
device_printf(sc->dev, "EEPROM status error 0x%02x\n", val);
|
|
return (ENXIO);
|
|
}
|
|
|
|
/* TODO: LED */
|
|
|
|
if ((sc->sc_flags & ET_FLAG_PCIE) == 0)
|
|
return (0);
|
|
|
|
/*
|
|
* Configure ACK latency and replay timer according to
|
|
* max playload size
|
|
*/
|
|
val = pci_read_config(sc->dev,
|
|
sc->sc_expcap + PCIR_EXPRESS_DEVICE_CAP, 4);
|
|
max_plsz = val & PCIM_EXP_CAP_MAX_PAYLOAD;
|
|
|
|
switch (max_plsz) {
|
|
case ET_PCIV_DEVICE_CAPS_PLSZ_128:
|
|
ack_latency = ET_PCIV_ACK_LATENCY_128;
|
|
replay_timer = ET_PCIV_REPLAY_TIMER_128;
|
|
break;
|
|
|
|
case ET_PCIV_DEVICE_CAPS_PLSZ_256:
|
|
ack_latency = ET_PCIV_ACK_LATENCY_256;
|
|
replay_timer = ET_PCIV_REPLAY_TIMER_256;
|
|
break;
|
|
|
|
default:
|
|
ack_latency = pci_read_config(sc->dev, ET_PCIR_ACK_LATENCY, 2);
|
|
replay_timer = pci_read_config(sc->dev,
|
|
ET_PCIR_REPLAY_TIMER, 2);
|
|
device_printf(sc->dev, "ack latency %u, replay timer %u\n",
|
|
ack_latency, replay_timer);
|
|
break;
|
|
}
|
|
if (ack_latency != 0) {
|
|
pci_write_config(sc->dev, ET_PCIR_ACK_LATENCY, ack_latency, 2);
|
|
pci_write_config(sc->dev, ET_PCIR_REPLAY_TIMER, replay_timer,
|
|
2);
|
|
}
|
|
|
|
/*
|
|
* Set L0s and L1 latency timer to 2us
|
|
*/
|
|
val = pci_read_config(sc->dev, ET_PCIR_L0S_L1_LATENCY, 4);
|
|
val &= ~(PCIM_LINK_CAP_L0S_EXIT | PCIM_LINK_CAP_L1_EXIT);
|
|
/* L0s exit latency : 2us */
|
|
val |= 0x00005000;
|
|
/* L1 exit latency : 2us */
|
|
val |= 0x00028000;
|
|
pci_write_config(sc->dev, ET_PCIR_L0S_L1_LATENCY, val, 4);
|
|
|
|
/*
|
|
* Set max read request size to 2048 bytes
|
|
*/
|
|
val = pci_read_config(sc->dev,
|
|
sc->sc_expcap + PCIR_EXPRESS_DEVICE_CTL, 2);
|
|
val &= ~PCIM_EXP_CTL_MAX_READ_REQUEST;
|
|
val |= ET_PCIV_DEVICE_CTRL_RRSZ_2K;
|
|
pci_write_config(sc->dev,
|
|
sc->sc_expcap + PCIR_EXPRESS_DEVICE_CTL, val, 2);
|
|
|
|
return (0);
|
|
}
|
|
|
|
static void
|
|
et_get_eaddr(device_t dev, uint8_t eaddr[])
|
|
{
|
|
uint32_t val;
|
|
int i;
|
|
|
|
val = pci_read_config(dev, ET_PCIR_MAC_ADDR0, 4);
|
|
for (i = 0; i < 4; ++i)
|
|
eaddr[i] = (val >> (8 * i)) & 0xff;
|
|
|
|
val = pci_read_config(dev, ET_PCIR_MAC_ADDR1, 2);
|
|
for (; i < ETHER_ADDR_LEN; ++i)
|
|
eaddr[i] = (val >> (8 * (i - 4))) & 0xff;
|
|
}
|
|
|
|
static void
|
|
et_reset(struct et_softc *sc)
|
|
{
|
|
CSR_WRITE_4(sc, ET_MAC_CFG1,
|
|
ET_MAC_CFG1_RST_TXFUNC | ET_MAC_CFG1_RST_RXFUNC |
|
|
ET_MAC_CFG1_RST_TXMC | ET_MAC_CFG1_RST_RXMC |
|
|
ET_MAC_CFG1_SIM_RST | ET_MAC_CFG1_SOFT_RST);
|
|
|
|
CSR_WRITE_4(sc, ET_SWRST,
|
|
ET_SWRST_TXDMA | ET_SWRST_RXDMA |
|
|
ET_SWRST_TXMAC | ET_SWRST_RXMAC |
|
|
ET_SWRST_MAC | ET_SWRST_MAC_STAT | ET_SWRST_MMC);
|
|
|
|
CSR_WRITE_4(sc, ET_MAC_CFG1,
|
|
ET_MAC_CFG1_RST_TXFUNC | ET_MAC_CFG1_RST_RXFUNC |
|
|
ET_MAC_CFG1_RST_TXMC | ET_MAC_CFG1_RST_RXMC);
|
|
CSR_WRITE_4(sc, ET_MAC_CFG1, 0);
|
|
}
|
|
|
|
static void
|
|
et_disable_intrs(struct et_softc *sc)
|
|
{
|
|
CSR_WRITE_4(sc, ET_INTR_MASK, 0xffffffff);
|
|
}
|
|
|
|
static void
|
|
et_enable_intrs(struct et_softc *sc, uint32_t intrs)
|
|
{
|
|
CSR_WRITE_4(sc, ET_INTR_MASK, ~intrs);
|
|
}
|
|
|
|
struct et_dmamap_arg {
|
|
bus_addr_t et_busaddr;
|
|
};
|
|
|
|
static void
|
|
et_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error)
|
|
{
|
|
struct et_dmamap_arg *ctx;
|
|
|
|
if (error)
|
|
return;
|
|
|
|
KASSERT(nseg == 1, ("%s: %d segments returned!", __func__, nseg));
|
|
|
|
ctx = arg;
|
|
ctx->et_busaddr = segs->ds_addr;
|
|
}
|
|
|
|
static int
|
|
et_dma_ring_alloc(struct et_softc *sc, bus_size_t alignment, bus_size_t maxsize,
|
|
bus_dma_tag_t *tag, uint8_t **ring, bus_dmamap_t *map, bus_addr_t *paddr,
|
|
const char *msg)
|
|
{
|
|
struct et_dmamap_arg ctx;
|
|
int error;
|
|
|
|
error = bus_dma_tag_create(sc->sc_dtag, alignment, 0, BUS_SPACE_MAXADDR,
|
|
BUS_SPACE_MAXADDR, NULL, NULL, maxsize, 1, maxsize, 0, NULL, NULL,
|
|
tag);
|
|
if (error != 0) {
|
|
device_printf(sc->dev, "could not create %s dma tag\n", msg);
|
|
return (error);
|
|
}
|
|
/* Allocate DMA'able memory for ring. */
|
|
error = bus_dmamem_alloc(*tag, (void **)ring,
|
|
BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT, map);
|
|
if (error != 0) {
|
|
device_printf(sc->dev,
|
|
"could not allocate DMA'able memory for %s\n", msg);
|
|
return (error);
|
|
}
|
|
/* Load the address of the ring. */
|
|
ctx.et_busaddr = 0;
|
|
error = bus_dmamap_load(*tag, *map, *ring, maxsize, et_dma_map_addr,
|
|
&ctx, BUS_DMA_NOWAIT);
|
|
if (error != 0) {
|
|
device_printf(sc->dev,
|
|
"could not load DMA'able memory for %s\n", msg);
|
|
return (error);
|
|
}
|
|
*paddr = ctx.et_busaddr;
|
|
return (0);
|
|
}
|
|
|
|
static void
|
|
et_dma_ring_free(struct et_softc *sc, bus_dma_tag_t *tag, uint8_t **ring,
|
|
bus_dmamap_t *map)
|
|
{
|
|
|
|
if (*map != NULL)
|
|
bus_dmamap_unload(*tag, *map);
|
|
if (*map != NULL && *ring != NULL) {
|
|
bus_dmamem_free(*tag, *ring, *map);
|
|
*ring = NULL;
|
|
*map = NULL;
|
|
}
|
|
if (*tag) {
|
|
bus_dma_tag_destroy(*tag);
|
|
*tag = NULL;
|
|
}
|
|
}
|
|
|
|
static int
|
|
et_dma_alloc(struct et_softc *sc)
|
|
{
|
|
struct et_txdesc_ring *tx_ring;
|
|
struct et_rxdesc_ring *rx_ring;
|
|
struct et_rxstat_ring *rxst_ring;
|
|
struct et_rxstatus_data *rxsd;
|
|
struct et_rxbuf_data *rbd;
|
|
struct et_txbuf_data *tbd;
|
|
struct et_txstatus_data *txsd;
|
|
int i, error;
|
|
|
|
error = bus_dma_tag_create(bus_get_dma_tag(sc->dev), 1, 0,
|
|
BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL,
|
|
BUS_SPACE_MAXSIZE_32BIT, 0, BUS_SPACE_MAXSIZE_32BIT, 0, NULL, NULL,
|
|
&sc->sc_dtag);
|
|
if (error != 0) {
|
|
device_printf(sc->dev, "could not allocate parent dma tag\n");
|
|
return (error);
|
|
}
|
|
|
|
/* TX ring. */
|
|
tx_ring = &sc->sc_tx_ring;
|
|
error = et_dma_ring_alloc(sc, ET_RING_ALIGN, ET_TX_RING_SIZE,
|
|
&tx_ring->tr_dtag, (uint8_t **)&tx_ring->tr_desc, &tx_ring->tr_dmap,
|
|
&tx_ring->tr_paddr, "TX ring");
|
|
if (error)
|
|
return (error);
|
|
|
|
/* TX status block. */
|
|
txsd = &sc->sc_tx_status;
|
|
error = et_dma_ring_alloc(sc, ET_STATUS_ALIGN, sizeof(uint32_t),
|
|
&txsd->txsd_dtag, (uint8_t **)&txsd->txsd_status, &txsd->txsd_dmap,
|
|
&txsd->txsd_paddr, "TX status block");
|
|
if (error)
|
|
return (error);
|
|
|
|
/* RX ring 0, used as to recive small sized frames. */
|
|
rx_ring = &sc->sc_rx_ring[0];
|
|
error = et_dma_ring_alloc(sc, ET_RING_ALIGN, ET_RX_RING_SIZE,
|
|
&rx_ring->rr_dtag, (uint8_t **)&rx_ring->rr_desc, &rx_ring->rr_dmap,
|
|
&rx_ring->rr_paddr, "RX ring 0");
|
|
rx_ring->rr_posreg = ET_RX_RING0_POS;
|
|
if (error)
|
|
return (error);
|
|
|
|
/* RX ring 1, used as to store normal sized frames. */
|
|
rx_ring = &sc->sc_rx_ring[1];
|
|
error = et_dma_ring_alloc(sc, ET_RING_ALIGN, ET_RX_RING_SIZE,
|
|
&rx_ring->rr_dtag, (uint8_t **)&rx_ring->rr_desc, &rx_ring->rr_dmap,
|
|
&rx_ring->rr_paddr, "RX ring 1");
|
|
rx_ring->rr_posreg = ET_RX_RING1_POS;
|
|
if (error)
|
|
return (error);
|
|
|
|
/* RX stat ring. */
|
|
rxst_ring = &sc->sc_rxstat_ring;
|
|
error = et_dma_ring_alloc(sc, ET_RING_ALIGN, ET_RXSTAT_RING_SIZE,
|
|
&rxst_ring->rsr_dtag, (uint8_t **)&rxst_ring->rsr_stat,
|
|
&rxst_ring->rsr_dmap, &rxst_ring->rsr_paddr, "RX stat ring");
|
|
if (error)
|
|
return (error);
|
|
|
|
/* RX status block. */
|
|
rxsd = &sc->sc_rx_status;
|
|
error = et_dma_ring_alloc(sc, ET_STATUS_ALIGN,
|
|
sizeof(struct et_rxstatus), &rxsd->rxsd_dtag,
|
|
(uint8_t **)&rxsd->rxsd_status, &rxsd->rxsd_dmap,
|
|
&rxsd->rxsd_paddr, "RX status block");
|
|
if (error)
|
|
return (error);
|
|
|
|
/* Create parent DMA tag for mbufs. */
|
|
error = bus_dma_tag_create(bus_get_dma_tag(sc->dev), 1, 0,
|
|
BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL,
|
|
BUS_SPACE_MAXSIZE_32BIT, 0, BUS_SPACE_MAXSIZE_32BIT, 0, NULL, NULL,
|
|
&sc->sc_mbuf_dtag);
|
|
if (error != 0) {
|
|
device_printf(sc->dev,
|
|
"could not allocate parent dma tag for mbuf\n");
|
|
return (error);
|
|
}
|
|
|
|
/* Create DMA tag for mini RX mbufs to use RX ring 0. */
|
|
error = bus_dma_tag_create(sc->sc_mbuf_dtag, 1, 0,
|
|
BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, MHLEN, 1,
|
|
MHLEN, 0, NULL, NULL, &sc->sc_rx_mini_tag);
|
|
if (error) {
|
|
device_printf(sc->dev, "could not create mini RX dma tag\n");
|
|
return (error);
|
|
}
|
|
|
|
/* Create DMA tag for standard RX mbufs to use RX ring 1. */
|
|
error = bus_dma_tag_create(sc->sc_mbuf_dtag, 1, 0,
|
|
BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES, 1,
|
|
MCLBYTES, 0, NULL, NULL, &sc->sc_rx_tag);
|
|
if (error) {
|
|
device_printf(sc->dev, "could not create RX dma tag\n");
|
|
return (error);
|
|
}
|
|
|
|
/* Create DMA tag for TX mbufs. */
|
|
error = bus_dma_tag_create(sc->sc_mbuf_dtag, 1, 0,
|
|
BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL,
|
|
MCLBYTES * ET_NSEG_MAX, ET_NSEG_MAX, MCLBYTES, 0, NULL, NULL,
|
|
&sc->sc_tx_tag);
|
|
if (error) {
|
|
device_printf(sc->dev, "could not create TX dma tag\n");
|
|
return (error);
|
|
}
|
|
|
|
/* Initialize RX ring 0. */
|
|
rbd = &sc->sc_rx_data[0];
|
|
rbd->rbd_bufsize = ET_RXDMA_CTRL_RING0_128;
|
|
rbd->rbd_newbuf = et_newbuf_hdr;
|
|
rbd->rbd_discard = et_rxbuf_discard;
|
|
rbd->rbd_softc = sc;
|
|
rbd->rbd_ring = &sc->sc_rx_ring[0];
|
|
/* Create DMA maps for mini RX buffers, ring 0. */
|
|
for (i = 0; i < ET_RX_NDESC; i++) {
|
|
error = bus_dmamap_create(sc->sc_rx_mini_tag, 0,
|
|
&rbd->rbd_buf[i].rb_dmap);
|
|
if (error) {
|
|
device_printf(sc->dev,
|
|
"could not create DMA map for mini RX mbufs\n");
|
|
return (error);
|
|
}
|
|
}
|
|
|
|
/* Create a spare DMA map for mini RX buffers, ring 0. */
|
|
error = bus_dmamap_create(sc->sc_rx_mini_tag, 0,
|
|
&sc->sc_rx_mini_sparemap);
|
|
if (error) {
|
|
device_printf(sc->dev,
|
|
"could not create spare DMA map for mini RX mbuf\n");
|
|
return (error);
|
|
}
|
|
|
|
/* Initialize RX ring 1. */
|
|
rbd = &sc->sc_rx_data[1];
|
|
rbd->rbd_bufsize = ET_RXDMA_CTRL_RING1_2048;
|
|
rbd->rbd_newbuf = et_newbuf_cluster;
|
|
rbd->rbd_discard = et_rxbuf_discard;
|
|
rbd->rbd_softc = sc;
|
|
rbd->rbd_ring = &sc->sc_rx_ring[1];
|
|
/* Create DMA maps for standard RX buffers, ring 1. */
|
|
for (i = 0; i < ET_RX_NDESC; i++) {
|
|
error = bus_dmamap_create(sc->sc_rx_tag, 0,
|
|
&rbd->rbd_buf[i].rb_dmap);
|
|
if (error) {
|
|
device_printf(sc->dev,
|
|
"could not create DMA map for mini RX mbufs\n");
|
|
return (error);
|
|
}
|
|
}
|
|
|
|
/* Create a spare DMA map for standard RX buffers, ring 1. */
|
|
error = bus_dmamap_create(sc->sc_rx_tag, 0, &sc->sc_rx_sparemap);
|
|
if (error) {
|
|
device_printf(sc->dev,
|
|
"could not create spare DMA map for RX mbuf\n");
|
|
return (error);
|
|
}
|
|
|
|
/* Create DMA maps for TX buffers. */
|
|
tbd = &sc->sc_tx_data;
|
|
for (i = 0; i < ET_TX_NDESC; i++) {
|
|
error = bus_dmamap_create(sc->sc_tx_tag, 0,
|
|
&tbd->tbd_buf[i].tb_dmap);
|
|
if (error) {
|
|
device_printf(sc->dev,
|
|
"could not create DMA map for TX mbufs\n");
|
|
return (error);
|
|
}
|
|
}
|
|
|
|
return (0);
|
|
}
|
|
|
|
static void
|
|
et_dma_free(struct et_softc *sc)
|
|
{
|
|
struct et_txdesc_ring *tx_ring;
|
|
struct et_rxdesc_ring *rx_ring;
|
|
struct et_txstatus_data *txsd;
|
|
struct et_rxstat_ring *rxst_ring;
|
|
struct et_rxstatus_data *rxsd;
|
|
struct et_rxbuf_data *rbd;
|
|
struct et_txbuf_data *tbd;
|
|
int i;
|
|
|
|
/* Destroy DMA maps for mini RX buffers, ring 0. */
|
|
rbd = &sc->sc_rx_data[0];
|
|
for (i = 0; i < ET_RX_NDESC; i++) {
|
|
if (rbd->rbd_buf[i].rb_dmap) {
|
|
bus_dmamap_destroy(sc->sc_rx_mini_tag,
|
|
rbd->rbd_buf[i].rb_dmap);
|
|
rbd->rbd_buf[i].rb_dmap = NULL;
|
|
}
|
|
}
|
|
if (sc->sc_rx_mini_sparemap) {
|
|
bus_dmamap_destroy(sc->sc_rx_mini_tag, sc->sc_rx_mini_sparemap);
|
|
sc->sc_rx_mini_sparemap = NULL;
|
|
}
|
|
if (sc->sc_rx_mini_tag) {
|
|
bus_dma_tag_destroy(sc->sc_rx_mini_tag);
|
|
sc->sc_rx_mini_tag = NULL;
|
|
}
|
|
|
|
/* Destroy DMA maps for standard RX buffers, ring 1. */
|
|
rbd = &sc->sc_rx_data[1];
|
|
for (i = 0; i < ET_RX_NDESC; i++) {
|
|
if (rbd->rbd_buf[i].rb_dmap) {
|
|
bus_dmamap_destroy(sc->sc_rx_tag,
|
|
rbd->rbd_buf[i].rb_dmap);
|
|
rbd->rbd_buf[i].rb_dmap = NULL;
|
|
}
|
|
}
|
|
if (sc->sc_rx_sparemap) {
|
|
bus_dmamap_destroy(sc->sc_rx_tag, sc->sc_rx_sparemap);
|
|
sc->sc_rx_sparemap = NULL;
|
|
}
|
|
if (sc->sc_rx_tag) {
|
|
bus_dma_tag_destroy(sc->sc_rx_tag);
|
|
sc->sc_rx_tag = NULL;
|
|
}
|
|
|
|
/* Destroy DMA maps for TX buffers. */
|
|
tbd = &sc->sc_tx_data;
|
|
for (i = 0; i < ET_TX_NDESC; i++) {
|
|
if (tbd->tbd_buf[i].tb_dmap) {
|
|
bus_dmamap_destroy(sc->sc_tx_tag,
|
|
tbd->tbd_buf[i].tb_dmap);
|
|
tbd->tbd_buf[i].tb_dmap = NULL;
|
|
}
|
|
}
|
|
if (sc->sc_tx_tag) {
|
|
bus_dma_tag_destroy(sc->sc_tx_tag);
|
|
sc->sc_tx_tag = NULL;
|
|
}
|
|
|
|
/* Destroy mini RX ring, ring 0. */
|
|
rx_ring = &sc->sc_rx_ring[0];
|
|
et_dma_ring_free(sc, &rx_ring->rr_dtag, (void *)&rx_ring->rr_desc,
|
|
&rx_ring->rr_dmap);
|
|
/* Destroy standard RX ring, ring 1. */
|
|
rx_ring = &sc->sc_rx_ring[1];
|
|
et_dma_ring_free(sc, &rx_ring->rr_dtag, (void *)&rx_ring->rr_desc,
|
|
&rx_ring->rr_dmap);
|
|
/* Destroy RX stat ring. */
|
|
rxst_ring = &sc->sc_rxstat_ring;
|
|
et_dma_ring_free(sc, &rxst_ring->rsr_dtag, (void *)&rxst_ring->rsr_stat,
|
|
&rxst_ring->rsr_dmap);
|
|
/* Destroy RX status block. */
|
|
rxsd = &sc->sc_rx_status;
|
|
et_dma_ring_free(sc, &rxst_ring->rsr_dtag, (void *)&rxst_ring->rsr_stat,
|
|
&rxst_ring->rsr_dmap);
|
|
/* Destroy TX ring. */
|
|
tx_ring = &sc->sc_tx_ring;
|
|
et_dma_ring_free(sc, &tx_ring->tr_dtag, (void *)&tx_ring->tr_desc,
|
|
&tx_ring->tr_dmap);
|
|
/* Destroy TX status block. */
|
|
txsd = &sc->sc_tx_status;
|
|
et_dma_ring_free(sc, &txsd->txsd_dtag, (void *)&txsd->txsd_status,
|
|
&txsd->txsd_dmap);
|
|
|
|
/* Destroy the parent tag. */
|
|
if (sc->sc_dtag) {
|
|
bus_dma_tag_destroy(sc->sc_dtag);
|
|
sc->sc_dtag = NULL;
|
|
}
|
|
}
|
|
|
|
static void
|
|
et_chip_attach(struct et_softc *sc)
|
|
{
|
|
uint32_t val;
|
|
|
|
/*
|
|
* Perform minimal initialization
|
|
*/
|
|
|
|
/* Disable loopback */
|
|
CSR_WRITE_4(sc, ET_LOOPBACK, 0);
|
|
|
|
/* Reset MAC */
|
|
CSR_WRITE_4(sc, ET_MAC_CFG1,
|
|
ET_MAC_CFG1_RST_TXFUNC | ET_MAC_CFG1_RST_RXFUNC |
|
|
ET_MAC_CFG1_RST_TXMC | ET_MAC_CFG1_RST_RXMC |
|
|
ET_MAC_CFG1_SIM_RST | ET_MAC_CFG1_SOFT_RST);
|
|
|
|
/*
|
|
* Setup half duplex mode
|
|
*/
|
|
val = (10 << ET_MAC_HDX_ALT_BEB_TRUNC_SHIFT) |
|
|
(15 << ET_MAC_HDX_REXMIT_MAX_SHIFT) |
|
|
(55 << ET_MAC_HDX_COLLWIN_SHIFT) |
|
|
ET_MAC_HDX_EXC_DEFER;
|
|
CSR_WRITE_4(sc, ET_MAC_HDX, val);
|
|
|
|
/* Clear MAC control */
|
|
CSR_WRITE_4(sc, ET_MAC_CTRL, 0);
|
|
|
|
/* Reset MII */
|
|
CSR_WRITE_4(sc, ET_MII_CFG, ET_MII_CFG_CLKRST);
|
|
|
|
/* Bring MAC out of reset state */
|
|
CSR_WRITE_4(sc, ET_MAC_CFG1, 0);
|
|
|
|
/* Enable memory controllers */
|
|
CSR_WRITE_4(sc, ET_MMC_CTRL, ET_MMC_CTRL_ENABLE);
|
|
}
|
|
|
|
static void
|
|
et_intr(void *xsc)
|
|
{
|
|
struct et_softc *sc = xsc;
|
|
struct ifnet *ifp;
|
|
uint32_t intrs;
|
|
|
|
ET_LOCK(sc);
|
|
ifp = sc->ifp;
|
|
if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
|
|
ET_UNLOCK(sc);
|
|
return;
|
|
}
|
|
|
|
et_disable_intrs(sc);
|
|
|
|
intrs = CSR_READ_4(sc, ET_INTR_STATUS);
|
|
intrs &= ET_INTRS;
|
|
if (intrs == 0) /* Not interested */
|
|
goto back;
|
|
|
|
if (intrs & ET_INTR_RXEOF)
|
|
et_rxeof(sc);
|
|
if (intrs & (ET_INTR_TXEOF | ET_INTR_TIMER))
|
|
et_txeof(sc);
|
|
if (intrs & ET_INTR_TIMER)
|
|
CSR_WRITE_4(sc, ET_TIMER, sc->sc_timer);
|
|
back:
|
|
et_enable_intrs(sc, ET_INTRS);
|
|
ET_UNLOCK(sc);
|
|
}
|
|
|
|
static void
|
|
et_init_locked(struct et_softc *sc)
|
|
{
|
|
struct ifnet *ifp;
|
|
int error;
|
|
|
|
ET_LOCK_ASSERT(sc);
|
|
|
|
ifp = sc->ifp;
|
|
if (ifp->if_drv_flags & IFF_DRV_RUNNING)
|
|
return;
|
|
|
|
et_stop(sc);
|
|
|
|
et_init_tx_ring(sc);
|
|
error = et_init_rx_ring(sc);
|
|
if (error)
|
|
return;
|
|
|
|
error = et_chip_init(sc);
|
|
if (error)
|
|
goto back;
|
|
|
|
error = et_enable_txrx(sc, 1);
|
|
if (error)
|
|
goto back;
|
|
|
|
et_enable_intrs(sc, ET_INTRS);
|
|
|
|
callout_reset(&sc->sc_tick, hz, et_tick, sc);
|
|
|
|
CSR_WRITE_4(sc, ET_TIMER, sc->sc_timer);
|
|
|
|
ifp->if_drv_flags |= IFF_DRV_RUNNING;
|
|
ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
|
|
back:
|
|
if (error)
|
|
et_stop(sc);
|
|
}
|
|
|
|
static void
|
|
et_init(void *xsc)
|
|
{
|
|
struct et_softc *sc = xsc;
|
|
|
|
ET_LOCK(sc);
|
|
et_init_locked(sc);
|
|
ET_UNLOCK(sc);
|
|
}
|
|
|
|
static int
|
|
et_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
|
|
{
|
|
struct et_softc *sc = ifp->if_softc;
|
|
struct mii_data *mii = device_get_softc(sc->sc_miibus);
|
|
struct ifreq *ifr = (struct ifreq *)data;
|
|
int error = 0, mask, max_framelen;
|
|
|
|
/* XXX LOCKSUSED */
|
|
switch (cmd) {
|
|
case SIOCSIFFLAGS:
|
|
ET_LOCK(sc);
|
|
if (ifp->if_flags & IFF_UP) {
|
|
if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
|
|
if ((ifp->if_flags ^ sc->sc_if_flags) &
|
|
(IFF_ALLMULTI | IFF_PROMISC | IFF_BROADCAST))
|
|
et_setmulti(sc);
|
|
} else {
|
|
et_init_locked(sc);
|
|
}
|
|
} else {
|
|
if (ifp->if_drv_flags & IFF_DRV_RUNNING)
|
|
et_stop(sc);
|
|
}
|
|
sc->sc_if_flags = ifp->if_flags;
|
|
ET_UNLOCK(sc);
|
|
break;
|
|
|
|
case SIOCSIFMEDIA:
|
|
case SIOCGIFMEDIA:
|
|
error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, cmd);
|
|
break;
|
|
|
|
case SIOCADDMULTI:
|
|
case SIOCDELMULTI:
|
|
if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
|
|
ET_LOCK(sc);
|
|
et_setmulti(sc);
|
|
ET_UNLOCK(sc);
|
|
error = 0;
|
|
}
|
|
break;
|
|
|
|
case SIOCSIFMTU:
|
|
#if 0
|
|
if (sc->sc_flags & ET_FLAG_JUMBO)
|
|
max_framelen = ET_JUMBO_FRAMELEN;
|
|
else
|
|
#endif
|
|
max_framelen = MCLBYTES - 1;
|
|
|
|
if (ET_FRAMELEN(ifr->ifr_mtu) > max_framelen) {
|
|
error = EOPNOTSUPP;
|
|
break;
|
|
}
|
|
|
|
if (ifp->if_mtu != ifr->ifr_mtu) {
|
|
ifp->if_mtu = ifr->ifr_mtu;
|
|
ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
|
|
et_init(sc);
|
|
}
|
|
break;
|
|
|
|
case SIOCSIFCAP:
|
|
ET_LOCK(sc);
|
|
mask = ifr->ifr_reqcap ^ ifp->if_capenable;
|
|
if ((mask & IFCAP_TXCSUM) != 0 &&
|
|
(IFCAP_TXCSUM & ifp->if_capabilities) != 0) {
|
|
ifp->if_capenable ^= IFCAP_TXCSUM;
|
|
if ((IFCAP_TXCSUM & ifp->if_capenable) != 0)
|
|
ifp->if_hwassist |= ET_CSUM_FEATURES;
|
|
else
|
|
ifp->if_hwassist &= ~ET_CSUM_FEATURES;
|
|
}
|
|
ET_UNLOCK(sc);
|
|
break;
|
|
|
|
default:
|
|
error = ether_ioctl(ifp, cmd, data);
|
|
break;
|
|
}
|
|
return (error);
|
|
}
|
|
|
|
static void
|
|
et_start_locked(struct ifnet *ifp)
|
|
{
|
|
struct et_softc *sc;
|
|
struct mbuf *m_head = NULL;
|
|
struct et_txbuf_data *tbd;
|
|
int enq;
|
|
|
|
sc = ifp->if_softc;
|
|
ET_LOCK_ASSERT(sc);
|
|
|
|
if ((sc->sc_flags & ET_FLAG_TXRX_ENABLED) == 0)
|
|
return;
|
|
|
|
if ((ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) != IFF_DRV_RUNNING)
|
|
return;
|
|
|
|
tbd = &sc->sc_tx_data;
|
|
for (enq = 0; !IFQ_DRV_IS_EMPTY(&ifp->if_snd); ) {
|
|
if (tbd->tbd_used + ET_NSEG_SPARE >= ET_TX_NDESC) {
|
|
ifp->if_drv_flags |= IFF_DRV_OACTIVE;
|
|
break;
|
|
}
|
|
|
|
IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
|
|
if (m_head == NULL)
|
|
break;
|
|
|
|
if (et_encap(sc, &m_head)) {
|
|
if (m_head == NULL) {
|
|
ifp->if_oerrors++;
|
|
break;
|
|
}
|
|
IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
|
|
if (tbd->tbd_used > 0)
|
|
ifp->if_drv_flags |= IFF_DRV_OACTIVE;
|
|
break;
|
|
}
|
|
enq++;
|
|
ETHER_BPF_MTAP(ifp, m_head);
|
|
}
|
|
|
|
if (enq > 0)
|
|
sc->watchdog_timer = 5;
|
|
}
|
|
|
|
static void
|
|
et_start(struct ifnet *ifp)
|
|
{
|
|
struct et_softc *sc = ifp->if_softc;
|
|
|
|
ET_LOCK(sc);
|
|
et_start_locked(ifp);
|
|
ET_UNLOCK(sc);
|
|
}
|
|
|
|
static int
|
|
et_watchdog(struct et_softc *sc)
|
|
{
|
|
uint32_t status;
|
|
|
|
ET_LOCK_ASSERT(sc);
|
|
|
|
if (sc->watchdog_timer == 0 || --sc->watchdog_timer)
|
|
return (0);
|
|
|
|
bus_dmamap_sync(sc->sc_tx_status.txsd_dtag, sc->sc_tx_status.txsd_dmap,
|
|
BUS_DMASYNC_POSTREAD);
|
|
status = le32toh(*(sc->sc_tx_status.txsd_status));
|
|
if_printf(sc->ifp, "watchdog timed out (0x%08x) -- resetting\n",
|
|
status);
|
|
|
|
sc->ifp->if_oerrors++;
|
|
sc->ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
|
|
et_init_locked(sc);
|
|
return (EJUSTRETURN);
|
|
}
|
|
|
|
static int
|
|
et_stop_rxdma(struct et_softc *sc)
|
|
{
|
|
CSR_WRITE_4(sc, ET_RXDMA_CTRL,
|
|
ET_RXDMA_CTRL_HALT | ET_RXDMA_CTRL_RING1_ENABLE);
|
|
|
|
DELAY(5);
|
|
if ((CSR_READ_4(sc, ET_RXDMA_CTRL) & ET_RXDMA_CTRL_HALTED) == 0) {
|
|
if_printf(sc->ifp, "can't stop RX DMA engine\n");
|
|
return (ETIMEDOUT);
|
|
}
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
et_stop_txdma(struct et_softc *sc)
|
|
{
|
|
CSR_WRITE_4(sc, ET_TXDMA_CTRL,
|
|
ET_TXDMA_CTRL_HALT | ET_TXDMA_CTRL_SINGLE_EPKT);
|
|
return (0);
|
|
}
|
|
|
|
static void
|
|
et_free_tx_ring(struct et_softc *sc)
|
|
{
|
|
struct et_txdesc_ring *tx_ring;
|
|
struct et_txbuf_data *tbd;
|
|
struct et_txbuf *tb;
|
|
int i;
|
|
|
|
tbd = &sc->sc_tx_data;
|
|
tx_ring = &sc->sc_tx_ring;
|
|
for (i = 0; i < ET_TX_NDESC; ++i) {
|
|
tb = &tbd->tbd_buf[i];
|
|
if (tb->tb_mbuf != NULL) {
|
|
bus_dmamap_sync(sc->sc_tx_tag, tb->tb_dmap,
|
|
BUS_DMASYNC_POSTWRITE);
|
|
bus_dmamap_unload(sc->sc_mbuf_dtag, tb->tb_dmap);
|
|
m_freem(tb->tb_mbuf);
|
|
tb->tb_mbuf = NULL;
|
|
}
|
|
}
|
|
}
|
|
|
|
static void
|
|
et_free_rx_ring(struct et_softc *sc)
|
|
{
|
|
struct et_rxbuf_data *rbd;
|
|
struct et_rxdesc_ring *rx_ring;
|
|
struct et_rxbuf *rb;
|
|
int i;
|
|
|
|
/* Ring 0 */
|
|
rx_ring = &sc->sc_rx_ring[0];
|
|
rbd = &sc->sc_rx_data[0];
|
|
for (i = 0; i < ET_RX_NDESC; ++i) {
|
|
rb = &rbd->rbd_buf[i];
|
|
if (rb->rb_mbuf != NULL) {
|
|
bus_dmamap_sync(sc->sc_rx_mini_tag, rx_ring->rr_dmap,
|
|
BUS_DMASYNC_POSTREAD);
|
|
bus_dmamap_unload(sc->sc_rx_mini_tag, rb->rb_dmap);
|
|
m_freem(rb->rb_mbuf);
|
|
rb->rb_mbuf = NULL;
|
|
}
|
|
}
|
|
|
|
/* Ring 1 */
|
|
rx_ring = &sc->sc_rx_ring[1];
|
|
rbd = &sc->sc_rx_data[1];
|
|
for (i = 0; i < ET_RX_NDESC; ++i) {
|
|
rb = &rbd->rbd_buf[i];
|
|
if (rb->rb_mbuf != NULL) {
|
|
bus_dmamap_sync(sc->sc_rx_tag, rx_ring->rr_dmap,
|
|
BUS_DMASYNC_POSTREAD);
|
|
bus_dmamap_unload(sc->sc_rx_tag, rb->rb_dmap);
|
|
m_freem(rb->rb_mbuf);
|
|
rb->rb_mbuf = NULL;
|
|
}
|
|
}
|
|
}
|
|
|
|
static void
|
|
et_setmulti(struct et_softc *sc)
|
|
{
|
|
struct ifnet *ifp;
|
|
uint32_t hash[4] = { 0, 0, 0, 0 };
|
|
uint32_t rxmac_ctrl, pktfilt;
|
|
struct ifmultiaddr *ifma;
|
|
int i, count;
|
|
|
|
ET_LOCK_ASSERT(sc);
|
|
ifp = sc->ifp;
|
|
|
|
pktfilt = CSR_READ_4(sc, ET_PKTFILT);
|
|
rxmac_ctrl = CSR_READ_4(sc, ET_RXMAC_CTRL);
|
|
|
|
pktfilt &= ~(ET_PKTFILT_BCAST | ET_PKTFILT_MCAST | ET_PKTFILT_UCAST);
|
|
if (ifp->if_flags & (IFF_PROMISC | IFF_ALLMULTI)) {
|
|
rxmac_ctrl |= ET_RXMAC_CTRL_NO_PKTFILT;
|
|
goto back;
|
|
}
|
|
|
|
count = 0;
|
|
if_maddr_rlock(ifp);
|
|
TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
|
|
uint32_t *hp, h;
|
|
|
|
if (ifma->ifma_addr->sa_family != AF_LINK)
|
|
continue;
|
|
|
|
h = ether_crc32_be(LLADDR((struct sockaddr_dl *)
|
|
ifma->ifma_addr), ETHER_ADDR_LEN);
|
|
h = (h & 0x3f800000) >> 23;
|
|
|
|
hp = &hash[0];
|
|
if (h >= 32 && h < 64) {
|
|
h -= 32;
|
|
hp = &hash[1];
|
|
} else if (h >= 64 && h < 96) {
|
|
h -= 64;
|
|
hp = &hash[2];
|
|
} else if (h >= 96) {
|
|
h -= 96;
|
|
hp = &hash[3];
|
|
}
|
|
*hp |= (1 << h);
|
|
|
|
++count;
|
|
}
|
|
if_maddr_runlock(ifp);
|
|
|
|
for (i = 0; i < 4; ++i)
|
|
CSR_WRITE_4(sc, ET_MULTI_HASH + (i * 4), hash[i]);
|
|
|
|
if (count > 0)
|
|
pktfilt |= ET_PKTFILT_MCAST;
|
|
rxmac_ctrl &= ~ET_RXMAC_CTRL_NO_PKTFILT;
|
|
back:
|
|
CSR_WRITE_4(sc, ET_PKTFILT, pktfilt);
|
|
CSR_WRITE_4(sc, ET_RXMAC_CTRL, rxmac_ctrl);
|
|
}
|
|
|
|
static int
|
|
et_chip_init(struct et_softc *sc)
|
|
{
|
|
struct ifnet *ifp = sc->ifp;
|
|
uint32_t rxq_end;
|
|
int error, frame_len, rxmem_size;
|
|
|
|
/*
|
|
* Split 16Kbytes internal memory between TX and RX
|
|
* according to frame length.
|
|
*/
|
|
frame_len = ET_FRAMELEN(ifp->if_mtu);
|
|
if (frame_len < 2048) {
|
|
rxmem_size = ET_MEM_RXSIZE_DEFAULT;
|
|
} else if (frame_len <= ET_RXMAC_CUT_THRU_FRMLEN) {
|
|
rxmem_size = ET_MEM_SIZE / 2;
|
|
} else {
|
|
rxmem_size = ET_MEM_SIZE -
|
|
roundup(frame_len + ET_MEM_TXSIZE_EX, ET_MEM_UNIT);
|
|
}
|
|
rxq_end = ET_QUEUE_ADDR(rxmem_size);
|
|
|
|
CSR_WRITE_4(sc, ET_RXQUEUE_START, ET_QUEUE_ADDR_START);
|
|
CSR_WRITE_4(sc, ET_RXQUEUE_END, rxq_end);
|
|
CSR_WRITE_4(sc, ET_TXQUEUE_START, rxq_end + 1);
|
|
CSR_WRITE_4(sc, ET_TXQUEUE_END, ET_QUEUE_ADDR_END);
|
|
|
|
/* No loopback */
|
|
CSR_WRITE_4(sc, ET_LOOPBACK, 0);
|
|
|
|
/* Clear MSI configure */
|
|
if ((sc->sc_flags & ET_FLAG_MSI) == 0)
|
|
CSR_WRITE_4(sc, ET_MSI_CFG, 0);
|
|
|
|
/* Disable timer */
|
|
CSR_WRITE_4(sc, ET_TIMER, 0);
|
|
|
|
/* Initialize MAC */
|
|
et_init_mac(sc);
|
|
|
|
/* Enable memory controllers */
|
|
CSR_WRITE_4(sc, ET_MMC_CTRL, ET_MMC_CTRL_ENABLE);
|
|
|
|
/* Initialize RX MAC */
|
|
et_init_rxmac(sc);
|
|
|
|
/* Initialize TX MAC */
|
|
et_init_txmac(sc);
|
|
|
|
/* Initialize RX DMA engine */
|
|
error = et_init_rxdma(sc);
|
|
if (error)
|
|
return (error);
|
|
|
|
/* Initialize TX DMA engine */
|
|
error = et_init_txdma(sc);
|
|
if (error)
|
|
return (error);
|
|
|
|
return (0);
|
|
}
|
|
|
|
static void
|
|
et_init_tx_ring(struct et_softc *sc)
|
|
{
|
|
struct et_txdesc_ring *tx_ring;
|
|
struct et_txbuf_data *tbd;
|
|
struct et_txstatus_data *txsd;
|
|
|
|
tx_ring = &sc->sc_tx_ring;
|
|
bzero(tx_ring->tr_desc, ET_TX_RING_SIZE);
|
|
bus_dmamap_sync(tx_ring->tr_dtag, tx_ring->tr_dmap,
|
|
BUS_DMASYNC_PREWRITE);
|
|
|
|
tbd = &sc->sc_tx_data;
|
|
tbd->tbd_start_index = 0;
|
|
tbd->tbd_start_wrap = 0;
|
|
tbd->tbd_used = 0;
|
|
|
|
txsd = &sc->sc_tx_status;
|
|
bzero(txsd->txsd_status, sizeof(uint32_t));
|
|
bus_dmamap_sync(txsd->txsd_dtag, txsd->txsd_dmap,
|
|
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
|
|
}
|
|
|
|
static int
|
|
et_init_rx_ring(struct et_softc *sc)
|
|
{
|
|
struct et_rxstatus_data *rxsd;
|
|
struct et_rxstat_ring *rxst_ring;
|
|
struct et_rxbuf_data *rbd;
|
|
int i, error, n;
|
|
|
|
for (n = 0; n < ET_RX_NRING; ++n) {
|
|
rbd = &sc->sc_rx_data[n];
|
|
for (i = 0; i < ET_RX_NDESC; ++i) {
|
|
error = rbd->rbd_newbuf(rbd, i);
|
|
if (error) {
|
|
if_printf(sc->ifp, "%d ring %d buf, "
|
|
"newbuf failed: %d\n", n, i, error);
|
|
return (error);
|
|
}
|
|
}
|
|
}
|
|
|
|
rxsd = &sc->sc_rx_status;
|
|
bzero(rxsd->rxsd_status, sizeof(struct et_rxstatus));
|
|
bus_dmamap_sync(rxsd->rxsd_dtag, rxsd->rxsd_dmap,
|
|
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
|
|
|
|
rxst_ring = &sc->sc_rxstat_ring;
|
|
bzero(rxst_ring->rsr_stat, ET_RXSTAT_RING_SIZE);
|
|
bus_dmamap_sync(rxst_ring->rsr_dtag, rxst_ring->rsr_dmap,
|
|
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
|
|
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
et_init_rxdma(struct et_softc *sc)
|
|
{
|
|
struct et_rxstatus_data *rxsd = &sc->sc_rx_status;
|
|
struct et_rxstat_ring *rxst_ring = &sc->sc_rxstat_ring;
|
|
struct et_rxdesc_ring *rx_ring;
|
|
int error;
|
|
|
|
error = et_stop_rxdma(sc);
|
|
if (error) {
|
|
if_printf(sc->ifp, "can't init RX DMA engine\n");
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* Install RX status
|
|
*/
|
|
CSR_WRITE_4(sc, ET_RX_STATUS_HI, ET_ADDR_HI(rxsd->rxsd_paddr));
|
|
CSR_WRITE_4(sc, ET_RX_STATUS_LO, ET_ADDR_LO(rxsd->rxsd_paddr));
|
|
|
|
/*
|
|
* Install RX stat ring
|
|
*/
|
|
CSR_WRITE_4(sc, ET_RXSTAT_HI, ET_ADDR_HI(rxst_ring->rsr_paddr));
|
|
CSR_WRITE_4(sc, ET_RXSTAT_LO, ET_ADDR_LO(rxst_ring->rsr_paddr));
|
|
CSR_WRITE_4(sc, ET_RXSTAT_CNT, ET_RX_NSTAT - 1);
|
|
CSR_WRITE_4(sc, ET_RXSTAT_POS, 0);
|
|
CSR_WRITE_4(sc, ET_RXSTAT_MINCNT, ((ET_RX_NSTAT * 15) / 100) - 1);
|
|
|
|
/* Match ET_RXSTAT_POS */
|
|
rxst_ring->rsr_index = 0;
|
|
rxst_ring->rsr_wrap = 0;
|
|
|
|
/*
|
|
* Install the 2nd RX descriptor ring
|
|
*/
|
|
rx_ring = &sc->sc_rx_ring[1];
|
|
CSR_WRITE_4(sc, ET_RX_RING1_HI, ET_ADDR_HI(rx_ring->rr_paddr));
|
|
CSR_WRITE_4(sc, ET_RX_RING1_LO, ET_ADDR_LO(rx_ring->rr_paddr));
|
|
CSR_WRITE_4(sc, ET_RX_RING1_CNT, ET_RX_NDESC - 1);
|
|
CSR_WRITE_4(sc, ET_RX_RING1_POS, ET_RX_RING1_POS_WRAP);
|
|
CSR_WRITE_4(sc, ET_RX_RING1_MINCNT, ((ET_RX_NDESC * 15) / 100) - 1);
|
|
|
|
/* Match ET_RX_RING1_POS */
|
|
rx_ring->rr_index = 0;
|
|
rx_ring->rr_wrap = 1;
|
|
|
|
/*
|
|
* Install the 1st RX descriptor ring
|
|
*/
|
|
rx_ring = &sc->sc_rx_ring[0];
|
|
CSR_WRITE_4(sc, ET_RX_RING0_HI, ET_ADDR_HI(rx_ring->rr_paddr));
|
|
CSR_WRITE_4(sc, ET_RX_RING0_LO, ET_ADDR_LO(rx_ring->rr_paddr));
|
|
CSR_WRITE_4(sc, ET_RX_RING0_CNT, ET_RX_NDESC - 1);
|
|
CSR_WRITE_4(sc, ET_RX_RING0_POS, ET_RX_RING0_POS_WRAP);
|
|
CSR_WRITE_4(sc, ET_RX_RING0_MINCNT, ((ET_RX_NDESC * 15) / 100) - 1);
|
|
|
|
/* Match ET_RX_RING0_POS */
|
|
rx_ring->rr_index = 0;
|
|
rx_ring->rr_wrap = 1;
|
|
|
|
/*
|
|
* RX intr moderation
|
|
*/
|
|
CSR_WRITE_4(sc, ET_RX_INTR_NPKTS, sc->sc_rx_intr_npkts);
|
|
CSR_WRITE_4(sc, ET_RX_INTR_DELAY, sc->sc_rx_intr_delay);
|
|
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
et_init_txdma(struct et_softc *sc)
|
|
{
|
|
struct et_txdesc_ring *tx_ring = &sc->sc_tx_ring;
|
|
struct et_txstatus_data *txsd = &sc->sc_tx_status;
|
|
int error;
|
|
|
|
error = et_stop_txdma(sc);
|
|
if (error) {
|
|
if_printf(sc->ifp, "can't init TX DMA engine\n");
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* Install TX descriptor ring
|
|
*/
|
|
CSR_WRITE_4(sc, ET_TX_RING_HI, ET_ADDR_HI(tx_ring->tr_paddr));
|
|
CSR_WRITE_4(sc, ET_TX_RING_LO, ET_ADDR_LO(tx_ring->tr_paddr));
|
|
CSR_WRITE_4(sc, ET_TX_RING_CNT, ET_TX_NDESC - 1);
|
|
|
|
/*
|
|
* Install TX status
|
|
*/
|
|
CSR_WRITE_4(sc, ET_TX_STATUS_HI, ET_ADDR_HI(txsd->txsd_paddr));
|
|
CSR_WRITE_4(sc, ET_TX_STATUS_LO, ET_ADDR_LO(txsd->txsd_paddr));
|
|
|
|
CSR_WRITE_4(sc, ET_TX_READY_POS, 0);
|
|
|
|
/* Match ET_TX_READY_POS */
|
|
tx_ring->tr_ready_index = 0;
|
|
tx_ring->tr_ready_wrap = 0;
|
|
|
|
return (0);
|
|
}
|
|
|
|
static void
|
|
et_init_mac(struct et_softc *sc)
|
|
{
|
|
struct ifnet *ifp = sc->ifp;
|
|
const uint8_t *eaddr = IF_LLADDR(ifp);
|
|
uint32_t val;
|
|
|
|
/* Reset MAC */
|
|
CSR_WRITE_4(sc, ET_MAC_CFG1,
|
|
ET_MAC_CFG1_RST_TXFUNC | ET_MAC_CFG1_RST_RXFUNC |
|
|
ET_MAC_CFG1_RST_TXMC | ET_MAC_CFG1_RST_RXMC |
|
|
ET_MAC_CFG1_SIM_RST | ET_MAC_CFG1_SOFT_RST);
|
|
|
|
/*
|
|
* Setup inter packet gap
|
|
*/
|
|
val = (56 << ET_IPG_NONB2B_1_SHIFT) |
|
|
(88 << ET_IPG_NONB2B_2_SHIFT) |
|
|
(80 << ET_IPG_MINIFG_SHIFT) |
|
|
(96 << ET_IPG_B2B_SHIFT);
|
|
CSR_WRITE_4(sc, ET_IPG, val);
|
|
|
|
/*
|
|
* Setup half duplex mode
|
|
*/
|
|
val = (10 << ET_MAC_HDX_ALT_BEB_TRUNC_SHIFT) |
|
|
(15 << ET_MAC_HDX_REXMIT_MAX_SHIFT) |
|
|
(55 << ET_MAC_HDX_COLLWIN_SHIFT) |
|
|
ET_MAC_HDX_EXC_DEFER;
|
|
CSR_WRITE_4(sc, ET_MAC_HDX, val);
|
|
|
|
/* Clear MAC control */
|
|
CSR_WRITE_4(sc, ET_MAC_CTRL, 0);
|
|
|
|
/* Reset MII */
|
|
CSR_WRITE_4(sc, ET_MII_CFG, ET_MII_CFG_CLKRST);
|
|
|
|
/*
|
|
* Set MAC address
|
|
*/
|
|
val = eaddr[2] | (eaddr[3] << 8) | (eaddr[4] << 16) | (eaddr[5] << 24);
|
|
CSR_WRITE_4(sc, ET_MAC_ADDR1, val);
|
|
val = (eaddr[0] << 16) | (eaddr[1] << 24);
|
|
CSR_WRITE_4(sc, ET_MAC_ADDR2, val);
|
|
|
|
/* Set max frame length */
|
|
CSR_WRITE_4(sc, ET_MAX_FRMLEN, ET_FRAMELEN(ifp->if_mtu));
|
|
|
|
/* Bring MAC out of reset state */
|
|
CSR_WRITE_4(sc, ET_MAC_CFG1, 0);
|
|
}
|
|
|
|
static void
|
|
et_init_rxmac(struct et_softc *sc)
|
|
{
|
|
struct ifnet *ifp = sc->ifp;
|
|
const uint8_t *eaddr = IF_LLADDR(ifp);
|
|
uint32_t val;
|
|
int i;
|
|
|
|
/* Disable RX MAC and WOL */
|
|
CSR_WRITE_4(sc, ET_RXMAC_CTRL, ET_RXMAC_CTRL_WOL_DISABLE);
|
|
|
|
/*
|
|
* Clear all WOL related registers
|
|
*/
|
|
for (i = 0; i < 3; ++i)
|
|
CSR_WRITE_4(sc, ET_WOL_CRC + (i * 4), 0);
|
|
for (i = 0; i < 20; ++i)
|
|
CSR_WRITE_4(sc, ET_WOL_MASK + (i * 4), 0);
|
|
|
|
/*
|
|
* Set WOL source address. XXX is this necessary?
|
|
*/
|
|
val = (eaddr[2] << 24) | (eaddr[3] << 16) | (eaddr[4] << 8) | eaddr[5];
|
|
CSR_WRITE_4(sc, ET_WOL_SA_LO, val);
|
|
val = (eaddr[0] << 8) | eaddr[1];
|
|
CSR_WRITE_4(sc, ET_WOL_SA_HI, val);
|
|
|
|
/* Clear packet filters */
|
|
CSR_WRITE_4(sc, ET_PKTFILT, 0);
|
|
|
|
/* No ucast filtering */
|
|
CSR_WRITE_4(sc, ET_UCAST_FILTADDR1, 0);
|
|
CSR_WRITE_4(sc, ET_UCAST_FILTADDR2, 0);
|
|
CSR_WRITE_4(sc, ET_UCAST_FILTADDR3, 0);
|
|
|
|
if (ET_FRAMELEN(ifp->if_mtu) > ET_RXMAC_CUT_THRU_FRMLEN) {
|
|
/*
|
|
* In order to transmit jumbo packets greater than
|
|
* ET_RXMAC_CUT_THRU_FRMLEN bytes, the FIFO between
|
|
* RX MAC and RX DMA needs to be reduced in size to
|
|
* (ET_MEM_SIZE - ET_MEM_TXSIZE_EX - framelen). In
|
|
* order to implement this, we must use "cut through"
|
|
* mode in the RX MAC, which chops packets down into
|
|
* segments. In this case we selected 256 bytes,
|
|
* since this is the size of the PCI-Express TLP's
|
|
* that the ET1310 uses.
|
|
*/
|
|
val = (ET_RXMAC_SEGSZ(256) & ET_RXMAC_MC_SEGSZ_MAX_MASK) |
|
|
ET_RXMAC_MC_SEGSZ_ENABLE;
|
|
} else {
|
|
val = 0;
|
|
}
|
|
CSR_WRITE_4(sc, ET_RXMAC_MC_SEGSZ, val);
|
|
|
|
CSR_WRITE_4(sc, ET_RXMAC_MC_WATERMARK, 0);
|
|
|
|
/* Initialize RX MAC management register */
|
|
CSR_WRITE_4(sc, ET_RXMAC_MGT, 0);
|
|
|
|
CSR_WRITE_4(sc, ET_RXMAC_SPACE_AVL, 0);
|
|
|
|
CSR_WRITE_4(sc, ET_RXMAC_MGT,
|
|
ET_RXMAC_MGT_PASS_ECRC |
|
|
ET_RXMAC_MGT_PASS_ELEN |
|
|
ET_RXMAC_MGT_PASS_ETRUNC |
|
|
ET_RXMAC_MGT_CHECK_PKT);
|
|
|
|
/*
|
|
* Configure runt filtering (may not work on certain chip generation)
|
|
*/
|
|
val = (ETHER_MIN_LEN << ET_PKTFILT_MINLEN_SHIFT) &
|
|
ET_PKTFILT_MINLEN_MASK;
|
|
val |= ET_PKTFILT_FRAG;
|
|
CSR_WRITE_4(sc, ET_PKTFILT, val);
|
|
|
|
/* Enable RX MAC but leave WOL disabled */
|
|
CSR_WRITE_4(sc, ET_RXMAC_CTRL,
|
|
ET_RXMAC_CTRL_WOL_DISABLE | ET_RXMAC_CTRL_ENABLE);
|
|
|
|
/*
|
|
* Setup multicast hash and allmulti/promisc mode
|
|
*/
|
|
et_setmulti(sc);
|
|
}
|
|
|
|
static void
|
|
et_init_txmac(struct et_softc *sc)
|
|
{
|
|
/* Disable TX MAC and FC(?) */
|
|
CSR_WRITE_4(sc, ET_TXMAC_CTRL, ET_TXMAC_CTRL_FC_DISABLE);
|
|
|
|
/* No flow control yet */
|
|
CSR_WRITE_4(sc, ET_TXMAC_FLOWCTRL, 0);
|
|
|
|
/* Enable TX MAC but leave FC(?) diabled */
|
|
CSR_WRITE_4(sc, ET_TXMAC_CTRL,
|
|
ET_TXMAC_CTRL_ENABLE | ET_TXMAC_CTRL_FC_DISABLE);
|
|
}
|
|
|
|
static int
|
|
et_start_rxdma(struct et_softc *sc)
|
|
{
|
|
uint32_t val = 0;
|
|
|
|
val |= (sc->sc_rx_data[0].rbd_bufsize & ET_RXDMA_CTRL_RING0_SIZE_MASK) |
|
|
ET_RXDMA_CTRL_RING0_ENABLE;
|
|
val |= (sc->sc_rx_data[1].rbd_bufsize & ET_RXDMA_CTRL_RING1_SIZE_MASK) |
|
|
ET_RXDMA_CTRL_RING1_ENABLE;
|
|
|
|
CSR_WRITE_4(sc, ET_RXDMA_CTRL, val);
|
|
|
|
DELAY(5);
|
|
|
|
if (CSR_READ_4(sc, ET_RXDMA_CTRL) & ET_RXDMA_CTRL_HALTED) {
|
|
if_printf(sc->ifp, "can't start RX DMA engine\n");
|
|
return (ETIMEDOUT);
|
|
}
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
et_start_txdma(struct et_softc *sc)
|
|
{
|
|
CSR_WRITE_4(sc, ET_TXDMA_CTRL, ET_TXDMA_CTRL_SINGLE_EPKT);
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
et_enable_txrx(struct et_softc *sc, int media_upd)
|
|
{
|
|
struct ifnet *ifp = sc->ifp;
|
|
uint32_t val;
|
|
int i, error;
|
|
|
|
val = CSR_READ_4(sc, ET_MAC_CFG1);
|
|
val |= ET_MAC_CFG1_TXEN | ET_MAC_CFG1_RXEN;
|
|
val &= ~(ET_MAC_CFG1_TXFLOW | ET_MAC_CFG1_RXFLOW |
|
|
ET_MAC_CFG1_LOOPBACK);
|
|
CSR_WRITE_4(sc, ET_MAC_CFG1, val);
|
|
|
|
if (media_upd)
|
|
et_ifmedia_upd_locked(ifp);
|
|
else
|
|
et_setmedia(sc);
|
|
|
|
#define NRETRY 50
|
|
|
|
for (i = 0; i < NRETRY; ++i) {
|
|
val = CSR_READ_4(sc, ET_MAC_CFG1);
|
|
if ((val & (ET_MAC_CFG1_SYNC_TXEN | ET_MAC_CFG1_SYNC_RXEN)) ==
|
|
(ET_MAC_CFG1_SYNC_TXEN | ET_MAC_CFG1_SYNC_RXEN))
|
|
break;
|
|
|
|
DELAY(100);
|
|
}
|
|
if (i == NRETRY) {
|
|
if_printf(ifp, "can't enable RX/TX\n");
|
|
return (0);
|
|
}
|
|
sc->sc_flags |= ET_FLAG_TXRX_ENABLED;
|
|
|
|
#undef NRETRY
|
|
|
|
/*
|
|
* Start TX/RX DMA engine
|
|
*/
|
|
error = et_start_rxdma(sc);
|
|
if (error)
|
|
return (error);
|
|
|
|
error = et_start_txdma(sc);
|
|
if (error)
|
|
return (error);
|
|
|
|
return (0);
|
|
}
|
|
|
|
static void
|
|
et_rxeof(struct et_softc *sc)
|
|
{
|
|
struct et_rxstatus_data *rxsd;
|
|
struct et_rxstat_ring *rxst_ring;
|
|
struct et_rxbuf_data *rbd;
|
|
struct et_rxdesc_ring *rx_ring;
|
|
struct et_rxstat *st;
|
|
struct ifnet *ifp;
|
|
struct mbuf *m;
|
|
uint32_t rxstat_pos, rxring_pos;
|
|
uint32_t rxst_info1, rxst_info2, rxs_stat_ring;
|
|
int buflen, buf_idx, npost[2], ring_idx;
|
|
int rxst_index, rxst_wrap;
|
|
|
|
ET_LOCK_ASSERT(sc);
|
|
|
|
ifp = sc->ifp;
|
|
rxsd = &sc->sc_rx_status;
|
|
rxst_ring = &sc->sc_rxstat_ring;
|
|
|
|
if ((sc->sc_flags & ET_FLAG_TXRX_ENABLED) == 0)
|
|
return;
|
|
|
|
bus_dmamap_sync(rxsd->rxsd_dtag, rxsd->rxsd_dmap,
|
|
BUS_DMASYNC_POSTREAD);
|
|
bus_dmamap_sync(rxst_ring->rsr_dtag, rxst_ring->rsr_dmap,
|
|
BUS_DMASYNC_POSTREAD);
|
|
|
|
npost[0] = npost[1] = 0;
|
|
rxs_stat_ring = le32toh(rxsd->rxsd_status->rxs_stat_ring);
|
|
rxst_wrap = (rxs_stat_ring & ET_RXS_STATRING_WRAP) ? 1 : 0;
|
|
rxst_index = (rxs_stat_ring & ET_RXS_STATRING_INDEX_MASK) >>
|
|
ET_RXS_STATRING_INDEX_SHIFT;
|
|
|
|
while (rxst_index != rxst_ring->rsr_index ||
|
|
rxst_wrap != rxst_ring->rsr_wrap) {
|
|
if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
|
|
break;
|
|
|
|
MPASS(rxst_ring->rsr_index < ET_RX_NSTAT);
|
|
st = &rxst_ring->rsr_stat[rxst_ring->rsr_index];
|
|
rxst_info1 = le32toh(st->rxst_info1);
|
|
rxst_info2 = le32toh(st->rxst_info2);
|
|
buflen = (rxst_info2 & ET_RXST_INFO2_LEN_MASK) >>
|
|
ET_RXST_INFO2_LEN_SHIFT;
|
|
buf_idx = (rxst_info2 & ET_RXST_INFO2_BUFIDX_MASK) >>
|
|
ET_RXST_INFO2_BUFIDX_SHIFT;
|
|
ring_idx = (rxst_info2 & ET_RXST_INFO2_RINGIDX_MASK) >>
|
|
ET_RXST_INFO2_RINGIDX_SHIFT;
|
|
|
|
if (++rxst_ring->rsr_index == ET_RX_NSTAT) {
|
|
rxst_ring->rsr_index = 0;
|
|
rxst_ring->rsr_wrap ^= 1;
|
|
}
|
|
rxstat_pos = rxst_ring->rsr_index & ET_RXSTAT_POS_INDEX_MASK;
|
|
if (rxst_ring->rsr_wrap)
|
|
rxstat_pos |= ET_RXSTAT_POS_WRAP;
|
|
CSR_WRITE_4(sc, ET_RXSTAT_POS, rxstat_pos);
|
|
|
|
if (ring_idx >= ET_RX_NRING) {
|
|
ifp->if_ierrors++;
|
|
if_printf(ifp, "invalid ring index %d\n", ring_idx);
|
|
continue;
|
|
}
|
|
if (buf_idx >= ET_RX_NDESC) {
|
|
ifp->if_ierrors++;
|
|
if_printf(ifp, "invalid buf index %d\n", buf_idx);
|
|
continue;
|
|
}
|
|
|
|
rbd = &sc->sc_rx_data[ring_idx];
|
|
m = rbd->rbd_buf[buf_idx].rb_mbuf;
|
|
if ((rxst_info1 & ET_RXST_INFO1_OK) == 0){
|
|
/* Discard errored frame. */
|
|
ifp->if_ierrors++;
|
|
rbd->rbd_discard(rbd, buf_idx);
|
|
} else if (rbd->rbd_newbuf(rbd, buf_idx) != 0) {
|
|
/* No available mbufs, discard it. */
|
|
ifp->if_iqdrops++;
|
|
rbd->rbd_discard(rbd, buf_idx);
|
|
} else {
|
|
buflen -= ETHER_CRC_LEN;
|
|
if (buflen < ETHER_HDR_LEN) {
|
|
m_freem(m);
|
|
ifp->if_ierrors++;
|
|
} else {
|
|
m->m_pkthdr.len = m->m_len = buflen;
|
|
m->m_pkthdr.rcvif = ifp;
|
|
ifp->if_ipackets++;
|
|
ET_UNLOCK(sc);
|
|
ifp->if_input(ifp, m);
|
|
ET_LOCK(sc);
|
|
}
|
|
}
|
|
|
|
rx_ring = &sc->sc_rx_ring[ring_idx];
|
|
if (buf_idx != rx_ring->rr_index) {
|
|
if_printf(ifp,
|
|
"WARNING!! ring %d, buf_idx %d, rr_idx %d\n",
|
|
ring_idx, buf_idx, rx_ring->rr_index);
|
|
}
|
|
|
|
MPASS(rx_ring->rr_index < ET_RX_NDESC);
|
|
if (++rx_ring->rr_index == ET_RX_NDESC) {
|
|
rx_ring->rr_index = 0;
|
|
rx_ring->rr_wrap ^= 1;
|
|
}
|
|
rxring_pos = rx_ring->rr_index & ET_RX_RING_POS_INDEX_MASK;
|
|
if (rx_ring->rr_wrap)
|
|
rxring_pos |= ET_RX_RING_POS_WRAP;
|
|
CSR_WRITE_4(sc, rx_ring->rr_posreg, rxring_pos);
|
|
}
|
|
|
|
bus_dmamap_sync(rxsd->rxsd_dtag, rxsd->rxsd_dmap,
|
|
BUS_DMASYNC_PREREAD);
|
|
bus_dmamap_sync(rxst_ring->rsr_dtag, rxst_ring->rsr_dmap,
|
|
BUS_DMASYNC_PREREAD);
|
|
}
|
|
|
|
static int
|
|
et_encap(struct et_softc *sc, struct mbuf **m0)
|
|
{
|
|
struct et_txdesc_ring *tx_ring;
|
|
struct et_txbuf_data *tbd;
|
|
struct et_txdesc *td;
|
|
struct mbuf *m;
|
|
bus_dma_segment_t segs[ET_NSEG_MAX];
|
|
bus_dmamap_t map;
|
|
uint32_t csum_flags, last_td_ctrl2, tx_ready_pos;
|
|
int error, i, idx, first_idx, last_idx, nsegs;
|
|
|
|
tx_ring = &sc->sc_tx_ring;
|
|
MPASS(tx_ring->tr_ready_index < ET_TX_NDESC);
|
|
tbd = &sc->sc_tx_data;
|
|
first_idx = tx_ring->tr_ready_index;
|
|
map = tbd->tbd_buf[first_idx].tb_dmap;
|
|
|
|
error = bus_dmamap_load_mbuf_sg(sc->sc_tx_tag, map, *m0, segs, &nsegs,
|
|
0);
|
|
if (error == EFBIG) {
|
|
m = m_collapse(*m0, M_DONTWAIT, ET_NSEG_MAX);
|
|
if (m == NULL) {
|
|
m_freem(*m0);
|
|
*m0 = NULL;
|
|
return (ENOMEM);
|
|
}
|
|
*m0 = m;
|
|
error = bus_dmamap_load_mbuf_sg(sc->sc_tx_tag, map, *m0, segs,
|
|
&nsegs, 0);
|
|
if (error != 0) {
|
|
m_freem(*m0);
|
|
*m0 = NULL;
|
|
return (error);
|
|
}
|
|
} else if (error != 0)
|
|
return (error);
|
|
|
|
/* Check for descriptor overruns. */
|
|
if (tbd->tbd_used + nsegs > ET_TX_NDESC - 1) {
|
|
bus_dmamap_unload(sc->sc_tx_tag, map);
|
|
return (ENOBUFS);
|
|
}
|
|
bus_dmamap_sync(sc->sc_tx_tag, map, BUS_DMASYNC_PREWRITE);
|
|
|
|
last_td_ctrl2 = ET_TDCTRL2_LAST_FRAG;
|
|
sc->sc_tx += nsegs;
|
|
if (sc->sc_tx / sc->sc_tx_intr_nsegs != sc->sc_tx_intr) {
|
|
sc->sc_tx_intr = sc->sc_tx / sc->sc_tx_intr_nsegs;
|
|
last_td_ctrl2 |= ET_TDCTRL2_INTR;
|
|
}
|
|
|
|
m = *m0;
|
|
csum_flags = 0;
|
|
if ((m->m_pkthdr.csum_flags & ET_CSUM_FEATURES) != 0) {
|
|
if ((m->m_pkthdr.csum_flags & CSUM_IP) != 0)
|
|
csum_flags |= ET_TDCTRL2_CSUM_IP;
|
|
if ((m->m_pkthdr.csum_flags & CSUM_UDP) != 0)
|
|
csum_flags |= ET_TDCTRL2_CSUM_UDP;
|
|
else if ((m->m_pkthdr.csum_flags & CSUM_TCP) != 0)
|
|
csum_flags |= ET_TDCTRL2_CSUM_TCP;
|
|
}
|
|
last_idx = -1;
|
|
for (i = 0; i < nsegs; ++i) {
|
|
idx = (first_idx + i) % ET_TX_NDESC;
|
|
td = &tx_ring->tr_desc[idx];
|
|
td->td_addr_hi = htole32(ET_ADDR_HI(segs[i].ds_addr));
|
|
td->td_addr_lo = htole32(ET_ADDR_LO(segs[i].ds_addr));
|
|
td->td_ctrl1 = htole32(segs[i].ds_len & ET_TDCTRL1_LEN_MASK);
|
|
if (i == nsegs - 1) {
|
|
/* Last frag */
|
|
td->td_ctrl2 = htole32(last_td_ctrl2 | csum_flags);
|
|
last_idx = idx;
|
|
} else
|
|
td->td_ctrl2 = htole32(csum_flags);
|
|
|
|
MPASS(tx_ring->tr_ready_index < ET_TX_NDESC);
|
|
if (++tx_ring->tr_ready_index == ET_TX_NDESC) {
|
|
tx_ring->tr_ready_index = 0;
|
|
tx_ring->tr_ready_wrap ^= 1;
|
|
}
|
|
}
|
|
td = &tx_ring->tr_desc[first_idx];
|
|
/* First frag */
|
|
td->td_ctrl2 |= htole32(ET_TDCTRL2_FIRST_FRAG);
|
|
|
|
MPASS(last_idx >= 0);
|
|
tbd->tbd_buf[first_idx].tb_dmap = tbd->tbd_buf[last_idx].tb_dmap;
|
|
tbd->tbd_buf[last_idx].tb_dmap = map;
|
|
tbd->tbd_buf[last_idx].tb_mbuf = m;
|
|
|
|
tbd->tbd_used += nsegs;
|
|
MPASS(tbd->tbd_used <= ET_TX_NDESC);
|
|
|
|
bus_dmamap_sync(tx_ring->tr_dtag, tx_ring->tr_dmap,
|
|
BUS_DMASYNC_PREWRITE);
|
|
tx_ready_pos = tx_ring->tr_ready_index & ET_TX_READY_POS_INDEX_MASK;
|
|
if (tx_ring->tr_ready_wrap)
|
|
tx_ready_pos |= ET_TX_READY_POS_WRAP;
|
|
CSR_WRITE_4(sc, ET_TX_READY_POS, tx_ready_pos);
|
|
return (0);
|
|
}
|
|
|
|
static void
|
|
et_txeof(struct et_softc *sc)
|
|
{
|
|
struct et_txdesc_ring *tx_ring;
|
|
struct et_txbuf_data *tbd;
|
|
struct et_txbuf *tb;
|
|
struct ifnet *ifp;
|
|
uint32_t tx_done;
|
|
int end, wrap;
|
|
|
|
ET_LOCK_ASSERT(sc);
|
|
|
|
ifp = sc->ifp;
|
|
tx_ring = &sc->sc_tx_ring;
|
|
tbd = &sc->sc_tx_data;
|
|
|
|
if ((sc->sc_flags & ET_FLAG_TXRX_ENABLED) == 0)
|
|
return;
|
|
|
|
if (tbd->tbd_used == 0)
|
|
return;
|
|
|
|
bus_dmamap_sync(tx_ring->tr_dtag, tx_ring->tr_dmap,
|
|
BUS_DMASYNC_POSTWRITE);
|
|
|
|
tx_done = CSR_READ_4(sc, ET_TX_DONE_POS);
|
|
end = tx_done & ET_TX_DONE_POS_INDEX_MASK;
|
|
wrap = (tx_done & ET_TX_DONE_POS_WRAP) ? 1 : 0;
|
|
|
|
while (tbd->tbd_start_index != end || tbd->tbd_start_wrap != wrap) {
|
|
MPASS(tbd->tbd_start_index < ET_TX_NDESC);
|
|
tb = &tbd->tbd_buf[tbd->tbd_start_index];
|
|
if (tb->tb_mbuf != NULL) {
|
|
bus_dmamap_sync(sc->sc_tx_tag, tb->tb_dmap,
|
|
BUS_DMASYNC_POSTWRITE);
|
|
bus_dmamap_unload(sc->sc_tx_tag, tb->tb_dmap);
|
|
m_freem(tb->tb_mbuf);
|
|
tb->tb_mbuf = NULL;
|
|
ifp->if_opackets++;
|
|
}
|
|
|
|
if (++tbd->tbd_start_index == ET_TX_NDESC) {
|
|
tbd->tbd_start_index = 0;
|
|
tbd->tbd_start_wrap ^= 1;
|
|
}
|
|
|
|
MPASS(tbd->tbd_used > 0);
|
|
tbd->tbd_used--;
|
|
}
|
|
|
|
if (tbd->tbd_used == 0)
|
|
sc->watchdog_timer = 0;
|
|
if (tbd->tbd_used + ET_NSEG_SPARE < ET_TX_NDESC)
|
|
ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
|
|
}
|
|
static void
|
|
et_tick(void *xsc)
|
|
{
|
|
struct et_softc *sc = xsc;
|
|
struct ifnet *ifp;
|
|
struct mii_data *mii;
|
|
|
|
ET_LOCK_ASSERT(sc);
|
|
ifp = sc->ifp;
|
|
mii = device_get_softc(sc->sc_miibus);
|
|
|
|
mii_tick(mii);
|
|
if ((sc->sc_flags & ET_FLAG_TXRX_ENABLED) == 0 &&
|
|
(mii->mii_media_status & IFM_ACTIVE) &&
|
|
IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
|
|
if_printf(ifp, "Link up, enable TX/RX\n");
|
|
if (et_enable_txrx(sc, 0) == 0)
|
|
et_start_locked(ifp);
|
|
}
|
|
if (et_watchdog(sc) == EJUSTRETURN)
|
|
return;
|
|
callout_reset(&sc->sc_tick, hz, et_tick, sc);
|
|
}
|
|
|
|
static int
|
|
et_newbuf_cluster(struct et_rxbuf_data *rbd, int buf_idx)
|
|
{
|
|
struct et_softc *sc;
|
|
struct et_rxdesc *desc;
|
|
struct et_rxbuf *rb;
|
|
struct mbuf *m;
|
|
bus_dma_segment_t segs[1];
|
|
bus_dmamap_t dmap;
|
|
int nsegs;
|
|
|
|
MPASS(buf_idx < ET_RX_NDESC);
|
|
m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
|
|
if (m == NULL)
|
|
return (ENOBUFS);
|
|
m->m_len = m->m_pkthdr.len = MCLBYTES;
|
|
m_adj(m, ETHER_ALIGN);
|
|
|
|
sc = rbd->rbd_softc;
|
|
rb = &rbd->rbd_buf[buf_idx];
|
|
|
|
if (bus_dmamap_load_mbuf_sg(sc->sc_rx_tag, sc->sc_rx_sparemap, m,
|
|
segs, &nsegs, 0) != 0) {
|
|
m_freem(m);
|
|
return (ENOBUFS);
|
|
}
|
|
KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
|
|
|
|
if (rb->rb_mbuf != NULL) {
|
|
bus_dmamap_sync(sc->sc_rx_tag, rb->rb_dmap,
|
|
BUS_DMASYNC_POSTREAD);
|
|
bus_dmamap_unload(sc->sc_rx_tag, rb->rb_dmap);
|
|
}
|
|
dmap = rb->rb_dmap;
|
|
rb->rb_dmap = sc->sc_rx_sparemap;
|
|
sc->sc_rx_sparemap = dmap;
|
|
bus_dmamap_sync(sc->sc_rx_tag, rb->rb_dmap, BUS_DMASYNC_PREREAD);
|
|
|
|
rb->rb_mbuf = m;
|
|
desc = &rbd->rbd_ring->rr_desc[buf_idx];
|
|
desc->rd_addr_hi = htole32(ET_ADDR_HI(segs[0].ds_addr));
|
|
desc->rd_addr_lo = htole32(ET_ADDR_LO(segs[0].ds_addr));
|
|
desc->rd_ctrl = htole32(buf_idx & ET_RDCTRL_BUFIDX_MASK);
|
|
bus_dmamap_sync(rbd->rbd_ring->rr_dtag, rbd->rbd_ring->rr_dmap,
|
|
BUS_DMASYNC_PREWRITE);
|
|
return (0);
|
|
}
|
|
|
|
static void
|
|
et_rxbuf_discard(struct et_rxbuf_data *rbd, int buf_idx)
|
|
{
|
|
struct et_rxdesc *desc;
|
|
|
|
desc = &rbd->rbd_ring->rr_desc[buf_idx];
|
|
desc->rd_ctrl = htole32(buf_idx & ET_RDCTRL_BUFIDX_MASK);
|
|
bus_dmamap_sync(rbd->rbd_ring->rr_dtag, rbd->rbd_ring->rr_dmap,
|
|
BUS_DMASYNC_PREWRITE);
|
|
}
|
|
|
|
static int
|
|
et_newbuf_hdr(struct et_rxbuf_data *rbd, int buf_idx)
|
|
{
|
|
struct et_softc *sc;
|
|
struct et_rxdesc *desc;
|
|
struct et_rxbuf *rb;
|
|
struct mbuf *m;
|
|
bus_dma_segment_t segs[1];
|
|
bus_dmamap_t dmap;
|
|
int nsegs;
|
|
|
|
MPASS(buf_idx < ET_RX_NDESC);
|
|
MGETHDR(m, M_DONTWAIT, MT_DATA);
|
|
if (m == NULL)
|
|
return (ENOBUFS);
|
|
m->m_len = m->m_pkthdr.len = MHLEN;
|
|
m_adj(m, ETHER_ALIGN);
|
|
|
|
sc = rbd->rbd_softc;
|
|
rb = &rbd->rbd_buf[buf_idx];
|
|
|
|
if (bus_dmamap_load_mbuf_sg(sc->sc_rx_mini_tag, sc->sc_rx_mini_sparemap,
|
|
m, segs, &nsegs, 0) != 0) {
|
|
m_freem(m);
|
|
return (ENOBUFS);
|
|
}
|
|
KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
|
|
|
|
if (rb->rb_mbuf != NULL) {
|
|
bus_dmamap_sync(sc->sc_rx_mini_tag, rb->rb_dmap,
|
|
BUS_DMASYNC_POSTREAD);
|
|
bus_dmamap_unload(sc->sc_rx_mini_tag, rb->rb_dmap);
|
|
}
|
|
dmap = rb->rb_dmap;
|
|
rb->rb_dmap = sc->sc_rx_mini_sparemap;
|
|
sc->sc_rx_mini_sparemap = dmap;
|
|
bus_dmamap_sync(sc->sc_rx_mini_tag, rb->rb_dmap, BUS_DMASYNC_PREREAD);
|
|
|
|
rb->rb_mbuf = m;
|
|
desc = &rbd->rbd_ring->rr_desc[buf_idx];
|
|
desc->rd_addr_hi = htole32(ET_ADDR_HI(segs[0].ds_addr));
|
|
desc->rd_addr_lo = htole32(ET_ADDR_LO(segs[0].ds_addr));
|
|
desc->rd_ctrl = htole32(buf_idx & ET_RDCTRL_BUFIDX_MASK);
|
|
bus_dmamap_sync(rbd->rbd_ring->rr_dtag, rbd->rbd_ring->rr_dmap,
|
|
BUS_DMASYNC_PREWRITE);
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Create sysctl tree
|
|
*/
|
|
static void
|
|
et_add_sysctls(struct et_softc * sc)
|
|
{
|
|
struct sysctl_ctx_list *ctx;
|
|
struct sysctl_oid_list *children;
|
|
|
|
ctx = device_get_sysctl_ctx(sc->dev);
|
|
children = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->dev));
|
|
|
|
SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "rx_intr_npkts",
|
|
CTLTYPE_INT | CTLFLAG_RW, sc, 0, et_sysctl_rx_intr_npkts, "I",
|
|
"RX IM, # packets per RX interrupt");
|
|
SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "rx_intr_delay",
|
|
CTLTYPE_INT | CTLFLAG_RW, sc, 0, et_sysctl_rx_intr_delay, "I",
|
|
"RX IM, RX interrupt delay (x10 usec)");
|
|
SYSCTL_ADD_INT(ctx, children, OID_AUTO, "tx_intr_nsegs",
|
|
CTLFLAG_RW, &sc->sc_tx_intr_nsegs, 0,
|
|
"TX IM, # segments per TX interrupt");
|
|
SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "timer",
|
|
CTLFLAG_RW, &sc->sc_timer, 0, "TX timer");
|
|
}
|
|
|
|
static int
|
|
et_sysctl_rx_intr_npkts(SYSCTL_HANDLER_ARGS)
|
|
{
|
|
struct et_softc *sc = arg1;
|
|
struct ifnet *ifp = sc->ifp;
|
|
int error = 0, v;
|
|
|
|
v = sc->sc_rx_intr_npkts;
|
|
error = sysctl_handle_int(oidp, &v, 0, req);
|
|
if (error || req->newptr == NULL)
|
|
goto back;
|
|
if (v <= 0) {
|
|
error = EINVAL;
|
|
goto back;
|
|
}
|
|
|
|
if (sc->sc_rx_intr_npkts != v) {
|
|
if (ifp->if_drv_flags & IFF_DRV_RUNNING)
|
|
CSR_WRITE_4(sc, ET_RX_INTR_NPKTS, v);
|
|
sc->sc_rx_intr_npkts = v;
|
|
}
|
|
back:
|
|
return (error);
|
|
}
|
|
|
|
static int
|
|
et_sysctl_rx_intr_delay(SYSCTL_HANDLER_ARGS)
|
|
{
|
|
struct et_softc *sc = arg1;
|
|
struct ifnet *ifp = sc->ifp;
|
|
int error = 0, v;
|
|
|
|
v = sc->sc_rx_intr_delay;
|
|
error = sysctl_handle_int(oidp, &v, 0, req);
|
|
if (error || req->newptr == NULL)
|
|
goto back;
|
|
if (v <= 0) {
|
|
error = EINVAL;
|
|
goto back;
|
|
}
|
|
|
|
if (sc->sc_rx_intr_delay != v) {
|
|
if (ifp->if_drv_flags & IFF_DRV_RUNNING)
|
|
CSR_WRITE_4(sc, ET_RX_INTR_DELAY, v);
|
|
sc->sc_rx_intr_delay = v;
|
|
}
|
|
back:
|
|
return (error);
|
|
}
|
|
|
|
static void
|
|
et_setmedia(struct et_softc *sc)
|
|
{
|
|
struct mii_data *mii = device_get_softc(sc->sc_miibus);
|
|
uint32_t cfg2, ctrl;
|
|
|
|
cfg2 = CSR_READ_4(sc, ET_MAC_CFG2);
|
|
cfg2 &= ~(ET_MAC_CFG2_MODE_MII | ET_MAC_CFG2_MODE_GMII |
|
|
ET_MAC_CFG2_FDX | ET_MAC_CFG2_BIGFRM);
|
|
cfg2 |= ET_MAC_CFG2_LENCHK | ET_MAC_CFG2_CRC | ET_MAC_CFG2_PADCRC |
|
|
((7 << ET_MAC_CFG2_PREAMBLE_LEN_SHIFT) &
|
|
ET_MAC_CFG2_PREAMBLE_LEN_MASK);
|
|
|
|
ctrl = CSR_READ_4(sc, ET_MAC_CTRL);
|
|
ctrl &= ~(ET_MAC_CTRL_GHDX | ET_MAC_CTRL_MODE_MII);
|
|
|
|
if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T) {
|
|
cfg2 |= ET_MAC_CFG2_MODE_GMII;
|
|
} else {
|
|
cfg2 |= ET_MAC_CFG2_MODE_MII;
|
|
ctrl |= ET_MAC_CTRL_MODE_MII;
|
|
}
|
|
|
|
if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX)
|
|
cfg2 |= ET_MAC_CFG2_FDX;
|
|
else
|
|
ctrl |= ET_MAC_CTRL_GHDX;
|
|
|
|
CSR_WRITE_4(sc, ET_MAC_CTRL, ctrl);
|
|
CSR_WRITE_4(sc, ET_MAC_CFG2, cfg2);
|
|
}
|
|
|
|
static int
|
|
et_suspend(device_t dev)
|
|
{
|
|
struct et_softc *sc;
|
|
|
|
sc = device_get_softc(dev);
|
|
ET_LOCK(sc);
|
|
if ((sc->ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
|
|
et_stop(sc);
|
|
ET_UNLOCK(sc);
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
et_resume(device_t dev)
|
|
{
|
|
struct et_softc *sc;
|
|
|
|
sc = device_get_softc(dev);
|
|
ET_LOCK(sc);
|
|
if ((sc->ifp->if_flags & IFF_UP) != 0)
|
|
et_init_locked(sc);
|
|
ET_UNLOCK(sc);
|
|
return (0);
|
|
}
|