freebsd-nq/contrib/ntp/ntpd/refclock_chu.c
2002-10-29 19:58:12 +00:00

1583 lines
43 KiB
C

/*
* refclock_chu - clock driver for Canadian CHU time/frequency station
*/
#ifdef HAVE_CONFIG_H
#include <config.h>
#endif
#if defined(REFCLOCK) && defined(CLOCK_CHU)
#include "ntpd.h"
#include "ntp_io.h"
#include "ntp_refclock.h"
#include "ntp_calendar.h"
#include "ntp_stdlib.h"
#include <stdio.h>
#include <ctype.h>
#include <math.h>
#ifdef HAVE_AUDIO
#include "audio.h"
#endif /* HAVE_AUDIO */
#define ICOM 1 /* undefine to suppress ICOM code */
#ifdef ICOM
#include "icom.h"
#endif /* ICOM */
/*
* Audio CHU demodulator/decoder
*
* This driver synchronizes the computer time using data encoded in
* radio transmissions from Canadian time/frequency station CHU in
* Ottawa, Ontario. Transmissions are made continuously on 3330 kHz,
* 7335 kHz and 14670 kHz in upper sideband, compatible AM mode. An
* ordinary shortwave receiver can be tuned manually to one of these
* frequencies or, in the case of ICOM receivers, the receiver can be
* tuned automatically using this program as propagation conditions
* change throughout the day and night.
*
* The driver receives, demodulates and decodes the radio signals when
* connected to the audio codec of a Sun workstation running SunOS or
* Solaris, and with a little help, other workstations with similar
* codecs or sound cards. In this implementation, only one audio driver
* and codec can be supported on a single machine.
*
* The driver can be compiled to use a Bell 103 compatible modem or
* modem chip to receive the radio signal and demodulate the data.
* Alternatively, the driver can be compiled to use the audio codec of
* the Sun workstation or another with compatible audio drivers. In the
* latter case, the driver implements the modem using DSP routines, so
* the radio can be connected directly to either the microphone on line
* input port. In either case, the driver decodes the data using a
* maximum likelihood technique which exploits the considerable degree
* of redundancy available to maximize accuracy and minimize errors.
*
* The CHU time broadcast includes an audio signal compatible with the
* Bell 103 modem standard (mark = 2225 Hz, space = 2025 Hz). It consist
* of nine, ten-character bursts transmitted at 300 bps and beginning
* each second from second 31 to second 39 of the minute. Each character
* consists of eight data bits plus one start bit and two stop bits to
* encode two hex digits. The burst data consist of five characters (ten
* hex digits) followed by a repeat of these characters. In format A,
* the characters are repeated in the same polarity; in format B, the
* characters are repeated in the opposite polarity.
*
* Format A bursts are sent at seconds 32 through 39 of the minute in
* hex digits
*
* 6dddhhmmss6dddhhmmss
*
* The first ten digits encode a frame marker (6) followed by the day
* (ddd), hour (hh in UTC), minute (mm) and the second (ss). Since
* format A bursts are sent during the third decade of seconds the tens
* digit of ss is always 3. The driver uses this to determine correct
* burst synchronization. These digits are then repeated with the same
* polarity.
*
* Format B bursts are sent at second 31 of the minute in hex digits
*
* xdyyyyttaaxdyyyyttaa
*
* The first ten digits encode a code (x described below) followed by
* the DUT1 (d in deciseconds), Gregorian year (yyyy), difference TAI -
* UTC (tt) and daylight time indicator (aa) peculiar to Canada. These
* digits are then repeated with inverted polarity.
*
* The x is coded
*
* 1 Sign of DUT (0 = +)
* 2 Leap second warning. One second will be added.
* 4 Leap second warning. One second will be subtracted.
* 8 Even parity bit for this nibble.
*
* By design, the last stop bit of the last character in the burst
* coincides with 0.5 second. Since characters have 11 bits and are
* transmitted at 300 bps, the last stop bit of the first character
* coincides with 0.5 - 10 * 11/300 = 0.133 second. Depending on the
* UART, character interrupts can vary somewhere between the beginning
* of bit 9 and end of bit 11. These eccentricities can be corrected
* along with the radio propagation delay using fudge time 1.
*
* Debugging aids
*
* The timecode format used for debugging and data recording includes
* data helpful in diagnosing problems with the radio signal and serial
* connections. With debugging enabled (-d -d -d on the ntpd command
* line), the driver produces one line for each burst in two formats
* corresponding to format A and B. Following is format A:
*
* n b f s m code
*
* where n is the number of characters in the burst (0-11), b the burst
* distance (0-40), f the field alignment (-1, 0, 1), s the
* synchronization distance (0-16), m the burst number (2-9) and code
* the burst characters as received. Note that the hex digits in each
* character are reversed, so the burst
*
* 10 38 0 16 9 06851292930685129293
*
* is interpreted as containing 11 characters with burst distance 38,
* field alignment 0, synchronization distance 16 and burst number 9.
* The nibble-swapped timecode shows day 58, hour 21, minute 29 and
* second 39.
*
* When the audio driver is compiled, format A is preceded by
* the current gain (0-255) and relative signal level (0-9999). The
* receiver folume control should be set so that the gain is somewhere
* near the middle of the range 0-255, which results in a signal level
* near 1000.
*
* Following is format B:
*
* n b s code
*
* where n is the number of characters in the burst (0-11), b the burst
* distance (0-40), s the synchronization distance (0-40) and code the
* burst characters as received. Note that the hex digits in each
* character are reversed and the last ten digits inverted, so the burst
*
* 11 40 1091891300ef6e76ecff
*
* is interpreted as containing 11 characters with burst distance 40.
* The nibble-swapped timecode shows DUT1 +0.1 second, year 1998 and TAI
* - UTC 31 seconds.
*
* In addition to the above, the reference timecode is updated and
* written to the clockstats file and debug score after the last burst
* received in the minute. The format is
*
* qq yyyy ddd hh:mm:ss nn dd tt
*
* where qq are the error flags, as described below, yyyy is the year,
* ddd the day, hh:mm:ss the time of day, nn the number of format A
* bursts received during the previous minute, dd the decoding distance
* and tt the number of timestamps. The error flags are cleared after
* every update.
*
* Fudge factors
*
* For accuracies better than the low millisceconds, fudge time1 can be
* set to the radio propagation delay from CHU to the receiver. This can
* be done conviently using the minimuf program. When the modem driver
* is compiled, fudge flag3 enables the ppsclock line discipline. Fudge
* flag4 causes the dubugging output described above to be recorded in
* the clockstats file.
*
* When the audio driver is compiled, fudge flag2 selects the audio
* input port, where 0 is the mike port (default) and 1 is the line-in
* port. It does not seem useful to select the compact disc player port.
* Fudge flag3 enables audio monitoring of the input signal. For this
* purpose, the speaker volume must be set before the driver is started.
*
* The audio codec code is normally compiled in the driver if the
* architecture supports it (HAVE_AUDIO defined), but is used only if the
* link /dev/chu_audio is defined and valid. The serial port
* code is alwasy compiled in the driver, but is used only if the autdio
* codec is not available and the link /dev/chu%d is defined and valid.
* The ICOM code is normally compiled in the driver if selected (ICOM
* defined), but is used only if the link /dev/icom%d is defined and
* valid and the mode keyword on the server configuration command
* specifies a nonzero mode (ICOM ID select code). The C-IV speed is
* 9600 bps if the high order 0x80 bit of the mode is zero and 1200 bps
* if one. The C-IV trace is turned on if the debug level is greater
* than one.
*/
/*
* Interface definitions
*/
#define SPEED232 B300 /* uart speed (300 baud) */
#define PRECISION (-10) /* precision assumed (about 1 ms) */
#define REFID "CHU" /* reference ID */
#define DEVICE "/dev/chu%d" /* device name and unit */
#define SPEED232 B300 /* UART speed (300 baud) */
#ifdef ICOM
#define DWELL 5 /* minutes before qsy */
#define NCHAN 3 /* number of channels */
#endif /* ICOM */
#ifdef HAVE_AUDIO
/*
* Audio demodulator definitions
*/
#define SECOND 8000 /* nominal sample rate (Hz) */
#define BAUD 300 /* modulation rate (bps) */
#define OFFSET 128 /* companded sample offset */
#define SIZE 256 /* decompanding table size */
#define MAXSIG 6000. /* maximum signal level */
#define LIMIT 1000. /* soft limiter threshold */
#define AGAIN 6. /* baseband gain */
#define LAG 10 /* discriminator lag */
#define DEVICE_AUDIO "/dev/chu_audio" /* device name */
#define DESCRIPTION "CHU Audio/Modem Receiver" /* WRU */
#else
#define DESCRIPTION "CHU Modem Receiver" /* WRU */
#endif /* HAVE_AUDIO */
/*
* Decoder definitions
*/
#define CHAR (11. / 300.) /* character time (s) */
#define FUDGE .185 /* offset to first stop bit (s) */
#define BURST 11 /* max characters per burst */
#define MINCHAR 9 /* min characters per burst */
#define MINDIST 28 /* min burst distance (of 40) */
#define MINSYNC 8 /* min sync distance (of 16) */
#define MINSTAMP 20 /* min timestamps (of 60) */
#define PANIC (4 * 1440) /* panic restart */
/*
* Hex extension codes (>= 16)
*/
#define HEX_MISS 16 /* miss */
#define HEX_SOFT 17 /* soft error */
#define HEX_HARD 18 /* hard error */
/*
* Status bits (status)
*/
#define RUNT 0x0001 /* runt burst */
#define NOISE 0x0002 /* noise burst */
#define BFRAME 0x0004 /* invalid format B frame sync */
#define BFORMAT 0x0008 /* invalid format B data */
#define AFRAME 0x0010 /* invalid format A frame sync */
#define AFORMAT 0x0020 /* invalid format A data */
#define DECODE 0x0040 /* invalid data decode */
#define STAMP 0x0080 /* too few timestamps */
#define INYEAR 0x0100 /* valid B frame */
#define INSYNC 0x0200 /* clock synchronized */
/*
* Alarm status bits (alarm)
*
* These alarms are set at the end of a minute in which at least one
* burst was received. SYNERR is raised if the AFRAME or BFRAME status
* bits are set during the minute, FMTERR is raised if the AFORMAT or
* BFORMAT status bits are set, DECERR is raised if the DECODE status
* bit is set and TSPERR is raised if the STAMP status bit is set.
*/
#define SYNERR 0x01 /* frame sync error */
#define FMTERR 0x02 /* data format error */
#define DECERR 0x04 /* data decoding error */
#define TSPERR 0x08 /* insufficient data */
#ifdef HAVE_AUDIO
struct surv {
double shift[12]; /* mark register */
double es_max, es_min; /* max/min envelope signals */
double dist; /* sample distance */
int uart; /* decoded character */
};
#endif /* HAVE_AUDIO */
/*
* CHU unit control structure
*/
struct chuunit {
u_char decode[20][16]; /* maximum likelihood decoding matrix */
l_fp cstamp[BURST]; /* character timestamps */
l_fp tstamp[MAXSTAGE]; /* timestamp samples */
l_fp timestamp; /* current buffer timestamp */
l_fp laststamp; /* last buffer timestamp */
l_fp charstamp; /* character time as a l_fp */
int errflg; /* error flags */
int status; /* status bits */
int bufptr; /* buffer index pointer */
char ident[10]; /* transmitter frequency */
#ifdef ICOM
int fd_icom; /* ICOM file descriptor */
int chan; /* frequency identifier */
int dwell; /* dwell minutes at current frequency */
#endif /* ICOM */
/*
* Character burst variables
*/
int cbuf[BURST]; /* character buffer */
int ntstamp; /* number of timestamp samples */
int ndx; /* buffer start index */
int prevsec; /* previous burst second */
int burdist; /* burst distance */
int mindist; /* minimum distance */
int syndist; /* sync distance */
int burstcnt; /* format A bursts this minute */
/*
* Format particulars
*/
int leap; /* leap/dut code */
int dut; /* UTC1 correction */
int tai; /* TAI - UTC correction */
int dst; /* Canadian DST code */
#ifdef HAVE_AUDIO
/*
* Audio codec variables
*/
int fd_audio; /* audio port file descriptor */
double comp[SIZE]; /* decompanding table */
int port; /* codec port */
int gain; /* codec gain */
int bufcnt; /* samples in buffer */
int clipcnt; /* sample clip count */
int seccnt; /* second interval counter */
/*
* Modem variables
*/
l_fp tick; /* audio sample increment */
double bpf[9]; /* IIR bandpass filter */
double disc[LAG]; /* discriminator shift register */
double lpf[27]; /* FIR lowpass filter */
double monitor; /* audio monitor */
double maxsignal; /* signal level */
int discptr; /* discriminator pointer */
/*
* Maximum likelihood UART variables
*/
double baud; /* baud interval */
struct surv surv[8]; /* UART survivor structures */
int decptr; /* decode pointer */
int dbrk; /* holdoff counter */
#endif /* HAVE_AUDIO */
};
/*
* Function prototypes
*/
static int chu_start P((int, struct peer *));
static void chu_shutdown P((int, struct peer *));
static void chu_receive P((struct recvbuf *));
static void chu_poll P((int, struct peer *));
/*
* More function prototypes
*/
static void chu_decode P((struct peer *, int));
static void chu_burst P((struct peer *));
static void chu_clear P((struct peer *));
static void chu_a P((struct peer *, int));
static void chu_b P((struct peer *, int));
static int chu_dist P((int, int));
static int chu_major P((struct peer *));
#ifdef HAVE_AUDIO
static void chu_uart P((struct surv *, double));
static void chu_rf P((struct peer *, double));
static void chu_gain P((struct peer *));
static void chu_audio_receive P((struct recvbuf *rbufp));
#endif /* HAVE_AUDIO */
static void chu_serial_receive P((struct recvbuf *rbufp));
/*
* Global variables
*/
static char hexchar[] = "0123456789abcdef_-=";
#ifdef ICOM
static double qsy[NCHAN] = {3.33, 7.335, 14.67}; /* frequencies (MHz) */
#endif /* ICOM */
/*
* Transfer vector
*/
struct refclock refclock_chu = {
chu_start, /* start up driver */
chu_shutdown, /* shut down driver */
chu_poll, /* transmit poll message */
noentry, /* not used (old chu_control) */
noentry, /* initialize driver (not used) */
noentry, /* not used (old chu_buginfo) */
NOFLAGS /* not used */
};
/*
* chu_start - open the devices and initialize data for processing
*/
static int
chu_start(
int unit, /* instance number (not used) */
struct peer *peer /* peer structure pointer */
)
{
struct chuunit *up;
struct refclockproc *pp;
char device[20]; /* device name */
int fd; /* file descriptor */
#ifdef ICOM
char tbuf[80]; /* trace buffer */
int temp;
#endif /* ICOM */
#ifdef HAVE_AUDIO
int fd_audio; /* audio port file descriptor */
int i; /* index */
double step; /* codec adjustment */
/*
* Open audio device.
*/
fd_audio = audio_init(DEVICE_AUDIO);
#ifdef DEBUG
if (fd_audio > 0 && debug)
audio_show();
#endif
/*
* Open serial port in raw mode.
*/
if (fd_audio > 0) {
fd = fd_audio;
} else {
sprintf(device, DEVICE, unit);
fd = refclock_open(device, SPEED232, LDISC_RAW);
}
#else /* HAVE_AUDIO */
/*
* Open serial port in raw mode.
*/
sprintf(device, DEVICE, unit);
fd = refclock_open(device, SPEED232, LDISC_RAW);
#endif /* HAVE_AUDIO */
if (fd <= 0)
return (0);
/*
* Allocate and initialize unit structure
*/
if (!(up = (struct chuunit *)
emalloc(sizeof(struct chuunit)))) {
close(fd);
return (0);
}
memset((char *)up, 0, sizeof(struct chuunit));
pp = peer->procptr;
pp->unitptr = (caddr_t)up;
pp->io.clock_recv = chu_receive;
pp->io.srcclock = (caddr_t)peer;
pp->io.datalen = 0;
pp->io.fd = fd;
if (!io_addclock(&pp->io)) {
close(fd);
free(up);
return (0);
}
/*
* Initialize miscellaneous variables
*/
peer->precision = PRECISION;
pp->clockdesc = DESCRIPTION;
memcpy((char *)&pp->refid, REFID, 4);
DTOLFP(CHAR, &up->charstamp);
#ifdef HAVE_AUDIO
/*
* The companded samples are encoded sign-magnitude. The table
* contains all the 256 values in the interest of speed. We do
* this even if the audio codec is not available. C'est la lazy.
*/
up->fd_audio = fd_audio;
up->gain = 127;
up->comp[0] = up->comp[OFFSET] = 0.;
up->comp[1] = 1; up->comp[OFFSET + 1] = -1.;
up->comp[2] = 3; up->comp[OFFSET + 2] = -3.;
step = 2.;
for (i = 3; i < OFFSET; i++) {
up->comp[i] = up->comp[i - 1] + step;
up->comp[OFFSET + i] = -up->comp[i];
if (i % 16 == 0)
step *= 2.;
}
DTOLFP(1. / SECOND, &up->tick);
#endif /* HAVE_AUDIO */
strcpy(up->ident, "X");
#ifdef ICOM
temp = 0;
#ifdef DEBUG
if (debug > 1)
temp = P_TRACE;
#endif
if (peer->ttlmax > 0) {
if (peer->ttlmax & 0x80)
up->fd_icom = icom_init("/dev/icom", B1200,
temp);
else
up->fd_icom = icom_init("/dev/icom", B9600,
temp);
}
if (up->fd_icom > 0) {
if (icom_freq(up->fd_icom, peer->ttlmax & 0x7f,
qsy[up->chan]) < 0) {
NLOG(NLOG_SYNCEVENT | NLOG_SYSEVENT)
msyslog(LOG_ERR,
"ICOM bus error; autotune disabled");
up->errflg = CEVNT_FAULT;
close(up->fd_icom);
up->fd_icom = 0;
} else {
sprintf(up->ident, "%.1f", qsy[up->chan]);
sprintf(tbuf, "chu: QSY to %s MHz", up->ident);
record_clock_stats(&peer->srcadr, tbuf);
#ifdef DEBUG
if (debug)
printf("%s\n", tbuf);
#endif
}
}
#endif /* ICOM */
return (1);
}
/*
* chu_shutdown - shut down the clock
*/
static void
chu_shutdown(
int unit, /* instance number (not used) */
struct peer *peer /* peer structure pointer */
)
{
struct chuunit *up;
struct refclockproc *pp;
pp = peer->procptr;
up = (struct chuunit *)pp->unitptr;
if (up == NULL)
return;
io_closeclock(&pp->io);
if (up->fd_icom > 0)
close(up->fd_icom);
free(up);
}
/*
* chu_receive - receive data from the audio or serial device
*/
static void
chu_receive(
struct recvbuf *rbufp /* receive buffer structure pointer */
)
{
#ifdef HAVE_AUDIO
struct chuunit *up;
struct refclockproc *pp;
struct peer *peer;
peer = (struct peer *)rbufp->recv_srcclock;
pp = peer->procptr;
up = (struct chuunit *)pp->unitptr;
/*
* If the audio codec is warmed up, the buffer contains codec
* samples which need to be demodulated and decoded into CHU
* characters using the software UART. Otherwise, the buffer
* contains CHU characters from the serial port, so the software
* UART is bypassed. In this case the CPU will probably run a
* few degrees cooler.
*/
if (up->fd_audio > 0)
chu_audio_receive(rbufp);
else
chu_serial_receive(rbufp);
#else
chu_serial_receive(rbufp);
#endif /* HAVE_AUDIO */
}
#ifdef HAVE_AUDIO
/*
* chu_audio_receive - receive data from the audio device
*/
static void
chu_audio_receive(
struct recvbuf *rbufp /* receive buffer structure pointer */
)
{
struct chuunit *up;
struct refclockproc *pp;
struct peer *peer;
double sample; /* codec sample */
u_char *dpt; /* buffer pointer */
l_fp ltemp; /* l_fp temp */
int isneg; /* parity flag */
double dtemp;
int i, j;
peer = (struct peer *)rbufp->recv_srcclock;
pp = peer->procptr;
up = (struct chuunit *)pp->unitptr;
/*
* Main loop - read until there ain't no more. Note codec
* samples are bit-inverted.
*/
up->timestamp = rbufp->recv_time;
up->bufcnt = rbufp->recv_length;
DTOLFP(up->bufcnt * 1. / SECOND, &ltemp);
L_SUB(&up->timestamp, &ltemp);
dpt = (u_char *)&rbufp->recv_space;
for (up->bufptr = 0; up->bufptr < up->bufcnt; up->bufptr++) {
sample = up->comp[~*dpt & 0xff];
/*
* Clip noise spikes greater than MAXSIG. If no clips,
* increase the gain a tad; if the clips are too high,
* decrease a tad.
*/
if (sample > MAXSIG) {
sample = MAXSIG;
up->clipcnt++;
} else if (sample < -MAXSIG) {
sample = -MAXSIG;
up->clipcnt++;
}
up->seccnt = (up->seccnt + 1) % SECOND;
if (up->seccnt == 0) {
if (pp->sloppyclockflag & CLK_FLAG2)
up->port = 2;
else
up->port = 1;
chu_gain(peer);
}
chu_rf(peer, sample);
/*
* During development, it is handy to have an audio
* monitor that can be switched to various signals. This
* code converts the linear signal left in up->monitor
* to codec format. If we can get the grass out of this
* thing and improve modem performance, this expensive
* code will be permanently nixed.
*/
isneg = 0;
dtemp = up->monitor;
if (sample < 0) {
isneg = 1;
dtemp-= dtemp;
}
i = 0;
j = OFFSET >> 1;
while (j != 0) {
if (dtemp > up->comp[i])
i += j;
else if (dtemp < up->comp[i])
i -= j;
else
break;
j >>= 1;
}
if (isneg)
*dpt = ~(i + OFFSET);
else
*dpt = ~i;
dpt++;
L_ADD(&up->timestamp, &up->tick);
}
/*
* Squawk to the monitor speaker if enabled.
*/
if (pp->sloppyclockflag & CLK_FLAG3)
if (write(pp->io.fd, (u_char *)&rbufp->recv_space,
(u_int)up->bufcnt) < 0)
perror("chu:");
}
/*
* chu_rf - filter and demodulate the FSK signal
*
* This routine implements a 300-baud Bell 103 modem with mark 2225 Hz
* and space 2025 Hz. It uses a bandpass filter followed by a soft
* limiter, FM discriminator and lowpass filter. A maximum likelihood
* decoder samples the baseband signal at eight times the baud rate and
* detects the start bit of each character.
*
* The filters are built for speed, which explains the rather clumsy
* code. Hopefully, the compiler will efficiently implement the move-
* and-muiltiply-and-add operations.
*/
static void
chu_rf(
struct peer *peer, /* peer structure pointer */
double sample /* analog sample */
)
{
struct refclockproc *pp;
struct chuunit *up;
struct surv *sp;
/*
* Local variables
*/
double signal; /* bandpass signal */
double limit; /* limiter signal */
double disc; /* discriminator signal */
double lpf; /* lowpass signal */
double span; /* UART signal span */
double dist; /* UART signal distance */
int i, j;
pp = peer->procptr;
up = (struct chuunit *)pp->unitptr;
/*
* Bandpass filter. 4th-order elliptic, 500-Hz bandpass centered
* at 2125 Hz. Passband ripple 0.3 dB, stopband ripple 50 dB.
*/
signal = (up->bpf[8] = up->bpf[7]) * 5.844676e-01;
signal += (up->bpf[7] = up->bpf[6]) * 4.884860e-01;
signal += (up->bpf[6] = up->bpf[5]) * 2.704384e+00;
signal += (up->bpf[5] = up->bpf[4]) * 1.645032e+00;
signal += (up->bpf[4] = up->bpf[3]) * 4.644557e+00;
signal += (up->bpf[3] = up->bpf[2]) * 1.879165e+00;
signal += (up->bpf[2] = up->bpf[1]) * 3.522634e+00;
signal += (up->bpf[1] = up->bpf[0]) * 7.315738e-01;
up->bpf[0] = sample - signal;
signal = up->bpf[0] * 6.176213e-03
+ up->bpf[1] * 3.156599e-03
+ up->bpf[2] * 7.567487e-03
+ up->bpf[3] * 4.344580e-03
+ up->bpf[4] * 1.190128e-02
+ up->bpf[5] * 4.344580e-03
+ up->bpf[6] * 7.567487e-03
+ up->bpf[7] * 3.156599e-03
+ up->bpf[8] * 6.176213e-03;
up->monitor = signal / 4.; /* note monitor after filter */
/*
* Soft limiter/discriminator. The 11-sample discriminator lag
* interval corresponds to three cycles of 2125 Hz, which
* requires the sample frequency to be 2125 * 11 / 3 = 7791.7
* Hz. The discriminator output varies +-0.5 interval for input
* frequency 2025-2225 Hz. However, we don't get to sample at
* this frequency, so the discriminator output is biased. Life
* at 8000 Hz sucks.
*/
limit = signal;
if (limit > LIMIT)
limit = LIMIT;
else if (limit < -LIMIT)
limit = -LIMIT;
disc = up->disc[up->discptr] * -limit;
up->disc[up->discptr] = limit;
up->discptr = (up->discptr + 1 ) % LAG;
if (disc >= 0)
disc = SQRT(disc);
else
disc = -SQRT(-disc);
/*
* Lowpass filter. Raised cosine, Ts = 1 / 300, beta = 0.1.
*/
lpf = (up->lpf[26] = up->lpf[25]) * 2.538771e-02;
lpf += (up->lpf[25] = up->lpf[24]) * 1.084671e-01;
lpf += (up->lpf[24] = up->lpf[23]) * 2.003159e-01;
lpf += (up->lpf[23] = up->lpf[22]) * 2.985303e-01;
lpf += (up->lpf[22] = up->lpf[21]) * 4.003697e-01;
lpf += (up->lpf[21] = up->lpf[20]) * 5.028552e-01;
lpf += (up->lpf[20] = up->lpf[19]) * 6.028795e-01;
lpf += (up->lpf[19] = up->lpf[18]) * 6.973249e-01;
lpf += (up->lpf[18] = up->lpf[17]) * 7.831828e-01;
lpf += (up->lpf[17] = up->lpf[16]) * 8.576717e-01;
lpf += (up->lpf[16] = up->lpf[15]) * 9.183463e-01;
lpf += (up->lpf[15] = up->lpf[14]) * 9.631951e-01;
lpf += (up->lpf[14] = up->lpf[13]) * 9.907208e-01;
lpf += (up->lpf[13] = up->lpf[12]) * 1.000000e+00;
lpf += (up->lpf[12] = up->lpf[11]) * 9.907208e-01;
lpf += (up->lpf[11] = up->lpf[10]) * 9.631951e-01;
lpf += (up->lpf[10] = up->lpf[9]) * 9.183463e-01;
lpf += (up->lpf[9] = up->lpf[8]) * 8.576717e-01;
lpf += (up->lpf[8] = up->lpf[7]) * 7.831828e-01;
lpf += (up->lpf[7] = up->lpf[6]) * 6.973249e-01;
lpf += (up->lpf[6] = up->lpf[5]) * 6.028795e-01;
lpf += (up->lpf[5] = up->lpf[4]) * 5.028552e-01;
lpf += (up->lpf[4] = up->lpf[3]) * 4.003697e-01;
lpf += (up->lpf[3] = up->lpf[2]) * 2.985303e-01;
lpf += (up->lpf[2] = up->lpf[1]) * 2.003159e-01;
lpf += (up->lpf[1] = up->lpf[0]) * 1.084671e-01;
lpf += up->lpf[0] = disc * 2.538771e-02;
/*
* Maximum likelihood decoder. The UART updates each of the
* eight survivors and determines the span, slice level and
* tentative decoded character. Valid 11-bit characters are
* framed so that bit 1 and bit 11 (stop bits) are mark and bit
* 2 (start bit) is space. When a valid character is found, the
* survivor with maximum distance determines the final decoded
* character.
*/
up->baud += 1. / SECOND;
if (up->baud > 1. / (BAUD * 8.)) {
up->baud -= 1. / (BAUD * 8.);
sp = &up->surv[up->decptr];
span = sp->es_max - sp->es_min;
up->maxsignal += (span - up->maxsignal) / 80.;
if (up->dbrk > 0) {
up->dbrk--;
} else if ((sp->uart & 0x403) == 0x401 && span > 1000.)
{
dist = 0;
j = 0;
for (i = 0; i < 8; i++) {
if (up->surv[i].dist > dist) {
dist = up->surv[i].dist;
j = i;
}
}
chu_decode(peer, (up->surv[j].uart >> 2) &
0xff);
up->dbrk = 80;
}
up->decptr = (up->decptr + 1) % 8;
chu_uart(sp, -lpf * AGAIN);
}
}
/*
* chu_uart - maximum likelihood UART
*
* This routine updates a shift register holding the last 11 envelope
* samples. It then computes the slice level and span over these samples
* and determines the tentative data bits and distance. The calling
* program selects over the last eight survivors the one with maximum
* distance to determine the decoded character.
*/
static void
chu_uart(
struct surv *sp, /* survivor structure pointer */
double sample /* baseband signal */
)
{
double es_max, es_min; /* max/min envelope */
double slice; /* slice level */
double dist; /* distance */
double dtemp;
int i;
/*
* Save the sample and shift right. At the same time, measure
* the maximum and minimum over all eleven samples.
*/
es_max = -1e6;
es_min = 1e6;
sp->shift[0] = sample;
for (i = 11; i > 0; i--) {
sp->shift[i] = sp->shift[i - 1];
if (sp->shift[i] > es_max)
es_max = sp->shift[i];
if (sp->shift[i] < es_min)
es_min = sp->shift[i];
}
/*
* Determine the slice level midway beteen the maximum and
* minimum and the span as the maximum less the minimum. Compute
* the distance on the assumption the first and last bits must
* be mark, the second space and the rest either mark or space.
*/
slice = (es_max + es_min) / 2.;
dist = 0;
sp->uart = 0;
for (i = 1; i < 12; i++) {
sp->uart <<= 1;
dtemp = sp->shift[i];
if (dtemp > slice)
sp->uart |= 0x1;
if (i == 1 || i == 11) {
dist += dtemp - es_min;
} else if (i == 10) {
dist += es_max - dtemp;
} else {
if (dtemp > slice)
dist += dtemp - es_min;
else
dist += es_max - dtemp;
}
}
sp->es_max = es_max;
sp->es_min = es_min;
sp->dist = dist / (11 * (es_max - es_min));
}
#endif /* HAVE_AUDIO */
/*
* chu_serial_receive - receive data from the serial device
*/
static void
chu_serial_receive(
struct recvbuf *rbufp /* receive buffer structure pointer */
)
{
struct chuunit *up;
struct refclockproc *pp;
struct peer *peer;
u_char *dpt; /* receive buffer pointer */
peer = (struct peer *)rbufp->recv_srcclock;
pp = peer->procptr;
up = (struct chuunit *)pp->unitptr;
/*
* Initialize pointers and read the timecode and timestamp.
*/
up->timestamp = rbufp->recv_time;
dpt = (u_char *)&rbufp->recv_space;
chu_decode(peer, *dpt);
}
/*
* chu_decode - decode the character data
*/
static void
chu_decode(
struct peer *peer, /* peer structure pointer */
int hexhex /* data character */
)
{
struct refclockproc *pp;
struct chuunit *up;
l_fp tstmp; /* timestamp temp */
double dtemp;
pp = peer->procptr;
up = (struct chuunit *)pp->unitptr;
/*
* If the interval since the last character is greater than the
* longest burst, process the last burst and start a new one. If
* the interval is less than this but greater than two
* characters, consider this a noise burst and reject it.
*/
tstmp = up->timestamp;
if (L_ISZERO(&up->laststamp))
up->laststamp = up->timestamp;
L_SUB(&tstmp, &up->laststamp);
up->laststamp = up->timestamp;
LFPTOD(&tstmp, dtemp);
if (dtemp > BURST * CHAR) {
chu_burst(peer);
up->ndx = 0;
} else if (dtemp > 2.5 * CHAR) {
up->ndx = 0;
}
/*
* Append the character to the current burst and append the
* timestamp to the timestamp list.
*/
if (up->ndx < BURST) {
up->cbuf[up->ndx] = hexhex & 0xff;
up->cstamp[up->ndx] = up->timestamp;
up->ndx++;
}
}
/*
* chu_burst - search for valid burst format
*/
static void
chu_burst(
struct peer *peer
)
{
struct chuunit *up;
struct refclockproc *pp;
int i;
pp = peer->procptr;
up = (struct chuunit *)pp->unitptr;
/*
* Correlate a block of five characters with the next block of
* five characters. The burst distance is defined as the number
* of bits that match in the two blocks for format A and that
* match the inverse for format B.
*/
if (up->ndx < MINCHAR) {
up->status |= RUNT;
return;
}
up->burdist = 0;
for (i = 0; i < 5 && i < up->ndx - 5; i++)
up->burdist += chu_dist(up->cbuf[i], up->cbuf[i + 5]);
/*
* If the burst distance is at least MINDIST, this must be a
* format A burst; if the value is not greater than -MINDIST, it
* must be a format B burst. If the B burst is perfect, we
* believe it; otherwise, it is a noise burst and of no use to
* anybody.
*/
if (up->burdist >= MINDIST) {
chu_a(peer, up->ndx);
} else if (up->burdist <= -MINDIST) {
chu_b(peer, up->ndx);
} else {
up->status |= NOISE;
return;
}
/*
* If this is a valid burst, wait a guard time of ten seconds to
* allow for more bursts, then arm the poll update routine to
* process the minute. Don't do this if this is called from the
* timer interrupt routine.
*/
if (peer->outdate != current_time)
peer->nextdate = current_time + 10;
}
/*
* chu_b - decode format B burst
*/
static void
chu_b(
struct peer *peer,
int nchar
)
{
struct refclockproc *pp;
struct chuunit *up;
u_char code[11]; /* decoded timecode */
char tbuf[80]; /* trace buffer */
l_fp offset; /* timestamp offset */
int i;
pp = peer->procptr;
up = (struct chuunit *)pp->unitptr;
/*
* In a format B burst, a character is considered valid only if
* the first occurrence matches the last occurrence. The burst
* is considered valid only if all characters are valid; that
* is, only if the distance is 40.
*/
sprintf(tbuf, "chuB %04x %2d %2d ", up->status, nchar,
-up->burdist);
for (i = 0; i < nchar; i++)
sprintf(&tbuf[strlen(tbuf)], "%02x",
up->cbuf[i]);
if (pp->sloppyclockflag & CLK_FLAG4)
record_clock_stats(&peer->srcadr, tbuf);
#ifdef DEBUG
if (debug)
printf("%s\n", tbuf);
#endif
if (up->burdist > -40) {
up->status |= BFRAME;
return;
}
up->status |= INYEAR;
/*
* Convert the burst data to internal format. If this succeeds,
* save the timestamps for later.
*/
for (i = 0; i < 5; i++) {
code[2 * i] = hexchar[up->cbuf[i] & 0xf];
code[2 * i + 1] = hexchar[(up->cbuf[i] >>
4) & 0xf];
}
if (sscanf((char *)code, "%1x%1d%4d%2d%2x", &up->leap, &up->dut,
&pp->year, &up->tai, &up->dst) != 5) {
up->status |= BFORMAT;
return;
}
if (up->leap & 0x8)
up->dut = -up->dut;
offset.l_ui = 31;
offset.l_f = 0;
for (i = 0; i < nchar && i < 10; i++) {
up->tstamp[up->ntstamp] = up->cstamp[i];
L_SUB(&up->tstamp[up->ntstamp], &offset);
L_ADD(&offset, &up->charstamp);
if (up->ntstamp < MAXSTAGE)
up->ntstamp++;
}
}
/*
* chu_a - decode format A burst
*/
static void
chu_a(
struct peer *peer,
int nchar
)
{
struct refclockproc *pp;
struct chuunit *up;
char tbuf[80]; /* trace buffer */
l_fp offset; /* timestamp offset */
int val; /* distance */
int temp;
int i, j, k;
pp = peer->procptr;
up = (struct chuunit *)pp->unitptr;
/*
* Determine correct burst phase. There are three cases
* corresponding to in-phase, one character early or one
* character late. These cases are distinguished by the position
* of the framing digits x6 at positions 0 and 5 and x3 at
* positions 4 and 9. The correct phase is when the distance
* relative to the framing digits is maximum. The burst is valid
* only if the maximum distance is at least MINSYNC.
*/
up->syndist = k = 0;
val = -16;
for (i = -1; i < 2; i++) {
temp = up->cbuf[i + 4] & 0xf;
if (i >= 0)
temp |= (up->cbuf[i] & 0xf) << 4;
val = chu_dist(temp, 0x63);
temp = (up->cbuf[i + 5] & 0xf) << 4;
if (i + 9 < nchar)
temp |= up->cbuf[i + 9] & 0xf;
val += chu_dist(temp, 0x63);
if (val > up->syndist) {
up->syndist = val;
k = i;
}
}
temp = (up->cbuf[k + 4] >> 4) & 0xf;
if (temp > 9 || k + 9 >= nchar || temp != ((up->cbuf[k + 9] >>
4) & 0xf))
temp = 0;
#ifdef HAVE_AUDIO
if (up->fd_audio)
sprintf(tbuf, "chuA %04x %4.0f %2d %2d %2d %2d %1d ",
up->status, up->maxsignal, nchar, up->burdist, k,
up->syndist, temp);
else
sprintf(tbuf, "chuA %04x %2d %2d %2d %2d %1d ",
up->status, nchar, up->burdist, k, up->syndist,
temp);
#else
sprintf(tbuf, "chuA %04x %2d %2d %2d %2d %1d ", up->status,
nchar, up->burdist, k, up->syndist, temp);
#endif /* HAVE_AUDIO */
for (i = 0; i < nchar; i++)
sprintf(&tbuf[strlen(tbuf)], "%02x",
up->cbuf[i]);
if (pp->sloppyclockflag & CLK_FLAG4)
record_clock_stats(&peer->srcadr, tbuf);
#ifdef DEBUG
if (debug)
printf("%s\n", tbuf);
#endif
if (up->syndist < MINSYNC) {
up->status |= AFRAME;
return;
}
/*
* A valid burst requires the first seconds number to match the
* last seconds number. If so, the burst timestamps are
* corrected to the current minute and saved for later
* processing. In addition, the seconds decode is advanced from
* the previous burst to the current one.
*/
if (temp != 0) {
offset.l_ui = 30 + temp;
offset.l_f = 0;
i = 0;
if (k < 0)
offset = up->charstamp;
else if (k > 0)
i = 1;
for (; i < nchar && i < k + 10; i++) {
up->tstamp[up->ntstamp] = up->cstamp[i];
L_SUB(&up->tstamp[up->ntstamp], &offset);
L_ADD(&offset, &up->charstamp);
if (up->ntstamp < MAXSTAGE)
up->ntstamp++;
}
while (temp > up->prevsec) {
for (j = 15; j > 0; j--) {
up->decode[9][j] = up->decode[9][j - 1];
up->decode[19][j] =
up->decode[19][j - 1];
}
up->decode[9][j] = up->decode[19][j] = 0;
up->prevsec++;
}
}
i = -(2 * k);
for (j = 0; j < nchar; j++) {
if (i < 0 || i > 19) {
i += 2;
continue;
}
up->decode[i][up->cbuf[j] & 0xf]++;
i++;
up->decode[i][(up->cbuf[j] >> 4) & 0xf]++;
i++;
}
up->burstcnt++;
}
/*
* chu_poll - called by the transmit procedure
*/
static void
chu_poll(
int unit,
struct peer *peer /* peer structure pointer */
)
{
struct refclockproc *pp;
struct chuunit *up;
char synchar, qual, leapchar;
int minset;
int temp;
#ifdef ICOM
char tbuf[80]; /* trace buffer */
#endif /* ICOM */
pp = peer->procptr;
up = (struct chuunit *)pp->unitptr;
if (pp->coderecv == pp->codeproc)
up->errflg = CEVNT_TIMEOUT;
else
pp->polls++;
minset = ((current_time - peer->update) + 30) / 60;
if (up->status & INSYNC) {
if (minset > PANIC)
up->status = 0;
else
peer->reach |= 1;
}
/*
* Process the last burst, if still in the burst buffer.
* Don't mess with anything if nothing has been heard.
*/
chu_burst(peer);
#ifdef ICOM
if (up->burstcnt > 2) {
up->dwell = 0;
} else if (up->dwell < DWELL) {
up->dwell++;
} else if (up->fd_icom > 0) {
up->dwell = 0;
up->chan = (up->chan + 1) % NCHAN;
icom_freq(up->fd_icom, peer->ttlmax & 0x7f, qsy[up->chan]);
sprintf(up->ident, "%.3f", qsy[up->chan]);
sprintf(tbuf, "chu: QSY to %s MHz", up->ident);
record_clock_stats(&peer->srcadr, tbuf);
#ifdef DEBUG
if (debug)
printf("%s\n", tbuf);
#endif
}
#endif /* ICOM */
if (up->burstcnt == 0)
return;
temp = chu_major(peer);
if (up->status & INYEAR)
up->status |= INSYNC;
qual = 0;
if (up->status & (BFRAME | AFRAME))
qual |= SYNERR;
if (up->status & (BFORMAT | AFORMAT))
qual |= FMTERR;
if (up->status & DECODE)
qual |= DECERR;
if (up->status & STAMP)
qual |= TSPERR;
synchar = leapchar = ' ';
if (!(up->status & INSYNC)) {
pp->leap = LEAP_NOTINSYNC;
synchar = '?';
} else if (up->leap & 0x2) {
pp->leap = LEAP_ADDSECOND;
leapchar = 'L';
} else if (up->leap & 0x4) {
pp->leap = LEAP_DELSECOND;
leapchar = 'l';
} else {
pp->leap = LEAP_NOWARNING;
}
#ifdef HAVE_AUDIO
if (up->fd_audio)
sprintf(pp->a_lastcode,
"%c%1X %4d %3d %02d:%02d:%02d.000 %c%x %+d %d %d %s %d %d %d %d",
synchar, qual, pp->year, pp->day, pp->hour,
pp->minute, pp->second, leapchar, up->dst, up->dut,
minset, up->gain, up->ident, up->tai, up->burstcnt,
up->mindist, up->ntstamp);
else
sprintf(pp->a_lastcode,
"%c%1X %4d %3d %02d:%02d:%02d.000 %c%x %+d %d %s %d %d %d %d",
synchar, qual, pp->year, pp->day, pp->hour,
pp->minute, pp->second, leapchar, up->dst, up->dut,
minset, up->ident, up->tai, up->burstcnt,
up->mindist, up->ntstamp);
#else
sprintf(pp->a_lastcode,
"%c%1X %4d %3d %02d:%02d:%02d.000 %c%x %+d %d %s %d %d %d %d",
synchar, qual, pp->year, pp->day, pp->hour, pp->minute,
pp->second, leapchar, up->dst, up->dut, minset,
up->ident, up->tai, up->burstcnt, up->mindist, up->ntstamp);
#endif /* HAVE_AUDIO */
pp->lencode = strlen(pp->a_lastcode);
/*
* If timestamps have been stuffed, the timecode is ipso fatso
* correct and can be selected to discipline the clock.
*/
if (temp > 0) {
record_clock_stats(&peer->srcadr, pp->a_lastcode);
refclock_receive(peer);
} else if (pp->sloppyclockflag & CLK_FLAG4) {
record_clock_stats(&peer->srcadr, pp->a_lastcode);
}
#ifdef DEBUG
if (debug)
printf("chu: timecode %d %s\n", pp->lencode,
pp->a_lastcode);
#endif
chu_clear(peer);
if (up->errflg)
refclock_report(peer, up->errflg);
up->errflg = 0;
}
/*
* chu_major - majority decoder
*/
static int
chu_major(
struct peer *peer /* peer structure pointer */
)
{
struct refclockproc *pp;
struct chuunit *up;
u_char code[11]; /* decoded timecode */
l_fp toffset, offset; /* l_fp temps */
int val1, val2; /* maximum distance */
int synchar; /* stray cat */
double dtemp;
int temp;
int i, j, k;
pp = peer->procptr;
up = (struct chuunit *)pp->unitptr;
/*
* Majority decoder. Each burst encodes two replications at each
* digit position in the timecode. Each row of the decoding
* matrix encodes the number of occurences of each digit found
* at the corresponding position. The maximum over all
* occurences at each position is the distance for this position
* and the corresponding digit is the maximumn likelihood
* candidate. If the distance is zero, assume a miss '_'; if the
* distance is not more than half the total number of
* occurences, assume a soft error '-'; if two different digits
* with the same distance are found, assume a hard error '='.
* These will later cause a format error when the timecode is
* interpreted. The decoding distance is defined as the minimum
* distance over the first nine digits. The tenth digit varies
* over the seconds, so we don't count it.
*/
up->mindist = 16;
for (i = 0; i < 9; i++) {
val1 = val2 = 0;
k = 0;
for (j = 0; j < 16; j++) {
temp = up->decode[i][j] + up->decode[i + 10][j];
if (temp > val1) {
val2 = val1;
val1 = temp;
k = j;
}
}
if (val1 == 0)
code[i] = HEX_MISS;
else if (val1 == val2)
code[i] = HEX_HARD;
else if (val1 <= up->burstcnt)
code[i] = HEX_SOFT;
else
code[i] = k;
if (val1 < up->mindist)
up->mindist = val1;
code[i] = hexchar[code[i]];
}
code[i] = 0;
/*
* A valid timecode requires at least three bursts and a
* decoding distance greater than half the total number of
* occurences. A valid timecode also requires at least 20 valid
* timestamps.
*/
if (up->burstcnt < 3 || up->mindist <= up->burstcnt)
up->status |= DECODE;
if (up->ntstamp < MINSTAMP)
up->status |= STAMP;
/*
* Compute the timecode timestamp from the days, hours and
* minutes of the timecode. Use clocktime() for the aggregate
* minutes and the minute offset computed from the burst
* seconds. Note that this code relies on the filesystem time
* for the years and does not use the years of the timecode.
*/
if (sscanf((char *)code, "%1x%3d%2d%2d", &synchar, &pp->day,
&pp->hour, &pp->minute) != 4) {
up->status |= AFORMAT;
return (0);
}
if (up->status & (DECODE | STAMP)) {
up->errflg = CEVNT_BADREPLY;
return (0);
}
L_CLR(&offset);
if (!clocktime(pp->day, pp->hour, pp->minute, 0, GMT,
up->tstamp[0].l_ui, &pp->yearstart, &offset.l_ui)) {
up->errflg = CEVNT_BADTIME;
return (0);
}
pp->lastref = offset;
for (i = 0; i < up->ntstamp; i++) {
toffset = offset;
L_SUB(&toffset, &up->tstamp[i]);
LFPTOD(&toffset, dtemp);
SAMPLE(dtemp + FUDGE + pp->fudgetime1);
}
return (i);
}
/*
* chu_clear - clear decoding matrix
*/
static void
chu_clear(
struct peer *peer /* peer structure pointer */
)
{
struct refclockproc *pp;
struct chuunit *up;
int i, j;
pp = peer->procptr;
up = (struct chuunit *)pp->unitptr;
/*
* Clear stuff for the minute.
*/
up->ndx = up->prevsec = 0;
up->burstcnt = up->mindist = up->ntstamp = 0;
up->status &= INSYNC | INYEAR;
up->burstcnt = 0;
for (i = 0; i < 20; i++) {
for (j = 0; j < 16; j++)
up->decode[i][j] = 0;
}
}
/*
* chu_dist - determine the distance of two octet arguments
*/
static int
chu_dist(
int x, /* an octet of bits */
int y /* another octet of bits */
)
{
int val; /* bit count */
int temp;
int i;
/*
* The distance is determined as the weight of the exclusive OR
* of the two arguments. The weight is determined by the number
* of one bits in the result. Each one bit increases the weight,
* while each zero bit decreases it.
*/
temp = x ^ y;
val = 0;
for (i = 0; i < 8; i++) {
if ((temp & 0x1) == 0)
val++;
else
val--;
temp >>= 1;
}
return (val);
}
#ifdef HAVE_AUDIO
/*
* chu_gain - adjust codec gain
*
* This routine is called once each second. If the signal envelope
* amplitude is too low, the codec gain is bumped up by four units; if
* too high, it is bumped down. The decoder is relatively insensitive to
* amplitude, so this crudity works just fine. The input port is set and
* the error flag is cleared, mostly to be ornery.
*/
static void
chu_gain(
struct peer *peer /* peer structure pointer */
)
{
struct refclockproc *pp;
struct chuunit *up;
pp = peer->procptr;
up = (struct chuunit *)pp->unitptr;
/*
* Apparently, the codec uses only the high order bits of the
* gain control field. Thus, it may take awhile for changes to
* wiggle the hardware bits.
*/
if (up->clipcnt == 0) {
up->gain += 4;
if (up->gain > 255)
up->gain = 255;
} else if (up->clipcnt > SECOND / 100) {
up->gain -= 4;
if (up->gain < 0)
up->gain = 0;
}
audio_gain(up->gain, up->port);
up->clipcnt = 0;
}
#endif /* HAVE_AUDIO */
#else
int refclock_chu_bs;
#endif /* REFCLOCK */