Warner Losh 9339e7c0bd rtsx: Fix wakeup race similar to sdhci one fixed in 35547df5c786
rtsx copied code from sdhci, and has the same wakeup race bug that was
fixed in 35547df5c786, so apply a similar fix here.

Sponsored by:		Netflix
2021-08-10 17:10:25 -06:00

3894 lines
118 KiB
C

/*-
* SPDX-License-Identifier: BSD-2-Clause-FreeBSD
*
* Copyright (c) 2006 Uwe Stuehler <uwe@openbsd.org>
* Copyright (c) 2012 Stefan Sperling <stsp@openbsd.org>
* Copyright (c) 2020 Henri Hennebert <hlh@restart.be>
* Copyright (c) 2020 Gary Jennejohn <gj@freebsd.org>
* Copyright (c) 2020 Jesper Schmitz Mouridsen <jsm@FreeBSD.org>
* All rights reserved.
*
* Patch from:
* - Lutz Bichler <Lutz.Bichler@gmail.com>
*
* Base on OpenBSD /sys/dev/pci/rtsx_pci.c & /dev/ic/rtsx.c
* on Linux /drivers/mmc/host/rtsx_pci_sdmmc.c,
* /include/linux/rtsx_pci.h &
* /drivers/misc/cardreader/rtsx_pcr.c
* on NetBSD /sys/dev/ic/rtsx.c
*
* Permission to use, copy, modify, and distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <sys/param.h>
#include <sys/module.h>
#include <sys/systm.h> /* For FreeBSD 11 */
#include <sys/types.h> /* For FreeBSD 11 */
#include <sys/errno.h>
#include <sys/kernel.h>
#include <sys/bus.h>
#include <sys/endian.h>
#include <machine/bus.h>
#include <sys/mutex.h>
#include <sys/rman.h>
#include <sys/queue.h>
#include <sys/taskqueue.h>
#include <sys/sysctl.h>
#include <dev/pci/pcivar.h>
#include <dev/pci/pcireg.h>
#include <dev/mmc/bridge.h>
#include <dev/mmc/mmcreg.h>
#include <dev/mmc/mmcbrvar.h>
#include <machine/_inttypes.h>
#include "opt_mmccam.h"
#ifdef MMCCAM
#include <cam/cam.h>
#include <cam/cam_ccb.h>
#include <cam/cam_debug.h>
#include <cam/cam_sim.h>
#include <cam/cam_xpt_sim.h>
#endif /* MMCCAM */
#include "rtsxreg.h"
/* The softc holds our per-instance data. */
struct rtsx_softc {
struct mtx rtsx_mtx; /* device mutex */
device_t rtsx_dev; /* device */
uint16_t rtsx_flags; /* device flags */
uint16_t rtsx_device_id; /* device ID */
device_t rtsx_mmc_dev; /* device of mmc bus */
uint32_t rtsx_intr_enabled; /* enabled interrupts */
uint32_t rtsx_intr_status; /* soft interrupt status */
int rtsx_irq_res_id; /* bus IRQ resource id */
struct resource *rtsx_irq_res; /* bus IRQ resource */
void *rtsx_irq_cookie; /* bus IRQ resource cookie */
struct callout rtsx_timeout_callout; /* callout for timeout */
int rtsx_timeout; /* interrupt timeout value */
void (*rtsx_intr_trans_ok)(struct rtsx_softc *sc);
/* function to call if transfer succeed */
void (*rtsx_intr_trans_ko)(struct rtsx_softc *sc);
/* function to call if transfer fail */
struct timeout_task
rtsx_card_insert_task; /* card insert delayed task */
struct task rtsx_card_remove_task; /* card remove task */
int rtsx_res_id; /* bus memory resource id */
struct resource *rtsx_res; /* bus memory resource */
int rtsx_res_type; /* bus memory resource type */
bus_space_tag_t rtsx_btag; /* host register set tag */
bus_space_handle_t rtsx_bhandle; /* host register set handle */
bus_dma_tag_t rtsx_cmd_dma_tag; /* DMA tag for command transfer */
bus_dmamap_t rtsx_cmd_dmamap; /* DMA map for command transfer */
void *rtsx_cmd_dmamem; /* DMA mem for command transfer */
bus_addr_t rtsx_cmd_buffer; /* device visible address of the DMA segment */
int rtsx_cmd_index; /* index in rtsx_cmd_buffer */
bus_dma_tag_t rtsx_data_dma_tag; /* DMA tag for data transfer */
bus_dmamap_t rtsx_data_dmamap; /* DMA map for data transfer */
void *rtsx_data_dmamem; /* DMA mem for data transfer */
bus_addr_t rtsx_data_buffer; /* device visible address of the DMA segment */
#ifdef MMCCAM
struct cam_devq *rtsx_devq; /* CAM queue of requests */
struct cam_sim *rtsx_sim; /* descriptor of our SCSI Interface Modules (SIM) */
struct mtx rtsx_sim_mtx; /* SIM mutex */
union ccb *rtsx_ccb; /* CAM control block */
struct mmc_request rtsx_cam_req; /* CAM MMC request */
#endif /* MMCCAM */
struct mmc_request *rtsx_req; /* MMC request */
struct mmc_host rtsx_host; /* host parameters */
int rtsx_pcie_cap; /* PCIe capability offset */
int8_t rtsx_bus_busy; /* bus busy status */
int8_t rtsx_ios_bus_width; /* current host.ios.bus_width */
int32_t rtsx_ios_clock; /* current host.ios.clock */
int8_t rtsx_ios_power_mode; /* current host.ios.power mode */
int8_t rtsx_ios_timing; /* current host.ios.timing */
int8_t rtsx_ios_vccq; /* current host.ios.vccq */
uint8_t rtsx_read_only; /* card read only status */
uint8_t rtsx_inversion; /* inversion of card detection and read only status */
uint8_t rtsx_force_timing; /* force bus_timing_uhs_sdr50 */
uint8_t rtsx_debug; /* print debugging */
#ifdef MMCCAM
uint8_t rtsx_cam_status; /* CAM status - 1 if card in use */
#endif /* MMCCAM */
uint64_t rtsx_read_count; /* count of read operations */
uint64_t rtsx_write_count; /* count of write operations */
bool rtsx_discovery_mode; /* are we in discovery mode? */
bool rtsx_tuning_mode; /* are we tuning */
bool rtsx_double_clk; /* double clock freqency */
bool rtsx_vpclk; /* voltage at Pulse-width Modulation(PWM) clock? */
uint8_t rtsx_ssc_depth; /* Spread spectrum clocking depth */
uint8_t rtsx_card_drive_sel; /* value for RTSX_CARD_DRIVE_SEL */
uint8_t rtsx_sd30_drive_sel_3v3;/* value for RTSX_SD30_DRIVE_SEL */
};
/* rtsx_flags values */
#define RTSX_F_DEFAULT 0x0000
#define RTSX_F_CARD_PRESENT 0x0001
#define RTSX_F_SDIO_SUPPORT 0x0002
#define RTSX_F_VERSION_A 0x0004
#define RTSX_F_VERSION_B 0x0008
#define RTSX_F_VERSION_C 0x0010
#define RTSX_F_VERSION_D 0x0020
#define RTSX_F_8411B_QFN48 0x0040
#define RTSX_F_REVERSE_SOCKET 0x0080
#define RTSX_REALTEK 0x10ec
#define RTSX_RTS5209 0x5209
#define RTSX_RTS5227 0x5227
#define RTSX_RTS5229 0x5229
#define RTSX_RTS522A 0x522a
#define RTSX_RTS525A 0x525a
#define RTSX_RTS5249 0x5249
#define RTSX_RTL8402 0x5286
#define RTSX_RTL8411 0x5289
#define RTSX_RTL8411B 0x5287
#define RTSX_VERSION "2.0c"
static const struct rtsx_device {
uint16_t vendor_id;
uint16_t device_id;
const char *desc;
} rtsx_devices[] = {
{ RTSX_REALTEK, RTSX_RTS5209, RTSX_VERSION " Realtek RTS5209 PCI MMC/SD Card Reader"},
{ RTSX_REALTEK, RTSX_RTS5227, RTSX_VERSION " Realtek RTS5227 PCI MMC/SD Card Reader"},
{ RTSX_REALTEK, RTSX_RTS5229, RTSX_VERSION " Realtek RTS5229 PCI MMC/SD Card Reader"},
{ RTSX_REALTEK, RTSX_RTS522A, RTSX_VERSION " Realtek RTS522A PCI MMC/SD Card Reader"},
{ RTSX_REALTEK, RTSX_RTS525A, RTSX_VERSION " Realtek RTS525A PCI MMC/SD Card Reader"},
{ RTSX_REALTEK, RTSX_RTS5249, RTSX_VERSION " Realtek RTS5249 PCI MMC/SD Card Reader"},
{ RTSX_REALTEK, RTSX_RTL8402, RTSX_VERSION " Realtek RTL8402 PCI MMC/SD Card Reader"},
{ RTSX_REALTEK, RTSX_RTL8411, RTSX_VERSION " Realtek RTL8411 PCI MMC/SD Card Reader"},
{ RTSX_REALTEK, RTSX_RTL8411B, RTSX_VERSION " Realtek RTL8411B PCI MMC/SD Card Reader"},
{ 0, 0, NULL}
};
static int rtsx_dma_alloc(struct rtsx_softc *sc);
static void rtsx_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error);
static void rtsx_dma_free(struct rtsx_softc *sc);
static void rtsx_intr(void *arg);
static void rtsx_handle_card_present(struct rtsx_softc *sc);
static void rtsx_card_task(void *arg, int pending __unused);
static bool rtsx_is_card_present(struct rtsx_softc *sc);
static int rtsx_init(struct rtsx_softc *sc);
static int rtsx_map_sd_drive(int index);
static int rtsx_rts5227_fill_driving(struct rtsx_softc *sc);
static int rtsx_rts5249_fill_driving(struct rtsx_softc *sc);
static int rtsx_read(struct rtsx_softc *, uint16_t, uint8_t *);
static int rtsx_read_cfg(struct rtsx_softc *sc, uint8_t func, uint16_t addr, uint32_t *val);
static int rtsx_write(struct rtsx_softc *sc, uint16_t addr, uint8_t mask, uint8_t val);
static int rtsx_read_phy(struct rtsx_softc *sc, uint8_t addr, uint16_t *val);
static int rtsx_write_phy(struct rtsx_softc *sc, uint8_t addr, uint16_t val);
static int rtsx_bus_power_off(struct rtsx_softc *sc);
static int rtsx_bus_power_on(struct rtsx_softc *sc);
static int rtsx_set_bus_width(struct rtsx_softc *sc, enum mmc_bus_width width);
static int rtsx_set_sd_timing(struct rtsx_softc *sc, enum mmc_bus_timing timing);
static int rtsx_set_sd_clock(struct rtsx_softc *sc, uint32_t freq);
static int rtsx_stop_sd_clock(struct rtsx_softc *sc);
static int rtsx_switch_sd_clock(struct rtsx_softc *sc, uint8_t clk, uint8_t n, uint8_t div, uint8_t mcu);
static void rtsx_sd_change_tx_phase(struct rtsx_softc *sc, uint8_t sample_point);
static void rtsx_sd_change_rx_phase(struct rtsx_softc *sc, uint8_t sample_point);
static void rtsx_sd_tuning_rx_phase(struct rtsx_softc *sc, uint32_t *phase_map);
static int rtsx_sd_tuning_rx_cmd(struct rtsx_softc *sc, uint8_t sample_point);
static int rtsx_sd_tuning_rx_cmd_wait(struct rtsx_softc *sc, struct mmc_command *cmd);
static void rtsx_sd_tuning_rx_cmd_wakeup(struct rtsx_softc *sc);
static void rtsx_sd_wait_data_idle(struct rtsx_softc *sc);
static uint8_t rtsx_sd_search_final_rx_phase(struct rtsx_softc *sc, uint32_t phase_map);
static int rtsx_sd_get_rx_phase_len(uint32_t phase_map, int start_bit);
#if 0 /* For led */
static int rtsx_led_enable(struct rtsx_softc *sc);
static int rtsx_led_disable(struct rtsx_softc *sc);
#endif /* For led */
static uint8_t rtsx_response_type(uint16_t mmc_rsp);
static void rtsx_init_cmd(struct rtsx_softc *sc, struct mmc_command *cmd);
static void rtsx_push_cmd(struct rtsx_softc *sc, uint8_t cmd, uint16_t reg,
uint8_t mask, uint8_t data);
static void rtsx_set_cmd_data_len(struct rtsx_softc *sc, uint16_t block_cnt, uint16_t byte_cnt);
static void rtsx_send_cmd(struct rtsx_softc *sc);
static void rtsx_ret_resp(struct rtsx_softc *sc);
static void rtsx_set_resp(struct rtsx_softc *sc, struct mmc_command *cmd);
static void rtsx_stop_cmd(struct rtsx_softc *sc);
static void rtsx_clear_error(struct rtsx_softc *sc);
static void rtsx_req_done(struct rtsx_softc *sc);
static int rtsx_send_req(struct rtsx_softc *sc, struct mmc_command *cmd);
static int rtsx_xfer_short(struct rtsx_softc *sc, struct mmc_command *cmd);
static void rtsx_ask_ppbuf_part1(struct rtsx_softc *sc);
static void rtsx_get_ppbuf_part1(struct rtsx_softc *sc);
static void rtsx_get_ppbuf_part2(struct rtsx_softc *sc);
static void rtsx_put_ppbuf_part1(struct rtsx_softc *sc);
static void rtsx_put_ppbuf_part2(struct rtsx_softc *sc);
static void rtsx_write_ppbuf(struct rtsx_softc *sc);
static int rtsx_xfer(struct rtsx_softc *sc, struct mmc_command *cmd);
static void rtsx_xfer_begin(struct rtsx_softc *sc);
static void rtsx_xfer_start(struct rtsx_softc *sc);
static void rtsx_xfer_finish(struct rtsx_softc *sc);
static void rtsx_timeout(void *arg);
#ifdef MMCCAM
static void rtsx_cam_action(struct cam_sim *sim, union ccb *ccb);
static void rtsx_cam_poll(struct cam_sim *sim);
static void rtsx_cam_set_tran_settings(struct rtsx_softc *sc, union ccb *ccb);
static void rtsx_cam_request(struct rtsx_softc *sc, union ccb *ccb);
#endif /* MMCCAM */
static int rtsx_read_ivar(device_t bus, device_t child, int which, uintptr_t *result);
static int rtsx_write_ivar(device_t bus, device_t child, int which, uintptr_t value);
static int rtsx_mmcbr_update_ios(device_t bus, device_t child __unused);
static int rtsx_mmcbr_switch_vccq(device_t bus, device_t child __unused);
static int rtsx_mmcbr_tune(device_t bus, device_t child __unused, bool hs400 __unused);
static int rtsx_mmcbr_retune(device_t bus, device_t child __unused, bool reset __unused);
static int rtsx_mmcbr_request(device_t bus, device_t child __unused, struct mmc_request *req);
static int rtsx_mmcbr_get_ro(device_t bus, device_t child __unused);
static int rtsx_mmcbr_acquire_host(device_t bus, device_t child __unused);
static int rtsx_mmcbr_release_host(device_t bus, device_t child __unused);
static int rtsx_probe(device_t dev);
static int rtsx_attach(device_t dev);
static int rtsx_detach(device_t dev);
static int rtsx_shutdown(device_t dev);
static int rtsx_suspend(device_t dev);
static int rtsx_resume(device_t dev);
#define RTSX_LOCK_INIT(_sc) mtx_init(&(_sc)->rtsx_mtx, \
device_get_nameunit(sc->rtsx_dev), "rtsx", MTX_DEF)
#define RTSX_LOCK(_sc) mtx_lock(&(_sc)->rtsx_mtx)
#define RTSX_UNLOCK(_sc) mtx_unlock(&(_sc)->rtsx_mtx)
#define RTSX_LOCK_DESTROY(_sc) mtx_destroy(&(_sc)->rtsx_mtx)
#define RTSX_SDCLK_OFF 0
#define RTSX_SDCLK_250KHZ 250000
#define RTSX_SDCLK_400KHZ 400000
#define RTSX_SDCLK_25MHZ 25000000
#define RTSX_SDCLK_50MHZ 50000000
#define RTSX_SDCLK_100MHZ 100000000
#define RTSX_SDCLK_208MHZ 208000000
#define RTSX_MIN_DIV_N 80
#define RTSX_MAX_DIV_N 208
#define RTSX_MAX_DATA_BLKLEN 512
#define RTSX_DMA_ALIGN 4
#define RTSX_HOSTCMD_MAX 256
#define RTSX_DMA_CMD_BIFSIZE (sizeof(uint32_t) * RTSX_HOSTCMD_MAX)
#define RTSX_DMA_DATA_BUFSIZE MAXPHYS
#define ISSET(t, f) ((t) & (f))
#define READ4(sc, reg) \
(bus_space_read_4((sc)->rtsx_btag, (sc)->rtsx_bhandle, (reg)))
#define WRITE4(sc, reg, val) \
(bus_space_write_4((sc)->rtsx_btag, (sc)->rtsx_bhandle, (reg), (val)))
#define RTSX_READ(sc, reg, val) \
do { \
int err = rtsx_read((sc), (reg), (val)); \
if (err) \
return (err); \
} while (0)
#define RTSX_WRITE(sc, reg, val) \
do { \
int err = rtsx_write((sc), (reg), 0xff, (val)); \
if (err) \
return (err); \
} while (0)
#define RTSX_CLR(sc, reg, bits) \
do { \
int err = rtsx_write((sc), (reg), (bits), 0); \
if (err) \
return (err); \
} while (0)
#define RTSX_SET(sc, reg, bits) \
do { \
int err = rtsx_write((sc), (reg), (bits), 0xff);\
if (err) \
return (err); \
} while (0)
#define RTSX_BITOP(sc, reg, mask, bits) \
do { \
int err = rtsx_write((sc), (reg), (mask), (bits)); \
if (err) \
return (err); \
} while (0)
/*
* We use two DMA buffers: a command buffer and a data buffer.
*
* The command buffer contains a command queue for the host controller,
* which describes SD/MMC commands to run, and other parameters. The chip
* runs the command queue when a special bit in the RTSX_HCBAR register is
* set and signals completion with the RTSX_TRANS_OK_INT interrupt.
* Each command is encoded as a 4 byte sequence containing command number
* (read, write, or check a host controller register), a register address,
* and a data bit-mask and value.
* SD/MMC commands which do not transfer any data from/to the card only use
* the command buffer.
*
* The data buffer is used for transfer longer than 512. Data transfer is
* controlled via the RTSX_HDBAR register and completion is signalled by
* the RTSX_TRANS_OK_INT interrupt.
*
* The chip is unable to perform DMA above 4GB.
*/
/*
* Main commands in the usual seqence used:
*
* CMD0 Go idle state
* CMD8 Send interface condition
* CMD55 Application Command for next ACMD
* ACMD41 Send Operation Conditions Register (OCR: voltage profile of the card)
* CMD2 Send Card Identification (CID) Register
* CMD3 Send relative address
* CMD9 Send Card Specific Data (CSD)
* CMD13 Send status (32 bits - bit 25: card password protected)
* CMD7 Select card (before Get card SCR)
* ACMD51 Send SCR (SD CARD Configuration Register - [51:48]: Bus widths supported)
* CMD6 SD switch function
* ACMD13 Send SD status (512 bits)
* ACMD42 Set/Clear card detect
* ACMD6 Set bus width
* CMD19 Send tuning block
* CMD12 Stop transmission
*
* CMD17 Read single block (<=512)
* CMD18 Read multiple blocks (>512)
* CMD24 Write single block (<=512)
* CMD25 Write multiple blocks (>512)
*
* CMD52 IO R/W direct
* CMD5 Send Operation Conditions
*/
static int
rtsx_dma_alloc(struct rtsx_softc *sc)
{
int error = 0;
error = bus_dma_tag_create(bus_get_dma_tag(sc->rtsx_dev), /* inherit from parent */
RTSX_DMA_ALIGN, 0, /* alignment, boundary */
BUS_SPACE_MAXADDR_32BIT, /* lowaddr */
BUS_SPACE_MAXADDR, /* highaddr */
NULL, NULL, /* filter, filterarg */
RTSX_DMA_CMD_BIFSIZE, 1, /* maxsize, nsegments */
RTSX_DMA_CMD_BIFSIZE, /* maxsegsize */
0, /* flags */
NULL, NULL, /* lockfunc, lockarg */
&sc->rtsx_cmd_dma_tag);
if (error) {
device_printf(sc->rtsx_dev,
"Can't create cmd parent DMA tag\n");
return (error);
}
error = bus_dmamem_alloc(sc->rtsx_cmd_dma_tag, /* DMA tag */
&sc->rtsx_cmd_dmamem, /* will hold the KVA pointer */
BUS_DMA_COHERENT | BUS_DMA_WAITOK | BUS_DMA_ZERO, /* flags */
&sc->rtsx_cmd_dmamap); /* DMA map */
if (error) {
device_printf(sc->rtsx_dev,
"Can't create DMA map for command transfer\n");
goto destroy_cmd_dma_tag;
}
error = bus_dmamap_load(sc->rtsx_cmd_dma_tag, /* DMA tag */
sc->rtsx_cmd_dmamap, /* DMA map */
sc->rtsx_cmd_dmamem, /* KVA pointer to be mapped */
RTSX_DMA_CMD_BIFSIZE, /* size of buffer */
rtsx_dmamap_cb, /* callback */
&sc->rtsx_cmd_buffer, /* first arg of callback */
0); /* flags */
if (error || sc->rtsx_cmd_buffer == 0) {
device_printf(sc->rtsx_dev,
"Can't load DMA memory for command transfer\n");
error = (error) ? error : EFAULT;
goto destroy_cmd_dmamem_alloc;
}
error = bus_dma_tag_create(bus_get_dma_tag(sc->rtsx_dev), /* inherit from parent */
RTSX_DMA_DATA_BUFSIZE, 0, /* alignment, boundary */
BUS_SPACE_MAXADDR_32BIT, /* lowaddr */
BUS_SPACE_MAXADDR, /* highaddr */
NULL, NULL, /* filter, filterarg */
RTSX_DMA_DATA_BUFSIZE, 1, /* maxsize, nsegments */
RTSX_DMA_DATA_BUFSIZE, /* maxsegsize */
0, /* flags */
NULL, NULL, /* lockfunc, lockarg */
&sc->rtsx_data_dma_tag);
if (error) {
device_printf(sc->rtsx_dev,
"Can't create data parent DMA tag\n");
goto destroy_cmd_dmamap_load;
}
error = bus_dmamem_alloc(sc->rtsx_data_dma_tag, /* DMA tag */
&sc->rtsx_data_dmamem, /* will hold the KVA pointer */
BUS_DMA_WAITOK | BUS_DMA_ZERO, /* flags */
&sc->rtsx_data_dmamap); /* DMA map */
if (error) {
device_printf(sc->rtsx_dev,
"Can't create DMA map for data transfer\n");
goto destroy_data_dma_tag;
}
error = bus_dmamap_load(sc->rtsx_data_dma_tag, /* DMA tag */
sc->rtsx_data_dmamap, /* DMA map */
sc->rtsx_data_dmamem, /* KVA pointer to be mapped */
RTSX_DMA_DATA_BUFSIZE, /* size of buffer */
rtsx_dmamap_cb, /* callback */
&sc->rtsx_data_buffer, /* first arg of callback */
0); /* flags */
if (error || sc->rtsx_data_buffer == 0) {
device_printf(sc->rtsx_dev,
"Can't load DMA memory for data transfer\n");
error = (error) ? error : EFAULT;
goto destroy_data_dmamem_alloc;
}
return (error);
destroy_data_dmamem_alloc:
bus_dmamem_free(sc->rtsx_data_dma_tag, sc->rtsx_data_dmamem, sc->rtsx_data_dmamap);
destroy_data_dma_tag:
bus_dma_tag_destroy(sc->rtsx_data_dma_tag);
destroy_cmd_dmamap_load:
bus_dmamap_unload(sc->rtsx_cmd_dma_tag, sc->rtsx_cmd_dmamap);
destroy_cmd_dmamem_alloc:
bus_dmamem_free(sc->rtsx_cmd_dma_tag, sc->rtsx_cmd_dmamem, sc->rtsx_cmd_dmamap);
destroy_cmd_dma_tag:
bus_dma_tag_destroy(sc->rtsx_cmd_dma_tag);
return (error);
}
static void
rtsx_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
{
if (error) {
printf("rtsx_dmamap_cb: error %d\n", error);
return;
}
*(bus_addr_t *)arg = segs[0].ds_addr;
}
static void
rtsx_dma_free(struct rtsx_softc *sc)
{
if (sc->rtsx_cmd_dma_tag != NULL) {
if (sc->rtsx_cmd_dmamap != NULL)
bus_dmamap_unload(sc->rtsx_cmd_dma_tag,
sc->rtsx_cmd_dmamap);
if (sc->rtsx_cmd_dmamem != NULL)
bus_dmamem_free(sc->rtsx_cmd_dma_tag,
sc->rtsx_cmd_dmamem,
sc->rtsx_cmd_dmamap);
sc->rtsx_cmd_dmamap = NULL;
sc->rtsx_cmd_dmamem = NULL;
sc->rtsx_cmd_buffer = 0;
bus_dma_tag_destroy(sc->rtsx_cmd_dma_tag);
sc->rtsx_cmd_dma_tag = NULL;
}
if (sc->rtsx_data_dma_tag != NULL) {
if (sc->rtsx_data_dmamap != NULL)
bus_dmamap_unload(sc->rtsx_data_dma_tag,
sc->rtsx_data_dmamap);
if (sc->rtsx_data_dmamem != NULL)
bus_dmamem_free(sc->rtsx_data_dma_tag,
sc->rtsx_data_dmamem,
sc->rtsx_data_dmamap);
sc->rtsx_data_dmamap = NULL;
sc->rtsx_data_dmamem = NULL;
sc->rtsx_data_buffer = 0;
bus_dma_tag_destroy(sc->rtsx_data_dma_tag);
sc->rtsx_data_dma_tag = NULL;
}
}
static void
rtsx_intr(void *arg)
{
struct rtsx_softc *sc = arg;
uint32_t enabled;
uint32_t status;
RTSX_LOCK(sc);
enabled = sc->rtsx_intr_enabled;
status = READ4(sc, RTSX_BIPR); /* read Bus Interrupt Pending Register */
sc->rtsx_intr_status = status;
if (bootverbose)
device_printf(sc->rtsx_dev, "Interrupt handler - enabled: 0x%08x, status: 0x%08x\n", enabled, status);
/* Ack interrupts. */
WRITE4(sc, RTSX_BIPR, status);
if (((enabled & status) == 0) || status == 0xffffffff) {
device_printf(sc->rtsx_dev, "Spurious interrupt - enabled: 0x%08x, status: 0x%08x\n", enabled, status);
RTSX_UNLOCK(sc);
return;
}
/* Detect write protect. */
if (status & RTSX_SD_WRITE_PROTECT)
sc->rtsx_read_only = 1;
else
sc->rtsx_read_only = 0;
/* Start task to handle SD card status change (from dwmmc.c). */
if (status & RTSX_SD_INT) {
device_printf(sc->rtsx_dev, "Interrupt card inserted/removed\n");
rtsx_handle_card_present(sc);
}
if (sc->rtsx_req == NULL) {
RTSX_UNLOCK(sc);
return;
}
if (status & RTSX_TRANS_OK_INT) {
sc->rtsx_req->cmd->error = MMC_ERR_NONE;
if (sc->rtsx_intr_trans_ok != NULL)
sc->rtsx_intr_trans_ok(sc);
} else if (status & RTSX_TRANS_FAIL_INT) {
uint8_t stat1;
sc->rtsx_req->cmd->error = MMC_ERR_FAILED;
if (rtsx_read(sc, RTSX_SD_STAT1, &stat1) == 0 &&
(stat1 & RTSX_SD_CRC_ERR)) {
device_printf(sc->rtsx_dev, "CRC error\n");
sc->rtsx_req->cmd->error = MMC_ERR_BADCRC;
}
if (!sc->rtsx_tuning_mode)
device_printf(sc->rtsx_dev, "Transfer fail - status: 0x%08x\n", status);
rtsx_stop_cmd(sc);
if (sc->rtsx_intr_trans_ko != NULL)
sc->rtsx_intr_trans_ko(sc);
}
RTSX_UNLOCK(sc);
}
/*
* Function called from the IRQ handler (from dwmmc.c).
*/
static void
rtsx_handle_card_present(struct rtsx_softc *sc)
{
bool was_present;
bool is_present;
#ifdef MMCCAM
was_present = sc->rtsx_cam_status;
#else
was_present = sc->rtsx_mmc_dev != NULL;
#endif /* MMCCAM */
is_present = rtsx_is_card_present(sc);
if (is_present)
device_printf(sc->rtsx_dev, "Card present\n");
else
device_printf(sc->rtsx_dev, "Card absent\n");
if (!was_present && is_present) {
/*
* The delay is to debounce the card insert
* (sometimes the card detect pin stabilizes
* before the other pins have made good contact).
*/
taskqueue_enqueue_timeout(taskqueue_swi_giant,
&sc->rtsx_card_insert_task, -hz);
} else if (was_present && !is_present) {
taskqueue_enqueue(taskqueue_swi_giant, &sc->rtsx_card_remove_task);
}
}
/*
* This funtion is called at startup.
*/
static void
rtsx_card_task(void *arg, int pending __unused)
{
struct rtsx_softc *sc = arg;
RTSX_LOCK(sc);
if (rtsx_is_card_present(sc)) {
sc->rtsx_flags |= RTSX_F_CARD_PRESENT;
/* Card is present, attach if necessary. */
#ifdef MMCCAM
if (sc->rtsx_cam_status == 0) {
union ccb *ccb;
uint32_t pathid;
#else
if (sc->rtsx_mmc_dev == NULL) {
#endif /* MMCCAM */
if (bootverbose)
device_printf(sc->rtsx_dev, "Card inserted\n");
sc->rtsx_read_count = sc->rtsx_write_count = 0;
#ifdef MMCCAM
sc->rtsx_cam_status = 1;
pathid = cam_sim_path(sc->rtsx_sim);
ccb = xpt_alloc_ccb_nowait();
if (ccb == NULL) {
device_printf(sc->rtsx_dev, "Unable to alloc CCB for rescan\n");
RTSX_UNLOCK(sc);
return;
}
/*
* We create a rescan request for BUS:0:0, since the card
* will be at lun 0.
*/
if (xpt_create_path(&ccb->ccb_h.path, NULL, pathid,
/* target */ 0, /* lun */ 0) != CAM_REQ_CMP) {
device_printf(sc->rtsx_dev, "Unable to create path for rescan\n");
RTSX_UNLOCK(sc);
xpt_free_ccb(ccb);
return;
}
RTSX_UNLOCK(sc);
xpt_rescan(ccb);
#else
sc->rtsx_mmc_dev = device_add_child(sc->rtsx_dev, "mmc", -1);
RTSX_UNLOCK(sc);
if (sc->rtsx_mmc_dev == NULL) {
device_printf(sc->rtsx_dev, "Adding MMC bus failed\n");
} else {
device_set_ivars(sc->rtsx_mmc_dev, sc);
device_probe_and_attach(sc->rtsx_mmc_dev);
}
#endif /* MMCCAM */
} else
RTSX_UNLOCK(sc);
} else {
sc->rtsx_flags &= ~RTSX_F_CARD_PRESENT;
/* Card isn't present, detach if necessary. */
#ifdef MMCCAM
if (sc->rtsx_cam_status != 0) {
union ccb *ccb;
uint32_t pathid;
#else
if (sc->rtsx_mmc_dev != NULL) {
#endif /* MMCCAM */
if (bootverbose)
device_printf(sc->rtsx_dev, "Card removed\n");
if (sc->rtsx_debug)
device_printf(sc->rtsx_dev, "Read count: %" PRIu64 ", write count: %" PRIu64 "\n",
sc->rtsx_read_count, sc->rtsx_write_count);
#ifdef MMCCAM
sc->rtsx_cam_status = 0;
pathid = cam_sim_path(sc->rtsx_sim);
ccb = xpt_alloc_ccb_nowait();
if (ccb == NULL) {
device_printf(sc->rtsx_dev, "Unable to alloc CCB for rescan\n");
RTSX_UNLOCK(sc);
return;
}
/*
* We create a rescan request for BUS:0:0, since the card
* will be at lun 0.
*/
if (xpt_create_path(&ccb->ccb_h.path, NULL, pathid,
/* target */ 0, /* lun */ 0) != CAM_REQ_CMP) {
device_printf(sc->rtsx_dev, "Unable to create path for rescan\n");
RTSX_UNLOCK(sc);
xpt_free_ccb(ccb);
return;
}
RTSX_UNLOCK(sc);
xpt_rescan(ccb);
#else
RTSX_UNLOCK(sc);
if (device_delete_child(sc->rtsx_dev, sc->rtsx_mmc_dev))
device_printf(sc->rtsx_dev, "Detaching MMC bus failed\n");
sc->rtsx_mmc_dev = NULL;
#endif /* MMCCAM */
} else
RTSX_UNLOCK(sc);
}
}
static bool
rtsx_is_card_present(struct rtsx_softc *sc)
{
uint32_t status;
status = READ4(sc, RTSX_BIPR);
if (sc->rtsx_inversion == 0)
return (status & RTSX_SD_EXIST);
else
return !(status & RTSX_SD_EXIST);
}
static int
rtsx_init(struct rtsx_softc *sc)
{
bool rtsx_init_debug = false;
uint8_t version;
uint8_t val;
int error;
sc->rtsx_host.host_ocr = RTSX_SUPPORTED_VOLTAGE;
sc->rtsx_host.f_min = RTSX_SDCLK_250KHZ;
sc->rtsx_host.f_max = RTSX_SDCLK_208MHZ;
sc->rtsx_host.caps = MMC_CAP_4_BIT_DATA | MMC_CAP_HSPEED |
MMC_CAP_UHS_SDR12 | MMC_CAP_UHS_SDR25;
sc->rtsx_host.caps |= MMC_CAP_UHS_SDR50 | MMC_CAP_UHS_SDR104;
if (sc->rtsx_device_id == RTSX_RTS5209)
sc->rtsx_host.caps |= MMC_CAP_8_BIT_DATA;
pci_find_cap(sc->rtsx_dev, PCIY_EXPRESS, &(sc->rtsx_pcie_cap));
/*
* Check IC version.
*/
switch (sc->rtsx_device_id) {
case RTSX_RTS5229:
/* Read IC version from dummy register. */
RTSX_READ(sc, RTSX_DUMMY_REG, &version);
if ((version & 0x0F) == RTSX_IC_VERSION_C)
sc->rtsx_flags |= RTSX_F_VERSION_C;
break;
case RTSX_RTS522A:
/* Read IC version from dummy register. */
RTSX_READ(sc, RTSX_DUMMY_REG, &version);
if ((version & 0x0F) == RTSX_IC_VERSION_A)
sc->rtsx_flags |= RTSX_F_VERSION_A;
break;
case RTSX_RTS525A:
/* Read IC version from dummy register. */
RTSX_READ(sc, RTSX_DUMMY_REG, &version);
if ((version & 0x0F) == RTSX_IC_VERSION_A)
sc->rtsx_flags |= RTSX_F_VERSION_A;
break;
case RTSX_RTL8411B:
RTSX_READ(sc, RTSX_RTL8411B_PACKAGE, &version);
if (version & RTSX_RTL8411B_QFN48)
sc->rtsx_flags |= RTSX_F_8411B_QFN48;
break;
}
/*
* Fetch vendor settings.
*/
/*
* Normally OEMs will set vendor setting to the config space
* of Realtek card reader in BIOS stage. This statement reads
* the setting and configure the internal registers according
* to it, to improve card reader's compatibility condition.
*/
sc->rtsx_card_drive_sel = RTSX_CARD_DRIVE_DEFAULT;
switch (sc->rtsx_device_id) {
uint32_t reg;
uint32_t reg1;
uint8_t reg3;
case RTSX_RTS5209:
sc->rtsx_card_drive_sel = RTSX_RTS5209_CARD_DRIVE_DEFAULT;
sc->rtsx_sd30_drive_sel_3v3 = RTSX_DRIVER_TYPE_D;
reg = pci_read_config(sc->rtsx_dev, RTSX_PCR_SETTING_REG2, 4);
if (!(reg & 0x80)) {
sc->rtsx_card_drive_sel = (reg >> 8) & 0x3F;
sc->rtsx_sd30_drive_sel_3v3 = reg & 0x07;
} else {
device_printf(sc->rtsx_dev, "pci_read_config() error - reg: 0x%08x\n", reg);
}
if (bootverbose || rtsx_init_debug)
device_printf(sc->rtsx_dev, "card_drive_sel: 0x%02x, sd30_drive_sel_3v3: 0x%02x\n",
sc->rtsx_card_drive_sel, sc->rtsx_sd30_drive_sel_3v3);
break;
case RTSX_RTS5227:
case RTSX_RTS522A:
sc->rtsx_sd30_drive_sel_3v3 = RTSX_CFG_DRIVER_TYPE_B;
reg = pci_read_config(sc->rtsx_dev, RTSX_PCR_SETTING_REG1, 4);
if (!(reg & 0x1000000)) {
sc->rtsx_card_drive_sel &= 0x3F;
sc->rtsx_card_drive_sel |= ((reg >> 25) & 0x01) << 6;
reg = pci_read_config(sc->rtsx_dev, RTSX_PCR_SETTING_REG2, 4);
sc->rtsx_sd30_drive_sel_3v3 = (reg >> 5) & 0x03;
if (reg & 0x4000)
sc->rtsx_flags |= RTSX_F_REVERSE_SOCKET;
} else {
device_printf(sc->rtsx_dev, "pci_read_config() error - reg: 0x%08x\n", reg);
}
if (bootverbose || rtsx_init_debug)
device_printf(sc->rtsx_dev,
"card_drive_sel: 0x%02x, sd30_drive_sel_3v3: 0x%02x, reverse_socket is %s\n",
sc->rtsx_card_drive_sel, sc->rtsx_sd30_drive_sel_3v3,
(sc->rtsx_flags & RTSX_F_REVERSE_SOCKET) ? "true" : "false");
break;
case RTSX_RTS5229:
sc->rtsx_sd30_drive_sel_3v3 = RTSX_DRIVER_TYPE_D;
reg = pci_read_config(sc->rtsx_dev, RTSX_PCR_SETTING_REG1, 4);
if (!(reg & 0x1000000)) {
sc->rtsx_card_drive_sel &= 0x3F;
sc->rtsx_card_drive_sel |= ((reg >> 25) & 0x01) << 6;
reg = pci_read_config(sc->rtsx_dev, RTSX_PCR_SETTING_REG2, 4);
sc->rtsx_sd30_drive_sel_3v3 = rtsx_map_sd_drive((reg >> 5) & 0x03);
} else {
device_printf(sc->rtsx_dev, "pci_read_config() error - reg: 0x%08x\n", reg);
}
if (bootverbose || rtsx_init_debug)
device_printf(sc->rtsx_dev, "card_drive_sel: 0x%02x, sd30_drive_sel_3v3: 0x%02x\n",
sc->rtsx_card_drive_sel, sc->rtsx_sd30_drive_sel_3v3);
break;
case RTSX_RTS525A:
case RTSX_RTS5249:
sc->rtsx_sd30_drive_sel_3v3 = RTSX_CFG_DRIVER_TYPE_B;
reg = pci_read_config(sc->rtsx_dev, RTSX_PCR_SETTING_REG1, 4);
if ((reg & 0x1000000)) {
sc->rtsx_card_drive_sel &= 0x3F;
sc->rtsx_card_drive_sel |= ((reg >> 25) & 0x01) << 6;
reg = pci_read_config(sc->rtsx_dev, RTSX_PCR_SETTING_REG2, 4);
sc->rtsx_sd30_drive_sel_3v3 = (reg >> 5) & 0x03;
if (reg & 0x4000)
sc->rtsx_flags |= RTSX_F_REVERSE_SOCKET;
} else {
device_printf(sc->rtsx_dev, "pci_read_config() error - reg: 0x%08x\n", reg);
}
if (bootverbose || rtsx_init_debug)
device_printf(sc->rtsx_dev,
"card_drive_sel = 0x%02x, sd30_drive_sel_3v3: 0x%02x, reverse_socket is %s\n",
sc->rtsx_card_drive_sel, sc->rtsx_sd30_drive_sel_3v3,
(sc->rtsx_flags & RTSX_F_REVERSE_SOCKET) ? "true" : "false");
break;
case RTSX_RTL8402:
case RTSX_RTL8411:
sc->rtsx_card_drive_sel = RTSX_RTL8411_CARD_DRIVE_DEFAULT;
sc->rtsx_sd30_drive_sel_3v3 = RTSX_DRIVER_TYPE_D;
reg1 = pci_read_config(sc->rtsx_dev, RTSX_PCR_SETTING_REG1, 4);
if (reg1 & 0x1000000) {
sc->rtsx_card_drive_sel &= 0x3F;
sc->rtsx_card_drive_sel |= ((reg1 >> 25) & 0x01) << 6;
reg3 = pci_read_config(sc->rtsx_dev, RTSX_PCR_SETTING_REG3, 1);
sc->rtsx_sd30_drive_sel_3v3 = (reg3 >> 5) & 0x07;
} else {
device_printf(sc->rtsx_dev, "pci_read_config() error - reg1: 0x%08x\n", reg1);
}
if (bootverbose || rtsx_init_debug)
device_printf(sc->rtsx_dev,
"card_drive_sel: 0x%02x, sd30_drive_sel_3v3: 0x%02x\n",
sc->rtsx_card_drive_sel, sc->rtsx_sd30_drive_sel_3v3);
break;
case RTSX_RTL8411B:
sc->rtsx_card_drive_sel = RTSX_RTL8411_CARD_DRIVE_DEFAULT;
sc->rtsx_sd30_drive_sel_3v3 = RTSX_DRIVER_TYPE_D;
reg = pci_read_config(sc->rtsx_dev, RTSX_PCR_SETTING_REG1, 4);
if (!(reg & 0x1000000)) {
sc->rtsx_sd30_drive_sel_3v3 = rtsx_map_sd_drive(reg & 0x03);
} else {
device_printf(sc->rtsx_dev, "pci_read_config() error - reg: 0x%08x\n", reg);
}
if (bootverbose || rtsx_init_debug)
device_printf(sc->rtsx_dev,
"card_drive_sel: 0x%02x, sd30_drive_sel_3v3: 0x%02x\n",
sc->rtsx_card_drive_sel, sc->rtsx_sd30_drive_sel_3v3);
break;
}
if (bootverbose || rtsx_init_debug)
device_printf(sc->rtsx_dev, "rtsx_init() rtsx_flags: 0x%04x\n", sc->rtsx_flags);
/* Enable interrupts. */
sc->rtsx_intr_enabled = RTSX_TRANS_OK_INT_EN | RTSX_TRANS_FAIL_INT_EN | RTSX_SD_INT_EN | RTSX_MS_INT_EN;
WRITE4(sc, RTSX_BIER, sc->rtsx_intr_enabled);
/* Power on SSC clock. */
RTSX_CLR(sc, RTSX_FPDCTL, RTSX_SSC_POWER_DOWN);
/* Wait SSC power stable. */
DELAY(200);
/* Disable ASPM */
val = pci_read_config(sc->rtsx_dev, sc->rtsx_pcie_cap + PCIER_LINK_CTL, 1);
pci_write_config(sc->rtsx_dev, sc->rtsx_pcie_cap + PCIER_LINK_CTL, val & 0xfc, 1);
/*
* Optimize phy.
*/
switch (sc->rtsx_device_id) {
case RTSX_RTS5209:
/* Some magic numbers from Linux driver. */
if ((error = rtsx_write_phy(sc, 0x00, 0xB966)))
return (error);
break;
case RTSX_RTS5227:
RTSX_CLR(sc, RTSX_PM_CTRL3, RTSX_D3_DELINK_MODE_EN);
/* Optimize RX sensitivity. */
if ((error = rtsx_write_phy(sc, 0x00, 0xBA42)))
return (error);
break;
case RTSX_RTS5229:
/* Optimize RX sensitivity. */
if ((error = rtsx_write_phy(sc, 0x00, 0xBA42)))
return (error);
break;
case RTSX_RTS522A:
RTSX_CLR(sc, RTSX_RTS522A_PM_CTRL3, RTSX_D3_DELINK_MODE_EN);
if (sc->rtsx_flags & RTSX_F_VERSION_A) {
if ((error = rtsx_write_phy(sc, RTSX_PHY_RCR2, RTSX_PHY_RCR2_INIT_27S)))
return (error);
}
if ((error = rtsx_write_phy(sc, RTSX_PHY_RCR1, RTSX_PHY_RCR1_INIT_27S)))
return (error);
if ((error = rtsx_write_phy(sc, RTSX_PHY_FLD0, RTSX_PHY_FLD0_INIT_27S)))
return (error);
if ((error = rtsx_write_phy(sc, RTSX_PHY_FLD3, RTSX_PHY_FLD3_INIT_27S)))
return (error);
if ((error = rtsx_write_phy(sc, RTSX_PHY_FLD4, RTSX_PHY_FLD4_INIT_27S)))
return (error);
break;
case RTSX_RTS525A:
if ((error = rtsx_write_phy(sc, RTSX__PHY_FLD0,
RTSX__PHY_FLD0_CLK_REQ_20C | RTSX__PHY_FLD0_RX_IDLE_EN |
RTSX__PHY_FLD0_BIT_ERR_RSTN | RTSX__PHY_FLD0_BER_COUNT |
RTSX__PHY_FLD0_BER_TIMER | RTSX__PHY_FLD0_CHECK_EN)))
return (error);
if ((error = rtsx_write_phy(sc, RTSX__PHY_ANA03,
RTSX__PHY_ANA03_TIMER_MAX | RTSX__PHY_ANA03_OOBS_DEB_EN |
RTSX__PHY_CMU_DEBUG_EN)))
return (error);
if (sc->rtsx_flags & RTSX_F_VERSION_A)
if ((error = rtsx_write_phy(sc, RTSX__PHY_REV0,
RTSX__PHY_REV0_FILTER_OUT | RTSX__PHY_REV0_CDR_BYPASS_PFD |
RTSX__PHY_REV0_CDR_RX_IDLE_BYPASS)))
return (error);
break;
case RTSX_RTS5249:
RTSX_CLR(sc, RTSX_PM_CTRL3, RTSX_D3_DELINK_MODE_EN);
if ((error = rtsx_write_phy(sc, RTSX_PHY_REV,
RTSX_PHY_REV_RESV | RTSX_PHY_REV_RXIDLE_LATCHED |
RTSX_PHY_REV_P1_EN | RTSX_PHY_REV_RXIDLE_EN |
RTSX_PHY_REV_CLKREQ_TX_EN | RTSX_PHY_REV_RX_PWST |
RTSX_PHY_REV_CLKREQ_DT_1_0 | RTSX_PHY_REV_STOP_CLKRD |
RTSX_PHY_REV_STOP_CLKWR)))
return (error);
DELAY(10);
if ((error = rtsx_write_phy(sc, RTSX_PHY_BPCR,
RTSX_PHY_BPCR_IBRXSEL | RTSX_PHY_BPCR_IBTXSEL |
RTSX_PHY_BPCR_IB_FILTER | RTSX_PHY_BPCR_CMIRROR_EN)))
return (error);
if ((error = rtsx_write_phy(sc, RTSX_PHY_PCR,
RTSX_PHY_PCR_FORCE_CODE | RTSX_PHY_PCR_OOBS_CALI_50 |
RTSX_PHY_PCR_OOBS_VCM_08 | RTSX_PHY_PCR_OOBS_SEN_90 |
RTSX_PHY_PCR_RSSI_EN | RTSX_PHY_PCR_RX10K)))
return (error);
if ((error = rtsx_write_phy(sc, RTSX_PHY_RCR2,
RTSX_PHY_RCR2_EMPHASE_EN | RTSX_PHY_RCR2_NADJR |
RTSX_PHY_RCR2_CDR_SR_2 | RTSX_PHY_RCR2_FREQSEL_12 |
RTSX_PHY_RCR2_CDR_SC_12P | RTSX_PHY_RCR2_CALIB_LATE)))
return (error);
if ((error = rtsx_write_phy(sc, RTSX_PHY_FLD4,
RTSX_PHY_FLD4_FLDEN_SEL | RTSX_PHY_FLD4_REQ_REF |
RTSX_PHY_FLD4_RXAMP_OFF | RTSX_PHY_FLD4_REQ_ADDA |
RTSX_PHY_FLD4_BER_COUNT | RTSX_PHY_FLD4_BER_TIMER |
RTSX_PHY_FLD4_BER_CHK_EN)))
return (error);
if ((error = rtsx_write_phy(sc, RTSX_PHY_RDR,
RTSX_PHY_RDR_RXDSEL_1_9 | RTSX_PHY_SSC_AUTO_PWD)))
return (error);
if ((error = rtsx_write_phy(sc, RTSX_PHY_RCR1,
RTSX_PHY_RCR1_ADP_TIME_4 | RTSX_PHY_RCR1_VCO_COARSE)))
return (error);
if ((error = rtsx_write_phy(sc, RTSX_PHY_FLD3,
RTSX_PHY_FLD3_TIMER_4 | RTSX_PHY_FLD3_TIMER_6 |
RTSX_PHY_FLD3_RXDELINK)))
return (error);
if ((error = rtsx_write_phy(sc, RTSX_PHY_TUNE,
RTSX_PHY_TUNE_TUNEREF_1_0 | RTSX_PHY_TUNE_VBGSEL_1252 |
RTSX_PHY_TUNE_SDBUS_33 | RTSX_PHY_TUNE_TUNED18 |
RTSX_PHY_TUNE_TUNED12 | RTSX_PHY_TUNE_TUNEA12)))
return (error);
break;
}
/* Set mcu_cnt to 7 to ensure data can be sampled properly. */
RTSX_BITOP(sc, RTSX_CLK_DIV, 0x07, 0x07);
/* Disable sleep mode. */
RTSX_CLR(sc, RTSX_HOST_SLEEP_STATE,
RTSX_HOST_ENTER_S1 | RTSX_HOST_ENTER_S3);
/* Disable card clock. */
RTSX_CLR(sc, RTSX_CARD_CLK_EN, RTSX_CARD_CLK_EN_ALL);
/* Reset delink mode. */
RTSX_CLR(sc, RTSX_CHANGE_LINK_STATE,
RTSX_FORCE_RST_CORE_EN | RTSX_NON_STICKY_RST_N_DBG);
/* Card driving select. */
RTSX_WRITE(sc, RTSX_CARD_DRIVE_SEL, sc->rtsx_card_drive_sel);
/* Enable SSC clock. */
RTSX_WRITE(sc, RTSX_SSC_CTL1, RTSX_SSC_8X_EN | RTSX_SSC_SEL_4M);
RTSX_WRITE(sc, RTSX_SSC_CTL2, 0x12);
/* Disable cd_pwr_save. */
RTSX_BITOP(sc, RTSX_CHANGE_LINK_STATE, 0x16, RTSX_MAC_PHY_RST_N_DBG);
/* Clear Link Ready Interrupt. */
RTSX_BITOP(sc, RTSX_IRQSTAT0, RTSX_LINK_READY_INT, RTSX_LINK_READY_INT);
/* Enlarge the estimation window of PERST# glitch
* to reduce the chance of invalid card interrupt. */
RTSX_WRITE(sc, RTSX_PERST_GLITCH_WIDTH, 0x80);
/* Set RC oscillator to 400K. */
RTSX_CLR(sc, RTSX_RCCTL, RTSX_RCCTL_F_2M);
/* Enable interrupt write-clear (default is read-clear). */
RTSX_CLR(sc, RTSX_NFTS_TX_CTRL, RTSX_INT_READ_CLR);
if (sc->rtsx_device_id == RTSX_RTS525A)
RTSX_BITOP(sc, RTSX_PM_CLK_FORCE_CTL, 1, 1);
/* OC power down. */
RTSX_BITOP(sc, RTSX_FPDCTL, RTSX_SD_OC_POWER_DOWN, RTSX_SD_OC_POWER_DOWN);
/* Enable clk_request_n to enable clock power management */
pci_write_config(sc->rtsx_dev, sc->rtsx_pcie_cap + PCIER_LINK_CTL + 1, 1, 1);
/* Enter L1 when host tx idle */
pci_write_config(sc->rtsx_dev, 0x70F, 0x5B, 1);
/*
* Specific extra init.
*/
switch (sc->rtsx_device_id) {
uint16_t cap;
case RTSX_RTS5209:
/* Turn off LED. */
RTSX_WRITE(sc, RTSX_CARD_GPIO, 0x03);
/* Reset ASPM state to default value. */
RTSX_CLR(sc, RTSX_ASPM_FORCE_CTL, RTSX_ASPM_FORCE_MASK);
/* Force CLKREQ# PIN to drive 0 to request clock. */
RTSX_BITOP(sc, RTSX_PETXCFG, 0x08, 0x08);
/* Configure GPIO as output. */
RTSX_WRITE(sc, RTSX_CARD_GPIO_DIR, 0x03);
/* Configure driving. */
RTSX_WRITE(sc, RTSX_SD30_CMD_DRIVE_SEL, sc->rtsx_sd30_drive_sel_3v3);
break;
case RTSX_RTS5227:
/* Configure GPIO as output. */
RTSX_BITOP(sc, RTSX_GPIO_CTL, RTSX_GPIO_LED_ON, RTSX_GPIO_LED_ON);
/* Reset ASPM state to default value. */
RTSX_BITOP(sc, RTSX_ASPM_FORCE_CTL, RTSX_ASPM_FORCE_MASK, RTSX_FORCE_ASPM_NO_ASPM);
/* Switch LDO3318 source from DV33 to 3V3. */
RTSX_CLR(sc, RTSX_LDO_PWR_SEL, RTSX_LDO_PWR_SEL_DV33);
RTSX_BITOP(sc, RTSX_LDO_PWR_SEL, RTSX_LDO_PWR_SEL_DV33, RTSX_LDO_PWR_SEL_3V3);
/* Set default OLT blink period. */
RTSX_BITOP(sc, RTSX_OLT_LED_CTL, 0x0F, RTSX_OLT_LED_PERIOD);
/* Configure LTR. */
cap = pci_read_config(sc->rtsx_dev, sc->rtsx_pcie_cap + PCIER_DEVICE_CTL2, 2);
if (cap & PCIEM_CTL2_LTR_ENABLE)
RTSX_WRITE(sc, RTSX_LTR_CTL, 0xa3);
/* Configure OBFF. */
RTSX_BITOP(sc, RTSX_OBFF_CFG, RTSX_OBFF_EN_MASK, RTSX_OBFF_ENABLE);
/* Configure driving. */
if ((error = rtsx_rts5227_fill_driving(sc)))
return (error);
/* Configure force_clock_req. */
if (sc->rtsx_flags & RTSX_F_REVERSE_SOCKET)
RTSX_BITOP(sc, RTSX_PETXCFG, 0xB8, 0xB8);
else
RTSX_BITOP(sc, RTSX_PETXCFG, 0xB8, 0x88);
RTSX_CLR(sc, RTSX_PM_CTRL3, RTSX_D3_DELINK_MODE_EN);
/*!!! Added for reboot after Windows. */
RTSX_BITOP(sc, RTSX_PM_CTRL3, RTSX_PM_WAKE_EN, RTSX_PM_WAKE_EN);
break;
case RTSX_RTS5229:
/* Configure GPIO as output. */
RTSX_BITOP(sc, RTSX_GPIO_CTL, RTSX_GPIO_LED_ON, RTSX_GPIO_LED_ON);
/* Reset ASPM state to default value. */
/* With this reset: dd if=/dev/random of=/dev/mmcsd0 encounter a timeout. */
//!!! RTSX_BITOP(sc, RTSX_ASPM_FORCE_CTL, RTSX_ASPM_FORCE_MASK, RTSX_FORCE_ASPM_NO_ASPM);
/* Force CLKREQ# PIN to drive 0 to request clock. */
RTSX_BITOP(sc, RTSX_PETXCFG, 0x08, 0x08);
/* Switch LDO3318 source from DV33 to card_3v3. */
RTSX_CLR(sc, RTSX_LDO_PWR_SEL, RTSX_LDO_PWR_SEL_DV33);
RTSX_BITOP(sc, RTSX_LDO_PWR_SEL, RTSX_LDO_PWR_SEL_DV33, RTSX_LDO_PWR_SEL_3V3);
/* Set default OLT blink period. */
RTSX_BITOP(sc, RTSX_OLT_LED_CTL, 0x0F, RTSX_OLT_LED_PERIOD);
/* Configure driving. */
RTSX_WRITE(sc, RTSX_SD30_CMD_DRIVE_SEL, sc->rtsx_sd30_drive_sel_3v3);
break;
case RTSX_RTS522A:
/* Add specific init from RTS5227. */
/* Configure GPIO as output. */
RTSX_BITOP(sc, RTSX_GPIO_CTL, RTSX_GPIO_LED_ON, RTSX_GPIO_LED_ON);
/* Reset ASPM state to default value. */
RTSX_BITOP(sc, RTSX_ASPM_FORCE_CTL, RTSX_ASPM_FORCE_MASK, RTSX_FORCE_ASPM_NO_ASPM);
/* Switch LDO3318 source from DV33 to 3V3. */
RTSX_CLR(sc, RTSX_LDO_PWR_SEL, RTSX_LDO_PWR_SEL_DV33);
RTSX_BITOP(sc, RTSX_LDO_PWR_SEL, RTSX_LDO_PWR_SEL_DV33, RTSX_LDO_PWR_SEL_3V3);
/* Set default OLT blink period. */
RTSX_BITOP(sc, RTSX_OLT_LED_CTL, 0x0F, RTSX_OLT_LED_PERIOD);
/* Configure LTR. */
cap = pci_read_config(sc->rtsx_dev, sc->rtsx_pcie_cap + PCIER_DEVICE_CTL2, 2);
if (cap & PCIEM_CTL2_LTR_ENABLE)
RTSX_WRITE(sc, RTSX_LTR_CTL, 0xa3);
/* Configure OBFF. */
RTSX_BITOP(sc, RTSX_OBFF_CFG, RTSX_OBFF_EN_MASK, RTSX_OBFF_ENABLE);
/* Configure driving. */
if ((error = rtsx_rts5227_fill_driving(sc)))
return (error);
/* Configure force_clock_req. */
if (sc->rtsx_flags & RTSX_F_REVERSE_SOCKET)
RTSX_BITOP(sc, RTSX_PETXCFG, 0xB8, 0xB8);
else
RTSX_BITOP(sc, RTSX_PETXCFG, 0xB8, 0x88);
RTSX_CLR(sc, RTSX_RTS522A_PM_CTRL3, 0x10);
/* specific for RTS522A. */
RTSX_BITOP(sc, RTSX_FUNC_FORCE_CTL,
RTSX_FUNC_FORCE_UPME_XMT_DBG, RTSX_FUNC_FORCE_UPME_XMT_DBG);
RTSX_BITOP(sc, RTSX_PCLK_CTL, 0x04, 0x04);
RTSX_BITOP(sc, RTSX_PM_EVENT_DEBUG,
RTSX_PME_DEBUG_0, RTSX_PME_DEBUG_0);
RTSX_WRITE(sc, RTSX_PM_CLK_FORCE_CTL, 0x11);
break;
case RTSX_RTS525A:
/* Add specific init from RTS5249. */
/* Rest L1SUB Config. */
RTSX_CLR(sc, RTSX_L1SUB_CONFIG3, 0xff);
/* Configure GPIO as output. */
RTSX_BITOP(sc, RTSX_GPIO_CTL, RTSX_GPIO_LED_ON, RTSX_GPIO_LED_ON);
/* Reset ASPM state to default value. */
RTSX_BITOP(sc, RTSX_ASPM_FORCE_CTL, RTSX_ASPM_FORCE_MASK, RTSX_FORCE_ASPM_NO_ASPM);
/* Switch LDO3318 source from DV33 to 3V3. */
RTSX_CLR(sc, RTSX_LDO_PWR_SEL, RTSX_LDO_PWR_SEL_DV33);
RTSX_BITOP(sc, RTSX_LDO_PWR_SEL, RTSX_LDO_PWR_SEL_DV33, RTSX_LDO_PWR_SEL_3V3);
/* Set default OLT blink period. */
RTSX_BITOP(sc, RTSX_OLT_LED_CTL, 0x0F, RTSX_OLT_LED_PERIOD);
/* Configure driving. */
if ((error = rtsx_rts5249_fill_driving(sc)))
return (error);
/* Configure force_clock_req. */
if (sc->rtsx_flags & RTSX_F_REVERSE_SOCKET)
RTSX_BITOP(sc, RTSX_PETXCFG, 0xB0, 0xB0);
else
RTSX_BITOP(sc, RTSX_PETXCFG, 0xB0, 0x80);
/* Specifc for RTS525A. */
RTSX_BITOP(sc, RTSX_PCLK_CTL, RTSX_PCLK_MODE_SEL, RTSX_PCLK_MODE_SEL);
if (sc->rtsx_flags & RTSX_F_VERSION_A) {
RTSX_WRITE(sc, RTSX_L1SUB_CONFIG2, RTSX_L1SUB_AUTO_CFG);
RTSX_BITOP(sc, RTSX_RREF_CFG,
RTSX_RREF_VBGSEL_MASK, RTSX_RREF_VBGSEL_1V25);
RTSX_BITOP(sc, RTSX_LDO_VIO_CFG,
RTSX_LDO_VIO_TUNE_MASK, RTSX_LDO_VIO_1V7);
RTSX_BITOP(sc, RTSX_LDO_DV12S_CFG,
RTSX_LDO_D12_TUNE_MASK, RTSX_LDO_D12_TUNE_DF);
RTSX_BITOP(sc, RTSX_LDO_AV12S_CFG,
RTSX_LDO_AV12S_TUNE_MASK, RTSX_LDO_AV12S_TUNE_DF);
RTSX_BITOP(sc, RTSX_LDO_VCC_CFG0,
RTSX_LDO_VCC_LMTVTH_MASK, RTSX_LDO_VCC_LMTVTH_2A);
RTSX_BITOP(sc, RTSX_OOBS_CONFIG,
RTSX_OOBS_AUTOK_DIS | RTSX_OOBS_VAL_MASK, 0x89);
}
break;
case RTSX_RTS5249:
/* Rest L1SUB Config. */
RTSX_CLR(sc, RTSX_L1SUB_CONFIG3, 0xff);
/* Configure GPIO as output. */
RTSX_BITOP(sc, RTSX_GPIO_CTL, RTSX_GPIO_LED_ON, RTSX_GPIO_LED_ON);
/* Reset ASPM state to default value. */
RTSX_BITOP(sc, RTSX_ASPM_FORCE_CTL, RTSX_ASPM_FORCE_MASK, RTSX_FORCE_ASPM_NO_ASPM);
/* Switch LDO3318 source from DV33 to 3V3. */
RTSX_CLR(sc, RTSX_LDO_PWR_SEL, RTSX_LDO_PWR_SEL_DV33);
RTSX_BITOP(sc, RTSX_LDO_PWR_SEL, RTSX_LDO_PWR_SEL_DV33, RTSX_LDO_PWR_SEL_3V3);
/* Set default OLT blink period. */
RTSX_BITOP(sc, RTSX_OLT_LED_CTL, 0x0F, RTSX_OLT_LED_PERIOD);
/* Configure driving. */
if ((error = rtsx_rts5249_fill_driving(sc)))
return (error);
/* Configure force_clock_req. */
if (sc->rtsx_flags & RTSX_F_REVERSE_SOCKET)
RTSX_BITOP(sc, RTSX_PETXCFG, 0xB0, 0xB0);
else
RTSX_BITOP(sc, RTSX_PETXCFG, 0xB0, 0x80);
break;
case RTSX_RTL8402:
case RTSX_RTL8411:
RTSX_WRITE(sc, RTSX_SD30_CMD_DRIVE_SEL, sc->rtsx_sd30_drive_sel_3v3);
RTSX_BITOP(sc, RTSX_CARD_PAD_CTL, RTSX_CD_DISABLE_MASK | RTSX_CD_AUTO_DISABLE,
RTSX_CD_ENABLE);
break;
case RTSX_RTL8411B:
if (sc->rtsx_flags & RTSX_F_8411B_QFN48)
RTSX_WRITE(sc, RTSX_CARD_PULL_CTL3, 0xf5);
RTSX_WRITE(sc, RTSX_SD30_CMD_DRIVE_SEL, sc->rtsx_sd30_drive_sel_3v3);
/* Enable SD interrupt. */
RTSX_BITOP(sc, RTSX_CARD_PAD_CTL, RTSX_CD_DISABLE_MASK | RTSX_CD_AUTO_DISABLE,
RTSX_CD_ENABLE);
/* Clear hw_pfm_en to disable hardware PFM mode. */
RTSX_BITOP(sc, RTSX_FUNC_FORCE_CTL, 0x06, 0x00);
break;
}
/*!!! Added for reboot after Windows. */
rtsx_bus_power_off(sc);
rtsx_set_sd_timing(sc, bus_timing_normal);
rtsx_set_sd_clock(sc, 0);
/*!!! Added for reboot after Windows. */
return (0);
}
static int
rtsx_map_sd_drive(int index)
{
uint8_t sd_drive[4] =
{
0x01, /* Type D */
0x02, /* Type C */
0x05, /* Type A */
0x03 /* Type B */
};
return (sd_drive[index]);
}
/* For voltage 3v3. */
static int
rtsx_rts5227_fill_driving(struct rtsx_softc *sc)
{
u_char driving_3v3[4][3] = {
{0x13, 0x13, 0x13},
{0x96, 0x96, 0x96},
{0x7F, 0x7F, 0x7F},
{0x96, 0x96, 0x96},
};
RTSX_WRITE(sc, RTSX_SD30_CLK_DRIVE_SEL, driving_3v3[sc->rtsx_sd30_drive_sel_3v3][0]);
RTSX_WRITE(sc, RTSX_SD30_CMD_DRIVE_SEL, driving_3v3[sc->rtsx_sd30_drive_sel_3v3][1]);
RTSX_WRITE(sc, RTSX_SD30_DAT_DRIVE_SEL, driving_3v3[sc->rtsx_sd30_drive_sel_3v3][2]);
return (0);
}
/* For voltage 3v3. */
static int
rtsx_rts5249_fill_driving(struct rtsx_softc *sc)
{
u_char driving_3v3[4][3] = {
{0x11, 0x11, 0x18},
{0x55, 0x55, 0x5C},
{0xFF, 0xFF, 0xFF},
{0x96, 0x96, 0x96},
};
RTSX_WRITE(sc, RTSX_SD30_CLK_DRIVE_SEL, driving_3v3[sc->rtsx_sd30_drive_sel_3v3][0]);
RTSX_WRITE(sc, RTSX_SD30_CMD_DRIVE_SEL, driving_3v3[sc->rtsx_sd30_drive_sel_3v3][1]);
RTSX_WRITE(sc, RTSX_SD30_DAT_DRIVE_SEL, driving_3v3[sc->rtsx_sd30_drive_sel_3v3][2]);
return (0);
}
static int
rtsx_read(struct rtsx_softc *sc, uint16_t addr, uint8_t *val)
{
int tries = 1024;
uint32_t reg;
WRITE4(sc, RTSX_HAIMR, RTSX_HAIMR_BUSY |
(uint32_t)((addr & 0x3FFF) << 16));
while (tries--) {
reg = READ4(sc, RTSX_HAIMR);
if (!(reg & RTSX_HAIMR_BUSY))
break;
}
*val = (reg & 0xff);
return ((tries == 0) ? ETIMEDOUT : 0);
}
static int
rtsx_read_cfg(struct rtsx_softc *sc, uint8_t func, uint16_t addr, uint32_t *val)
{
int tries = 1024;
uint8_t data0, data1, data2, data3, rwctl;
RTSX_WRITE(sc, RTSX_CFGADDR0, addr);
RTSX_WRITE(sc, RTSX_CFGADDR1, addr >> 8);
RTSX_WRITE(sc, RTSX_CFGRWCTL, RTSX_CFG_BUSY | (func & 0x03 << 4));
while (tries--) {
RTSX_READ(sc, RTSX_CFGRWCTL, &rwctl);
if (!(rwctl & RTSX_CFG_BUSY))
break;
}
if (tries == 0)
return (ETIMEDOUT);
RTSX_READ(sc, RTSX_CFGDATA0, &data0);
RTSX_READ(sc, RTSX_CFGDATA1, &data1);
RTSX_READ(sc, RTSX_CFGDATA2, &data2);
RTSX_READ(sc, RTSX_CFGDATA3, &data3);
*val = (data3 << 24) | (data2 << 16) | (data1 << 8) | data0;
return (0);
}
static int
rtsx_write(struct rtsx_softc *sc, uint16_t addr, uint8_t mask, uint8_t val)
{
int tries = 1024;
uint32_t reg;
WRITE4(sc, RTSX_HAIMR,
RTSX_HAIMR_BUSY | RTSX_HAIMR_WRITE |
(uint32_t)(((addr & 0x3FFF) << 16) |
(mask << 8) | val));
while (tries--) {
reg = READ4(sc, RTSX_HAIMR);
if (!(reg & RTSX_HAIMR_BUSY)) {
if (val != (reg & 0xff))
return (EIO);
return (0);
}
}
return (ETIMEDOUT);
}
static int
rtsx_read_phy(struct rtsx_softc *sc, uint8_t addr, uint16_t *val)
{
int tries = 100000;
uint8_t data0, data1, rwctl;
RTSX_WRITE(sc, RTSX_PHY_ADDR, addr);
RTSX_WRITE(sc, RTSX_PHY_RWCTL, RTSX_PHY_BUSY | RTSX_PHY_READ);
while (tries--) {
RTSX_READ(sc, RTSX_PHY_RWCTL, &rwctl);
if (!(rwctl & RTSX_PHY_BUSY))
break;
}
if (tries == 0)
return (ETIMEDOUT);
RTSX_READ(sc, RTSX_PHY_DATA0, &data0);
RTSX_READ(sc, RTSX_PHY_DATA1, &data1);
*val = data1 << 8 | data0;
return (0);
}
static int
rtsx_write_phy(struct rtsx_softc *sc, uint8_t addr, uint16_t val)
{
int tries = 100000;
uint8_t rwctl;
RTSX_WRITE(sc, RTSX_PHY_DATA0, val);
RTSX_WRITE(sc, RTSX_PHY_DATA1, val >> 8);
RTSX_WRITE(sc, RTSX_PHY_ADDR, addr);
RTSX_WRITE(sc, RTSX_PHY_RWCTL, RTSX_PHY_BUSY | RTSX_PHY_WRITE);
while (tries--) {
RTSX_READ(sc, RTSX_PHY_RWCTL, &rwctl);
if (!(rwctl & RTSX_PHY_BUSY))
break;
}
return ((tries == 0) ? ETIMEDOUT : 0);
}
/*
* Notice that the meaning of RTSX_PWR_GATE_CTRL changes between RTS5209 and
* RTS5229. In RTS5209 it is a mask of disabled power gates, while in RTS5229
* it is a mask of *enabled* gates.
*/
static int
rtsx_bus_power_off(struct rtsx_softc *sc)
{
if (bootverbose || sc->rtsx_debug)
device_printf(sc->rtsx_dev, "rtsx_bus_power_off()\n");
/* Disable SD clock. */
RTSX_CLR(sc, RTSX_CARD_CLK_EN, RTSX_SD_CLK_EN);
/* Disable SD output. */
RTSX_CLR(sc, RTSX_CARD_OE, RTSX_SD_OUTPUT_EN);
/* Turn off power. */
switch (sc->rtsx_device_id) {
case RTSX_RTS5209:
RTSX_BITOP(sc, RTSX_CARD_PWR_CTL, RTSX_SD_PWR_MASK | RTSX_PMOS_STRG_MASK,
RTSX_SD_PWR_OFF | RTSX_PMOS_STRG_400mA);
RTSX_SET(sc, RTSX_PWR_GATE_CTRL, RTSX_LDO3318_OFF);
break;
case RTSX_RTS5227:
case RTSX_RTS5229:
case RTSX_RTS522A:
RTSX_BITOP(sc, RTSX_CARD_PWR_CTL, RTSX_SD_PWR_MASK | RTSX_PMOS_STRG_MASK,
RTSX_SD_PWR_OFF | RTSX_PMOS_STRG_400mA);
RTSX_CLR(sc, RTSX_PWR_GATE_CTRL, RTSX_LDO3318_PWR_MASK);
break;
case RTSX_RTL8402:
case RTSX_RTL8411:
case RTSX_RTL8411B:
RTSX_BITOP(sc, RTSX_CARD_PWR_CTL, RTSX_BPP_POWER_MASK,
RTSX_BPP_POWER_OFF);
RTSX_BITOP(sc, RTSX_LDO_CTL, RTSX_BPP_LDO_POWB,
RTSX_BPP_LDO_SUSPEND);
break;
default:
RTSX_CLR(sc, RTSX_PWR_GATE_CTRL, RTSX_LDO3318_PWR_MASK);
RTSX_SET(sc, RTSX_CARD_PWR_CTL, RTSX_SD_PWR_OFF);
RTSX_CLR(sc, RTSX_CARD_PWR_CTL, RTSX_PMOS_STRG_800mA);
break;
}
/* Disable pull control. */
switch (sc->rtsx_device_id) {
case RTSX_RTS5209:
RTSX_WRITE(sc, RTSX_CARD_PULL_CTL1, RTSX_PULL_CTL_DISABLE12);
RTSX_WRITE(sc, RTSX_CARD_PULL_CTL2, RTSX_PULL_CTL_DISABLE12);
RTSX_WRITE(sc, RTSX_CARD_PULL_CTL3, RTSX_PULL_CTL_DISABLE3);
break;
case RTSX_RTS5227:
case RTSX_RTS522A:
RTSX_WRITE(sc, RTSX_CARD_PULL_CTL2, RTSX_PULL_CTL_DISABLE12);
RTSX_WRITE(sc, RTSX_CARD_PULL_CTL3, RTSX_PULL_CTL_DISABLE3);
break;
case RTSX_RTS5229:
RTSX_WRITE(sc, RTSX_CARD_PULL_CTL2, RTSX_PULL_CTL_DISABLE12);
if (sc->rtsx_flags & RTSX_F_VERSION_C)
RTSX_WRITE(sc, RTSX_CARD_PULL_CTL3, RTSX_PULL_CTL_DISABLE3_TYPE_C);
else
RTSX_WRITE(sc, RTSX_CARD_PULL_CTL3, RTSX_PULL_CTL_DISABLE3);
break;
case RTSX_RTS525A:
case RTSX_RTS5249:
RTSX_WRITE(sc, RTSX_CARD_PULL_CTL1, 0x66);
RTSX_WRITE(sc, RTSX_CARD_PULL_CTL2, RTSX_PULL_CTL_DISABLE12);
RTSX_WRITE(sc, RTSX_CARD_PULL_CTL3, RTSX_PULL_CTL_DISABLE3);
RTSX_WRITE(sc, RTSX_CARD_PULL_CTL4, 0x55);
break;
case RTSX_RTL8402:
case RTSX_RTL8411:
RTSX_WRITE(sc, RTSX_CARD_PULL_CTL1, 0x65);
RTSX_WRITE(sc, RTSX_CARD_PULL_CTL2, 0x55);
RTSX_WRITE(sc, RTSX_CARD_PULL_CTL3, 0x95);
RTSX_WRITE(sc, RTSX_CARD_PULL_CTL4, 0x09);
RTSX_WRITE(sc, RTSX_CARD_PULL_CTL5, 0x05);
RTSX_WRITE(sc, RTSX_CARD_PULL_CTL6, 0x04);
break;
case RTSX_RTL8411B:
if (sc->rtsx_flags & RTSX_F_8411B_QFN48) {
RTSX_WRITE(sc, RTSX_CARD_PULL_CTL2, 0x55);
RTSX_WRITE(sc, RTSX_CARD_PULL_CTL3, 0xf5);
RTSX_WRITE(sc, RTSX_CARD_PULL_CTL6, 0x15);
} else {
RTSX_WRITE(sc, RTSX_CARD_PULL_CTL1, 0x65);
RTSX_WRITE(sc, RTSX_CARD_PULL_CTL2, 0x55);
RTSX_WRITE(sc, RTSX_CARD_PULL_CTL3, 0xd5);
RTSX_WRITE(sc, RTSX_CARD_PULL_CTL4, 0x59);
RTSX_WRITE(sc, RTSX_CARD_PULL_CTL5, 0x55);
RTSX_WRITE(sc, RTSX_CARD_PULL_CTL6, 0x15);
}
break;
}
return (0);
}
static int
rtsx_bus_power_on(struct rtsx_softc *sc)
{
if (bootverbose || sc->rtsx_debug)
device_printf(sc->rtsx_dev, "rtsx_bus_power_on()\n");
/* Select SD card. */
RTSX_BITOP(sc, RTSX_CARD_SELECT, 0x07, RTSX_SD_MOD_SEL);
RTSX_BITOP(sc, RTSX_CARD_SHARE_MODE, RTSX_CARD_SHARE_MASK, RTSX_CARD_SHARE_48_SD);
/* Enable SD clock. */
RTSX_BITOP(sc, RTSX_CARD_CLK_EN, RTSX_SD_CLK_EN, RTSX_SD_CLK_EN);
/* Enable pull control. */
switch (sc->rtsx_device_id) {
case RTSX_RTS5209:
RTSX_WRITE(sc, RTSX_CARD_PULL_CTL1, RTSX_PULL_CTL_ENABLE12);
RTSX_WRITE(sc, RTSX_CARD_PULL_CTL2, RTSX_PULL_CTL_ENABLE12);
RTSX_WRITE(sc, RTSX_CARD_PULL_CTL3, RTSX_PULL_CTL_ENABLE3);
break;
case RTSX_RTS5227:
case RTSX_RTS522A:
RTSX_WRITE(sc, RTSX_CARD_PULL_CTL2, RTSX_PULL_CTL_ENABLE12);
RTSX_WRITE(sc, RTSX_CARD_PULL_CTL3, RTSX_PULL_CTL_ENABLE3);
break;
case RTSX_RTS5229:
RTSX_WRITE(sc, RTSX_CARD_PULL_CTL2, RTSX_PULL_CTL_ENABLE12);
if (sc->rtsx_flags & RTSX_F_VERSION_C)
RTSX_WRITE(sc, RTSX_CARD_PULL_CTL3, RTSX_PULL_CTL_ENABLE3_TYPE_C);
else
RTSX_WRITE(sc, RTSX_CARD_PULL_CTL3, RTSX_PULL_CTL_ENABLE3);
break;
case RTSX_RTS525A:
case RTSX_RTS5249:
RTSX_WRITE(sc, RTSX_CARD_PULL_CTL1, 0x66);
RTSX_WRITE(sc, RTSX_CARD_PULL_CTL2, RTSX_PULL_CTL_ENABLE12);
RTSX_WRITE(sc, RTSX_CARD_PULL_CTL3, RTSX_PULL_CTL_ENABLE3);
RTSX_WRITE(sc, RTSX_CARD_PULL_CTL4, 0xaa);
break;
case RTSX_RTL8402:
case RTSX_RTL8411:
RTSX_WRITE(sc, RTSX_CARD_PULL_CTL1, 0xaa);
RTSX_WRITE(sc, RTSX_CARD_PULL_CTL2, 0xaa);
RTSX_WRITE(sc, RTSX_CARD_PULL_CTL3, 0xa9);
RTSX_WRITE(sc, RTSX_CARD_PULL_CTL4, 0x09);
RTSX_WRITE(sc, RTSX_CARD_PULL_CTL5, 0x09);
RTSX_WRITE(sc, RTSX_CARD_PULL_CTL6, 0x04);
break;
case RTSX_RTL8411B:
if (sc->rtsx_flags & RTSX_F_8411B_QFN48) {
RTSX_WRITE(sc, RTSX_CARD_PULL_CTL2, 0xaa);
RTSX_WRITE(sc, RTSX_CARD_PULL_CTL3, 0xf9);
RTSX_WRITE(sc, RTSX_CARD_PULL_CTL6, 0x19);
} else {
RTSX_WRITE(sc, RTSX_CARD_PULL_CTL1, 0xaa);
RTSX_WRITE(sc, RTSX_CARD_PULL_CTL2, 0xaa);
RTSX_WRITE(sc, RTSX_CARD_PULL_CTL3, 0xd9);
RTSX_WRITE(sc, RTSX_CARD_PULL_CTL4, 0x59);
RTSX_WRITE(sc, RTSX_CARD_PULL_CTL5, 0x55);
RTSX_WRITE(sc, RTSX_CARD_PULL_CTL6, 0x15);
}
break;
}
/*
* To avoid a current peak, enable card power in two phases
* with a delay in between.
*/
switch (sc->rtsx_device_id) {
case RTSX_RTS5209:
/* Partial power. */
RTSX_BITOP(sc, RTSX_CARD_PWR_CTL, RTSX_SD_PWR_MASK, RTSX_SD_PARTIAL_PWR_ON);
RTSX_BITOP(sc, RTSX_PWR_GATE_CTRL, RTSX_LDO3318_PWR_MASK, RTSX_LDO3318_VCC2);
DELAY(200);
/* Full power. */
RTSX_BITOP(sc, RTSX_CARD_PWR_CTL, RTSX_SD_PWR_MASK, RTSX_SD_PWR_ON);
RTSX_BITOP(sc, RTSX_PWR_GATE_CTRL, RTSX_LDO3318_PWR_MASK, RTSX_LDO3318_ON);
break;
case RTSX_RTS5227:
case RTSX_RTS522A:
/* Partial power. */
RTSX_BITOP(sc, RTSX_CARD_PWR_CTL, RTSX_SD_PWR_MASK, RTSX_SD_PARTIAL_PWR_ON);
RTSX_BITOP(sc, RTSX_PWR_GATE_CTRL, RTSX_LDO3318_PWR_MASK, RTSX_LDO3318_VCC1);
DELAY(200);
/* Full power. */
RTSX_BITOP(sc, RTSX_CARD_PWR_CTL, RTSX_SD_PWR_MASK, RTSX_SD_PWR_ON);
RTSX_BITOP(sc, RTSX_PWR_GATE_CTRL, RTSX_LDO3318_PWR_MASK,
RTSX_LDO3318_VCC1 | RTSX_LDO3318_VCC2);
RTSX_BITOP(sc, RTSX_CARD_OE, RTSX_SD_OUTPUT_EN, RTSX_SD_OUTPUT_EN);
RTSX_BITOP(sc, RTSX_CARD_OE, RTSX_MS_OUTPUT_EN, RTSX_MS_OUTPUT_EN);
break;
case RTSX_RTS5229:
/* Partial power. */
RTSX_BITOP(sc, RTSX_CARD_PWR_CTL, RTSX_SD_PWR_MASK, RTSX_SD_PARTIAL_PWR_ON);
RTSX_BITOP(sc, RTSX_PWR_GATE_CTRL, RTSX_LDO3318_PWR_MASK, RTSX_LDO3318_VCC1);
DELAY(200);
/* Full power. */
RTSX_BITOP(sc, RTSX_CARD_PWR_CTL, RTSX_SD_PWR_MASK, RTSX_SD_PWR_ON);
RTSX_BITOP(sc, RTSX_PWR_GATE_CTRL, RTSX_LDO3318_PWR_MASK,
RTSX_LDO3318_VCC1 | RTSX_LDO3318_VCC2);
break;
case RTSX_RTS525A:
RTSX_BITOP(sc, RTSX_LDO_VCC_CFG1, RTSX_LDO_VCC_TUNE_MASK, RTSX_LDO_VCC_3V3);
case RTSX_RTS5249:
/* Partial power. */
RTSX_BITOP(sc, RTSX_CARD_PWR_CTL, RTSX_SD_PWR_MASK, RTSX_SD_PARTIAL_PWR_ON);
RTSX_BITOP(sc, RTSX_PWR_GATE_CTRL, RTSX_LDO3318_PWR_MASK, RTSX_LDO3318_VCC1);
DELAY(200);
/* Full power. */
RTSX_BITOP(sc, RTSX_CARD_PWR_CTL, RTSX_SD_PWR_MASK, RTSX_SD_PWR_ON);
RTSX_BITOP(sc, RTSX_PWR_GATE_CTRL, RTSX_LDO3318_PWR_MASK,
RTSX_LDO3318_VCC1 | RTSX_LDO3318_VCC2);
break;
case RTSX_RTL8402:
case RTSX_RTL8411:
case RTSX_RTL8411B:
RTSX_BITOP(sc, RTSX_CARD_PWR_CTL, RTSX_BPP_POWER_MASK,
RTSX_BPP_POWER_5_PERCENT_ON);
RTSX_BITOP(sc, RTSX_LDO_CTL, RTSX_BPP_LDO_POWB,
RTSX_BPP_LDO_SUSPEND);
DELAY(150);
RTSX_BITOP(sc, RTSX_CARD_PWR_CTL, RTSX_BPP_POWER_MASK,
RTSX_BPP_POWER_10_PERCENT_ON);
DELAY(150);
RTSX_BITOP(sc, RTSX_CARD_PWR_CTL, RTSX_BPP_POWER_MASK,
RTSX_BPP_POWER_15_PERCENT_ON);
DELAY(150);
RTSX_BITOP(sc, RTSX_CARD_PWR_CTL, RTSX_BPP_POWER_MASK,
RTSX_BPP_POWER_ON);
RTSX_BITOP(sc, RTSX_LDO_CTL, RTSX_BPP_LDO_POWB,
RTSX_BPP_LDO_ON);
break;
}
/* Enable SD card output. */
RTSX_WRITE(sc, RTSX_CARD_OE, RTSX_SD_OUTPUT_EN);
DELAY(200);
return (0);
}
/*
* Set but width.
*/
static int
rtsx_set_bus_width(struct rtsx_softc *sc, enum mmc_bus_width width)
{
uint32_t bus_width;
switch (width) {
case bus_width_1:
bus_width = RTSX_BUS_WIDTH_1;
break;
case bus_width_4:
bus_width = RTSX_BUS_WIDTH_4;
break;
case bus_width_8:
bus_width = RTSX_BUS_WIDTH_8;
break;
default:
return (MMC_ERR_INVALID);
}
RTSX_BITOP(sc, RTSX_SD_CFG1, RTSX_BUS_WIDTH_MASK, bus_width);
if (bootverbose || sc->rtsx_debug) {
char *busw[] = {
"1 bit",
"4 bits",
"8 bits"
};
device_printf(sc->rtsx_dev, "Setting bus width to %s\n", busw[bus_width]);
}
return (0);
}
static int
rtsx_set_sd_timing(struct rtsx_softc *sc, enum mmc_bus_timing timing)
{
if (timing == bus_timing_hs && sc->rtsx_force_timing) {
timing = bus_timing_uhs_sdr50;
sc->rtsx_ios_timing = timing;
}
if (bootverbose || sc->rtsx_debug)
device_printf(sc->rtsx_dev, "rtsx_set_sd_timing(%u)\n", timing);
switch (timing) {
case bus_timing_uhs_sdr50:
case bus_timing_uhs_sdr104:
sc->rtsx_double_clk = false;
sc->rtsx_vpclk = true;
RTSX_BITOP(sc, RTSX_SD_CFG1, 0x0c | RTSX_SD_ASYNC_FIFO_NOT_RST,
RTSX_SD30_MODE | RTSX_SD_ASYNC_FIFO_NOT_RST);
RTSX_BITOP(sc, RTSX_CLK_CTL, RTSX_CLK_LOW_FREQ, RTSX_CLK_LOW_FREQ);
RTSX_WRITE(sc, RTSX_CARD_CLK_SOURCE,
RTSX_CRC_VAR_CLK0 | RTSX_SD30_FIX_CLK | RTSX_SAMPLE_VAR_CLK1);
RTSX_CLR(sc, RTSX_CLK_CTL, RTSX_CLK_LOW_FREQ);
break;
case bus_timing_hs:
RTSX_BITOP(sc, RTSX_SD_CFG1, RTSX_SD_MODE_MASK, RTSX_SD20_MODE);
RTSX_BITOP(sc, RTSX_CLK_CTL, RTSX_CLK_LOW_FREQ, RTSX_CLK_LOW_FREQ);
RTSX_WRITE(sc, RTSX_CARD_CLK_SOURCE,
RTSX_CRC_FIX_CLK | RTSX_SD30_VAR_CLK0 | RTSX_SAMPLE_VAR_CLK1);
RTSX_CLR(sc, RTSX_CLK_CTL, RTSX_CLK_LOW_FREQ);
RTSX_BITOP(sc, RTSX_SD_PUSH_POINT_CTL,
RTSX_SD20_TX_SEL_MASK, RTSX_SD20_TX_14_AHEAD);
RTSX_BITOP(sc, RTSX_SD_SAMPLE_POINT_CTL,
RTSX_SD20_RX_SEL_MASK, RTSX_SD20_RX_14_DELAY);
break;
default:
RTSX_BITOP(sc, RTSX_SD_CFG1, RTSX_SD_MODE_MASK, RTSX_SD20_MODE);
RTSX_BITOP(sc, RTSX_CLK_CTL, RTSX_CLK_LOW_FREQ, RTSX_CLK_LOW_FREQ);
RTSX_WRITE(sc, RTSX_CARD_CLK_SOURCE,
RTSX_CRC_FIX_CLK | RTSX_SD30_VAR_CLK0 | RTSX_SAMPLE_VAR_CLK1);
RTSX_CLR(sc, RTSX_CLK_CTL, RTSX_CLK_LOW_FREQ);
RTSX_WRITE(sc, RTSX_SD_PUSH_POINT_CTL, RTSX_SD20_TX_NEG_EDGE);
RTSX_BITOP(sc, RTSX_SD_SAMPLE_POINT_CTL,
RTSX_SD20_RX_SEL_MASK, RTSX_SD20_RX_POS_EDGE);
break;
}
return (0);
}
/*
* Set or change SDCLK frequency or disable the SD clock.
* Return zero on success.
*/
static int
rtsx_set_sd_clock(struct rtsx_softc *sc, uint32_t freq)
{
uint8_t clk;
uint8_t clk_divider, n, div, mcu;
int error = 0;
if (bootverbose || sc->rtsx_debug)
device_printf(sc->rtsx_dev, "rtsx_set_sd_clock(%u)\n", freq);
if (freq == RTSX_SDCLK_OFF) {
error = rtsx_stop_sd_clock(sc);
return error;
}
sc->rtsx_ssc_depth = RTSX_SSC_DEPTH_500K;
sc->rtsx_discovery_mode = (freq <= 1000000) ? true : false;
if (sc->rtsx_discovery_mode) {
/* We use 250k(around) here, in discovery stage. */
clk_divider = RTSX_CLK_DIVIDE_128;
freq = 30000000;
} else {
clk_divider = RTSX_CLK_DIVIDE_0;
}
RTSX_BITOP(sc, RTSX_SD_CFG1, RTSX_CLK_DIVIDE_MASK, clk_divider);
freq /= 1000000;
if (sc->rtsx_discovery_mode || !sc->rtsx_double_clk)
clk = freq;
else
clk = freq * 2;
switch (sc->rtsx_device_id) {
case RTSX_RTL8402:
case RTSX_RTL8411:
case RTSX_RTL8411B:
n = clk * 4 / 5 - 2;
break;
default:
n = clk - 2;
break;
}
if ((clk <= 2) || (n > RTSX_MAX_DIV_N))
return (MMC_ERR_INVALID);
mcu = 125 / clk + 3;
if (mcu > 15)
mcu = 15;
/* Make sure that the SSC clock div_n is not less than RTSX_MIN_DIV_N. */
div = RTSX_CLK_DIV_1;
while ((n < RTSX_MIN_DIV_N) && (div < RTSX_CLK_DIV_8)) {
switch (sc->rtsx_device_id) {
case RTSX_RTL8402:
case RTSX_RTL8411:
case RTSX_RTL8411B:
n = (((n + 2) * 5 / 4) * 2) * 4 / 5 - 2;
break;
default:
n = (n + 2) * 2 - 2;
break;
}
div++;
}
if (sc->rtsx_double_clk && sc->rtsx_ssc_depth > 1)
sc->rtsx_ssc_depth -= 1;
if (div > RTSX_CLK_DIV_1) {
if (sc->rtsx_ssc_depth > (div - 1))
sc->rtsx_ssc_depth -= (div - 1);
else
sc->rtsx_ssc_depth = RTSX_SSC_DEPTH_4M;
}
/* Enable SD clock. */
error = rtsx_switch_sd_clock(sc, clk, n, div, mcu);
return (error);
}
static int
rtsx_stop_sd_clock(struct rtsx_softc *sc)
{
RTSX_CLR(sc, RTSX_CARD_CLK_EN, RTSX_CARD_CLK_EN_ALL);
RTSX_SET(sc, RTSX_SD_BUS_STAT, RTSX_SD_CLK_FORCE_STOP);
return (0);
}
static int
rtsx_switch_sd_clock(struct rtsx_softc *sc, uint8_t clk, uint8_t n, uint8_t div, uint8_t mcu)
{
if (bootverbose || sc->rtsx_debug) {
device_printf(sc->rtsx_dev, "rtsx_switch_sd_clock() - discovery-mode is %s, ssc_depth: %d\n",
(sc->rtsx_discovery_mode) ? "true" : "false", sc->rtsx_ssc_depth);
device_printf(sc->rtsx_dev, "rtsx_switch_sd_clock() - clk: %d, n: %d, div: %d, mcu: %d\n",
clk, n, div, mcu);
}
RTSX_BITOP(sc, RTSX_CLK_CTL, RTSX_CLK_LOW_FREQ, RTSX_CLK_LOW_FREQ);
RTSX_WRITE(sc, RTSX_CLK_DIV, (div << 4) | mcu);
RTSX_CLR(sc, RTSX_SSC_CTL1, RTSX_RSTB);
RTSX_BITOP(sc, RTSX_SSC_CTL2, RTSX_SSC_DEPTH_MASK, sc->rtsx_ssc_depth);
RTSX_WRITE(sc, RTSX_SSC_DIV_N_0, n);
RTSX_BITOP(sc, RTSX_SSC_CTL1, RTSX_RSTB, RTSX_RSTB);
if (sc->rtsx_vpclk) {
RTSX_CLR(sc, RTSX_SD_VPCLK0_CTL, RTSX_PHASE_NOT_RESET);
RTSX_BITOP(sc, RTSX_SD_VPCLK0_CTL, RTSX_PHASE_NOT_RESET, RTSX_PHASE_NOT_RESET);
}
/* Wait SSC clock stable. */
DELAY(200);
RTSX_CLR(sc, RTSX_CLK_CTL, RTSX_CLK_LOW_FREQ);
return (0);
}
static void
rtsx_sd_change_tx_phase(struct rtsx_softc *sc, uint8_t sample_point)
{
if (bootverbose || sc->rtsx_debug)
device_printf(sc->rtsx_dev, "rtsx_sd_change_tx_phase() - sample_point: %d\n", sample_point);
rtsx_write(sc, RTSX_CLK_CTL, RTSX_CHANGE_CLK, RTSX_CHANGE_CLK);
rtsx_write(sc, RTSX_SD_VPCLK0_CTL, RTSX_PHASE_SELECT_MASK, sample_point);
rtsx_write(sc, RTSX_SD_VPCLK0_CTL, RTSX_PHASE_NOT_RESET, 0);
rtsx_write(sc, RTSX_SD_VPCLK0_CTL, RTSX_PHASE_NOT_RESET, RTSX_PHASE_NOT_RESET);
rtsx_write(sc, RTSX_CLK_CTL, RTSX_CHANGE_CLK, 0);
rtsx_write(sc, RTSX_SD_CFG1, RTSX_SD_ASYNC_FIFO_NOT_RST, 0);
}
static void
rtsx_sd_change_rx_phase(struct rtsx_softc *sc, uint8_t sample_point)
{
if (bootverbose || sc->rtsx_debug == 2)
device_printf(sc->rtsx_dev, "rtsx_sd_change_rx_phase() - sample_point: %d\n", sample_point);
rtsx_write(sc, RTSX_CLK_CTL, RTSX_CHANGE_CLK, RTSX_CHANGE_CLK);
rtsx_write(sc, RTSX_SD_VPCLK1_CTL, RTSX_PHASE_SELECT_MASK, sample_point);
rtsx_write(sc, RTSX_SD_VPCLK1_CTL, RTSX_PHASE_NOT_RESET, 0);
rtsx_write(sc, RTSX_SD_VPCLK1_CTL, RTSX_PHASE_NOT_RESET, RTSX_PHASE_NOT_RESET);
rtsx_write(sc, RTSX_CLK_CTL, RTSX_CHANGE_CLK, 0);
rtsx_write(sc, RTSX_SD_CFG1, RTSX_SD_ASYNC_FIFO_NOT_RST, 0);
}
static void
rtsx_sd_tuning_rx_phase(struct rtsx_softc *sc, uint32_t *phase_map)
{
uint32_t raw_phase_map = 0;
int i;
int error;
for (i = 0; i < RTSX_RX_PHASE_MAX; i++) {
error = rtsx_sd_tuning_rx_cmd(sc, (uint8_t)i);
if (error == 0)
raw_phase_map |= 1 << i;
}
if (phase_map != NULL)
*phase_map = raw_phase_map;
}
static int
rtsx_sd_tuning_rx_cmd(struct rtsx_softc *sc, uint8_t sample_point)
{
struct mmc_request req = {};
struct mmc_command cmd = {};
int error = 0;
cmd.opcode = MMC_SEND_TUNING_BLOCK;
cmd.arg = 0;
req.cmd = &cmd;
RTSX_LOCK(sc);
sc->rtsx_req = &req;
rtsx_sd_change_rx_phase(sc, sample_point);
rtsx_write(sc, RTSX_SD_CFG3, RTSX_SD_RSP_80CLK_TIMEOUT_EN,
RTSX_SD_RSP_80CLK_TIMEOUT_EN);
rtsx_init_cmd(sc, &cmd);
rtsx_set_cmd_data_len(sc, 1, 0x40);
rtsx_push_cmd(sc, RTSX_WRITE_REG_CMD, RTSX_SD_CFG2, 0xff,
RTSX_SD_CALCULATE_CRC7 | RTSX_SD_CHECK_CRC16 |
RTSX_SD_NO_WAIT_BUSY_END | RTSX_SD_CHECK_CRC7 | RTSX_SD_RSP_LEN_6);
rtsx_push_cmd(sc, RTSX_WRITE_REG_CMD, RTSX_SD_TRANSFER,
0xff, RTSX_TM_AUTO_TUNING | RTSX_SD_TRANSFER_START);
rtsx_push_cmd(sc, RTSX_CHECK_REG_CMD, RTSX_SD_TRANSFER,
RTSX_SD_TRANSFER_END, RTSX_SD_TRANSFER_END);
/* Set interrupt post processing */
sc->rtsx_intr_trans_ok = rtsx_sd_tuning_rx_cmd_wakeup;
sc->rtsx_intr_trans_ko = rtsx_sd_tuning_rx_cmd_wakeup;
/* Run the command queue. */
rtsx_send_cmd(sc);
error = rtsx_sd_tuning_rx_cmd_wait(sc, &cmd);
if (error) {
if (bootverbose || sc->rtsx_debug == 2)
device_printf(sc->rtsx_dev, "rtsx_sd_tuning_rx_cmd() - error: %d\n", error);
rtsx_sd_wait_data_idle(sc);
rtsx_clear_error(sc);
}
rtsx_write(sc, RTSX_SD_CFG3, RTSX_SD_RSP_80CLK_TIMEOUT_EN, 0);
sc->rtsx_req = NULL;
RTSX_UNLOCK(sc);
return (error);
}
static int
rtsx_sd_tuning_rx_cmd_wait(struct rtsx_softc *sc, struct mmc_command *cmd)
{
int status;
int mask = RTSX_TRANS_OK_INT | RTSX_TRANS_FAIL_INT;
status = sc->rtsx_intr_status & mask;
while (status == 0) {
if (msleep(&sc->rtsx_intr_status, &sc->rtsx_mtx, 0, "rtsxintr", sc->rtsx_timeout) == EWOULDBLOCK) {
cmd->error = MMC_ERR_TIMEOUT;
return (MMC_ERR_TIMEOUT);
}
status = sc->rtsx_intr_status & mask;
}
return (cmd->error);
}
static void
rtsx_sd_tuning_rx_cmd_wakeup(struct rtsx_softc *sc)
{
wakeup(&sc->rtsx_intr_status);
}
static void
rtsx_sd_wait_data_idle(struct rtsx_softc *sc)
{
int i;
uint8_t val;
for (i = 0; i < 100; i++) {
rtsx_read(sc, RTSX_SD_DATA_STATE, &val);
if (val & RTSX_SD_DATA_IDLE)
return;
DELAY(100);
}
}
static uint8_t
rtsx_sd_search_final_rx_phase(struct rtsx_softc *sc, uint32_t phase_map)
{
int start = 0, len = 0;
int start_final = 0, len_final = 0;
uint8_t final_phase = 0xff;
while (start < RTSX_RX_PHASE_MAX) {
len = rtsx_sd_get_rx_phase_len(phase_map, start);
if (len_final < len) {
start_final = start;
len_final = len;
}
start += len ? len : 1;
}
final_phase = (start_final + len_final / 2) % RTSX_RX_PHASE_MAX;
if (bootverbose || sc->rtsx_debug)
device_printf(sc->rtsx_dev,
"rtsx_sd_search_final_rx_phase() - phase_map: %x, start_final: %d, len_final: %d, final_phase: %d\n",
phase_map, start_final, len_final, final_phase);
return final_phase;
}
static int
rtsx_sd_get_rx_phase_len(uint32_t phase_map, int start_bit)
{
int i;
for (i = 0; i < RTSX_RX_PHASE_MAX; i++) {
if ((phase_map & (1 << (start_bit + i) % RTSX_RX_PHASE_MAX)) == 0)
return i;
}
return RTSX_RX_PHASE_MAX;
}
#if 0 /* For led */
static int
rtsx_led_enable(struct rtsx_softc *sc)
{
switch (sc->rtsx_device_id) {
case RTSX_RTS5209:
RTSX_CLR(sc, RTSX_CARD_GPIO, RTSX_CARD_GPIO_LED_OFF);
RTSX_WRITE(sc, RTSX_CARD_AUTO_BLINK,
RTSX_LED_BLINK_EN | RTSX_LED_BLINK_SPEED);
break;
case RTSX_RTL8411B:
RTSX_CLR(sc, RTSX_GPIO_CTL, 0x01);
RTSX_WRITE(sc, RTSX_CARD_AUTO_BLINK,
RTSX_LED_BLINK_EN | RTSX_LED_BLINK_SPEED);
break;
default:
RTSX_SET(sc, RTSX_GPIO_CTL, RTSX_GPIO_LED_ON);
RTSX_SET(sc, RTSX_OLT_LED_CTL, RTSX_OLT_LED_AUTOBLINK);
break;
}
return (0);
}
static int
rtsx_led_disable(struct rtsx_softc *sc)
{
switch (sc->rtsx_device_id) {
case RTSX_RTS5209:
RTSX_CLR(sc, RTSX_CARD_AUTO_BLINK, RTSX_LED_BLINK_EN);
RTSX_WRITE(sc, RTSX_CARD_GPIO, RTSX_CARD_GPIO_LED_OFF);
break;
case RTSX_RTL8411B:
RTSX_CLR(sc, RTSX_CARD_AUTO_BLINK, RTSX_LED_BLINK_EN);
RTSX_SET(sc, RTSX_GPIO_CTL, 0x01);
break;
default:
RTSX_CLR(sc, RTSX_OLT_LED_CTL, RTSX_OLT_LED_AUTOBLINK);
RTSX_CLR(sc, RTSX_GPIO_CTL, RTSX_GPIO_LED_ON);
break;
}
return (0);
}
#endif /* For led */
static uint8_t
rtsx_response_type(uint16_t mmc_rsp)
{
int i;
struct rsp_type {
uint16_t mmc_rsp;
uint8_t rtsx_rsp;
} rsp_types[] = {
{ MMC_RSP_NONE, RTSX_SD_RSP_TYPE_R0 },
{ MMC_RSP_R1, RTSX_SD_RSP_TYPE_R1 },
{ MMC_RSP_R1B, RTSX_SD_RSP_TYPE_R1B },
{ MMC_RSP_R2, RTSX_SD_RSP_TYPE_R2 },
{ MMC_RSP_R3, RTSX_SD_RSP_TYPE_R3 },
{ MMC_RSP_R4, RTSX_SD_RSP_TYPE_R4 },
{ MMC_RSP_R5, RTSX_SD_RSP_TYPE_R5 },
{ MMC_RSP_R6, RTSX_SD_RSP_TYPE_R6 },
{ MMC_RSP_R7, RTSX_SD_RSP_TYPE_R7 }
};
for (i = 0; i < nitems(rsp_types); i++) {
if (mmc_rsp == rsp_types[i].mmc_rsp)
return (rsp_types[i].rtsx_rsp);
}
return (0);
}
/*
* Init command buffer with SD command index and argument.
*/
static void
rtsx_init_cmd(struct rtsx_softc *sc, struct mmc_command *cmd)
{
sc->rtsx_cmd_index = 0;
rtsx_push_cmd(sc, RTSX_WRITE_REG_CMD, RTSX_SD_CMD0,
0xff, RTSX_SD_CMD_START | cmd->opcode);
rtsx_push_cmd(sc, RTSX_WRITE_REG_CMD, RTSX_SD_CMD1,
0xff, cmd->arg >> 24);
rtsx_push_cmd(sc, RTSX_WRITE_REG_CMD, RTSX_SD_CMD2,
0xff, cmd->arg >> 16);
rtsx_push_cmd(sc, RTSX_WRITE_REG_CMD, RTSX_SD_CMD3,
0xff, cmd->arg >> 8);
rtsx_push_cmd(sc, RTSX_WRITE_REG_CMD, RTSX_SD_CMD4,
0xff, cmd->arg);
}
/*
* Append a properly encoded host command to the host command buffer.
*/
static void
rtsx_push_cmd(struct rtsx_softc *sc, uint8_t cmd, uint16_t reg,
uint8_t mask, uint8_t data)
{
KASSERT(sc->rtsx_cmd_index < RTSX_HOSTCMD_MAX,
("rtsx: Too many host commands (%d)\n", sc->rtsx_cmd_index));
uint32_t *cmd_buffer = (uint32_t *)(sc->rtsx_cmd_dmamem);
cmd_buffer[sc->rtsx_cmd_index++] =
htole32((uint32_t)(cmd & 0x3) << 30) |
((uint32_t)(reg & 0x3fff) << 16) |
((uint32_t)(mask) << 8) |
((uint32_t)data);
}
/*
* Queue commands to configure data transfer size.
*/
static void
rtsx_set_cmd_data_len(struct rtsx_softc *sc, uint16_t block_cnt, uint16_t byte_cnt)
{
rtsx_push_cmd(sc, RTSX_WRITE_REG_CMD, RTSX_SD_BLOCK_CNT_L,
0xff, block_cnt & 0xff);
rtsx_push_cmd(sc, RTSX_WRITE_REG_CMD, RTSX_SD_BLOCK_CNT_H,
0xff, block_cnt >> 8);
rtsx_push_cmd(sc, RTSX_WRITE_REG_CMD, RTSX_SD_BYTE_CNT_L,
0xff, byte_cnt & 0xff);
rtsx_push_cmd(sc, RTSX_WRITE_REG_CMD, RTSX_SD_BYTE_CNT_H,
0xff, byte_cnt >> 8);
}
/*
* Run the command queue.
*/
static void
rtsx_send_cmd(struct rtsx_softc *sc)
{
if (bootverbose)
device_printf(sc->rtsx_dev, "rtsx_send_cmd()\n");
sc->rtsx_intr_status = 0;
/* Sync command DMA buffer. */
bus_dmamap_sync(sc->rtsx_cmd_dma_tag, sc->rtsx_cmd_dmamap, BUS_DMASYNC_PREREAD);
bus_dmamap_sync(sc->rtsx_cmd_dma_tag, sc->rtsx_cmd_dmamap, BUS_DMASYNC_PREWRITE);
/* Tell the chip where the command buffer is and run the commands. */
WRITE4(sc, RTSX_HCBAR, (uint32_t)sc->rtsx_cmd_buffer);
WRITE4(sc, RTSX_HCBCTLR,
((sc->rtsx_cmd_index * 4) & 0x00ffffff) | RTSX_START_CMD | RTSX_HW_AUTO_RSP);
}
/*
* Stop previous command.
*/
static void
rtsx_stop_cmd(struct rtsx_softc *sc)
{
/* Stop command transfer. */
WRITE4(sc, RTSX_HCBCTLR, RTSX_STOP_CMD);
/* Stop DMA transfer. */
WRITE4(sc, RTSX_HDBCTLR, RTSX_STOP_DMA);
rtsx_write(sc, RTSX_DMACTL, RTSX_DMA_RST, RTSX_DMA_RST);
rtsx_write(sc, RTSX_RBCTL, RTSX_RB_FLUSH, RTSX_RB_FLUSH);
}
/*
* Clear error.
*/
static void
rtsx_clear_error(struct rtsx_softc *sc)
{
/* Clear error. */
rtsx_write(sc, RTSX_CARD_STOP, RTSX_SD_STOP | RTSX_SD_CLR_ERR,
RTSX_SD_STOP | RTSX_SD_CLR_ERR);
}
/*
* Signal end of request to mmc/mmcsd.
*/
static void
rtsx_req_done(struct rtsx_softc *sc)
{
#ifdef MMCCAM
union ccb *ccb;
#endif /* MMCCAM */
struct mmc_request *req;
req = sc->rtsx_req;
if (req->cmd->error == MMC_ERR_NONE) {
if (req->cmd->opcode == MMC_READ_SINGLE_BLOCK ||
req->cmd->opcode == MMC_READ_MULTIPLE_BLOCK)
sc->rtsx_read_count++;
else if (req->cmd->opcode == MMC_WRITE_BLOCK ||
req->cmd->opcode == MMC_WRITE_MULTIPLE_BLOCK)
sc->rtsx_write_count++;
} else {
rtsx_clear_error(sc);
}
callout_stop(&sc->rtsx_timeout_callout);
sc->rtsx_req = NULL;
#ifdef MMCCAM
ccb = sc->rtsx_ccb;
sc->rtsx_ccb = NULL;
ccb->ccb_h.status = (req->cmd->error == 0 ? CAM_REQ_CMP : CAM_REQ_CMP_ERR);
xpt_done(ccb);
#else
req->done(req);
#endif /* MMCCAM */
}
/*
* Send request.
*/
static int
rtsx_send_req(struct rtsx_softc *sc, struct mmc_command *cmd)
{
uint8_t rsp_type;
uint16_t reg;
if (bootverbose)
device_printf(sc->rtsx_dev, "rtsx_send_req() - CMD%d\n", cmd->opcode);
/* Convert response type. */
rsp_type = rtsx_response_type(cmd->flags & MMC_RSP_MASK);
if (rsp_type == 0) {
device_printf(sc->rtsx_dev, "Unknown rsp_type: 0x%lx\n", (cmd->flags & MMC_RSP_MASK));
cmd->error = MMC_ERR_INVALID;
return (MMC_ERR_INVALID);
}
rtsx_init_cmd(sc, cmd);
/* Queue command to set response type. */
rtsx_push_cmd(sc, RTSX_WRITE_REG_CMD, RTSX_SD_CFG2, 0xff, rsp_type);
/* Use the ping-pong buffer (cmd buffer) for commands which do not transfer data. */
rtsx_push_cmd(sc, RTSX_WRITE_REG_CMD, RTSX_CARD_DATA_SOURCE,
0x01, RTSX_PINGPONG_BUFFER);
/* Queue commands to perform SD transfer. */
rtsx_push_cmd(sc, RTSX_WRITE_REG_CMD, RTSX_SD_TRANSFER,
0xff, RTSX_TM_CMD_RSP | RTSX_SD_TRANSFER_START);
rtsx_push_cmd(sc, RTSX_CHECK_REG_CMD, RTSX_SD_TRANSFER,
RTSX_SD_TRANSFER_END|RTSX_SD_STAT_IDLE,
RTSX_SD_TRANSFER_END|RTSX_SD_STAT_IDLE);
/* If needed queue commands to read back card status response. */
if (rsp_type == RTSX_SD_RSP_TYPE_R2) {
/* Read data from ping-pong buffer. */
for (reg = RTSX_PPBUF_BASE2; reg < RTSX_PPBUF_BASE2 + 16; reg++)
rtsx_push_cmd(sc, RTSX_READ_REG_CMD, reg, 0, 0);
} else if (rsp_type != RTSX_SD_RSP_TYPE_R0) {
/* Read data from SD_CMDx registers. */
for (reg = RTSX_SD_CMD0; reg <= RTSX_SD_CMD4; reg++)
rtsx_push_cmd(sc, RTSX_READ_REG_CMD, reg, 0, 0);
}
rtsx_push_cmd(sc, RTSX_READ_REG_CMD, RTSX_SD_STAT1, 0, 0);
/* Set transfer OK function. */
if (sc->rtsx_intr_trans_ok == NULL)
sc->rtsx_intr_trans_ok = rtsx_ret_resp;
/* Run the command queue. */
rtsx_send_cmd(sc);
return (0);
}
/*
* Return response of previous command (case cmd->data == NULL) and complete resquest.
* This Function is called by the interrupt handler via sc->rtsx_intr_trans_ok.
*/
static void
rtsx_ret_resp(struct rtsx_softc *sc)
{
struct mmc_command *cmd;
cmd = sc->rtsx_req->cmd;
rtsx_set_resp(sc, cmd);
rtsx_req_done(sc);
}
/*
* Set response of previous command.
*/
static void
rtsx_set_resp(struct rtsx_softc *sc, struct mmc_command *cmd)
{
uint8_t rsp_type;
rsp_type = rtsx_response_type(cmd->flags & MMC_RSP_MASK);
/* Sync command DMA buffer. */
bus_dmamap_sync(sc->rtsx_cmd_dma_tag, sc->rtsx_cmd_dmamap, BUS_DMASYNC_POSTREAD);
bus_dmamap_sync(sc->rtsx_cmd_dma_tag, sc->rtsx_cmd_dmamap, BUS_DMASYNC_POSTWRITE);
/* Copy card response into mmc response buffer. */
if (ISSET(cmd->flags, MMC_RSP_PRESENT)) {
uint32_t *cmd_buffer = (uint32_t *)(sc->rtsx_cmd_dmamem);
if (bootverbose) {
device_printf(sc->rtsx_dev, "cmd_buffer: 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x\n",
cmd_buffer[0], cmd_buffer[1], cmd_buffer[2], cmd_buffer[3], cmd_buffer[4]);
}
if (rsp_type == RTSX_SD_RSP_TYPE_R2) {
/* First byte is CHECK_REG_CMD return value, skip it. */
unsigned char *ptr = (unsigned char *)cmd_buffer + 1;
int i;
/*
* The controller offloads the last byte {CRC-7, end bit 1}
* of response type R2. Assign dummy CRC, 0, and end bit to this
* byte (ptr[16], goes into the LSB of resp[3] later).
*/
ptr[16] = 0x01;
/* The second byte is the status of response, skip it. */
for (i = 0; i < 4; i++)
cmd->resp[i] = be32dec(ptr + 1 + i * 4);
} else {
/*
* First byte is CHECK_REG_CMD return value, second
* one is the command op code -- we skip those.
*/
cmd->resp[0] =
((be32toh(cmd_buffer[0]) & 0x0000ffff) << 16) |
((be32toh(cmd_buffer[1]) & 0xffff0000) >> 16);
}
if (bootverbose)
device_printf(sc->rtsx_dev, "cmd->resp: 0x%08x 0x%08x 0x%08x 0x%08x\n",
cmd->resp[0], cmd->resp[1], cmd->resp[2], cmd->resp[3]);
}
}
/*
* Use the ping-pong buffer (cmd buffer) for transfer <= 512 bytes.
*/
static int
rtsx_xfer_short(struct rtsx_softc *sc, struct mmc_command *cmd)
{
int read;
if (cmd->data == NULL || cmd->data->len == 0) {
cmd->error = MMC_ERR_INVALID;
return (MMC_ERR_INVALID);
}
cmd->data->xfer_len = (cmd->data->len > RTSX_MAX_DATA_BLKLEN) ?
RTSX_MAX_DATA_BLKLEN : cmd->data->len;
read = ISSET(cmd->data->flags, MMC_DATA_READ);
if (bootverbose)
device_printf(sc->rtsx_dev, "rtsx_xfer_short() - %s xfer: %ld bytes with block size %ld\n",
read ? "Read" : "Write",
(unsigned long)cmd->data->len, (unsigned long)cmd->data->xfer_len);
if (cmd->data->len > 512) {
device_printf(sc->rtsx_dev, "rtsx_xfer_short() - length too large: %ld > 512\n",
(unsigned long)cmd->data->len);
cmd->error = MMC_ERR_INVALID;
return (MMC_ERR_INVALID);
}
if (read) {
if (sc->rtsx_discovery_mode)
rtsx_write(sc, RTSX_SD_CFG1, RTSX_CLK_DIVIDE_MASK, RTSX_CLK_DIVIDE_0);
rtsx_init_cmd(sc, cmd);
/* Queue commands to configure data transfer size. */
rtsx_set_cmd_data_len(sc, cmd->data->len / cmd->data->xfer_len, cmd->data->xfer_len);
/* From Linux: rtsx_pci_sdmmc.c sd_read_data(). */
rtsx_push_cmd(sc, RTSX_WRITE_REG_CMD, RTSX_SD_CFG2, 0xff,
RTSX_SD_CALCULATE_CRC7 | RTSX_SD_CHECK_CRC16 |
RTSX_SD_NO_WAIT_BUSY_END | RTSX_SD_CHECK_CRC7 | RTSX_SD_RSP_LEN_6);
/* Use the ping-pong buffer (cmd buffer). */
rtsx_push_cmd(sc, RTSX_WRITE_REG_CMD, RTSX_CARD_DATA_SOURCE,
0x01, RTSX_PINGPONG_BUFFER);
/* Queue commands to perform SD transfer. */
rtsx_push_cmd(sc, RTSX_WRITE_REG_CMD, RTSX_SD_TRANSFER,
0xff, RTSX_TM_NORMAL_READ | RTSX_SD_TRANSFER_START);
rtsx_push_cmd(sc, RTSX_CHECK_REG_CMD, RTSX_SD_TRANSFER,
RTSX_SD_TRANSFER_END, RTSX_SD_TRANSFER_END);
/* Set transfer OK function. */
sc->rtsx_intr_trans_ok = rtsx_ask_ppbuf_part1;
/* Run the command queue. */
rtsx_send_cmd(sc);
} else {
/* Set transfer OK function. */
sc->rtsx_intr_trans_ok = rtsx_put_ppbuf_part1;
/* Run the command queue. */
rtsx_send_req(sc, cmd);
}
return (0);
}
/*
* Use the ping-pong buffer (cmd buffer) for the transfer - first part <= 256 bytes.
* This Function is called by the interrupt handler via sc->rtsx_intr_trans_ok.
*/
static void
rtsx_ask_ppbuf_part1(struct rtsx_softc *sc)
{
struct mmc_command *cmd;
uint16_t reg = RTSX_PPBUF_BASE2;
int len;
int i;
cmd = sc->rtsx_req->cmd;
len = (cmd->data->len > RTSX_HOSTCMD_MAX) ? RTSX_HOSTCMD_MAX : cmd->data->len;
sc->rtsx_cmd_index = 0;
for (i = 0; i < len; i++) {
rtsx_push_cmd(sc, RTSX_READ_REG_CMD, reg++, 0, 0);
}
/* Set transfer OK function. */
sc->rtsx_intr_trans_ok = rtsx_get_ppbuf_part1;
/* Run the command queue. */
rtsx_send_cmd(sc);
}
/*
* Get the data from the ping-pong buffer (cmd buffer) - first part <= 256 bytes.
* This Function is called by the interrupt handler via sc->rtsx_intr_trans_ok.
*/
static void
rtsx_get_ppbuf_part1(struct rtsx_softc *sc)
{
struct mmc_command *cmd;
uint8_t *ptr;
int len;
cmd = sc->rtsx_req->cmd;
ptr = cmd->data->data;
len = (cmd->data->len > RTSX_HOSTCMD_MAX) ? RTSX_HOSTCMD_MAX : cmd->data->len;
/* Sync command DMA buffer. */
bus_dmamap_sync(sc->rtsx_cmd_dma_tag, sc->rtsx_cmd_dmamap, BUS_DMASYNC_POSTREAD);
bus_dmamap_sync(sc->rtsx_cmd_dma_tag, sc->rtsx_cmd_dmamap, BUS_DMASYNC_POSTWRITE);
memcpy(ptr, sc->rtsx_cmd_dmamem, len);
len = (cmd->data->len > RTSX_HOSTCMD_MAX) ? cmd->data->len - RTSX_HOSTCMD_MAX : 0;
/* Use the ping-pong buffer (cmd buffer) for the transfer - second part > 256 bytes. */
if (len > 0) {
uint16_t reg = RTSX_PPBUF_BASE2 + RTSX_HOSTCMD_MAX;
int i;
sc->rtsx_cmd_index = 0;
for (i = 0; i < len; i++) {
rtsx_push_cmd(sc, RTSX_READ_REG_CMD, reg++, 0, 0);
}
/* Set transfer OK function. */
sc->rtsx_intr_trans_ok = rtsx_get_ppbuf_part2;
/* Run the command queue. */
rtsx_send_cmd(sc);
} else {
if (bootverbose && cmd->opcode == ACMD_SEND_SCR) {
uint8_t *ptr = cmd->data->data;
device_printf(sc->rtsx_dev, "SCR: 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
ptr[0], ptr[1], ptr[2], ptr[3],
ptr[4], ptr[5], ptr[6], ptr[7]);
}
if (sc->rtsx_discovery_mode)
rtsx_write(sc, RTSX_SD_CFG1, RTSX_CLK_DIVIDE_MASK, RTSX_CLK_DIVIDE_128);
rtsx_req_done(sc);
}
}
/*
* Get the data from the ping-pong buffer (cmd buffer) - second part > 256 bytes.
* This Function is called by the interrupt handler via sc->rtsx_intr_trans_ok.
*/
static void
rtsx_get_ppbuf_part2(struct rtsx_softc *sc)
{
struct mmc_command *cmd;
uint8_t *ptr;
int len;
cmd = sc->rtsx_req->cmd;
ptr = cmd->data->data;
ptr += RTSX_HOSTCMD_MAX;
len = cmd->data->len - RTSX_HOSTCMD_MAX;
/* Sync command DMA buffer. */
bus_dmamap_sync(sc->rtsx_cmd_dma_tag, sc->rtsx_cmd_dmamap, BUS_DMASYNC_POSTREAD);
bus_dmamap_sync(sc->rtsx_cmd_dma_tag, sc->rtsx_cmd_dmamap, BUS_DMASYNC_POSTWRITE);
memcpy(ptr, sc->rtsx_cmd_dmamem, len);
if (sc->rtsx_discovery_mode)
rtsx_write(sc, RTSX_SD_CFG1, RTSX_CLK_DIVIDE_MASK, RTSX_CLK_DIVIDE_128);
rtsx_req_done(sc);
}
/*
* Use the ping-pong buffer (cmd buffer) for transfer - first part <= 256 bytes.
* This Function is called by the interrupt handler via sc->rtsx_intr_trans_ok.
*/
static void
rtsx_put_ppbuf_part1(struct rtsx_softc *sc)
{
struct mmc_command *cmd;
uint16_t reg = RTSX_PPBUF_BASE2;
uint8_t *ptr;
int len;
int i;
cmd = sc->rtsx_req->cmd;
ptr = cmd->data->data;
len = (cmd->data->len > RTSX_HOSTCMD_MAX) ? RTSX_HOSTCMD_MAX : cmd->data->len;
rtsx_set_resp(sc, cmd);
sc->rtsx_cmd_index = 0;
for (i = 0; i < len; i++) {
rtsx_push_cmd(sc, RTSX_WRITE_REG_CMD, reg++, 0xff, *ptr);
ptr++;
}
/* Set transfer OK function. */
if (cmd->data->len > RTSX_HOSTCMD_MAX)
sc->rtsx_intr_trans_ok = rtsx_put_ppbuf_part2;
else
sc->rtsx_intr_trans_ok = rtsx_write_ppbuf;
/* Run the command queue. */
rtsx_send_cmd(sc);
}
/*
* Use the ping-pong buffer (cmd buffer) for transfer - second part > 256 bytes.
* This Function is called by the interrupt handler via sc->rtsx_intr_trans_ok.
*/
static void
rtsx_put_ppbuf_part2(struct rtsx_softc *sc)
{
struct mmc_command *cmd;
uint16_t reg = RTSX_PPBUF_BASE2 + RTSX_HOSTCMD_MAX;
uint8_t *ptr;
int len;
int i;
cmd = sc->rtsx_req->cmd;
ptr = cmd->data->data;
ptr += RTSX_HOSTCMD_MAX;
len = cmd->data->len - RTSX_HOSTCMD_MAX;
sc->rtsx_cmd_index = 0;
for (i = 0; i < len; i++) {
rtsx_push_cmd(sc, RTSX_WRITE_REG_CMD, reg++, 0xff, *ptr);
ptr++;
}
/* Set transfer OK function. */
sc->rtsx_intr_trans_ok = rtsx_write_ppbuf;
/* Run the command queue. */
rtsx_send_cmd(sc);
}
/*
* Write the data previously given via the ping-pong buffer on the card.
* This Function is called by the interrupt handler via sc->rtsx_intr_trans_ok.
*/
static void
rtsx_write_ppbuf(struct rtsx_softc *sc)
{
struct mmc_command *cmd;
cmd = sc->rtsx_req->cmd;
sc->rtsx_cmd_index = 0;
/* Queue commands to configure data transfer size. */
rtsx_set_cmd_data_len(sc, cmd->data->len / cmd->data->xfer_len, cmd->data->xfer_len);
/* From Linux: rtsx_pci_sdmmc.c sd_write_data(). */
rtsx_push_cmd(sc, RTSX_WRITE_REG_CMD, RTSX_SD_CFG2, 0xff,
RTSX_SD_CALCULATE_CRC7 | RTSX_SD_CHECK_CRC16 |
RTSX_SD_NO_WAIT_BUSY_END | RTSX_SD_CHECK_CRC7 | RTSX_SD_RSP_LEN_0);
rtsx_push_cmd(sc, RTSX_WRITE_REG_CMD, RTSX_SD_TRANSFER, 0xff,
RTSX_TM_AUTO_WRITE3 | RTSX_SD_TRANSFER_START);
rtsx_push_cmd(sc, RTSX_CHECK_REG_CMD, RTSX_SD_TRANSFER,
RTSX_SD_TRANSFER_END, RTSX_SD_TRANSFER_END);
/* Set transfer OK function. */
sc->rtsx_intr_trans_ok = rtsx_req_done;
/* Run the command queue. */
rtsx_send_cmd(sc);
}
/*
* Use the data buffer for transfer > 512 bytes.
*/
static int
rtsx_xfer(struct rtsx_softc *sc, struct mmc_command *cmd)
{
int read = ISSET(cmd->data->flags, MMC_DATA_READ);
cmd->data->xfer_len = (cmd->data->len > RTSX_MAX_DATA_BLKLEN) ?
RTSX_MAX_DATA_BLKLEN : cmd->data->len;
if (bootverbose)
device_printf(sc->rtsx_dev, "rtsx_xfer() - %s xfer: %ld bytes with block size %ld\n",
read ? "Read" : "Write",
(unsigned long)cmd->data->len, (unsigned long)cmd->data->xfer_len);
if (cmd->data->len > RTSX_DMA_DATA_BUFSIZE) {
device_printf(sc->rtsx_dev, "rtsx_xfer() length too large: %ld > %d\n",
(unsigned long)cmd->data->len, RTSX_DMA_DATA_BUFSIZE);
cmd->error = MMC_ERR_INVALID;
return (MMC_ERR_INVALID);
}
if (!read) {
/* Set transfer OK function. */
sc->rtsx_intr_trans_ok = rtsx_xfer_begin;
/* Run the command queue. */
rtsx_send_req(sc, cmd);
} else {
rtsx_xfer_start(sc);
}
return (0);
}
/*
* Get request response and start dma data transfer (write command).
* This Function is called by the interrupt handler via sc->rtsx_intr_trans_ok.
*/
static void
rtsx_xfer_begin(struct rtsx_softc *sc)
{
struct mmc_command *cmd;
cmd = sc->rtsx_req->cmd;
if (bootverbose)
device_printf(sc->rtsx_dev, "rtsx_xfer_begin() - CMD%d\n", cmd->opcode);
rtsx_set_resp(sc, cmd);
rtsx_xfer_start(sc);
}
/*
* Start dma data transfer.
*/
static void
rtsx_xfer_start(struct rtsx_softc *sc)
{
struct mmc_command *cmd;
int read;
uint8_t cfg2;
int dma_dir;
int tmode;
cmd = sc->rtsx_req->cmd;
read = ISSET(cmd->data->flags, MMC_DATA_READ);
/* Configure DMA transfer mode parameters. */
if (cmd->opcode == MMC_READ_MULTIPLE_BLOCK)
cfg2 = RTSX_SD_CHECK_CRC16 | RTSX_SD_NO_WAIT_BUSY_END | RTSX_SD_RSP_LEN_6;
else
cfg2 = RTSX_SD_CHECK_CRC16 | RTSX_SD_NO_WAIT_BUSY_END | RTSX_SD_RSP_LEN_0;
if (read) {
dma_dir = RTSX_DMA_DIR_FROM_CARD;
/*
* Use transfer mode AUTO_READ1, which assume we not
* already send the read command and don't need to send
* CMD 12 manually after read.
*/
tmode = RTSX_TM_AUTO_READ1;
cfg2 |= RTSX_SD_CALCULATE_CRC7 | RTSX_SD_CHECK_CRC7;
rtsx_init_cmd(sc, cmd);
} else {
dma_dir = RTSX_DMA_DIR_TO_CARD;
/*
* Use transfer mode AUTO_WRITE3, wich assumes we've already
* sent the write command and gotten the response, and will
* send CMD 12 manually after writing.
*/
tmode = RTSX_TM_AUTO_WRITE3;
cfg2 |= RTSX_SD_NO_CALCULATE_CRC7 | RTSX_SD_NO_CHECK_CRC7;
sc->rtsx_cmd_index = 0;
}
/* Queue commands to configure data transfer size. */
rtsx_set_cmd_data_len(sc, cmd->data->len / cmd->data->xfer_len, cmd->data->xfer_len);
/* Configure DMA controller. */
rtsx_push_cmd(sc, RTSX_WRITE_REG_CMD, RTSX_IRQSTAT0,
RTSX_DMA_DONE_INT, RTSX_DMA_DONE_INT);
rtsx_push_cmd(sc, RTSX_WRITE_REG_CMD, RTSX_DMATC3,
0xff, cmd->data->len >> 24);
rtsx_push_cmd(sc, RTSX_WRITE_REG_CMD, RTSX_DMATC2,
0xff, cmd->data->len >> 16);
rtsx_push_cmd(sc, RTSX_WRITE_REG_CMD, RTSX_DMATC1,
0xff, cmd->data->len >> 8);
rtsx_push_cmd(sc, RTSX_WRITE_REG_CMD, RTSX_DMATC0,
0xff, cmd->data->len);
rtsx_push_cmd(sc, RTSX_WRITE_REG_CMD, RTSX_DMACTL,
RTSX_DMA_EN | RTSX_DMA_DIR | RTSX_DMA_PACK_SIZE_MASK,
RTSX_DMA_EN | dma_dir | RTSX_DMA_512);
/* Use the DMA ring buffer for commands which transfer data. */
rtsx_push_cmd(sc, RTSX_WRITE_REG_CMD, RTSX_CARD_DATA_SOURCE,
0x01, RTSX_RING_BUFFER);
/* Queue command to set response type. */
rtsx_push_cmd(sc, RTSX_WRITE_REG_CMD, RTSX_SD_CFG2, 0xff, cfg2);
/* Queue commands to perform SD transfer. */
rtsx_push_cmd(sc, RTSX_WRITE_REG_CMD, RTSX_SD_TRANSFER,
0xff, tmode | RTSX_SD_TRANSFER_START);
rtsx_push_cmd(sc, RTSX_CHECK_REG_CMD, RTSX_SD_TRANSFER,
RTSX_SD_TRANSFER_END, RTSX_SD_TRANSFER_END);
/* Run the command queue. */
rtsx_send_cmd(sc);
if (!read)
memcpy(sc->rtsx_data_dmamem, cmd->data->data, cmd->data->len);
/* Sync data DMA buffer. */
bus_dmamap_sync(sc->rtsx_data_dma_tag, sc->rtsx_data_dmamap, BUS_DMASYNC_PREREAD);
bus_dmamap_sync(sc->rtsx_data_dma_tag, sc->rtsx_data_dmamap, BUS_DMASYNC_PREWRITE);
/* Set transfer OK function. */
sc->rtsx_intr_trans_ok = rtsx_xfer_finish;
/* Tell the chip where the data buffer is and run the transfer. */
WRITE4(sc, RTSX_HDBAR, sc->rtsx_data_buffer);
WRITE4(sc, RTSX_HDBCTLR, RTSX_TRIG_DMA | (read ? RTSX_DMA_READ : 0) |
(cmd->data->len & 0x00ffffff));
}
/*
* Finish dma data transfer.
* This Function is called by the interrupt handler via sc->rtsx_intr_trans_ok.
*/
static void
rtsx_xfer_finish(struct rtsx_softc *sc)
{
struct mmc_command *cmd;
int read;
cmd = sc->rtsx_req->cmd;
if (bootverbose)
device_printf(sc->rtsx_dev, "rtsx_xfer_finish() - CMD%d\n", cmd->opcode);
read = ISSET(cmd->data->flags, MMC_DATA_READ);
/* Sync data DMA buffer. */
bus_dmamap_sync(sc->rtsx_data_dma_tag, sc->rtsx_data_dmamap, BUS_DMASYNC_POSTREAD);
bus_dmamap_sync(sc->rtsx_data_dma_tag, sc->rtsx_data_dmamap, BUS_DMASYNC_POSTWRITE);
if (read) {
memcpy(cmd->data->data, sc->rtsx_data_dmamem, cmd->data->len);
rtsx_req_done(sc);
} else {
/* Send CMD12 after AUTO_WRITE3 (see mmcsd_rw() in mmcsd.c) */
/* and complete request. */
sc->rtsx_intr_trans_ok = NULL;
rtsx_send_req(sc, sc->rtsx_req->stop);
}
}
/*
* Manage request timeout.
*/
static void
rtsx_timeout(void *arg)
{
struct rtsx_softc *sc;
sc = (struct rtsx_softc *)arg;
if (sc->rtsx_req != NULL) {
device_printf(sc->rtsx_dev, "Controller timeout for CMD%u\n",
sc->rtsx_req->cmd->opcode);
sc->rtsx_req->cmd->error = MMC_ERR_TIMEOUT;
rtsx_stop_cmd(sc);
rtsx_req_done(sc);
} else {
device_printf(sc->rtsx_dev, "Controller timeout!\n");
}
}
#ifdef MMCCAM
static void
rtsx_cam_action(struct cam_sim *sim, union ccb *ccb)
{
struct rtsx_softc *sc;
sc = cam_sim_softc(sim);
if (sc == NULL) {
ccb->ccb_h.status = CAM_SEL_TIMEOUT;
xpt_done(ccb);
return;
}
switch (ccb->ccb_h.func_code) {
case XPT_PATH_INQ:
{
struct ccb_pathinq *cpi = &ccb->cpi;
cpi->version_num = 1; /* SIM driver version number - now all drivers use 1 */
cpi->hba_inquiry = 0; /* bitmask of features supported by the controller */
cpi->target_sprt = 0; /* flags for target mode support */
cpi->hba_misc = PIM_NOBUSRESET | PIM_SEQSCAN;
cpi->hba_eng_cnt = 0; /* HBA engine count - always set to 0 */
cpi->max_target = 0; /* maximal supported target ID */
cpi->max_lun = 0; /* maximal supported LUN ID */
cpi->initiator_id = 1; /* the SCSI ID of the controller itself */
cpi->maxio = RTSX_DMA_DATA_BUFSIZE; /* maximum io size */
strncpy(cpi->sim_vid, "FreeBSD", SIM_IDLEN); /* vendor ID of the SIM */
strncpy(cpi->hba_vid, "Realtek", HBA_IDLEN); /* vendor ID of the HBA */
strncpy(cpi->dev_name, cam_sim_name(sim), DEV_IDLEN); /* device name for SIM */
cpi->unit_number = cam_sim_unit(sim); /* controller unit number */
cpi->bus_id = cam_sim_bus(sim); /* bus number */
cpi->protocol = PROTO_MMCSD;
cpi->protocol_version = SCSI_REV_0;
cpi->transport = XPORT_MMCSD;
cpi->transport_version = 1;
cpi->ccb_h.status = CAM_REQ_CMP;
break;
}
case XPT_GET_TRAN_SETTINGS:
{
struct ccb_trans_settings *cts = &ccb->cts;
if (bootverbose || sc->rtsx_debug)
device_printf(sc->rtsx_dev, "rtsx_cam_action() - got XPT_GET_TRAN_SETTINGS\n");
cts->protocol = PROTO_MMCSD;
cts->protocol_version = 1;
cts->transport = XPORT_MMCSD;
cts->transport_version = 1;
cts->xport_specific.valid = 0;
cts->proto_specific.mmc.host_ocr = sc->rtsx_host.host_ocr;
cts->proto_specific.mmc.host_f_min = sc->rtsx_host.f_min;
cts->proto_specific.mmc.host_f_max = sc->rtsx_host.f_max;
cts->proto_specific.mmc.host_caps = sc->rtsx_host.caps;
#if __FreeBSD__ > 12
cts->proto_specific.mmc.host_max_data = RTSX_DMA_DATA_BUFSIZE / MMC_SECTOR_SIZE;
#endif
memcpy(&cts->proto_specific.mmc.ios, &sc->rtsx_host.ios, sizeof(struct mmc_ios));
ccb->ccb_h.status = CAM_REQ_CMP;
break;
}
case XPT_SET_TRAN_SETTINGS:
if (bootverbose || sc->rtsx_debug)
device_printf(sc->rtsx_dev, "rtsx_cam_action() - got XPT_SET_TRAN_SETTINGS\n");
/* Apply settings and set ccb->ccb_h.status accordingly. */
rtsx_cam_set_tran_settings(sc, ccb);
break;
case XPT_RESET_BUS:
if (bootverbose || sc->rtsx_debug)
device_printf(sc->rtsx_dev, "got XPT_RESET_BUS, ACK it...\n");
ccb->ccb_h.status = CAM_REQ_CMP;
break;
case XPT_MMC_IO:
/*
* Here is the HW-dependent part of sending
* the command to the underlying h/w.
* At some point in the future an interrupt comes
* and the request will be marked as completed.
*/
ccb->ccb_h.status = CAM_REQ_INPROG;
rtsx_cam_request(sc, ccb);
return;
default:
ccb->ccb_h.status = CAM_REQ_INVALID;
break;
}
xpt_done(ccb);
return;
}
static void
rtsx_cam_poll(struct cam_sim *sim)
{
return;
}
/*
* Apply settings and set ccb->ccb_h.status accordingly.
*/
static void
rtsx_cam_set_tran_settings(struct rtsx_softc *sc, union ccb *ccb)
{
struct mmc_ios *ios;
struct mmc_ios *new_ios;
struct ccb_trans_settings_mmc *cts;
ios = &sc->rtsx_host.ios;
cts = &ccb->cts.proto_specific.mmc;
new_ios = &cts->ios;
/* Update only requested fields */
if (cts->ios_valid & MMC_CLK) {
ios->clock = new_ios->clock;
sc->rtsx_ios_clock = -1; /* To be updated by rtsx_mmcbr_update_ios(). */
if (bootverbose || sc->rtsx_debug)
device_printf(sc->rtsx_dev, "rtsx_cam_set_tran_settings() - clock: %u\n", ios->clock);
}
if (cts->ios_valid & MMC_VDD) {
ios->vdd = new_ios->vdd;
if (bootverbose || sc->rtsx_debug)
device_printf(sc->rtsx_dev, "rtsx_cam_set_tran_settings() - vdd: %d\n", ios->vdd);
}
if (cts->ios_valid & MMC_CS) {
ios->chip_select = new_ios->chip_select;
if (bootverbose || sc->rtsx_debug)
device_printf(sc->rtsx_dev, "rtsx_cam_set_tran_settings() - chip_select: %d\n", ios->chip_select);
}
if (cts->ios_valid & MMC_BW) {
ios->bus_width = new_ios->bus_width;
sc->rtsx_ios_bus_width = -1; /* To be updated by rtsx_mmcbr_update_ios(). */
if (bootverbose || sc->rtsx_debug)
device_printf(sc->rtsx_dev, "rtsx_cam_set_tran_settings() - bus width: %d\n", ios->bus_width);
}
if (cts->ios_valid & MMC_PM) {
ios->power_mode = new_ios->power_mode;
sc->rtsx_ios_power_mode = -1; /* To be updated by rtsx_mmcbr_update_ios(). */
if (bootverbose || sc->rtsx_debug)
device_printf(sc->rtsx_dev, "rtsx_cam_set_tran_settings() - power mode: %d\n", ios->power_mode);
}
if (cts->ios_valid & MMC_BT) {
ios->timing = new_ios->timing;
sc->rtsx_ios_timing = -1; /* To be updated by rtsx_mmcbr_update_ios(). */
if (bootverbose || sc->rtsx_debug)
device_printf(sc->rtsx_dev, "rtsx_cam_set_tran_settings() - timing: %d\n", ios->timing);
}
if (cts->ios_valid & MMC_BM) {
ios->bus_mode = new_ios->bus_mode;
if (bootverbose || sc->rtsx_debug)
device_printf(sc->rtsx_dev, "rtsx_cam_set_tran_settings() - bus mode: %d\n", ios->bus_mode);
}
#if __FreeBSD__ > 12
if (cts->ios_valid & MMC_VCCQ) {
ios->vccq = new_ios->vccq;
sc->rtsx_ios_vccq = -1; /* To be updated by rtsx_mmcbr_update_ios(). */
if (bootverbose || sc->rtsx_debug)
device_printf(sc->rtsx_dev, "rtsx_cam_set_tran_settings() - vccq: %d\n", ios->vccq);
}
#endif
if (rtsx_mmcbr_update_ios(sc->rtsx_dev, NULL) == 0)
ccb->ccb_h.status = CAM_REQ_CMP;
else
ccb->ccb_h.status = CAM_REQ_CMP_ERR;
return;
}
/*
* Build a request and run it.
*/
static void
rtsx_cam_request(struct rtsx_softc *sc, union ccb *ccb)
{
RTSX_LOCK(sc);
if (sc->rtsx_ccb != NULL) {
RTSX_UNLOCK(sc);
ccb->ccb_h.status = CAM_BUSY; /* i.e. CAM_REQ_CMP | CAM_REQ_CMP_ERR */
return;
}
sc->rtsx_ccb = ccb;
sc->rtsx_cam_req.cmd = &ccb->mmcio.cmd;
sc->rtsx_cam_req.stop = &ccb->mmcio.stop;
RTSX_UNLOCK(sc);
rtsx_mmcbr_request(sc->rtsx_dev, NULL, &sc->rtsx_cam_req);
return;
}
#endif /* MMCCAM */
static int
rtsx_read_ivar(device_t bus, device_t child, int which, uintptr_t *result)
{
struct rtsx_softc *sc;
sc = device_get_softc(bus);
switch (which) {
case MMCBR_IVAR_BUS_MODE: /* ivar 0 - 1 = opendrain, 2 = pushpull */
*result = sc->rtsx_host.ios.bus_mode;
break;
case MMCBR_IVAR_BUS_WIDTH: /* ivar 1 - 0 = 1b 2 = 4b, 3 = 8b */
*result = sc->rtsx_host.ios.bus_width;
break;
case MMCBR_IVAR_CHIP_SELECT: /* ivar 2 - O = dontcare, 1 = cs_high, 2 = cs_low */
*result = sc->rtsx_host.ios.chip_select;
break;
case MMCBR_IVAR_CLOCK: /* ivar 3 - clock in Hz */
*result = sc->rtsx_host.ios.clock;
break;
case MMCBR_IVAR_F_MIN: /* ivar 4 */
*result = sc->rtsx_host.f_min;
break;
case MMCBR_IVAR_F_MAX: /* ivar 5 */
*result = sc->rtsx_host.f_max;
break;
case MMCBR_IVAR_HOST_OCR: /* ivar 6 - host operation conditions register */
*result = sc->rtsx_host.host_ocr;
break;
case MMCBR_IVAR_MODE: /* ivar 7 - 0 = mode_mmc, 1 = mode_sd */
*result = sc->rtsx_host.mode;
break;
case MMCBR_IVAR_OCR: /* ivar 8 - operation conditions register */
*result = sc->rtsx_host.ocr;
break;
case MMCBR_IVAR_POWER_MODE: /* ivar 9 - 0 = off, 1 = up, 2 = on */
*result = sc->rtsx_host.ios.power_mode;
break;
case MMCBR_IVAR_VDD: /* ivar 11 - voltage power pin */
*result = sc->rtsx_host.ios.vdd;
break;
case MMCBR_IVAR_VCCQ: /* ivar 12 - signaling: 0 = 1.20V, 1 = 1.80V, 2 = 3.30V */
*result = sc->rtsx_host.ios.vccq;
break;
case MMCBR_IVAR_CAPS: /* ivar 13 */
*result = sc->rtsx_host.caps;
break;
case MMCBR_IVAR_TIMING: /* ivar 14 - 0 = normal, 1 = timing_hs, ... */
*result = sc->rtsx_host.ios.timing;
break;
case MMCBR_IVAR_MAX_DATA: /* ivar 15 */
*result = RTSX_DMA_DATA_BUFSIZE / MMC_SECTOR_SIZE;
break;
case MMCBR_IVAR_RETUNE_REQ: /* ivar 10 */
case MMCBR_IVAR_MAX_BUSY_TIMEOUT: /* ivar 16 */
default:
return (EINVAL);
}
if (bootverbose)
device_printf(bus, "Read ivar #%d, value %#x / #%d\n",
which, *(int *)result, *(int *)result);
return (0);
}
static int
rtsx_write_ivar(device_t bus, device_t child, int which, uintptr_t value)
{
struct rtsx_softc *sc;
if (bootverbose)
device_printf(bus, "Write ivar #%d, value %#x / #%d\n",
which, (int)value, (int)value);
sc = device_get_softc(bus);
switch (which) {
case MMCBR_IVAR_BUS_MODE: /* ivar 0 - 1 = opendrain, 2 = pushpull */
sc->rtsx_host.ios.bus_mode = value;
break;
case MMCBR_IVAR_BUS_WIDTH: /* ivar 1 - 0 = 1b 2 = 4b, 3 = 8b */
sc->rtsx_host.ios.bus_width = value;
sc->rtsx_ios_bus_width = -1; /* To be updated on next rtsx_mmcbr_update_ios(). */
break;
case MMCBR_IVAR_CHIP_SELECT: /* ivar 2 - O = dontcare, 1 = cs_high, 2 = cs_low */
sc->rtsx_host.ios.chip_select = value;
break;
case MMCBR_IVAR_CLOCK: /* ivar 3 - clock in Hz */
sc->rtsx_host.ios.clock = value;
sc->rtsx_ios_clock = -1; /* To be updated on next rtsx_mmcbr_update_ios(). */
break;
case MMCBR_IVAR_MODE: /* ivar 7 - 0 = mode_mmc, 1 = mode_sd */
sc->rtsx_host.mode = value;
break;
case MMCBR_IVAR_OCR: /* ivar 8 - operation conditions register */
sc->rtsx_host.ocr = value;
break;
case MMCBR_IVAR_POWER_MODE: /* ivar 9 - 0 = off, 1 = up, 2 = on */
sc->rtsx_host.ios.power_mode = value;
sc->rtsx_ios_power_mode = -1; /* To be updated on next rtsx_mmcbr_update_ios(). */
break;
case MMCBR_IVAR_VDD: /* ivar 11 - voltage power pin */
sc->rtsx_host.ios.vdd = value;
break;
case MMCBR_IVAR_VCCQ: /* ivar 12 - signaling: 0 = 1.20V, 1 = 1.80V, 2 = 3.30V */
sc->rtsx_host.ios.vccq = value;
sc->rtsx_ios_vccq = value; /* rtsx_mmcbr_switch_vccq() will be called by mmc.c (MMCCAM undef). */
break;
case MMCBR_IVAR_TIMING: /* ivar 14 - 0 = normal, 1 = timing_hs, ... */
sc->rtsx_host.ios.timing = value;
sc->rtsx_ios_timing = -1; /* To be updated on next rtsx_mmcbr_update_ios(). */
break;
/* These are read-only. */
case MMCBR_IVAR_F_MIN: /* ivar 4 */
case MMCBR_IVAR_F_MAX: /* ivar 5 */
case MMCBR_IVAR_HOST_OCR: /* ivar 6 - host operation conditions register */
case MMCBR_IVAR_RETUNE_REQ: /* ivar 10 */
case MMCBR_IVAR_CAPS: /* ivar 13 */
case MMCBR_IVAR_MAX_DATA: /* ivar 15 */
case MMCBR_IVAR_MAX_BUSY_TIMEOUT: /* ivar 16 */
default:
return (EINVAL);
}
return (0);
}
static int
rtsx_mmcbr_update_ios(device_t bus, device_t child__unused)
{
struct rtsx_softc *sc;
struct mmc_ios *ios;
int error;
sc = device_get_softc(bus);
ios = &sc->rtsx_host.ios;
if (bootverbose)
device_printf(bus, "rtsx_mmcbr_update_ios()\n");
/* if MMCBR_IVAR_BUS_WIDTH updated. */
if (sc->rtsx_ios_bus_width < 0) {
sc->rtsx_ios_bus_width = ios->bus_width;
if ((error = rtsx_set_bus_width(sc, ios->bus_width)))
return (error);
}
/* if MMCBR_IVAR_POWER_MODE updated. */
if (sc->rtsx_ios_power_mode < 0) {
sc->rtsx_ios_power_mode = ios->power_mode;
switch (ios->power_mode) {
case power_off:
if ((error = rtsx_bus_power_off(sc)))
return (error);
break;
case power_up:
if ((error = rtsx_bus_power_on(sc)))
return (error);
break;
case power_on:
if ((error = rtsx_bus_power_on(sc)))
return (error);
break;
}
}
sc->rtsx_double_clk = true;
sc->rtsx_vpclk = false;
/* if MMCBR_IVAR_TIMING updated. */
if (sc->rtsx_ios_timing < 0) {
sc->rtsx_ios_timing = ios->timing;
if ((error = rtsx_set_sd_timing(sc, ios->timing)))
return (error);
}
/* if MMCBR_IVAR_CLOCK updated, must be after rtsx_set_sd_timing() */
if (sc->rtsx_ios_clock < 0) {
sc->rtsx_ios_clock = ios->clock;
if ((error = rtsx_set_sd_clock(sc, ios->clock)))
return (error);
}
/* if MMCCAM and vccq updated */
if (sc->rtsx_ios_vccq < 0) {
sc->rtsx_ios_vccq = ios->vccq;
if ((error = rtsx_mmcbr_switch_vccq(sc->rtsx_dev, NULL)))
return (error);
}
return (0);
}
/*
* Set output stage logic power voltage.
*/
static int
rtsx_mmcbr_switch_vccq(device_t bus, device_t child __unused)
{
struct rtsx_softc *sc;
int vccq = 0;
int error;
sc = device_get_softc(bus);
switch (sc->rtsx_host.ios.vccq) {
case vccq_120:
vccq = 120;
break;
case vccq_180:
vccq = 180;
break;
case vccq_330:
vccq = 330;
break;
};
/* It seems it is always vccq_330. */
if (vccq == 330) {
switch (sc->rtsx_device_id) {
uint16_t val;
case RTSX_RTS5227:
if ((error = rtsx_write_phy(sc, 0x08, 0x4FE4)))
return (error);
if ((error = rtsx_rts5227_fill_driving(sc)))
return (error);
break;
case RTSX_RTS5209:
case RTSX_RTS5229:
RTSX_BITOP(sc, RTSX_SD30_CMD_DRIVE_SEL, RTSX_SD30_DRIVE_SEL_MASK, sc->rtsx_sd30_drive_sel_3v3);
if ((error = rtsx_write_phy(sc, 0x08, 0x4FE4)))
return (error);
break;
case RTSX_RTS522A:
if ((error = rtsx_write_phy(sc, 0x08, 0x57E4)))
return (error);
if ((error = rtsx_rts5227_fill_driving(sc)))
return (error);
break;
case RTSX_RTS525A:
RTSX_BITOP(sc, RTSX_LDO_CONFIG2, RTSX_LDO_D3318_MASK, RTSX_LDO_D3318_33V);
RTSX_BITOP(sc, RTSX_SD_PAD_CTL, RTSX_SD_IO_USING_1V8, 0);
if ((error = rtsx_rts5249_fill_driving(sc)))
return (error);
break;
case RTSX_RTS5249:
if ((error = rtsx_read_phy(sc, RTSX_PHY_TUNE, &val)))
return (error);
if ((error = rtsx_write_phy(sc, RTSX_PHY_TUNE,
(val & RTSX_PHY_TUNE_VOLTAGE_MASK) | RTSX_PHY_TUNE_VOLTAGE_3V3)))
return (error);
if ((error = rtsx_rts5249_fill_driving(sc)))
return (error);
break;
case RTSX_RTL8402:
RTSX_BITOP(sc, RTSX_SD30_CMD_DRIVE_SEL, RTSX_SD30_DRIVE_SEL_MASK, sc->rtsx_sd30_drive_sel_3v3);
RTSX_BITOP(sc, RTSX_LDO_CTL,
(RTSX_BPP_ASIC_MASK << RTSX_BPP_SHIFT_8402) | RTSX_BPP_PAD_MASK,
(RTSX_BPP_ASIC_3V3 << RTSX_BPP_SHIFT_8402) | RTSX_BPP_PAD_3V3);
break;
case RTSX_RTL8411:
case RTSX_RTL8411B:
RTSX_BITOP(sc, RTSX_SD30_CMD_DRIVE_SEL, RTSX_SD30_DRIVE_SEL_MASK, sc->rtsx_sd30_drive_sel_3v3);
RTSX_BITOP(sc, RTSX_LDO_CTL,
(RTSX_BPP_ASIC_MASK << RTSX_BPP_SHIFT_8411) | RTSX_BPP_PAD_MASK,
(RTSX_BPP_ASIC_3V3 << RTSX_BPP_SHIFT_8411) | RTSX_BPP_PAD_3V3);
break;
}
DELAY(300);
}
if (bootverbose || sc->rtsx_debug)
device_printf(sc->rtsx_dev, "rtsx_mmcbr_switch_vccq(%d)\n", vccq);
return (0);
}
/*
* Tune card if bus_timing_uhs_sdr50.
*/
static int
rtsx_mmcbr_tune(device_t bus, device_t child __unused, bool hs400)
{
struct rtsx_softc *sc;
uint32_t raw_phase_map[RTSX_RX_TUNING_CNT] = {0};
uint32_t phase_map;
uint8_t final_phase;
int i;
sc = device_get_softc(bus);
if (bootverbose || sc->rtsx_debug)
device_printf(sc->rtsx_dev, "rtsx_mmcbr_tune() - hs400 is %s\n",
(hs400) ? "true" : "false");
if (sc->rtsx_ios_timing != bus_timing_uhs_sdr50)
return (0);
sc->rtsx_tuning_mode = true;
switch (sc->rtsx_device_id) {
case RTSX_RTS5209:
case RTSX_RTS5227:
rtsx_sd_change_tx_phase(sc, 27);
break;
case RTSX_RTS522A:
rtsx_sd_change_tx_phase(sc, 20);
break;
case RTSX_RTS5229:
rtsx_sd_change_tx_phase(sc, 27);
break;
case RTSX_RTS525A:
case RTSX_RTS5249:
rtsx_sd_change_tx_phase(sc, 29);
break;
case RTSX_RTL8402:
case RTSX_RTL8411:
case RTSX_RTL8411B:
rtsx_sd_change_tx_phase(sc, 7);
break;
}
/* trying rx tuning for bus_timing_uhs_sdr50. */
for (i = 0; i < RTSX_RX_TUNING_CNT; i++) {
rtsx_sd_tuning_rx_phase(sc, &(raw_phase_map[i]));
if (raw_phase_map[i] == 0)
break;
}
phase_map = 0xffffffff;
for (i = 0; i < RTSX_RX_TUNING_CNT; i++) {
if (bootverbose || sc->rtsx_debug)
device_printf(sc->rtsx_dev, "rtsx_mmcbr_tune() - RX raw_phase_map[%d]: 0x%08x\n",
i, raw_phase_map[i]);
phase_map &= raw_phase_map[i];
}
if (bootverbose || sc->rtsx_debug)
device_printf(sc->rtsx_dev, "rtsx_mmcbr_tune() - RX phase_map: 0x%08x\n", phase_map);
if (phase_map) {
final_phase = rtsx_sd_search_final_rx_phase(sc, phase_map);
if (final_phase != 0xff) {
if (sc->rtsx_debug == 1) {
sc->rtsx_debug = 2;
rtsx_sd_change_rx_phase(sc, final_phase);
sc->rtsx_debug = 1;
} else {
rtsx_sd_change_rx_phase(sc, final_phase);
}
}
}
sc->rtsx_tuning_mode = false;
return (0);
}
static int
rtsx_mmcbr_retune(device_t bus, device_t child __unused, bool reset __unused)
{
struct rtsx_softc *sc;
sc = device_get_softc(bus);
if (bootverbose)
device_printf(sc->rtsx_dev, "rtsx_mmcbr_retune()\n");
return (0);
}
static int
rtsx_mmcbr_request(device_t bus, device_t child __unused, struct mmc_request *req)
{
struct rtsx_softc *sc;
struct mmc_command *cmd;
int error;
sc = device_get_softc(bus);
RTSX_LOCK(sc);
if (sc->rtsx_req != NULL) {
RTSX_UNLOCK(sc);
return (EBUSY);
}
sc->rtsx_req = req;
cmd = req->cmd;
cmd->error = error = MMC_ERR_NONE;
sc->rtsx_intr_status = 0;
sc->rtsx_intr_trans_ok = NULL;
sc->rtsx_intr_trans_ko = rtsx_req_done;
if (bootverbose)
device_printf(sc->rtsx_dev, "rtsx_mmcbr_request(CMD%u arg %#x, flags %#x, dlen %u, dflags %#x)\n",
cmd->opcode, cmd->arg, cmd->flags,
cmd->data != NULL ? (unsigned int)cmd->data->len : 0,
cmd->data != NULL ? cmd->data->flags : 0);
/* Check if card present. */
if (!ISSET(sc->rtsx_flags, RTSX_F_CARD_PRESENT)) {
cmd->error = error = MMC_ERR_FAILED;
goto end;
}
/* Refuse SDIO probe if the chip doesn't support SDIO. */
if (cmd->opcode == IO_SEND_OP_COND &&
!ISSET(sc->rtsx_flags, RTSX_F_SDIO_SUPPORT)) {
cmd->error = error = MMC_ERR_INVALID;
goto end;
}
/* Return MMC_ERR_TIMEOUT for SD_IO_RW_DIRECT and IO_SEND_OP_COND. */
if (cmd->opcode == SD_IO_RW_DIRECT || cmd->opcode == IO_SEND_OP_COND) {
cmd->error = error = MMC_ERR_TIMEOUT;
goto end;
}
/* Select SD card. */
RTSX_BITOP(sc, RTSX_CARD_SELECT, 0x07, RTSX_SD_MOD_SEL);
RTSX_BITOP(sc, RTSX_CARD_SHARE_MODE, RTSX_CARD_SHARE_MASK, RTSX_CARD_SHARE_48_SD);
if (cmd->data == NULL) {
DELAY(200);
error = rtsx_send_req(sc, cmd);
} else if (cmd->data->len <= 512) {
error = rtsx_xfer_short(sc, cmd);
} else {
error = rtsx_xfer(sc, cmd);
}
end:
if (error == MMC_ERR_NONE) {
callout_reset(&sc->rtsx_timeout_callout, sc->rtsx_timeout * hz, rtsx_timeout, sc);
} else {
rtsx_req_done(sc);
}
RTSX_UNLOCK(sc);
return (error);
}
static int
rtsx_mmcbr_get_ro(device_t bus, device_t child __unused)
{
struct rtsx_softc *sc;
sc = device_get_softc(bus);
if (sc->rtsx_inversion == 0)
return (sc->rtsx_read_only);
else
return !(sc->rtsx_read_only);
}
static int
rtsx_mmcbr_acquire_host(device_t bus, device_t child __unused)
{
struct rtsx_softc *sc;
if (bootverbose)
device_printf(bus, "rtsx_mmcbr_acquire_host()\n");
sc = device_get_softc(bus);
RTSX_LOCK(sc);
while (sc->rtsx_bus_busy)
msleep(&sc->rtsx_bus_busy, &sc->rtsx_mtx, 0, "rtsxah", 0);
sc->rtsx_bus_busy++;
RTSX_UNLOCK(sc);
return (0);
}
static int
rtsx_mmcbr_release_host(device_t bus, device_t child __unused)
{
struct rtsx_softc *sc;
if (bootverbose)
device_printf(bus, "rtsx_mmcbr_release_host()\n");
sc = device_get_softc(bus);
RTSX_LOCK(sc);
sc->rtsx_bus_busy--;
wakeup(&sc->rtsx_bus_busy);
RTSX_UNLOCK(sc);
return (0);
}
/*
*
* PCI Support Functions
*
*/
/*
* Compare the device ID (chip) of this device against the IDs that this driver
* supports. If there is a match, set the description and return success.
*/
static int
rtsx_probe(device_t dev)
{
struct rtsx_softc *sc;
uint16_t vendor_id;
uint16_t device_id;
int i;
int result;
vendor_id = pci_get_vendor(dev);
device_id = pci_get_device(dev);
result = ENXIO;
for (i = 0; rtsx_devices[i].vendor_id != 0; i++) {
if (rtsx_devices[i].vendor_id == vendor_id &&
rtsx_devices[i].device_id == device_id) {
device_set_desc(dev, rtsx_devices[i].desc);
sc = device_get_softc(dev);
sc->rtsx_device_id = device_id;
result = BUS_PROBE_DEFAULT;
break;
}
}
return (result);
}
/*
* Attach function is only called if the probe is successful.
*/
static int
rtsx_attach(device_t dev)
{
struct rtsx_softc *sc = device_get_softc(dev);
struct sysctl_ctx_list *ctx;
struct sysctl_oid_list *tree;
int msi_count = 1;
uint32_t sdio_cfg;
int error;
if (bootverbose)
device_printf(dev, "Attach - Vendor ID: 0x%x - Device ID: 0x%x\n",
pci_get_vendor(dev), pci_get_device(dev));
sc->rtsx_dev = dev;
sc->rtsx_req = NULL;
sc->rtsx_timeout = 10;
sc->rtsx_read_only = 0;
sc->rtsx_force_timing = 0;
sc->rtsx_debug = 0;
sc->rtsx_read_count = 0;
sc->rtsx_write_count = 0;
RTSX_LOCK_INIT(sc);
ctx = device_get_sysctl_ctx(dev);
tree = SYSCTL_CHILDREN(device_get_sysctl_tree(dev));
SYSCTL_ADD_INT(ctx, tree, OID_AUTO, "req_timeout", CTLFLAG_RW,
&sc->rtsx_timeout, 0, "Request timeout in seconds");
SYSCTL_ADD_U8(ctx, tree, OID_AUTO, "read_only", CTLFLAG_RD,
&sc->rtsx_read_only, 0, "Card is write protected");
SYSCTL_ADD_U8(ctx, tree, OID_AUTO, "inversion", CTLFLAG_RWTUN,
&sc->rtsx_inversion, 0, "Inversion of card detection and read only status");
SYSCTL_ADD_U8(ctx, tree, OID_AUTO, "force_timing", CTLFLAG_RW,
&sc->rtsx_force_timing, 0, "Force bus_timing_uhs_sdr50");
SYSCTL_ADD_U8(ctx, tree, OID_AUTO, "debug", CTLFLAG_RW,
&sc->rtsx_debug, 0, "Debugging flag");
SYSCTL_ADD_U64(ctx, tree, OID_AUTO, "read_count", CTLFLAG_RD,
&sc->rtsx_read_count, 0, "Count of read operations");
SYSCTL_ADD_U64(ctx, tree, OID_AUTO, "write_count", CTLFLAG_RD,
&sc->rtsx_write_count, 0, "Count of write operations");
/* Allocate IRQ. */
sc->rtsx_irq_res_id = 0;
if (pci_alloc_msi(dev, &msi_count) == 0)
sc->rtsx_irq_res_id = 1;
sc->rtsx_irq_res = bus_alloc_resource_any(dev, SYS_RES_IRQ, &sc->rtsx_irq_res_id,
RF_ACTIVE | (sc->rtsx_irq_res_id != 0 ? 0 : RF_SHAREABLE));
if (sc->rtsx_irq_res == NULL) {
device_printf(dev, "Can't allocate IRQ resources for %d\n", sc->rtsx_irq_res_id);
pci_release_msi(dev);
return (ENXIO);
}
callout_init_mtx(&sc->rtsx_timeout_callout, &sc->rtsx_mtx, 0);
/* Allocate memory resource. */
if (sc->rtsx_device_id == RTSX_RTS525A)
sc->rtsx_res_id = PCIR_BAR(1);
else
sc->rtsx_res_id = PCIR_BAR(0);
sc->rtsx_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &sc->rtsx_res_id, RF_ACTIVE);
if (sc->rtsx_res == NULL) {
device_printf(dev, "Can't allocate memory resource for %d\n", sc->rtsx_res_id);
goto destroy_rtsx_irq_res;
}
if (bootverbose)
device_printf(dev, "rtsx_irq_res_id: %d, rtsx_res_id: %d\n",
sc->rtsx_irq_res_id, sc->rtsx_res_id);
sc->rtsx_btag = rman_get_bustag(sc->rtsx_res);
sc->rtsx_bhandle = rman_get_bushandle(sc->rtsx_res);
/* Activate the interrupt. */
error = bus_setup_intr(dev, sc->rtsx_irq_res, INTR_TYPE_MISC | INTR_MPSAFE,
NULL, rtsx_intr, sc, &sc->rtsx_irq_cookie);
if (error) {
device_printf(dev, "Can't set up irq [0x%x]!\n", error);
goto destroy_rtsx_res;
}
pci_enable_busmaster(dev);
if (rtsx_read_cfg(sc, 0, RTSX_SDIOCFG_REG, &sdio_cfg) == 0) {
if ((sdio_cfg & RTSX_SDIOCFG_SDIO_ONLY) ||
(sdio_cfg & RTSX_SDIOCFG_HAVE_SDIO))
sc->rtsx_flags |= RTSX_F_SDIO_SUPPORT;
}
/* Allocate two DMA buffers: a command buffer and a data buffer. */
error = rtsx_dma_alloc(sc);
if (error) {
goto destroy_rtsx_irq;
}
/* From dwmmc.c. */
TIMEOUT_TASK_INIT(taskqueue_swi_giant, &sc->rtsx_card_insert_task, 0,
rtsx_card_task, sc);
TASK_INIT(&sc->rtsx_card_remove_task, 0, rtsx_card_task, sc);
#ifdef MMCCAM
sc->rtsx_ccb = NULL;
sc->rtsx_cam_status = 0;
SYSCTL_ADD_U8(ctx, tree, OID_AUTO, "cam_status", CTLFLAG_RD,
&sc->rtsx_cam_status, 0, "driver cam card present");
if ((sc->rtsx_devq = cam_simq_alloc(1)) == NULL) {
device_printf(dev, "Error during CAM queue allocation\n");
goto destroy_rtsx_irq;
}
mtx_init(&sc->rtsx_sim_mtx, "rtsxsim", NULL, MTX_DEF);
sc->rtsx_sim = cam_sim_alloc(rtsx_cam_action, rtsx_cam_poll,
"rtsx", sc, device_get_unit(dev),
&sc->rtsx_sim_mtx, 1, 1, sc->rtsx_devq);
if (sc->rtsx_sim == NULL) {
device_printf(dev, "Can't allocate CAM SIM\n");
goto destroy_rtsx_irq;
}
mtx_lock(&sc->rtsx_sim_mtx);
if (xpt_bus_register(sc->rtsx_sim, dev, 0) != 0) {
device_printf(dev, "Can't register SCSI pass-through bus\n");
mtx_unlock(&sc->rtsx_sim_mtx);
goto destroy_rtsx_irq;
}
mtx_unlock(&sc->rtsx_sim_mtx);
#endif /* MMCCAM */
/* Initialize device. */
if (rtsx_init(sc)) {
device_printf(dev, "Error during rtsx_init()\n");
goto destroy_rtsx_irq;
}
/*
* Schedule a card detection as we won't get an interrupt
* if the card is inserted when we attach
*/
DELAY(500);
if (rtsx_is_card_present(sc))
device_printf(sc->rtsx_dev, "Card present\n");
else
device_printf(sc->rtsx_dev, "Card absent\n");
rtsx_card_task(sc, 0);
if (bootverbose)
device_printf(dev, "Device attached\n");
return (0);
destroy_rtsx_irq:
bus_teardown_intr(dev, sc->rtsx_irq_res, sc->rtsx_irq_cookie);
destroy_rtsx_res:
bus_release_resource(dev, SYS_RES_MEMORY, sc->rtsx_res_id,
sc->rtsx_res);
destroy_rtsx_irq_res:
callout_drain(&sc->rtsx_timeout_callout);
bus_release_resource(dev, SYS_RES_IRQ, sc->rtsx_irq_res_id,
sc->rtsx_irq_res);
pci_release_msi(dev);
RTSX_LOCK_DESTROY(sc);
#ifdef MMCCAM
if (sc->rtsx_sim != NULL) {
mtx_lock(&sc->rtsx_sim_mtx);
xpt_bus_deregister(cam_sim_path(sc->rtsx_sim));
cam_sim_free(sc->rtsx_sim, FALSE);
mtx_unlock(&sc->rtsx_sim_mtx);
}
if (sc->rtsx_devq != NULL) {
mtx_destroy(&sc->rtsx_sim_mtx);
cam_simq_free(sc->rtsx_devq);
}
#endif /* MMCCAM */
return (ENXIO);
}
static int
rtsx_detach(device_t dev)
{
struct rtsx_softc *sc = device_get_softc(dev);
int error;
if (bootverbose)
device_printf(dev, "Detach - Vendor ID: 0x%x - Device ID: 0x%x\n",
pci_get_vendor(dev), pci_get_device(dev));
/* Disable interrupts. */
sc->rtsx_intr_enabled = 0;
WRITE4(sc, RTSX_BIER, sc->rtsx_intr_enabled);
/* Stop device. */
error = device_delete_children(sc->rtsx_dev);
sc->rtsx_mmc_dev = NULL;
if (error)
return (error);
taskqueue_drain_timeout(taskqueue_swi_giant, &sc->rtsx_card_insert_task);
taskqueue_drain(taskqueue_swi_giant, &sc->rtsx_card_remove_task);
/* Teardown the state in our softc created in our attach routine. */
rtsx_dma_free(sc);
if (sc->rtsx_res != NULL)
bus_release_resource(dev, SYS_RES_MEMORY, sc->rtsx_res_id,
sc->rtsx_res);
if (sc->rtsx_irq_cookie != NULL)
bus_teardown_intr(dev, sc->rtsx_irq_res, sc->rtsx_irq_cookie);
if (sc->rtsx_irq_res != NULL) {
callout_drain(&sc->rtsx_timeout_callout);
bus_release_resource(dev, SYS_RES_IRQ, sc->rtsx_irq_res_id,
sc->rtsx_irq_res);
pci_release_msi(dev);
}
RTSX_LOCK_DESTROY(sc);
#ifdef MMCCAM
if (sc->rtsx_sim != NULL) {
mtx_lock(&sc->rtsx_sim_mtx);
xpt_bus_deregister(cam_sim_path(sc->rtsx_sim));
cam_sim_free(sc->rtsx_sim, FALSE);
mtx_unlock(&sc->rtsx_sim_mtx);
}
if (sc->rtsx_devq != NULL) {
mtx_destroy(&sc->rtsx_sim_mtx);
cam_simq_free(sc->rtsx_devq);
}
#endif /* MMCCAM */
return (0);
}
static int
rtsx_shutdown(device_t dev)
{
if (bootverbose)
device_printf(dev, "Shutdown\n");
rtsx_detach(dev);
return (0);
}
/*
* Device suspend routine.
*/
static int
rtsx_suspend(device_t dev)
{
struct rtsx_softc *sc = device_get_softc(dev);
device_printf(dev, "Suspend\n");
#ifdef MMCCAM
if (sc->rtsx_ccb != NULL) {
device_printf(dev, "Request in progress: CMD%u, rtsr_intr_status: 0x%08x\n",
sc->rtsx_ccb->mmcio.cmd.opcode, sc->rtsx_intr_status);
}
#else
if (sc->rtsx_req != NULL) {
device_printf(dev, "Request in progress: CMD%u, rtsr_intr_status: 0x%08x\n",
sc->rtsx_req->cmd->opcode, sc->rtsx_intr_status);
}
#endif /* MMCCAM */
bus_generic_suspend(dev);
return (0);
}
/*
* Device resume routine.
*/
static int
rtsx_resume(device_t dev)
{
device_printf(dev, "Resume\n");
bus_generic_resume(dev);
return (0);
}
static device_method_t rtsx_methods[] = {
/* Device interface */
DEVMETHOD(device_probe, rtsx_probe),
DEVMETHOD(device_attach, rtsx_attach),
DEVMETHOD(device_detach, rtsx_detach),
DEVMETHOD(device_shutdown, rtsx_shutdown),
DEVMETHOD(device_suspend, rtsx_suspend),
DEVMETHOD(device_resume, rtsx_resume),
/* Bus interface */
DEVMETHOD(bus_read_ivar, rtsx_read_ivar),
DEVMETHOD(bus_write_ivar, rtsx_write_ivar),
/* MMC bridge interface */
DEVMETHOD(mmcbr_update_ios, rtsx_mmcbr_update_ios),
DEVMETHOD(mmcbr_switch_vccq, rtsx_mmcbr_switch_vccq),
DEVMETHOD(mmcbr_tune, rtsx_mmcbr_tune),
DEVMETHOD(mmcbr_retune, rtsx_mmcbr_retune),
DEVMETHOD(mmcbr_request, rtsx_mmcbr_request),
DEVMETHOD(mmcbr_get_ro, rtsx_mmcbr_get_ro),
DEVMETHOD(mmcbr_acquire_host, rtsx_mmcbr_acquire_host),
DEVMETHOD(mmcbr_release_host, rtsx_mmcbr_release_host),
DEVMETHOD_END
};
static devclass_t rtsx_devclass;
DEFINE_CLASS_0(rtsx, rtsx_driver, rtsx_methods, sizeof(struct rtsx_softc));
DRIVER_MODULE(rtsx, pci, rtsx_driver, rtsx_devclass, NULL, NULL);
#ifndef MMCCAM
MMC_DECLARE_BRIDGE(rtsx);
#endif /* MMCCAM */