freebsd-nq/sys/i386/isa/npx.c
Konstantin Belousov 85237e335d Convert between abridged (from FXSAVE) and unabridged (from FSAVE)
versions of the x87 tags.  The conversion is naive, used abridged tag
is converted to valid unabridged, without additional checks for zero
and special values.

Noted by:	bde
Sponsored by:	The FreeBSD Foundation
MFC after:	1 week
2015-07-10 09:20:13 +00:00

1513 lines
38 KiB
C

/*-
* Copyright (c) 1990 William Jolitz.
* Copyright (c) 1991 The Regents of the University of California.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 4. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* from: @(#)npx.c 7.2 (Berkeley) 5/12/91
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include "opt_cpu.h"
#include "opt_isa.h"
#include "opt_npx.h"
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/bus.h>
#include <sys/kernel.h>
#include <sys/lock.h>
#include <sys/malloc.h>
#include <sys/module.h>
#include <sys/mutex.h>
#include <sys/mutex.h>
#include <sys/proc.h>
#include <sys/smp.h>
#include <sys/sysctl.h>
#include <machine/bus.h>
#include <sys/rman.h>
#ifdef NPX_DEBUG
#include <sys/syslog.h>
#endif
#include <sys/signalvar.h>
#include <vm/uma.h>
#include <machine/asmacros.h>
#include <machine/cputypes.h>
#include <machine/frame.h>
#include <machine/md_var.h>
#include <machine/pcb.h>
#include <machine/psl.h>
#include <machine/resource.h>
#include <machine/specialreg.h>
#include <machine/segments.h>
#include <machine/ucontext.h>
#include <machine/intr_machdep.h>
#ifdef DEV_ISA
#include <isa/isavar.h>
#endif
#if !defined(CPU_DISABLE_SSE) && defined(I686_CPU)
#define CPU_ENABLE_SSE
#endif
/*
* 387 and 287 Numeric Coprocessor Extension (NPX) Driver.
*/
#if defined(__GNUCLIKE_ASM) && !defined(lint)
#define fldcw(cw) __asm __volatile("fldcw %0" : : "m" (cw))
#define fnclex() __asm __volatile("fnclex")
#define fninit() __asm __volatile("fninit")
#define fnsave(addr) __asm __volatile("fnsave %0" : "=m" (*(addr)))
#define fnstcw(addr) __asm __volatile("fnstcw %0" : "=m" (*(addr)))
#define fnstsw(addr) __asm __volatile("fnstsw %0" : "=am" (*(addr)))
#define fp_divide_by_0() __asm __volatile( \
"fldz; fld1; fdiv %st,%st(1); fnop")
#define frstor(addr) __asm __volatile("frstor %0" : : "m" (*(addr)))
#ifdef CPU_ENABLE_SSE
#define fxrstor(addr) __asm __volatile("fxrstor %0" : : "m" (*(addr)))
#define fxsave(addr) __asm __volatile("fxsave %0" : "=m" (*(addr)))
#define ldmxcsr(csr) __asm __volatile("ldmxcsr %0" : : "m" (csr))
#define stmxcsr(addr) __asm __volatile("stmxcsr %0" : : "m" (*(addr)))
static __inline void
xrstor(char *addr, uint64_t mask)
{
uint32_t low, hi;
low = mask;
hi = mask >> 32;
__asm __volatile("xrstor %0" : : "m" (*addr), "a" (low), "d" (hi));
}
static __inline void
xsave(char *addr, uint64_t mask)
{
uint32_t low, hi;
low = mask;
hi = mask >> 32;
__asm __volatile("xsave %0" : "=m" (*addr) : "a" (low), "d" (hi) :
"memory");
}
static __inline void
xsaveopt(char *addr, uint64_t mask)
{
uint32_t low, hi;
low = mask;
hi = mask >> 32;
__asm __volatile("xsaveopt %0" : "=m" (*addr) : "a" (low), "d" (hi) :
"memory");
}
#endif
#else /* !(__GNUCLIKE_ASM && !lint) */
void fldcw(u_short cw);
void fnclex(void);
void fninit(void);
void fnsave(caddr_t addr);
void fnstcw(caddr_t addr);
void fnstsw(caddr_t addr);
void fp_divide_by_0(void);
void frstor(caddr_t addr);
#ifdef CPU_ENABLE_SSE
void fxsave(caddr_t addr);
void fxrstor(caddr_t addr);
void ldmxcsr(u_int csr);
void stmxcsr(u_int *csr);
void xrstor(char *addr, uint64_t mask);
void xsave(char *addr, uint64_t mask);
void xsaveopt(char *addr, uint64_t mask);
#endif
#endif /* __GNUCLIKE_ASM && !lint */
#define start_emulating() load_cr0(rcr0() | CR0_TS)
#define stop_emulating() clts()
#ifdef CPU_ENABLE_SSE
#define GET_FPU_CW(thread) \
(cpu_fxsr ? \
(thread)->td_pcb->pcb_save->sv_xmm.sv_env.en_cw : \
(thread)->td_pcb->pcb_save->sv_87.sv_env.en_cw)
#define GET_FPU_SW(thread) \
(cpu_fxsr ? \
(thread)->td_pcb->pcb_save->sv_xmm.sv_env.en_sw : \
(thread)->td_pcb->pcb_save->sv_87.sv_env.en_sw)
#define SET_FPU_CW(savefpu, value) do { \
if (cpu_fxsr) \
(savefpu)->sv_xmm.sv_env.en_cw = (value); \
else \
(savefpu)->sv_87.sv_env.en_cw = (value); \
} while (0)
#else /* CPU_ENABLE_SSE */
#define GET_FPU_CW(thread) \
(thread->td_pcb->pcb_save->sv_87.sv_env.en_cw)
#define GET_FPU_SW(thread) \
(thread->td_pcb->pcb_save->sv_87.sv_env.en_sw)
#define SET_FPU_CW(savefpu, value) \
(savefpu)->sv_87.sv_env.en_cw = (value)
#endif /* CPU_ENABLE_SSE */
#ifdef CPU_ENABLE_SSE
CTASSERT(sizeof(union savefpu) == 512);
CTASSERT(sizeof(struct xstate_hdr) == 64);
CTASSERT(sizeof(struct savefpu_ymm) == 832);
/*
* This requirement is to make it easier for asm code to calculate
* offset of the fpu save area from the pcb address. FPU save area
* must be 64-byte aligned.
*/
CTASSERT(sizeof(struct pcb) % XSAVE_AREA_ALIGN == 0);
/*
* Ensure the copy of XCR0 saved in a core is contained in the padding
* area.
*/
CTASSERT(X86_XSTATE_XCR0_OFFSET >= offsetof(struct savexmm, sv_pad) &&
X86_XSTATE_XCR0_OFFSET + sizeof(uint64_t) <= sizeof(struct savexmm));
static void fpu_clean_state(void);
#endif
static void fpusave(union savefpu *);
static void fpurstor(union savefpu *);
int hw_float;
SYSCTL_INT(_hw, HW_FLOATINGPT, floatingpoint, CTLFLAG_RD,
&hw_float, 0, "Floating point instructions executed in hardware");
#ifdef CPU_ENABLE_SSE
int use_xsave;
uint64_t xsave_mask;
#endif
static uma_zone_t fpu_save_area_zone;
static union savefpu *npx_initialstate;
#ifdef CPU_ENABLE_SSE
struct xsave_area_elm_descr {
u_int offset;
u_int size;
} *xsave_area_desc;
static int use_xsaveopt;
#endif
static volatile u_int npx_traps_while_probing;
alias_for_inthand_t probetrap;
__asm(" \n\
.text \n\
.p2align 2,0x90 \n\
.type " __XSTRING(CNAME(probetrap)) ",@function \n\
" __XSTRING(CNAME(probetrap)) ": \n\
ss \n\
incl " __XSTRING(CNAME(npx_traps_while_probing)) " \n\
fnclex \n\
iret \n\
");
/*
* Determine if an FPU is present and how to use it.
*/
static int
npx_probe(void)
{
struct gate_descriptor save_idt_npxtrap;
u_short control, status;
/*
* Modern CPUs all have an FPU that uses the INT16 interface
* and provide a simple way to verify that, so handle the
* common case right away.
*/
if (cpu_feature & CPUID_FPU) {
hw_float = 1;
return (1);
}
save_idt_npxtrap = idt[IDT_MF];
setidt(IDT_MF, probetrap, SDT_SYS386TGT, SEL_KPL,
GSEL(GCODE_SEL, SEL_KPL));
/*
* Don't trap while we're probing.
*/
stop_emulating();
/*
* Finish resetting the coprocessor, if any. If there is an error
* pending, then we may get a bogus IRQ13, but npx_intr() will handle
* it OK. Bogus halts have never been observed, but we enabled
* IRQ13 and cleared the BUSY# latch early to handle them anyway.
*/
fninit();
/*
* Don't use fwait here because it might hang.
* Don't use fnop here because it usually hangs if there is no FPU.
*/
DELAY(1000); /* wait for any IRQ13 */
#ifdef DIAGNOSTIC
if (npx_traps_while_probing != 0)
printf("fninit caused %u bogus npx trap(s)\n",
npx_traps_while_probing);
#endif
/*
* Check for a status of mostly zero.
*/
status = 0x5a5a;
fnstsw(&status);
if ((status & 0xb8ff) == 0) {
/*
* Good, now check for a proper control word.
*/
control = 0x5a5a;
fnstcw(&control);
if ((control & 0x1f3f) == 0x033f) {
/*
* We have an npx, now divide by 0 to see if exception
* 16 works.
*/
control &= ~(1 << 2); /* enable divide by 0 trap */
fldcw(control);
#ifdef FPU_ERROR_BROKEN
/*
* FPU error signal doesn't work on some CPU
* accelerator board.
*/
hw_float = 1;
return (1);
#endif
npx_traps_while_probing = 0;
fp_divide_by_0();
if (npx_traps_while_probing != 0) {
/*
* Good, exception 16 works.
*/
hw_float = 1;
goto cleanup;
}
printf(
"FPU does not use exception 16 for error reporting\n");
goto cleanup;
}
}
/*
* Probe failed. Floating point simply won't work.
* Notify user and disable FPU/MMX/SSE instruction execution.
*/
printf("WARNING: no FPU!\n");
__asm __volatile("smsw %%ax; orb %0,%%al; lmsw %%ax" : :
"n" (CR0_EM | CR0_MP) : "ax");
cleanup:
idt[IDT_MF] = save_idt_npxtrap;
return (hw_float);
}
#ifdef CPU_ENABLE_SSE
/*
* Enable XSAVE if supported and allowed by user.
* Calculate the xsave_mask.
*/
static void
npxinit_bsp1(void)
{
u_int cp[4];
uint64_t xsave_mask_user;
if (cpu_fxsr && (cpu_feature2 & CPUID2_XSAVE) != 0) {
use_xsave = 1;
TUNABLE_INT_FETCH("hw.use_xsave", &use_xsave);
}
if (!use_xsave)
return;
cpuid_count(0xd, 0x0, cp);
xsave_mask = XFEATURE_ENABLED_X87 | XFEATURE_ENABLED_SSE;
if ((cp[0] & xsave_mask) != xsave_mask)
panic("CPU0 does not support X87 or SSE: %x", cp[0]);
xsave_mask = ((uint64_t)cp[3] << 32) | cp[0];
xsave_mask_user = xsave_mask;
TUNABLE_QUAD_FETCH("hw.xsave_mask", &xsave_mask_user);
xsave_mask_user |= XFEATURE_ENABLED_X87 | XFEATURE_ENABLED_SSE;
xsave_mask &= xsave_mask_user;
if ((xsave_mask & XFEATURE_AVX512) != XFEATURE_AVX512)
xsave_mask &= ~XFEATURE_AVX512;
if ((xsave_mask & XFEATURE_MPX) != XFEATURE_MPX)
xsave_mask &= ~XFEATURE_MPX;
cpuid_count(0xd, 0x1, cp);
if ((cp[0] & CPUID_EXTSTATE_XSAVEOPT) != 0)
use_xsaveopt = 1;
}
#endif
/*
* Calculate the fpu save area size.
*/
static void
npxinit_bsp2(void)
{
#ifdef CPU_ENABLE_SSE
u_int cp[4];
if (use_xsave) {
cpuid_count(0xd, 0x0, cp);
cpu_max_ext_state_size = cp[1];
/*
* Reload the cpu_feature2, since we enabled OSXSAVE.
*/
do_cpuid(1, cp);
cpu_feature2 = cp[2];
} else
#endif
cpu_max_ext_state_size = sizeof(union savefpu);
}
/*
* Initialize floating point unit.
*/
void
npxinit(bool bsp)
{
static union savefpu dummy;
register_t saveintr;
#ifdef CPU_ENABLE_SSE
u_int mxcsr;
#endif
u_short control;
if (bsp) {
if (!npx_probe())
return;
#ifdef CPU_ENABLE_SSE
npxinit_bsp1();
#endif
}
#ifdef CPU_ENABLE_SSE
if (use_xsave) {
load_cr4(rcr4() | CR4_XSAVE);
load_xcr(XCR0, xsave_mask);
}
#endif
/*
* XCR0 shall be set up before CPU can report the save area size.
*/
if (bsp)
npxinit_bsp2();
/*
* fninit has the same h/w bugs as fnsave. Use the detoxified
* fnsave to throw away any junk in the fpu. fpusave() initializes
* the fpu.
*
* It is too early for critical_enter() to work on AP.
*/
saveintr = intr_disable();
stop_emulating();
#ifdef CPU_ENABLE_SSE
if (cpu_fxsr)
fninit();
else
#endif
fnsave(&dummy);
control = __INITIAL_NPXCW__;
fldcw(control);
#ifdef CPU_ENABLE_SSE
if (cpu_fxsr) {
mxcsr = __INITIAL_MXCSR__;
ldmxcsr(mxcsr);
}
#endif
start_emulating();
intr_restore(saveintr);
}
/*
* On the boot CPU we generate a clean state that is used to
* initialize the floating point unit when it is first used by a
* process.
*/
static void
npxinitstate(void *arg __unused)
{
register_t saveintr;
#ifdef CPU_ENABLE_SSE
int cp[4], i, max_ext_n;
#endif
if (!hw_float)
return;
npx_initialstate = malloc(cpu_max_ext_state_size, M_DEVBUF,
M_WAITOK | M_ZERO);
saveintr = intr_disable();
stop_emulating();
fpusave(npx_initialstate);
#ifdef CPU_ENABLE_SSE
if (cpu_fxsr) {
if (npx_initialstate->sv_xmm.sv_env.en_mxcsr_mask)
cpu_mxcsr_mask =
npx_initialstate->sv_xmm.sv_env.en_mxcsr_mask;
else
cpu_mxcsr_mask = 0xFFBF;
/*
* The fninit instruction does not modify XMM
* registers. The fpusave call dumped the garbage
* contained in the registers after reset to the
* initial state saved. Clear XMM registers file
* image to make the startup program state and signal
* handler XMM register content predictable.
*/
bzero(npx_initialstate->sv_xmm.sv_fp,
sizeof(npx_initialstate->sv_xmm.sv_fp));
bzero(npx_initialstate->sv_xmm.sv_xmm,
sizeof(npx_initialstate->sv_xmm.sv_xmm));
} else
#endif
bzero(npx_initialstate->sv_87.sv_ac,
sizeof(npx_initialstate->sv_87.sv_ac));
#ifdef CPU_ENABLE_SSE
/*
* Create a table describing the layout of the CPU Extended
* Save Area.
*/
if (use_xsave) {
if (xsave_mask >> 32 != 0)
max_ext_n = fls(xsave_mask >> 32) + 32;
else
max_ext_n = fls(xsave_mask);
xsave_area_desc = malloc(max_ext_n * sizeof(struct
xsave_area_elm_descr), M_DEVBUF, M_WAITOK | M_ZERO);
/* x87 state */
xsave_area_desc[0].offset = 0;
xsave_area_desc[0].size = 160;
/* XMM */
xsave_area_desc[1].offset = 160;
xsave_area_desc[1].size = 288 - 160;
for (i = 2; i < max_ext_n; i++) {
cpuid_count(0xd, i, cp);
xsave_area_desc[i].offset = cp[1];
xsave_area_desc[i].size = cp[0];
}
}
#endif
fpu_save_area_zone = uma_zcreate("FPU_save_area",
cpu_max_ext_state_size, NULL, NULL, NULL, NULL,
XSAVE_AREA_ALIGN - 1, 0);
start_emulating();
intr_restore(saveintr);
}
SYSINIT(npxinitstate, SI_SUB_DRIVERS, SI_ORDER_ANY, npxinitstate, NULL);
/*
* Free coprocessor (if we have it).
*/
void
npxexit(td)
struct thread *td;
{
critical_enter();
if (curthread == PCPU_GET(fpcurthread)) {
stop_emulating();
fpusave(curpcb->pcb_save);
start_emulating();
PCPU_SET(fpcurthread, NULL);
}
critical_exit();
#ifdef NPX_DEBUG
if (hw_float) {
u_int masked_exceptions;
masked_exceptions = GET_FPU_CW(td) & GET_FPU_SW(td) & 0x7f;
/*
* Log exceptions that would have trapped with the old
* control word (overflow, divide by 0, and invalid operand).
*/
if (masked_exceptions & 0x0d)
log(LOG_ERR,
"pid %d (%s) exited with masked floating point exceptions 0x%02x\n",
td->td_proc->p_pid, td->td_proc->p_comm,
masked_exceptions);
}
#endif
}
int
npxformat()
{
if (!hw_float)
return (_MC_FPFMT_NODEV);
#ifdef CPU_ENABLE_SSE
if (cpu_fxsr)
return (_MC_FPFMT_XMM);
#endif
return (_MC_FPFMT_387);
}
/*
* The following mechanism is used to ensure that the FPE_... value
* that is passed as a trapcode to the signal handler of the user
* process does not have more than one bit set.
*
* Multiple bits may be set if the user process modifies the control
* word while a status word bit is already set. While this is a sign
* of bad coding, we have no choise than to narrow them down to one
* bit, since we must not send a trapcode that is not exactly one of
* the FPE_ macros.
*
* The mechanism has a static table with 127 entries. Each combination
* of the 7 FPU status word exception bits directly translates to a
* position in this table, where a single FPE_... value is stored.
* This FPE_... value stored there is considered the "most important"
* of the exception bits and will be sent as the signal code. The
* precedence of the bits is based upon Intel Document "Numerical
* Applications", Chapter "Special Computational Situations".
*
* The macro to choose one of these values does these steps: 1) Throw
* away status word bits that cannot be masked. 2) Throw away the bits
* currently masked in the control word, assuming the user isn't
* interested in them anymore. 3) Reinsert status word bit 7 (stack
* fault) if it is set, which cannot be masked but must be presered.
* 4) Use the remaining bits to point into the trapcode table.
*
* The 6 maskable bits in order of their preference, as stated in the
* above referenced Intel manual:
* 1 Invalid operation (FP_X_INV)
* 1a Stack underflow
* 1b Stack overflow
* 1c Operand of unsupported format
* 1d SNaN operand.
* 2 QNaN operand (not an exception, irrelavant here)
* 3 Any other invalid-operation not mentioned above or zero divide
* (FP_X_INV, FP_X_DZ)
* 4 Denormal operand (FP_X_DNML)
* 5 Numeric over/underflow (FP_X_OFL, FP_X_UFL)
* 6 Inexact result (FP_X_IMP)
*/
static char fpetable[128] = {
0,
FPE_FLTINV, /* 1 - INV */
FPE_FLTUND, /* 2 - DNML */
FPE_FLTINV, /* 3 - INV | DNML */
FPE_FLTDIV, /* 4 - DZ */
FPE_FLTINV, /* 5 - INV | DZ */
FPE_FLTDIV, /* 6 - DNML | DZ */
FPE_FLTINV, /* 7 - INV | DNML | DZ */
FPE_FLTOVF, /* 8 - OFL */
FPE_FLTINV, /* 9 - INV | OFL */
FPE_FLTUND, /* A - DNML | OFL */
FPE_FLTINV, /* B - INV | DNML | OFL */
FPE_FLTDIV, /* C - DZ | OFL */
FPE_FLTINV, /* D - INV | DZ | OFL */
FPE_FLTDIV, /* E - DNML | DZ | OFL */
FPE_FLTINV, /* F - INV | DNML | DZ | OFL */
FPE_FLTUND, /* 10 - UFL */
FPE_FLTINV, /* 11 - INV | UFL */
FPE_FLTUND, /* 12 - DNML | UFL */
FPE_FLTINV, /* 13 - INV | DNML | UFL */
FPE_FLTDIV, /* 14 - DZ | UFL */
FPE_FLTINV, /* 15 - INV | DZ | UFL */
FPE_FLTDIV, /* 16 - DNML | DZ | UFL */
FPE_FLTINV, /* 17 - INV | DNML | DZ | UFL */
FPE_FLTOVF, /* 18 - OFL | UFL */
FPE_FLTINV, /* 19 - INV | OFL | UFL */
FPE_FLTUND, /* 1A - DNML | OFL | UFL */
FPE_FLTINV, /* 1B - INV | DNML | OFL | UFL */
FPE_FLTDIV, /* 1C - DZ | OFL | UFL */
FPE_FLTINV, /* 1D - INV | DZ | OFL | UFL */
FPE_FLTDIV, /* 1E - DNML | DZ | OFL | UFL */
FPE_FLTINV, /* 1F - INV | DNML | DZ | OFL | UFL */
FPE_FLTRES, /* 20 - IMP */
FPE_FLTINV, /* 21 - INV | IMP */
FPE_FLTUND, /* 22 - DNML | IMP */
FPE_FLTINV, /* 23 - INV | DNML | IMP */
FPE_FLTDIV, /* 24 - DZ | IMP */
FPE_FLTINV, /* 25 - INV | DZ | IMP */
FPE_FLTDIV, /* 26 - DNML | DZ | IMP */
FPE_FLTINV, /* 27 - INV | DNML | DZ | IMP */
FPE_FLTOVF, /* 28 - OFL | IMP */
FPE_FLTINV, /* 29 - INV | OFL | IMP */
FPE_FLTUND, /* 2A - DNML | OFL | IMP */
FPE_FLTINV, /* 2B - INV | DNML | OFL | IMP */
FPE_FLTDIV, /* 2C - DZ | OFL | IMP */
FPE_FLTINV, /* 2D - INV | DZ | OFL | IMP */
FPE_FLTDIV, /* 2E - DNML | DZ | OFL | IMP */
FPE_FLTINV, /* 2F - INV | DNML | DZ | OFL | IMP */
FPE_FLTUND, /* 30 - UFL | IMP */
FPE_FLTINV, /* 31 - INV | UFL | IMP */
FPE_FLTUND, /* 32 - DNML | UFL | IMP */
FPE_FLTINV, /* 33 - INV | DNML | UFL | IMP */
FPE_FLTDIV, /* 34 - DZ | UFL | IMP */
FPE_FLTINV, /* 35 - INV | DZ | UFL | IMP */
FPE_FLTDIV, /* 36 - DNML | DZ | UFL | IMP */
FPE_FLTINV, /* 37 - INV | DNML | DZ | UFL | IMP */
FPE_FLTOVF, /* 38 - OFL | UFL | IMP */
FPE_FLTINV, /* 39 - INV | OFL | UFL | IMP */
FPE_FLTUND, /* 3A - DNML | OFL | UFL | IMP */
FPE_FLTINV, /* 3B - INV | DNML | OFL | UFL | IMP */
FPE_FLTDIV, /* 3C - DZ | OFL | UFL | IMP */
FPE_FLTINV, /* 3D - INV | DZ | OFL | UFL | IMP */
FPE_FLTDIV, /* 3E - DNML | DZ | OFL | UFL | IMP */
FPE_FLTINV, /* 3F - INV | DNML | DZ | OFL | UFL | IMP */
FPE_FLTSUB, /* 40 - STK */
FPE_FLTSUB, /* 41 - INV | STK */
FPE_FLTUND, /* 42 - DNML | STK */
FPE_FLTSUB, /* 43 - INV | DNML | STK */
FPE_FLTDIV, /* 44 - DZ | STK */
FPE_FLTSUB, /* 45 - INV | DZ | STK */
FPE_FLTDIV, /* 46 - DNML | DZ | STK */
FPE_FLTSUB, /* 47 - INV | DNML | DZ | STK */
FPE_FLTOVF, /* 48 - OFL | STK */
FPE_FLTSUB, /* 49 - INV | OFL | STK */
FPE_FLTUND, /* 4A - DNML | OFL | STK */
FPE_FLTSUB, /* 4B - INV | DNML | OFL | STK */
FPE_FLTDIV, /* 4C - DZ | OFL | STK */
FPE_FLTSUB, /* 4D - INV | DZ | OFL | STK */
FPE_FLTDIV, /* 4E - DNML | DZ | OFL | STK */
FPE_FLTSUB, /* 4F - INV | DNML | DZ | OFL | STK */
FPE_FLTUND, /* 50 - UFL | STK */
FPE_FLTSUB, /* 51 - INV | UFL | STK */
FPE_FLTUND, /* 52 - DNML | UFL | STK */
FPE_FLTSUB, /* 53 - INV | DNML | UFL | STK */
FPE_FLTDIV, /* 54 - DZ | UFL | STK */
FPE_FLTSUB, /* 55 - INV | DZ | UFL | STK */
FPE_FLTDIV, /* 56 - DNML | DZ | UFL | STK */
FPE_FLTSUB, /* 57 - INV | DNML | DZ | UFL | STK */
FPE_FLTOVF, /* 58 - OFL | UFL | STK */
FPE_FLTSUB, /* 59 - INV | OFL | UFL | STK */
FPE_FLTUND, /* 5A - DNML | OFL | UFL | STK */
FPE_FLTSUB, /* 5B - INV | DNML | OFL | UFL | STK */
FPE_FLTDIV, /* 5C - DZ | OFL | UFL | STK */
FPE_FLTSUB, /* 5D - INV | DZ | OFL | UFL | STK */
FPE_FLTDIV, /* 5E - DNML | DZ | OFL | UFL | STK */
FPE_FLTSUB, /* 5F - INV | DNML | DZ | OFL | UFL | STK */
FPE_FLTRES, /* 60 - IMP | STK */
FPE_FLTSUB, /* 61 - INV | IMP | STK */
FPE_FLTUND, /* 62 - DNML | IMP | STK */
FPE_FLTSUB, /* 63 - INV | DNML | IMP | STK */
FPE_FLTDIV, /* 64 - DZ | IMP | STK */
FPE_FLTSUB, /* 65 - INV | DZ | IMP | STK */
FPE_FLTDIV, /* 66 - DNML | DZ | IMP | STK */
FPE_FLTSUB, /* 67 - INV | DNML | DZ | IMP | STK */
FPE_FLTOVF, /* 68 - OFL | IMP | STK */
FPE_FLTSUB, /* 69 - INV | OFL | IMP | STK */
FPE_FLTUND, /* 6A - DNML | OFL | IMP | STK */
FPE_FLTSUB, /* 6B - INV | DNML | OFL | IMP | STK */
FPE_FLTDIV, /* 6C - DZ | OFL | IMP | STK */
FPE_FLTSUB, /* 6D - INV | DZ | OFL | IMP | STK */
FPE_FLTDIV, /* 6E - DNML | DZ | OFL | IMP | STK */
FPE_FLTSUB, /* 6F - INV | DNML | DZ | OFL | IMP | STK */
FPE_FLTUND, /* 70 - UFL | IMP | STK */
FPE_FLTSUB, /* 71 - INV | UFL | IMP | STK */
FPE_FLTUND, /* 72 - DNML | UFL | IMP | STK */
FPE_FLTSUB, /* 73 - INV | DNML | UFL | IMP | STK */
FPE_FLTDIV, /* 74 - DZ | UFL | IMP | STK */
FPE_FLTSUB, /* 75 - INV | DZ | UFL | IMP | STK */
FPE_FLTDIV, /* 76 - DNML | DZ | UFL | IMP | STK */
FPE_FLTSUB, /* 77 - INV | DNML | DZ | UFL | IMP | STK */
FPE_FLTOVF, /* 78 - OFL | UFL | IMP | STK */
FPE_FLTSUB, /* 79 - INV | OFL | UFL | IMP | STK */
FPE_FLTUND, /* 7A - DNML | OFL | UFL | IMP | STK */
FPE_FLTSUB, /* 7B - INV | DNML | OFL | UFL | IMP | STK */
FPE_FLTDIV, /* 7C - DZ | OFL | UFL | IMP | STK */
FPE_FLTSUB, /* 7D - INV | DZ | OFL | UFL | IMP | STK */
FPE_FLTDIV, /* 7E - DNML | DZ | OFL | UFL | IMP | STK */
FPE_FLTSUB, /* 7F - INV | DNML | DZ | OFL | UFL | IMP | STK */
};
/*
* Read the FP status and control words, then generate si_code value
* for SIGFPE. The error code chosen will be one of the
* FPE_... macros. It will be sent as the second argument to old
* BSD-style signal handlers and as "siginfo_t->si_code" (second
* argument) to SA_SIGINFO signal handlers.
*
* Some time ago, we cleared the x87 exceptions with FNCLEX there.
* Clearing exceptions was necessary mainly to avoid IRQ13 bugs. The
* usermode code which understands the FPU hardware enough to enable
* the exceptions, can also handle clearing the exception state in the
* handler. The only consequence of not clearing the exception is the
* rethrow of the SIGFPE on return from the signal handler and
* reexecution of the corresponding instruction.
*
* For XMM traps, the exceptions were never cleared.
*/
int
npxtrap_x87(void)
{
u_short control, status;
if (!hw_float) {
printf(
"npxtrap_x87: fpcurthread = %p, curthread = %p, hw_float = %d\n",
PCPU_GET(fpcurthread), curthread, hw_float);
panic("npxtrap from nowhere");
}
critical_enter();
/*
* Interrupt handling (for another interrupt) may have pushed the
* state to memory. Fetch the relevant parts of the state from
* wherever they are.
*/
if (PCPU_GET(fpcurthread) != curthread) {
control = GET_FPU_CW(curthread);
status = GET_FPU_SW(curthread);
} else {
fnstcw(&control);
fnstsw(&status);
}
critical_exit();
return (fpetable[status & ((~control & 0x3f) | 0x40)]);
}
#ifdef CPU_ENABLE_SSE
int
npxtrap_sse(void)
{
u_int mxcsr;
if (!hw_float) {
printf(
"npxtrap_sse: fpcurthread = %p, curthread = %p, hw_float = %d\n",
PCPU_GET(fpcurthread), curthread, hw_float);
panic("npxtrap from nowhere");
}
critical_enter();
if (PCPU_GET(fpcurthread) != curthread)
mxcsr = curthread->td_pcb->pcb_save->sv_xmm.sv_env.en_mxcsr;
else
stmxcsr(&mxcsr);
critical_exit();
return (fpetable[(mxcsr & (~mxcsr >> 7)) & 0x3f]);
}
#endif
/*
* Implement device not available (DNA) exception
*
* It would be better to switch FP context here (if curthread != fpcurthread)
* and not necessarily for every context switch, but it is too hard to
* access foreign pcb's.
*/
static int err_count = 0;
int
npxdna(void)
{
if (!hw_float)
return (0);
critical_enter();
if (PCPU_GET(fpcurthread) == curthread) {
printf("npxdna: fpcurthread == curthread %d times\n",
++err_count);
stop_emulating();
critical_exit();
return (1);
}
if (PCPU_GET(fpcurthread) != NULL) {
printf("npxdna: fpcurthread = %p (%d), curthread = %p (%d)\n",
PCPU_GET(fpcurthread),
PCPU_GET(fpcurthread)->td_proc->p_pid,
curthread, curthread->td_proc->p_pid);
panic("npxdna");
}
stop_emulating();
/*
* Record new context early in case frstor causes a trap.
*/
PCPU_SET(fpcurthread, curthread);
#ifdef CPU_ENABLE_SSE
if (cpu_fxsr)
fpu_clean_state();
#endif
if ((curpcb->pcb_flags & PCB_NPXINITDONE) == 0) {
/*
* This is the first time this thread has used the FPU or
* the PCB doesn't contain a clean FPU state. Explicitly
* load an initial state.
*
* We prefer to restore the state from the actual save
* area in PCB instead of directly loading from
* npx_initialstate, to ignite the XSAVEOPT
* tracking engine.
*/
bcopy(npx_initialstate, curpcb->pcb_save, cpu_max_ext_state_size);
fpurstor(curpcb->pcb_save);
if (curpcb->pcb_initial_npxcw != __INITIAL_NPXCW__)
fldcw(curpcb->pcb_initial_npxcw);
curpcb->pcb_flags |= PCB_NPXINITDONE;
if (PCB_USER_FPU(curpcb))
curpcb->pcb_flags |= PCB_NPXUSERINITDONE;
} else {
fpurstor(curpcb->pcb_save);
}
critical_exit();
return (1);
}
/*
* Wrapper for fpusave() called from context switch routines.
*
* npxsave() must be called with interrupts disabled, so that it clears
* fpcurthread atomically with saving the state. We require callers to do the
* disabling, since most callers need to disable interrupts anyway to call
* npxsave() atomically with checking fpcurthread.
*/
void
npxsave(addr)
union savefpu *addr;
{
stop_emulating();
#ifdef CPU_ENABLE_SSE
if (use_xsaveopt)
xsaveopt((char *)addr, xsave_mask);
else
#endif
fpusave(addr);
start_emulating();
PCPU_SET(fpcurthread, NULL);
}
/*
* Unconditionally save the current co-processor state across suspend and
* resume.
*/
void
npxsuspend(union savefpu *addr)
{
register_t cr0;
if (!hw_float)
return;
if (PCPU_GET(fpcurthread) == NULL) {
bcopy(npx_initialstate, addr, cpu_max_ext_state_size);
return;
}
cr0 = rcr0();
stop_emulating();
fpusave(addr);
load_cr0(cr0);
}
void
npxresume(union savefpu *addr)
{
register_t cr0;
if (!hw_float)
return;
cr0 = rcr0();
npxinit(false);
stop_emulating();
fpurstor(addr);
load_cr0(cr0);
}
void
npxdrop()
{
struct thread *td;
/*
* Discard pending exceptions in the !cpu_fxsr case so that unmasked
* ones don't cause a panic on the next frstor.
*/
#ifdef CPU_ENABLE_SSE
if (!cpu_fxsr)
#endif
fnclex();
td = PCPU_GET(fpcurthread);
KASSERT(td == curthread, ("fpudrop: fpcurthread != curthread"));
CRITICAL_ASSERT(td);
PCPU_SET(fpcurthread, NULL);
td->td_pcb->pcb_flags &= ~PCB_NPXINITDONE;
start_emulating();
}
/*
* Get the user state of the FPU into pcb->pcb_user_save without
* dropping ownership (if possible). It returns the FPU ownership
* status.
*/
int
npxgetregs(struct thread *td)
{
struct pcb *pcb;
#ifdef CPU_ENABLE_SSE
uint64_t *xstate_bv, bit;
char *sa;
int max_ext_n, i;
#endif
int owned;
if (!hw_float)
return (_MC_FPOWNED_NONE);
pcb = td->td_pcb;
if ((pcb->pcb_flags & PCB_NPXINITDONE) == 0) {
bcopy(npx_initialstate, get_pcb_user_save_pcb(pcb),
cpu_max_ext_state_size);
SET_FPU_CW(get_pcb_user_save_pcb(pcb), pcb->pcb_initial_npxcw);
npxuserinited(td);
return (_MC_FPOWNED_PCB);
}
critical_enter();
if (td == PCPU_GET(fpcurthread)) {
fpusave(get_pcb_user_save_pcb(pcb));
#ifdef CPU_ENABLE_SSE
if (!cpu_fxsr)
#endif
/*
* fnsave initializes the FPU and destroys whatever
* context it contains. Make sure the FPU owner
* starts with a clean state next time.
*/
npxdrop();
owned = _MC_FPOWNED_FPU;
} else {
owned = _MC_FPOWNED_PCB;
}
critical_exit();
#ifdef CPU_ENABLE_SSE
if (use_xsave) {
/*
* Handle partially saved state.
*/
sa = (char *)get_pcb_user_save_pcb(pcb);
xstate_bv = (uint64_t *)(sa + sizeof(union savefpu) +
offsetof(struct xstate_hdr, xstate_bv));
if (xsave_mask >> 32 != 0)
max_ext_n = fls(xsave_mask >> 32) + 32;
else
max_ext_n = fls(xsave_mask);
for (i = 0; i < max_ext_n; i++) {
bit = 1ULL << i;
if ((xsave_mask & bit) == 0 || (*xstate_bv & bit) != 0)
continue;
bcopy((char *)npx_initialstate +
xsave_area_desc[i].offset,
sa + xsave_area_desc[i].offset,
xsave_area_desc[i].size);
*xstate_bv |= bit;
}
}
#endif
return (owned);
}
void
npxuserinited(struct thread *td)
{
struct pcb *pcb;
pcb = td->td_pcb;
if (PCB_USER_FPU(pcb))
pcb->pcb_flags |= PCB_NPXINITDONE;
pcb->pcb_flags |= PCB_NPXUSERINITDONE;
}
#ifdef CPU_ENABLE_SSE
int
npxsetxstate(struct thread *td, char *xfpustate, size_t xfpustate_size)
{
struct xstate_hdr *hdr, *ehdr;
size_t len, max_len;
uint64_t bv;
/* XXXKIB should we clear all extended state in xstate_bv instead ? */
if (xfpustate == NULL)
return (0);
if (!use_xsave)
return (EOPNOTSUPP);
len = xfpustate_size;
if (len < sizeof(struct xstate_hdr))
return (EINVAL);
max_len = cpu_max_ext_state_size - sizeof(union savefpu);
if (len > max_len)
return (EINVAL);
ehdr = (struct xstate_hdr *)xfpustate;
bv = ehdr->xstate_bv;
/*
* Avoid #gp.
*/
if (bv & ~xsave_mask)
return (EINVAL);
hdr = (struct xstate_hdr *)(get_pcb_user_save_td(td) + 1);
hdr->xstate_bv = bv;
bcopy(xfpustate + sizeof(struct xstate_hdr),
(char *)(hdr + 1), len - sizeof(struct xstate_hdr));
return (0);
}
#endif
int
npxsetregs(struct thread *td, union savefpu *addr, char *xfpustate,
size_t xfpustate_size)
{
struct pcb *pcb;
#ifdef CPU_ENABLE_SSE
int error;
#endif
if (!hw_float)
return (ENXIO);
pcb = td->td_pcb;
critical_enter();
if (td == PCPU_GET(fpcurthread) && PCB_USER_FPU(pcb)) {
#ifdef CPU_ENABLE_SSE
error = npxsetxstate(td, xfpustate, xfpustate_size);
if (error != 0) {
critical_exit();
return (error);
}
if (!cpu_fxsr)
#endif
fnclex(); /* As in npxdrop(). */
bcopy(addr, get_pcb_user_save_td(td), sizeof(*addr));
fpurstor(get_pcb_user_save_td(td));
critical_exit();
pcb->pcb_flags |= PCB_NPXUSERINITDONE | PCB_NPXINITDONE;
} else {
critical_exit();
#ifdef CPU_ENABLE_SSE
error = npxsetxstate(td, xfpustate, xfpustate_size);
if (error != 0)
return (error);
#endif
bcopy(addr, get_pcb_user_save_td(td), sizeof(*addr));
npxuserinited(td);
}
return (0);
}
static void
fpusave(addr)
union savefpu *addr;
{
#ifdef CPU_ENABLE_SSE
if (use_xsave)
xsave((char *)addr, xsave_mask);
else if (cpu_fxsr)
fxsave(addr);
else
#endif
fnsave(addr);
}
#ifdef CPU_ENABLE_SSE
static void
npx_fill_fpregs_xmm1(struct savexmm *sv_xmm, struct save87 *sv_87)
{
struct env87 *penv_87;
struct envxmm *penv_xmm;
int i;
penv_87 = &sv_87->sv_env;
penv_xmm = &sv_xmm->sv_env;
/* FPU control/status */
penv_87->en_cw = penv_xmm->en_cw;
penv_87->en_sw = penv_xmm->en_sw;
penv_87->en_fip = penv_xmm->en_fip;
penv_87->en_fcs = penv_xmm->en_fcs;
penv_87->en_opcode = penv_xmm->en_opcode;
penv_87->en_foo = penv_xmm->en_foo;
penv_87->en_fos = penv_xmm->en_fos;
/* FPU registers and tags */
penv_87->en_tw = 0xffff;
for (i = 0; i < 8; ++i) {
sv_87->sv_ac[i] = sv_xmm->sv_fp[i].fp_acc;
if ((penv_xmm->en_tw & (1 << i)) != 0)
/* zero and special are set as valid */
penv_87->en_tw &= ~(3 << i);
}
}
void
npx_fill_fpregs_xmm(struct savexmm *sv_xmm, struct save87 *sv_87)
{
bzero(sv_87, sizeof(*sv_87));
npx_fill_fpregs_xmm1(sv_xmm, sv_87);
}
void
npx_set_fpregs_xmm(struct save87 *sv_87, struct savexmm *sv_xmm)
{
struct env87 *penv_87;
struct envxmm *penv_xmm;
int i;
penv_87 = &sv_87->sv_env;
penv_xmm = &sv_xmm->sv_env;
/* FPU control/status */
penv_xmm->en_cw = penv_87->en_cw;
penv_xmm->en_sw = penv_87->en_sw;
penv_xmm->en_fip = penv_87->en_fip;
penv_xmm->en_fcs = penv_87->en_fcs;
penv_xmm->en_opcode = penv_87->en_opcode;
penv_xmm->en_foo = penv_87->en_foo;
penv_xmm->en_fos = penv_87->en_fos;
/* FPU registers and tags */
penv_xmm->en_tw = 0;
for (i = 0; i < 8; ++i) {
sv_xmm->sv_fp[i].fp_acc = sv_87->sv_ac[i];
if ((penv_87->en_tw && (3 << i)) != (3 << i))
penv_xmm->en_tw |= 1 << i;
}
}
#endif /* CPU_ENABLE_SSE */
void
npx_get_fsave(void *addr)
{
struct thread *td;
union savefpu *sv;
td = curthread;
npxgetregs(td);
sv = get_pcb_user_save_td(td);
#ifdef CPU_ENABLE_SSE
if (cpu_fxsr)
npx_fill_fpregs_xmm1(&sv->sv_xmm, addr);
else
#endif
bcopy(sv, addr, sizeof(struct env87) +
sizeof(struct fpacc87[8]));
}
int
npx_set_fsave(void *addr)
{
union savefpu sv;
int error;
bzero(&sv, sizeof(sv));
#ifdef CPU_ENABLE_SSE
if (cpu_fxsr)
npx_set_fpregs_xmm(addr, &sv.sv_xmm);
else
#endif
bcopy(addr, &sv, sizeof(struct env87) +
sizeof(struct fpacc87[8]));
error = npxsetregs(curthread, &sv, NULL, 0);
return (error);
}
#ifdef CPU_ENABLE_SSE
/*
* On AuthenticAMD processors, the fxrstor instruction does not restore
* the x87's stored last instruction pointer, last data pointer, and last
* opcode values, except in the rare case in which the exception summary
* (ES) bit in the x87 status word is set to 1.
*
* In order to avoid leaking this information across processes, we clean
* these values by performing a dummy load before executing fxrstor().
*/
static void
fpu_clean_state(void)
{
static float dummy_variable = 0.0;
u_short status;
/*
* Clear the ES bit in the x87 status word if it is currently
* set, in order to avoid causing a fault in the upcoming load.
*/
fnstsw(&status);
if (status & 0x80)
fnclex();
/*
* Load the dummy variable into the x87 stack. This mangles
* the x87 stack, but we don't care since we're about to call
* fxrstor() anyway.
*/
__asm __volatile("ffree %%st(7); flds %0" : : "m" (dummy_variable));
}
#endif /* CPU_ENABLE_SSE */
static void
fpurstor(addr)
union savefpu *addr;
{
#ifdef CPU_ENABLE_SSE
if (use_xsave)
xrstor((char *)addr, xsave_mask);
else if (cpu_fxsr)
fxrstor(addr);
else
#endif
frstor(addr);
}
#ifdef DEV_ISA
/*
* This sucks up the legacy ISA support assignments from PNPBIOS/ACPI.
*/
static struct isa_pnp_id npxisa_ids[] = {
{ 0x040cd041, "Legacy ISA coprocessor support" }, /* PNP0C04 */
{ 0 }
};
static int
npxisa_probe(device_t dev)
{
int result;
if ((result = ISA_PNP_PROBE(device_get_parent(dev), dev, npxisa_ids)) <= 0) {
device_quiet(dev);
}
return(result);
}
static int
npxisa_attach(device_t dev)
{
return (0);
}
static device_method_t npxisa_methods[] = {
/* Device interface */
DEVMETHOD(device_probe, npxisa_probe),
DEVMETHOD(device_attach, npxisa_attach),
DEVMETHOD(device_detach, bus_generic_detach),
DEVMETHOD(device_shutdown, bus_generic_shutdown),
DEVMETHOD(device_suspend, bus_generic_suspend),
DEVMETHOD(device_resume, bus_generic_resume),
{ 0, 0 }
};
static driver_t npxisa_driver = {
"npxisa",
npxisa_methods,
1, /* no softc */
};
static devclass_t npxisa_devclass;
DRIVER_MODULE(npxisa, isa, npxisa_driver, npxisa_devclass, 0, 0);
#ifndef PC98
DRIVER_MODULE(npxisa, acpi, npxisa_driver, npxisa_devclass, 0, 0);
#endif
#endif /* DEV_ISA */
static MALLOC_DEFINE(M_FPUKERN_CTX, "fpukern_ctx",
"Kernel contexts for FPU state");
#define FPU_KERN_CTX_NPXINITDONE 0x01
#define FPU_KERN_CTX_DUMMY 0x02
#define FPU_KERN_CTX_INUSE 0x04
struct fpu_kern_ctx {
union savefpu *prev;
uint32_t flags;
char hwstate1[];
};
struct fpu_kern_ctx *
fpu_kern_alloc_ctx(u_int flags)
{
struct fpu_kern_ctx *res;
size_t sz;
sz = sizeof(struct fpu_kern_ctx) + XSAVE_AREA_ALIGN +
cpu_max_ext_state_size;
res = malloc(sz, M_FPUKERN_CTX, ((flags & FPU_KERN_NOWAIT) ?
M_NOWAIT : M_WAITOK) | M_ZERO);
return (res);
}
void
fpu_kern_free_ctx(struct fpu_kern_ctx *ctx)
{
KASSERT((ctx->flags & FPU_KERN_CTX_INUSE) == 0, ("free'ing inuse ctx"));
/* XXXKIB clear the memory ? */
free(ctx, M_FPUKERN_CTX);
}
static union savefpu *
fpu_kern_ctx_savefpu(struct fpu_kern_ctx *ctx)
{
vm_offset_t p;
p = (vm_offset_t)&ctx->hwstate1;
p = roundup2(p, XSAVE_AREA_ALIGN);
return ((union savefpu *)p);
}
int
fpu_kern_enter(struct thread *td, struct fpu_kern_ctx *ctx, u_int flags)
{
struct pcb *pcb;
KASSERT((ctx->flags & FPU_KERN_CTX_INUSE) == 0, ("using inuse ctx"));
if ((flags & FPU_KERN_KTHR) != 0 && is_fpu_kern_thread(0)) {
ctx->flags = FPU_KERN_CTX_DUMMY | FPU_KERN_CTX_INUSE;
return (0);
}
pcb = td->td_pcb;
KASSERT(!PCB_USER_FPU(pcb) || pcb->pcb_save ==
get_pcb_user_save_pcb(pcb), ("mangled pcb_save"));
ctx->flags = FPU_KERN_CTX_INUSE;
if ((pcb->pcb_flags & PCB_NPXINITDONE) != 0)
ctx->flags |= FPU_KERN_CTX_NPXINITDONE;
npxexit(td);
ctx->prev = pcb->pcb_save;
pcb->pcb_save = fpu_kern_ctx_savefpu(ctx);
pcb->pcb_flags |= PCB_KERNNPX;
pcb->pcb_flags &= ~PCB_NPXINITDONE;
return (0);
}
int
fpu_kern_leave(struct thread *td, struct fpu_kern_ctx *ctx)
{
struct pcb *pcb;
KASSERT((ctx->flags & FPU_KERN_CTX_INUSE) != 0,
("leaving not inuse ctx"));
ctx->flags &= ~FPU_KERN_CTX_INUSE;
if (is_fpu_kern_thread(0) && (ctx->flags & FPU_KERN_CTX_DUMMY) != 0)
return (0);
pcb = td->td_pcb;
critical_enter();
if (curthread == PCPU_GET(fpcurthread))
npxdrop();
critical_exit();
pcb->pcb_save = ctx->prev;
if (pcb->pcb_save == get_pcb_user_save_pcb(pcb)) {
if ((pcb->pcb_flags & PCB_NPXUSERINITDONE) != 0)
pcb->pcb_flags |= PCB_NPXINITDONE;
else
pcb->pcb_flags &= ~PCB_NPXINITDONE;
pcb->pcb_flags &= ~PCB_KERNNPX;
} else {
if ((ctx->flags & FPU_KERN_CTX_NPXINITDONE) != 0)
pcb->pcb_flags |= PCB_NPXINITDONE;
else
pcb->pcb_flags &= ~PCB_NPXINITDONE;
KASSERT(!PCB_USER_FPU(pcb), ("unpaired fpu_kern_leave"));
}
return (0);
}
int
fpu_kern_thread(u_int flags)
{
KASSERT((curthread->td_pflags & TDP_KTHREAD) != 0,
("Only kthread may use fpu_kern_thread"));
KASSERT(curpcb->pcb_save == get_pcb_user_save_pcb(curpcb),
("mangled pcb_save"));
KASSERT(PCB_USER_FPU(curpcb), ("recursive call"));
curpcb->pcb_flags |= PCB_KERNNPX;
return (0);
}
int
is_fpu_kern_thread(u_int flags)
{
if ((curthread->td_pflags & TDP_KTHREAD) == 0)
return (0);
return ((curpcb->pcb_flags & PCB_KERNNPX) != 0);
}
/*
* FPU save area alloc/free/init utility routines
*/
union savefpu *
fpu_save_area_alloc(void)
{
return (uma_zalloc(fpu_save_area_zone, 0));
}
void
fpu_save_area_free(union savefpu *fsa)
{
uma_zfree(fpu_save_area_zone, fsa);
}
void
fpu_save_area_reset(union savefpu *fsa)
{
bcopy(npx_initialstate, fsa, cpu_max_ext_state_size);
}