a883f5eadb
... for msleep/cv_*wait() return values, where wait_event*() is used on Linux. ERESTARTSYS is the return code expected by callers when the operation was interrupted. For instance, this is the case of radeon_cs_ioctl() (radeon_cs.c): if an error occurs, and the code isn't ERESTARTSYS (eg. EINTR), it logs an error. Note that ERESTARTSYS is defined as ERESTART, but this keeps callers' code close to Linux. Submitted by: avg@ (previous version)
1888 lines
45 KiB
C
1888 lines
45 KiB
C
/**************************************************************************
|
|
*
|
|
* Copyright (c) 2006-2009 VMware, Inc., Palo Alto, CA., USA
|
|
* All Rights Reserved.
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a
|
|
* copy of this software and associated documentation files (the
|
|
* "Software"), to deal in the Software without restriction, including
|
|
* without limitation the rights to use, copy, modify, merge, publish,
|
|
* distribute, sub license, and/or sell copies of the Software, and to
|
|
* permit persons to whom the Software is furnished to do so, subject to
|
|
* the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice (including the
|
|
* next paragraph) shall be included in all copies or substantial portions
|
|
* of the Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
|
|
* THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
|
|
* DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
|
|
* OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
|
|
* USE OR OTHER DEALINGS IN THE SOFTWARE.
|
|
*
|
|
**************************************************************************/
|
|
/*
|
|
* Authors: Thomas Hellstrom <thellstrom-at-vmware-dot-com>
|
|
*/
|
|
|
|
#include <sys/cdefs.h>
|
|
__FBSDID("$FreeBSD$");
|
|
|
|
#include <dev/drm2/drmP.h>
|
|
#include <dev/drm2/ttm/ttm_module.h>
|
|
#include <dev/drm2/ttm/ttm_bo_driver.h>
|
|
#include <dev/drm2/ttm/ttm_placement.h>
|
|
|
|
#define TTM_ASSERT_LOCKED(param)
|
|
#define TTM_DEBUG(fmt, arg...)
|
|
#define TTM_BO_HASH_ORDER 13
|
|
|
|
static int ttm_bo_setup_vm(struct ttm_buffer_object *bo);
|
|
static int ttm_bo_swapout(struct ttm_mem_shrink *shrink);
|
|
static void ttm_bo_global_kobj_release(struct ttm_bo_global *glob);
|
|
|
|
MALLOC_DEFINE(M_TTM_BO, "ttm_bo", "TTM Buffer Objects");
|
|
|
|
static inline int ttm_mem_type_from_flags(uint32_t flags, uint32_t *mem_type)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i <= TTM_PL_PRIV5; i++)
|
|
if (flags & (1 << i)) {
|
|
*mem_type = i;
|
|
return 0;
|
|
}
|
|
return -EINVAL;
|
|
}
|
|
|
|
static void ttm_mem_type_debug(struct ttm_bo_device *bdev, int mem_type)
|
|
{
|
|
struct ttm_mem_type_manager *man = &bdev->man[mem_type];
|
|
|
|
printf(" has_type: %d\n", man->has_type);
|
|
printf(" use_type: %d\n", man->use_type);
|
|
printf(" flags: 0x%08X\n", man->flags);
|
|
printf(" gpu_offset: 0x%08lX\n", man->gpu_offset);
|
|
printf(" size: %ju\n", (uintmax_t)man->size);
|
|
printf(" available_caching: 0x%08X\n", man->available_caching);
|
|
printf(" default_caching: 0x%08X\n", man->default_caching);
|
|
if (mem_type != TTM_PL_SYSTEM)
|
|
(*man->func->debug)(man, TTM_PFX);
|
|
}
|
|
|
|
static void ttm_bo_mem_space_debug(struct ttm_buffer_object *bo,
|
|
struct ttm_placement *placement)
|
|
{
|
|
int i, ret, mem_type;
|
|
|
|
printf("No space for %p (%lu pages, %luK, %luM)\n",
|
|
bo, bo->mem.num_pages, bo->mem.size >> 10,
|
|
bo->mem.size >> 20);
|
|
for (i = 0; i < placement->num_placement; i++) {
|
|
ret = ttm_mem_type_from_flags(placement->placement[i],
|
|
&mem_type);
|
|
if (ret)
|
|
return;
|
|
printf(" placement[%d]=0x%08X (%d)\n",
|
|
i, placement->placement[i], mem_type);
|
|
ttm_mem_type_debug(bo->bdev, mem_type);
|
|
}
|
|
}
|
|
|
|
#if 0
|
|
static ssize_t ttm_bo_global_show(struct ttm_bo_global *glob,
|
|
char *buffer)
|
|
{
|
|
|
|
return snprintf(buffer, PAGE_SIZE, "%lu\n",
|
|
(unsigned long) atomic_read(&glob->bo_count));
|
|
}
|
|
#endif
|
|
|
|
static inline uint32_t ttm_bo_type_flags(unsigned type)
|
|
{
|
|
return 1 << (type);
|
|
}
|
|
|
|
static void ttm_bo_release_list(struct ttm_buffer_object *bo)
|
|
{
|
|
struct ttm_bo_device *bdev = bo->bdev;
|
|
size_t acc_size = bo->acc_size;
|
|
|
|
MPASS(atomic_read(&bo->list_kref) == 0);
|
|
MPASS(atomic_read(&bo->kref) == 0);
|
|
MPASS(atomic_read(&bo->cpu_writers) == 0);
|
|
MPASS(bo->sync_obj == NULL);
|
|
MPASS(bo->mem.mm_node == NULL);
|
|
MPASS(list_empty(&bo->lru));
|
|
MPASS(list_empty(&bo->ddestroy));
|
|
|
|
if (bo->ttm)
|
|
ttm_tt_destroy(bo->ttm);
|
|
atomic_dec(&bo->glob->bo_count);
|
|
if (bo->destroy)
|
|
bo->destroy(bo);
|
|
else {
|
|
free(bo, M_TTM_BO);
|
|
}
|
|
ttm_mem_global_free(bdev->glob->mem_glob, acc_size);
|
|
}
|
|
|
|
static int
|
|
ttm_bo_wait_unreserved_locked(struct ttm_buffer_object *bo, bool interruptible)
|
|
{
|
|
const char *wmsg;
|
|
int flags, ret;
|
|
|
|
ret = 0;
|
|
if (interruptible) {
|
|
flags = PCATCH;
|
|
wmsg = "ttbowi";
|
|
} else {
|
|
flags = 0;
|
|
wmsg = "ttbowu";
|
|
}
|
|
while (ttm_bo_is_reserved(bo)) {
|
|
ret = -msleep(bo, &bo->glob->lru_lock, flags, wmsg, 0);
|
|
if (ret == -EINTR)
|
|
ret = -ERESTARTSYS;
|
|
if (ret != 0)
|
|
break;
|
|
}
|
|
return (ret);
|
|
}
|
|
|
|
void ttm_bo_add_to_lru(struct ttm_buffer_object *bo)
|
|
{
|
|
struct ttm_bo_device *bdev = bo->bdev;
|
|
struct ttm_mem_type_manager *man;
|
|
|
|
MPASS(ttm_bo_is_reserved(bo));
|
|
|
|
if (!(bo->mem.placement & TTM_PL_FLAG_NO_EVICT)) {
|
|
|
|
MPASS(list_empty(&bo->lru));
|
|
|
|
man = &bdev->man[bo->mem.mem_type];
|
|
list_add_tail(&bo->lru, &man->lru);
|
|
refcount_acquire(&bo->list_kref);
|
|
|
|
if (bo->ttm != NULL) {
|
|
list_add_tail(&bo->swap, &bo->glob->swap_lru);
|
|
refcount_acquire(&bo->list_kref);
|
|
}
|
|
}
|
|
}
|
|
|
|
int ttm_bo_del_from_lru(struct ttm_buffer_object *bo)
|
|
{
|
|
int put_count = 0;
|
|
|
|
if (!list_empty(&bo->swap)) {
|
|
list_del_init(&bo->swap);
|
|
++put_count;
|
|
}
|
|
if (!list_empty(&bo->lru)) {
|
|
list_del_init(&bo->lru);
|
|
++put_count;
|
|
}
|
|
|
|
/*
|
|
* TODO: Add a driver hook to delete from
|
|
* driver-specific LRU's here.
|
|
*/
|
|
|
|
return put_count;
|
|
}
|
|
|
|
int ttm_bo_reserve_nolru(struct ttm_buffer_object *bo,
|
|
bool interruptible,
|
|
bool no_wait, bool use_sequence, uint32_t sequence)
|
|
{
|
|
int ret;
|
|
|
|
while (unlikely(atomic_xchg(&bo->reserved, 1) != 0)) {
|
|
/**
|
|
* Deadlock avoidance for multi-bo reserving.
|
|
*/
|
|
if (use_sequence && bo->seq_valid) {
|
|
/**
|
|
* We've already reserved this one.
|
|
*/
|
|
if (unlikely(sequence == bo->val_seq))
|
|
return -EDEADLK;
|
|
/**
|
|
* Already reserved by a thread that will not back
|
|
* off for us. We need to back off.
|
|
*/
|
|
if (unlikely(sequence - bo->val_seq < (1U << 31)))
|
|
return -EAGAIN;
|
|
}
|
|
|
|
if (no_wait)
|
|
return -EBUSY;
|
|
|
|
ret = ttm_bo_wait_unreserved_locked(bo, interruptible);
|
|
|
|
if (unlikely(ret))
|
|
return ret;
|
|
}
|
|
|
|
if (use_sequence) {
|
|
bool wake_up = false;
|
|
/**
|
|
* Wake up waiters that may need to recheck for deadlock,
|
|
* if we decreased the sequence number.
|
|
*/
|
|
if (unlikely((bo->val_seq - sequence < (1U << 31))
|
|
|| !bo->seq_valid))
|
|
wake_up = true;
|
|
|
|
/*
|
|
* In the worst case with memory ordering these values can be
|
|
* seen in the wrong order. However since we call wake_up_all
|
|
* in that case, this will hopefully not pose a problem,
|
|
* and the worst case would only cause someone to accidentally
|
|
* hit -EAGAIN in ttm_bo_reserve when they see old value of
|
|
* val_seq. However this would only happen if seq_valid was
|
|
* written before val_seq was, and just means some slightly
|
|
* increased cpu usage
|
|
*/
|
|
bo->val_seq = sequence;
|
|
bo->seq_valid = true;
|
|
if (wake_up)
|
|
wakeup(bo);
|
|
} else {
|
|
bo->seq_valid = false;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
void ttm_bo_list_ref_sub(struct ttm_buffer_object *bo, int count,
|
|
bool never_free)
|
|
{
|
|
u_int old;
|
|
|
|
old = atomic_fetchadd_int(&bo->list_kref, -count);
|
|
if (old <= count) {
|
|
if (never_free)
|
|
panic("ttm_bo_ref_buf");
|
|
ttm_bo_release_list(bo);
|
|
}
|
|
}
|
|
|
|
int ttm_bo_reserve(struct ttm_buffer_object *bo,
|
|
bool interruptible,
|
|
bool no_wait, bool use_sequence, uint32_t sequence)
|
|
{
|
|
struct ttm_bo_global *glob = bo->glob;
|
|
int put_count = 0;
|
|
int ret;
|
|
|
|
mtx_lock(&bo->glob->lru_lock);
|
|
ret = ttm_bo_reserve_nolru(bo, interruptible, no_wait, use_sequence,
|
|
sequence);
|
|
if (likely(ret == 0)) {
|
|
put_count = ttm_bo_del_from_lru(bo);
|
|
mtx_unlock(&glob->lru_lock);
|
|
ttm_bo_list_ref_sub(bo, put_count, true);
|
|
} else
|
|
mtx_unlock(&bo->glob->lru_lock);
|
|
|
|
return ret;
|
|
}
|
|
|
|
int ttm_bo_reserve_slowpath_nolru(struct ttm_buffer_object *bo,
|
|
bool interruptible, uint32_t sequence)
|
|
{
|
|
bool wake_up = false;
|
|
int ret;
|
|
|
|
while (unlikely(atomic_xchg(&bo->reserved, 1) != 0)) {
|
|
if (bo->seq_valid && sequence == bo->val_seq) {
|
|
DRM_ERROR(
|
|
"%s: bo->seq_valid && sequence == bo->val_seq",
|
|
__func__);
|
|
}
|
|
|
|
ret = ttm_bo_wait_unreserved_locked(bo, interruptible);
|
|
|
|
if (unlikely(ret))
|
|
return ret;
|
|
}
|
|
|
|
if ((bo->val_seq - sequence < (1U << 31)) || !bo->seq_valid)
|
|
wake_up = true;
|
|
|
|
/**
|
|
* Wake up waiters that may need to recheck for deadlock,
|
|
* if we decreased the sequence number.
|
|
*/
|
|
bo->val_seq = sequence;
|
|
bo->seq_valid = true;
|
|
if (wake_up)
|
|
wakeup(bo);
|
|
|
|
return 0;
|
|
}
|
|
|
|
int ttm_bo_reserve_slowpath(struct ttm_buffer_object *bo,
|
|
bool interruptible, uint32_t sequence)
|
|
{
|
|
struct ttm_bo_global *glob = bo->glob;
|
|
int put_count, ret;
|
|
|
|
mtx_lock(&glob->lru_lock);
|
|
ret = ttm_bo_reserve_slowpath_nolru(bo, interruptible, sequence);
|
|
if (likely(!ret)) {
|
|
put_count = ttm_bo_del_from_lru(bo);
|
|
mtx_unlock(&glob->lru_lock);
|
|
ttm_bo_list_ref_sub(bo, put_count, true);
|
|
} else
|
|
mtx_unlock(&glob->lru_lock);
|
|
return ret;
|
|
}
|
|
|
|
void ttm_bo_unreserve_locked(struct ttm_buffer_object *bo)
|
|
{
|
|
ttm_bo_add_to_lru(bo);
|
|
atomic_set(&bo->reserved, 0);
|
|
wakeup(bo);
|
|
}
|
|
|
|
void ttm_bo_unreserve(struct ttm_buffer_object *bo)
|
|
{
|
|
struct ttm_bo_global *glob = bo->glob;
|
|
|
|
mtx_lock(&glob->lru_lock);
|
|
ttm_bo_unreserve_locked(bo);
|
|
mtx_unlock(&glob->lru_lock);
|
|
}
|
|
|
|
/*
|
|
* Call bo->mutex locked.
|
|
*/
|
|
static int ttm_bo_add_ttm(struct ttm_buffer_object *bo, bool zero_alloc)
|
|
{
|
|
struct ttm_bo_device *bdev = bo->bdev;
|
|
struct ttm_bo_global *glob = bo->glob;
|
|
int ret = 0;
|
|
uint32_t page_flags = 0;
|
|
|
|
TTM_ASSERT_LOCKED(&bo->mutex);
|
|
bo->ttm = NULL;
|
|
|
|
if (bdev->need_dma32)
|
|
page_flags |= TTM_PAGE_FLAG_DMA32;
|
|
|
|
switch (bo->type) {
|
|
case ttm_bo_type_device:
|
|
if (zero_alloc)
|
|
page_flags |= TTM_PAGE_FLAG_ZERO_ALLOC;
|
|
case ttm_bo_type_kernel:
|
|
bo->ttm = bdev->driver->ttm_tt_create(bdev, bo->num_pages << PAGE_SHIFT,
|
|
page_flags, glob->dummy_read_page);
|
|
if (unlikely(bo->ttm == NULL))
|
|
ret = -ENOMEM;
|
|
break;
|
|
case ttm_bo_type_sg:
|
|
bo->ttm = bdev->driver->ttm_tt_create(bdev, bo->num_pages << PAGE_SHIFT,
|
|
page_flags | TTM_PAGE_FLAG_SG,
|
|
glob->dummy_read_page);
|
|
if (unlikely(bo->ttm == NULL)) {
|
|
ret = -ENOMEM;
|
|
break;
|
|
}
|
|
bo->ttm->sg = bo->sg;
|
|
break;
|
|
default:
|
|
printf("[TTM] Illegal buffer object type\n");
|
|
ret = -EINVAL;
|
|
break;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int ttm_bo_handle_move_mem(struct ttm_buffer_object *bo,
|
|
struct ttm_mem_reg *mem,
|
|
bool evict, bool interruptible,
|
|
bool no_wait_gpu)
|
|
{
|
|
struct ttm_bo_device *bdev = bo->bdev;
|
|
bool old_is_pci = ttm_mem_reg_is_pci(bdev, &bo->mem);
|
|
bool new_is_pci = ttm_mem_reg_is_pci(bdev, mem);
|
|
struct ttm_mem_type_manager *old_man = &bdev->man[bo->mem.mem_type];
|
|
struct ttm_mem_type_manager *new_man = &bdev->man[mem->mem_type];
|
|
int ret = 0;
|
|
|
|
if (old_is_pci || new_is_pci ||
|
|
((mem->placement & bo->mem.placement & TTM_PL_MASK_CACHING) == 0)) {
|
|
ret = ttm_mem_io_lock(old_man, true);
|
|
if (unlikely(ret != 0))
|
|
goto out_err;
|
|
ttm_bo_unmap_virtual_locked(bo);
|
|
ttm_mem_io_unlock(old_man);
|
|
}
|
|
|
|
/*
|
|
* Create and bind a ttm if required.
|
|
*/
|
|
|
|
if (!(new_man->flags & TTM_MEMTYPE_FLAG_FIXED)) {
|
|
if (bo->ttm == NULL) {
|
|
bool zero = !(old_man->flags & TTM_MEMTYPE_FLAG_FIXED);
|
|
ret = ttm_bo_add_ttm(bo, zero);
|
|
if (ret)
|
|
goto out_err;
|
|
}
|
|
|
|
ret = ttm_tt_set_placement_caching(bo->ttm, mem->placement);
|
|
if (ret)
|
|
goto out_err;
|
|
|
|
if (mem->mem_type != TTM_PL_SYSTEM) {
|
|
ret = ttm_tt_bind(bo->ttm, mem);
|
|
if (ret)
|
|
goto out_err;
|
|
}
|
|
|
|
if (bo->mem.mem_type == TTM_PL_SYSTEM) {
|
|
if (bdev->driver->move_notify)
|
|
bdev->driver->move_notify(bo, mem);
|
|
bo->mem = *mem;
|
|
mem->mm_node = NULL;
|
|
goto moved;
|
|
}
|
|
}
|
|
|
|
if (bdev->driver->move_notify)
|
|
bdev->driver->move_notify(bo, mem);
|
|
|
|
if (!(old_man->flags & TTM_MEMTYPE_FLAG_FIXED) &&
|
|
!(new_man->flags & TTM_MEMTYPE_FLAG_FIXED))
|
|
ret = ttm_bo_move_ttm(bo, evict, no_wait_gpu, mem);
|
|
else if (bdev->driver->move)
|
|
ret = bdev->driver->move(bo, evict, interruptible,
|
|
no_wait_gpu, mem);
|
|
else
|
|
ret = ttm_bo_move_memcpy(bo, evict, no_wait_gpu, mem);
|
|
|
|
if (ret) {
|
|
if (bdev->driver->move_notify) {
|
|
struct ttm_mem_reg tmp_mem = *mem;
|
|
*mem = bo->mem;
|
|
bo->mem = tmp_mem;
|
|
bdev->driver->move_notify(bo, mem);
|
|
bo->mem = *mem;
|
|
*mem = tmp_mem;
|
|
}
|
|
|
|
goto out_err;
|
|
}
|
|
|
|
moved:
|
|
if (bo->evicted) {
|
|
ret = bdev->driver->invalidate_caches(bdev, bo->mem.placement);
|
|
if (ret)
|
|
printf("[TTM] Can not flush read caches\n");
|
|
bo->evicted = false;
|
|
}
|
|
|
|
if (bo->mem.mm_node) {
|
|
bo->offset = (bo->mem.start << PAGE_SHIFT) +
|
|
bdev->man[bo->mem.mem_type].gpu_offset;
|
|
bo->cur_placement = bo->mem.placement;
|
|
} else
|
|
bo->offset = 0;
|
|
|
|
return 0;
|
|
|
|
out_err:
|
|
new_man = &bdev->man[bo->mem.mem_type];
|
|
if ((new_man->flags & TTM_MEMTYPE_FLAG_FIXED) && bo->ttm) {
|
|
ttm_tt_unbind(bo->ttm);
|
|
ttm_tt_destroy(bo->ttm);
|
|
bo->ttm = NULL;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* Call bo::reserved.
|
|
* Will release GPU memory type usage on destruction.
|
|
* This is the place to put in driver specific hooks to release
|
|
* driver private resources.
|
|
* Will release the bo::reserved lock.
|
|
*/
|
|
|
|
static void ttm_bo_cleanup_memtype_use(struct ttm_buffer_object *bo)
|
|
{
|
|
if (bo->bdev->driver->move_notify)
|
|
bo->bdev->driver->move_notify(bo, NULL);
|
|
|
|
if (bo->ttm) {
|
|
ttm_tt_unbind(bo->ttm);
|
|
ttm_tt_destroy(bo->ttm);
|
|
bo->ttm = NULL;
|
|
}
|
|
ttm_bo_mem_put(bo, &bo->mem);
|
|
|
|
atomic_set(&bo->reserved, 0);
|
|
wakeup(&bo);
|
|
|
|
/*
|
|
* Since the final reference to this bo may not be dropped by
|
|
* the current task we have to put a memory barrier here to make
|
|
* sure the changes done in this function are always visible.
|
|
*
|
|
* This function only needs protection against the final kref_put.
|
|
*/
|
|
mb();
|
|
}
|
|
|
|
static void ttm_bo_cleanup_refs_or_queue(struct ttm_buffer_object *bo)
|
|
{
|
|
struct ttm_bo_device *bdev = bo->bdev;
|
|
struct ttm_bo_global *glob = bo->glob;
|
|
struct ttm_bo_driver *driver = bdev->driver;
|
|
void *sync_obj = NULL;
|
|
int put_count;
|
|
int ret;
|
|
|
|
mtx_lock(&glob->lru_lock);
|
|
ret = ttm_bo_reserve_nolru(bo, false, true, false, 0);
|
|
|
|
mtx_lock(&bdev->fence_lock);
|
|
(void) ttm_bo_wait(bo, false, false, true);
|
|
if (!ret && !bo->sync_obj) {
|
|
mtx_unlock(&bdev->fence_lock);
|
|
put_count = ttm_bo_del_from_lru(bo);
|
|
|
|
mtx_unlock(&glob->lru_lock);
|
|
ttm_bo_cleanup_memtype_use(bo);
|
|
|
|
ttm_bo_list_ref_sub(bo, put_count, true);
|
|
|
|
return;
|
|
}
|
|
if (bo->sync_obj)
|
|
sync_obj = driver->sync_obj_ref(bo->sync_obj);
|
|
mtx_unlock(&bdev->fence_lock);
|
|
|
|
if (!ret) {
|
|
atomic_set(&bo->reserved, 0);
|
|
wakeup(bo);
|
|
}
|
|
|
|
refcount_acquire(&bo->list_kref);
|
|
list_add_tail(&bo->ddestroy, &bdev->ddestroy);
|
|
mtx_unlock(&glob->lru_lock);
|
|
|
|
if (sync_obj) {
|
|
driver->sync_obj_flush(sync_obj);
|
|
driver->sync_obj_unref(&sync_obj);
|
|
}
|
|
taskqueue_enqueue_timeout(taskqueue_thread, &bdev->wq,
|
|
((hz / 100) < 1) ? 1 : hz / 100);
|
|
}
|
|
|
|
/**
|
|
* function ttm_bo_cleanup_refs_and_unlock
|
|
* If bo idle, remove from delayed- and lru lists, and unref.
|
|
* If not idle, do nothing.
|
|
*
|
|
* Must be called with lru_lock and reservation held, this function
|
|
* will drop both before returning.
|
|
*
|
|
* @interruptible Any sleeps should occur interruptibly.
|
|
* @no_wait_gpu Never wait for gpu. Return -EBUSY instead.
|
|
*/
|
|
|
|
static int ttm_bo_cleanup_refs_and_unlock(struct ttm_buffer_object *bo,
|
|
bool interruptible,
|
|
bool no_wait_gpu)
|
|
{
|
|
struct ttm_bo_device *bdev = bo->bdev;
|
|
struct ttm_bo_driver *driver = bdev->driver;
|
|
struct ttm_bo_global *glob = bo->glob;
|
|
int put_count;
|
|
int ret;
|
|
|
|
mtx_lock(&bdev->fence_lock);
|
|
ret = ttm_bo_wait(bo, false, false, true);
|
|
|
|
if (ret && !no_wait_gpu) {
|
|
void *sync_obj;
|
|
|
|
/*
|
|
* Take a reference to the fence and unreserve,
|
|
* at this point the buffer should be dead, so
|
|
* no new sync objects can be attached.
|
|
*/
|
|
sync_obj = driver->sync_obj_ref(bo->sync_obj);
|
|
mtx_unlock(&bdev->fence_lock);
|
|
|
|
atomic_set(&bo->reserved, 0);
|
|
wakeup(bo);
|
|
mtx_unlock(&glob->lru_lock);
|
|
|
|
ret = driver->sync_obj_wait(sync_obj, false, interruptible);
|
|
driver->sync_obj_unref(&sync_obj);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/*
|
|
* remove sync_obj with ttm_bo_wait, the wait should be
|
|
* finished, and no new wait object should have been added.
|
|
*/
|
|
mtx_lock(&bdev->fence_lock);
|
|
ret = ttm_bo_wait(bo, false, false, true);
|
|
mtx_unlock(&bdev->fence_lock);
|
|
if (ret)
|
|
return ret;
|
|
|
|
mtx_lock(&glob->lru_lock);
|
|
ret = ttm_bo_reserve_nolru(bo, false, true, false, 0);
|
|
|
|
/*
|
|
* We raced, and lost, someone else holds the reservation now,
|
|
* and is probably busy in ttm_bo_cleanup_memtype_use.
|
|
*
|
|
* Even if it's not the case, because we finished waiting any
|
|
* delayed destruction would succeed, so just return success
|
|
* here.
|
|
*/
|
|
if (ret) {
|
|
mtx_unlock(&glob->lru_lock);
|
|
return 0;
|
|
}
|
|
} else
|
|
mtx_unlock(&bdev->fence_lock);
|
|
|
|
if (ret || unlikely(list_empty(&bo->ddestroy))) {
|
|
atomic_set(&bo->reserved, 0);
|
|
wakeup(bo);
|
|
mtx_unlock(&glob->lru_lock);
|
|
return ret;
|
|
}
|
|
|
|
put_count = ttm_bo_del_from_lru(bo);
|
|
list_del_init(&bo->ddestroy);
|
|
++put_count;
|
|
|
|
mtx_unlock(&glob->lru_lock);
|
|
ttm_bo_cleanup_memtype_use(bo);
|
|
|
|
ttm_bo_list_ref_sub(bo, put_count, true);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* Traverse the delayed list, and call ttm_bo_cleanup_refs on all
|
|
* encountered buffers.
|
|
*/
|
|
|
|
static int ttm_bo_delayed_delete(struct ttm_bo_device *bdev, bool remove_all)
|
|
{
|
|
struct ttm_bo_global *glob = bdev->glob;
|
|
struct ttm_buffer_object *entry = NULL;
|
|
int ret = 0;
|
|
|
|
mtx_lock(&glob->lru_lock);
|
|
if (list_empty(&bdev->ddestroy))
|
|
goto out_unlock;
|
|
|
|
entry = list_first_entry(&bdev->ddestroy,
|
|
struct ttm_buffer_object, ddestroy);
|
|
refcount_acquire(&entry->list_kref);
|
|
|
|
for (;;) {
|
|
struct ttm_buffer_object *nentry = NULL;
|
|
|
|
if (entry->ddestroy.next != &bdev->ddestroy) {
|
|
nentry = list_first_entry(&entry->ddestroy,
|
|
struct ttm_buffer_object, ddestroy);
|
|
refcount_acquire(&nentry->list_kref);
|
|
}
|
|
|
|
ret = ttm_bo_reserve_nolru(entry, false, true, false, 0);
|
|
if (remove_all && ret) {
|
|
ret = ttm_bo_reserve_nolru(entry, false, false,
|
|
false, 0);
|
|
}
|
|
|
|
if (!ret)
|
|
ret = ttm_bo_cleanup_refs_and_unlock(entry, false,
|
|
!remove_all);
|
|
else
|
|
mtx_unlock(&glob->lru_lock);
|
|
|
|
if (refcount_release(&entry->list_kref))
|
|
ttm_bo_release_list(entry);
|
|
entry = nentry;
|
|
|
|
if (ret || !entry)
|
|
goto out;
|
|
|
|
mtx_lock(&glob->lru_lock);
|
|
if (list_empty(&entry->ddestroy))
|
|
break;
|
|
}
|
|
|
|
out_unlock:
|
|
mtx_unlock(&glob->lru_lock);
|
|
out:
|
|
if (entry && refcount_release(&entry->list_kref))
|
|
ttm_bo_release_list(entry);
|
|
return ret;
|
|
}
|
|
|
|
static void ttm_bo_delayed_workqueue(void *arg, int pending __unused)
|
|
{
|
|
struct ttm_bo_device *bdev = arg;
|
|
|
|
if (ttm_bo_delayed_delete(bdev, false)) {
|
|
taskqueue_enqueue_timeout(taskqueue_thread, &bdev->wq,
|
|
((hz / 100) < 1) ? 1 : hz / 100);
|
|
}
|
|
}
|
|
|
|
static void ttm_bo_release(struct ttm_buffer_object *bo)
|
|
{
|
|
struct ttm_bo_device *bdev = bo->bdev;
|
|
struct ttm_mem_type_manager *man = &bdev->man[bo->mem.mem_type];
|
|
|
|
rw_wlock(&bdev->vm_lock);
|
|
if (likely(bo->vm_node != NULL)) {
|
|
RB_REMOVE(ttm_bo_device_buffer_objects,
|
|
&bdev->addr_space_rb, bo);
|
|
drm_mm_put_block(bo->vm_node);
|
|
bo->vm_node = NULL;
|
|
}
|
|
rw_wunlock(&bdev->vm_lock);
|
|
ttm_mem_io_lock(man, false);
|
|
ttm_mem_io_free_vm(bo);
|
|
ttm_mem_io_unlock(man);
|
|
ttm_bo_cleanup_refs_or_queue(bo);
|
|
if (refcount_release(&bo->list_kref))
|
|
ttm_bo_release_list(bo);
|
|
}
|
|
|
|
void ttm_bo_unref(struct ttm_buffer_object **p_bo)
|
|
{
|
|
struct ttm_buffer_object *bo = *p_bo;
|
|
|
|
*p_bo = NULL;
|
|
if (refcount_release(&bo->kref))
|
|
ttm_bo_release(bo);
|
|
}
|
|
|
|
int ttm_bo_lock_delayed_workqueue(struct ttm_bo_device *bdev)
|
|
{
|
|
int pending;
|
|
|
|
taskqueue_cancel_timeout(taskqueue_thread, &bdev->wq, &pending);
|
|
if (pending)
|
|
taskqueue_drain_timeout(taskqueue_thread, &bdev->wq);
|
|
return (pending);
|
|
}
|
|
|
|
void ttm_bo_unlock_delayed_workqueue(struct ttm_bo_device *bdev, int resched)
|
|
{
|
|
if (resched) {
|
|
taskqueue_enqueue_timeout(taskqueue_thread, &bdev->wq,
|
|
((hz / 100) < 1) ? 1 : hz / 100);
|
|
}
|
|
}
|
|
|
|
static int ttm_bo_evict(struct ttm_buffer_object *bo, bool interruptible,
|
|
bool no_wait_gpu)
|
|
{
|
|
struct ttm_bo_device *bdev = bo->bdev;
|
|
struct ttm_mem_reg evict_mem;
|
|
struct ttm_placement placement;
|
|
int ret = 0;
|
|
|
|
mtx_lock(&bdev->fence_lock);
|
|
ret = ttm_bo_wait(bo, false, interruptible, no_wait_gpu);
|
|
mtx_unlock(&bdev->fence_lock);
|
|
|
|
if (unlikely(ret != 0)) {
|
|
if (ret != -ERESTART) {
|
|
printf("[TTM] Failed to expire sync object before buffer eviction\n");
|
|
}
|
|
goto out;
|
|
}
|
|
|
|
MPASS(ttm_bo_is_reserved(bo));
|
|
|
|
evict_mem = bo->mem;
|
|
evict_mem.mm_node = NULL;
|
|
evict_mem.bus.io_reserved_vm = false;
|
|
evict_mem.bus.io_reserved_count = 0;
|
|
|
|
placement.fpfn = 0;
|
|
placement.lpfn = 0;
|
|
placement.num_placement = 0;
|
|
placement.num_busy_placement = 0;
|
|
bdev->driver->evict_flags(bo, &placement);
|
|
ret = ttm_bo_mem_space(bo, &placement, &evict_mem, interruptible,
|
|
no_wait_gpu);
|
|
if (ret) {
|
|
if (ret != -ERESTART) {
|
|
printf("[TTM] Failed to find memory space for buffer 0x%p eviction\n",
|
|
bo);
|
|
ttm_bo_mem_space_debug(bo, &placement);
|
|
}
|
|
goto out;
|
|
}
|
|
|
|
ret = ttm_bo_handle_move_mem(bo, &evict_mem, true, interruptible,
|
|
no_wait_gpu);
|
|
if (ret) {
|
|
if (ret != -ERESTART)
|
|
printf("[TTM] Buffer eviction failed\n");
|
|
ttm_bo_mem_put(bo, &evict_mem);
|
|
goto out;
|
|
}
|
|
bo->evicted = true;
|
|
out:
|
|
return ret;
|
|
}
|
|
|
|
static int ttm_mem_evict_first(struct ttm_bo_device *bdev,
|
|
uint32_t mem_type,
|
|
bool interruptible,
|
|
bool no_wait_gpu)
|
|
{
|
|
struct ttm_bo_global *glob = bdev->glob;
|
|
struct ttm_mem_type_manager *man = &bdev->man[mem_type];
|
|
struct ttm_buffer_object *bo;
|
|
int ret = -EBUSY, put_count;
|
|
|
|
mtx_lock(&glob->lru_lock);
|
|
list_for_each_entry(bo, &man->lru, lru) {
|
|
ret = ttm_bo_reserve_nolru(bo, false, true, false, 0);
|
|
if (!ret)
|
|
break;
|
|
}
|
|
|
|
if (ret) {
|
|
mtx_unlock(&glob->lru_lock);
|
|
return ret;
|
|
}
|
|
|
|
refcount_acquire(&bo->list_kref);
|
|
|
|
if (!list_empty(&bo->ddestroy)) {
|
|
ret = ttm_bo_cleanup_refs_and_unlock(bo, interruptible,
|
|
no_wait_gpu);
|
|
if (refcount_release(&bo->list_kref))
|
|
ttm_bo_release_list(bo);
|
|
return ret;
|
|
}
|
|
|
|
put_count = ttm_bo_del_from_lru(bo);
|
|
mtx_unlock(&glob->lru_lock);
|
|
|
|
MPASS(ret == 0);
|
|
|
|
ttm_bo_list_ref_sub(bo, put_count, true);
|
|
|
|
ret = ttm_bo_evict(bo, interruptible, no_wait_gpu);
|
|
ttm_bo_unreserve(bo);
|
|
|
|
if (refcount_release(&bo->list_kref))
|
|
ttm_bo_release_list(bo);
|
|
return ret;
|
|
}
|
|
|
|
void ttm_bo_mem_put(struct ttm_buffer_object *bo, struct ttm_mem_reg *mem)
|
|
{
|
|
struct ttm_mem_type_manager *man = &bo->bdev->man[mem->mem_type];
|
|
|
|
if (mem->mm_node)
|
|
(*man->func->put_node)(man, mem);
|
|
}
|
|
|
|
/**
|
|
* Repeatedly evict memory from the LRU for @mem_type until we create enough
|
|
* space, or we've evicted everything and there isn't enough space.
|
|
*/
|
|
static int ttm_bo_mem_force_space(struct ttm_buffer_object *bo,
|
|
uint32_t mem_type,
|
|
struct ttm_placement *placement,
|
|
struct ttm_mem_reg *mem,
|
|
bool interruptible,
|
|
bool no_wait_gpu)
|
|
{
|
|
struct ttm_bo_device *bdev = bo->bdev;
|
|
struct ttm_mem_type_manager *man = &bdev->man[mem_type];
|
|
int ret;
|
|
|
|
do {
|
|
ret = (*man->func->get_node)(man, bo, placement, mem);
|
|
if (unlikely(ret != 0))
|
|
return ret;
|
|
if (mem->mm_node)
|
|
break;
|
|
ret = ttm_mem_evict_first(bdev, mem_type,
|
|
interruptible, no_wait_gpu);
|
|
if (unlikely(ret != 0))
|
|
return ret;
|
|
} while (1);
|
|
if (mem->mm_node == NULL)
|
|
return -ENOMEM;
|
|
mem->mem_type = mem_type;
|
|
return 0;
|
|
}
|
|
|
|
static uint32_t ttm_bo_select_caching(struct ttm_mem_type_manager *man,
|
|
uint32_t cur_placement,
|
|
uint32_t proposed_placement)
|
|
{
|
|
uint32_t caching = proposed_placement & TTM_PL_MASK_CACHING;
|
|
uint32_t result = proposed_placement & ~TTM_PL_MASK_CACHING;
|
|
|
|
/**
|
|
* Keep current caching if possible.
|
|
*/
|
|
|
|
if ((cur_placement & caching) != 0)
|
|
result |= (cur_placement & caching);
|
|
else if ((man->default_caching & caching) != 0)
|
|
result |= man->default_caching;
|
|
else if ((TTM_PL_FLAG_CACHED & caching) != 0)
|
|
result |= TTM_PL_FLAG_CACHED;
|
|
else if ((TTM_PL_FLAG_WC & caching) != 0)
|
|
result |= TTM_PL_FLAG_WC;
|
|
else if ((TTM_PL_FLAG_UNCACHED & caching) != 0)
|
|
result |= TTM_PL_FLAG_UNCACHED;
|
|
|
|
return result;
|
|
}
|
|
|
|
static bool ttm_bo_mt_compatible(struct ttm_mem_type_manager *man,
|
|
uint32_t mem_type,
|
|
uint32_t proposed_placement,
|
|
uint32_t *masked_placement)
|
|
{
|
|
uint32_t cur_flags = ttm_bo_type_flags(mem_type);
|
|
|
|
if ((cur_flags & proposed_placement & TTM_PL_MASK_MEM) == 0)
|
|
return false;
|
|
|
|
if ((proposed_placement & man->available_caching) == 0)
|
|
return false;
|
|
|
|
cur_flags |= (proposed_placement & man->available_caching);
|
|
|
|
*masked_placement = cur_flags;
|
|
return true;
|
|
}
|
|
|
|
/**
|
|
* Creates space for memory region @mem according to its type.
|
|
*
|
|
* This function first searches for free space in compatible memory types in
|
|
* the priority order defined by the driver. If free space isn't found, then
|
|
* ttm_bo_mem_force_space is attempted in priority order to evict and find
|
|
* space.
|
|
*/
|
|
int ttm_bo_mem_space(struct ttm_buffer_object *bo,
|
|
struct ttm_placement *placement,
|
|
struct ttm_mem_reg *mem,
|
|
bool interruptible,
|
|
bool no_wait_gpu)
|
|
{
|
|
struct ttm_bo_device *bdev = bo->bdev;
|
|
struct ttm_mem_type_manager *man;
|
|
uint32_t mem_type = TTM_PL_SYSTEM;
|
|
uint32_t cur_flags = 0;
|
|
bool type_found = false;
|
|
bool type_ok = false;
|
|
bool has_erestartsys = false;
|
|
int i, ret;
|
|
|
|
mem->mm_node = NULL;
|
|
for (i = 0; i < placement->num_placement; ++i) {
|
|
ret = ttm_mem_type_from_flags(placement->placement[i],
|
|
&mem_type);
|
|
if (ret)
|
|
return ret;
|
|
man = &bdev->man[mem_type];
|
|
|
|
type_ok = ttm_bo_mt_compatible(man,
|
|
mem_type,
|
|
placement->placement[i],
|
|
&cur_flags);
|
|
|
|
if (!type_ok)
|
|
continue;
|
|
|
|
cur_flags = ttm_bo_select_caching(man, bo->mem.placement,
|
|
cur_flags);
|
|
/*
|
|
* Use the access and other non-mapping-related flag bits from
|
|
* the memory placement flags to the current flags
|
|
*/
|
|
ttm_flag_masked(&cur_flags, placement->placement[i],
|
|
~TTM_PL_MASK_MEMTYPE);
|
|
|
|
if (mem_type == TTM_PL_SYSTEM)
|
|
break;
|
|
|
|
if (man->has_type && man->use_type) {
|
|
type_found = true;
|
|
ret = (*man->func->get_node)(man, bo, placement, mem);
|
|
if (unlikely(ret))
|
|
return ret;
|
|
}
|
|
if (mem->mm_node)
|
|
break;
|
|
}
|
|
|
|
if ((type_ok && (mem_type == TTM_PL_SYSTEM)) || mem->mm_node) {
|
|
mem->mem_type = mem_type;
|
|
mem->placement = cur_flags;
|
|
return 0;
|
|
}
|
|
|
|
if (!type_found)
|
|
return -EINVAL;
|
|
|
|
for (i = 0; i < placement->num_busy_placement; ++i) {
|
|
ret = ttm_mem_type_from_flags(placement->busy_placement[i],
|
|
&mem_type);
|
|
if (ret)
|
|
return ret;
|
|
man = &bdev->man[mem_type];
|
|
if (!man->has_type)
|
|
continue;
|
|
if (!ttm_bo_mt_compatible(man,
|
|
mem_type,
|
|
placement->busy_placement[i],
|
|
&cur_flags))
|
|
continue;
|
|
|
|
cur_flags = ttm_bo_select_caching(man, bo->mem.placement,
|
|
cur_flags);
|
|
/*
|
|
* Use the access and other non-mapping-related flag bits from
|
|
* the memory placement flags to the current flags
|
|
*/
|
|
ttm_flag_masked(&cur_flags, placement->busy_placement[i],
|
|
~TTM_PL_MASK_MEMTYPE);
|
|
|
|
|
|
if (mem_type == TTM_PL_SYSTEM) {
|
|
mem->mem_type = mem_type;
|
|
mem->placement = cur_flags;
|
|
mem->mm_node = NULL;
|
|
return 0;
|
|
}
|
|
|
|
ret = ttm_bo_mem_force_space(bo, mem_type, placement, mem,
|
|
interruptible, no_wait_gpu);
|
|
if (ret == 0 && mem->mm_node) {
|
|
mem->placement = cur_flags;
|
|
return 0;
|
|
}
|
|
if (ret == -ERESTART)
|
|
has_erestartsys = true;
|
|
}
|
|
ret = (has_erestartsys) ? -ERESTART : -ENOMEM;
|
|
return ret;
|
|
}
|
|
|
|
static
|
|
int ttm_bo_move_buffer(struct ttm_buffer_object *bo,
|
|
struct ttm_placement *placement,
|
|
bool interruptible,
|
|
bool no_wait_gpu)
|
|
{
|
|
int ret = 0;
|
|
struct ttm_mem_reg mem;
|
|
struct ttm_bo_device *bdev = bo->bdev;
|
|
|
|
MPASS(ttm_bo_is_reserved(bo));
|
|
|
|
/*
|
|
* FIXME: It's possible to pipeline buffer moves.
|
|
* Have the driver move function wait for idle when necessary,
|
|
* instead of doing it here.
|
|
*/
|
|
mtx_lock(&bdev->fence_lock);
|
|
ret = ttm_bo_wait(bo, false, interruptible, no_wait_gpu);
|
|
mtx_unlock(&bdev->fence_lock);
|
|
if (ret)
|
|
return ret;
|
|
mem.num_pages = bo->num_pages;
|
|
mem.size = mem.num_pages << PAGE_SHIFT;
|
|
mem.page_alignment = bo->mem.page_alignment;
|
|
mem.bus.io_reserved_vm = false;
|
|
mem.bus.io_reserved_count = 0;
|
|
/*
|
|
* Determine where to move the buffer.
|
|
*/
|
|
ret = ttm_bo_mem_space(bo, placement, &mem,
|
|
interruptible, no_wait_gpu);
|
|
if (ret)
|
|
goto out_unlock;
|
|
ret = ttm_bo_handle_move_mem(bo, &mem, false,
|
|
interruptible, no_wait_gpu);
|
|
out_unlock:
|
|
if (ret && mem.mm_node)
|
|
ttm_bo_mem_put(bo, &mem);
|
|
return ret;
|
|
}
|
|
|
|
static int ttm_bo_mem_compat(struct ttm_placement *placement,
|
|
struct ttm_mem_reg *mem)
|
|
{
|
|
int i;
|
|
|
|
if (mem->mm_node && placement->lpfn != 0 &&
|
|
(mem->start < placement->fpfn ||
|
|
mem->start + mem->num_pages > placement->lpfn))
|
|
return -1;
|
|
|
|
for (i = 0; i < placement->num_placement; i++) {
|
|
if ((placement->placement[i] & mem->placement &
|
|
TTM_PL_MASK_CACHING) &&
|
|
(placement->placement[i] & mem->placement &
|
|
TTM_PL_MASK_MEM))
|
|
return i;
|
|
}
|
|
return -1;
|
|
}
|
|
|
|
int ttm_bo_validate(struct ttm_buffer_object *bo,
|
|
struct ttm_placement *placement,
|
|
bool interruptible,
|
|
bool no_wait_gpu)
|
|
{
|
|
int ret;
|
|
|
|
MPASS(ttm_bo_is_reserved(bo));
|
|
/* Check that range is valid */
|
|
if (placement->lpfn || placement->fpfn)
|
|
if (placement->fpfn > placement->lpfn ||
|
|
(placement->lpfn - placement->fpfn) < bo->num_pages)
|
|
return -EINVAL;
|
|
/*
|
|
* Check whether we need to move buffer.
|
|
*/
|
|
ret = ttm_bo_mem_compat(placement, &bo->mem);
|
|
if (ret < 0) {
|
|
ret = ttm_bo_move_buffer(bo, placement, interruptible,
|
|
no_wait_gpu);
|
|
if (ret)
|
|
return ret;
|
|
} else {
|
|
/*
|
|
* Use the access and other non-mapping-related flag bits from
|
|
* the compatible memory placement flags to the active flags
|
|
*/
|
|
ttm_flag_masked(&bo->mem.placement, placement->placement[ret],
|
|
~TTM_PL_MASK_MEMTYPE);
|
|
}
|
|
/*
|
|
* We might need to add a TTM.
|
|
*/
|
|
if (bo->mem.mem_type == TTM_PL_SYSTEM && bo->ttm == NULL) {
|
|
ret = ttm_bo_add_ttm(bo, true);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
int ttm_bo_check_placement(struct ttm_buffer_object *bo,
|
|
struct ttm_placement *placement)
|
|
{
|
|
MPASS(!((placement->fpfn || placement->lpfn) &&
|
|
(bo->mem.num_pages > (placement->lpfn - placement->fpfn))));
|
|
|
|
return 0;
|
|
}
|
|
|
|
int ttm_bo_init(struct ttm_bo_device *bdev,
|
|
struct ttm_buffer_object *bo,
|
|
unsigned long size,
|
|
enum ttm_bo_type type,
|
|
struct ttm_placement *placement,
|
|
uint32_t page_alignment,
|
|
bool interruptible,
|
|
struct vm_object *persistent_swap_storage,
|
|
size_t acc_size,
|
|
struct sg_table *sg,
|
|
void (*destroy) (struct ttm_buffer_object *))
|
|
{
|
|
int ret = 0;
|
|
unsigned long num_pages;
|
|
struct ttm_mem_global *mem_glob = bdev->glob->mem_glob;
|
|
|
|
ret = ttm_mem_global_alloc(mem_glob, acc_size, false, false);
|
|
if (ret) {
|
|
printf("[TTM] Out of kernel memory\n");
|
|
if (destroy)
|
|
(*destroy)(bo);
|
|
else
|
|
free(bo, M_TTM_BO);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
num_pages = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
|
|
if (num_pages == 0) {
|
|
printf("[TTM] Illegal buffer object size\n");
|
|
if (destroy)
|
|
(*destroy)(bo);
|
|
else
|
|
free(bo, M_TTM_BO);
|
|
ttm_mem_global_free(mem_glob, acc_size);
|
|
return -EINVAL;
|
|
}
|
|
bo->destroy = destroy;
|
|
|
|
refcount_init(&bo->kref, 1);
|
|
refcount_init(&bo->list_kref, 1);
|
|
atomic_set(&bo->cpu_writers, 0);
|
|
atomic_set(&bo->reserved, 1);
|
|
INIT_LIST_HEAD(&bo->lru);
|
|
INIT_LIST_HEAD(&bo->ddestroy);
|
|
INIT_LIST_HEAD(&bo->swap);
|
|
INIT_LIST_HEAD(&bo->io_reserve_lru);
|
|
bo->bdev = bdev;
|
|
bo->glob = bdev->glob;
|
|
bo->type = type;
|
|
bo->num_pages = num_pages;
|
|
bo->mem.size = num_pages << PAGE_SHIFT;
|
|
bo->mem.mem_type = TTM_PL_SYSTEM;
|
|
bo->mem.num_pages = bo->num_pages;
|
|
bo->mem.mm_node = NULL;
|
|
bo->mem.page_alignment = page_alignment;
|
|
bo->mem.bus.io_reserved_vm = false;
|
|
bo->mem.bus.io_reserved_count = 0;
|
|
bo->priv_flags = 0;
|
|
bo->mem.placement = (TTM_PL_FLAG_SYSTEM | TTM_PL_FLAG_CACHED);
|
|
bo->seq_valid = false;
|
|
bo->persistent_swap_storage = persistent_swap_storage;
|
|
bo->acc_size = acc_size;
|
|
bo->sg = sg;
|
|
atomic_inc(&bo->glob->bo_count);
|
|
|
|
ret = ttm_bo_check_placement(bo, placement);
|
|
if (unlikely(ret != 0))
|
|
goto out_err;
|
|
|
|
/*
|
|
* For ttm_bo_type_device buffers, allocate
|
|
* address space from the device.
|
|
*/
|
|
if (bo->type == ttm_bo_type_device ||
|
|
bo->type == ttm_bo_type_sg) {
|
|
ret = ttm_bo_setup_vm(bo);
|
|
if (ret)
|
|
goto out_err;
|
|
}
|
|
|
|
ret = ttm_bo_validate(bo, placement, interruptible, false);
|
|
if (ret)
|
|
goto out_err;
|
|
|
|
ttm_bo_unreserve(bo);
|
|
return 0;
|
|
|
|
out_err:
|
|
ttm_bo_unreserve(bo);
|
|
ttm_bo_unref(&bo);
|
|
|
|
return ret;
|
|
}
|
|
|
|
size_t ttm_bo_acc_size(struct ttm_bo_device *bdev,
|
|
unsigned long bo_size,
|
|
unsigned struct_size)
|
|
{
|
|
unsigned npages = (PAGE_ALIGN(bo_size)) >> PAGE_SHIFT;
|
|
size_t size = 0;
|
|
|
|
size += ttm_round_pot(struct_size);
|
|
size += PAGE_ALIGN(npages * sizeof(void *));
|
|
size += ttm_round_pot(sizeof(struct ttm_tt));
|
|
return size;
|
|
}
|
|
|
|
size_t ttm_bo_dma_acc_size(struct ttm_bo_device *bdev,
|
|
unsigned long bo_size,
|
|
unsigned struct_size)
|
|
{
|
|
unsigned npages = (PAGE_ALIGN(bo_size)) >> PAGE_SHIFT;
|
|
size_t size = 0;
|
|
|
|
size += ttm_round_pot(struct_size);
|
|
size += PAGE_ALIGN(npages * sizeof(void *));
|
|
size += PAGE_ALIGN(npages * sizeof(dma_addr_t));
|
|
size += ttm_round_pot(sizeof(struct ttm_dma_tt));
|
|
return size;
|
|
}
|
|
|
|
int ttm_bo_create(struct ttm_bo_device *bdev,
|
|
unsigned long size,
|
|
enum ttm_bo_type type,
|
|
struct ttm_placement *placement,
|
|
uint32_t page_alignment,
|
|
bool interruptible,
|
|
struct vm_object *persistent_swap_storage,
|
|
struct ttm_buffer_object **p_bo)
|
|
{
|
|
struct ttm_buffer_object *bo;
|
|
size_t acc_size;
|
|
int ret;
|
|
|
|
bo = malloc(sizeof(*bo), M_TTM_BO, M_WAITOK | M_ZERO);
|
|
acc_size = ttm_bo_acc_size(bdev, size, sizeof(struct ttm_buffer_object));
|
|
ret = ttm_bo_init(bdev, bo, size, type, placement, page_alignment,
|
|
interruptible, persistent_swap_storage, acc_size,
|
|
NULL, NULL);
|
|
if (likely(ret == 0))
|
|
*p_bo = bo;
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int ttm_bo_force_list_clean(struct ttm_bo_device *bdev,
|
|
unsigned mem_type, bool allow_errors)
|
|
{
|
|
struct ttm_mem_type_manager *man = &bdev->man[mem_type];
|
|
struct ttm_bo_global *glob = bdev->glob;
|
|
int ret;
|
|
|
|
/*
|
|
* Can't use standard list traversal since we're unlocking.
|
|
*/
|
|
|
|
mtx_lock(&glob->lru_lock);
|
|
while (!list_empty(&man->lru)) {
|
|
mtx_unlock(&glob->lru_lock);
|
|
ret = ttm_mem_evict_first(bdev, mem_type, false, false);
|
|
if (ret) {
|
|
if (allow_errors) {
|
|
return ret;
|
|
} else {
|
|
printf("[TTM] Cleanup eviction failed\n");
|
|
}
|
|
}
|
|
mtx_lock(&glob->lru_lock);
|
|
}
|
|
mtx_unlock(&glob->lru_lock);
|
|
return 0;
|
|
}
|
|
|
|
int ttm_bo_clean_mm(struct ttm_bo_device *bdev, unsigned mem_type)
|
|
{
|
|
struct ttm_mem_type_manager *man;
|
|
int ret = -EINVAL;
|
|
|
|
if (mem_type >= TTM_NUM_MEM_TYPES) {
|
|
printf("[TTM] Illegal memory type %d\n", mem_type);
|
|
return ret;
|
|
}
|
|
man = &bdev->man[mem_type];
|
|
|
|
if (!man->has_type) {
|
|
printf("[TTM] Trying to take down uninitialized memory manager type %u\n",
|
|
mem_type);
|
|
return ret;
|
|
}
|
|
|
|
man->use_type = false;
|
|
man->has_type = false;
|
|
|
|
ret = 0;
|
|
if (mem_type > 0) {
|
|
ttm_bo_force_list_clean(bdev, mem_type, false);
|
|
|
|
ret = (*man->func->takedown)(man);
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
int ttm_bo_evict_mm(struct ttm_bo_device *bdev, unsigned mem_type)
|
|
{
|
|
struct ttm_mem_type_manager *man = &bdev->man[mem_type];
|
|
|
|
if (mem_type == 0 || mem_type >= TTM_NUM_MEM_TYPES) {
|
|
printf("[TTM] Illegal memory manager memory type %u\n", mem_type);
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (!man->has_type) {
|
|
printf("[TTM] Memory type %u has not been initialized\n", mem_type);
|
|
return 0;
|
|
}
|
|
|
|
return ttm_bo_force_list_clean(bdev, mem_type, true);
|
|
}
|
|
|
|
int ttm_bo_init_mm(struct ttm_bo_device *bdev, unsigned type,
|
|
unsigned long p_size)
|
|
{
|
|
int ret = -EINVAL;
|
|
struct ttm_mem_type_manager *man;
|
|
|
|
MPASS(type < TTM_NUM_MEM_TYPES);
|
|
man = &bdev->man[type];
|
|
MPASS(!man->has_type);
|
|
man->io_reserve_fastpath = true;
|
|
man->use_io_reserve_lru = false;
|
|
sx_init(&man->io_reserve_mutex, "ttmman");
|
|
INIT_LIST_HEAD(&man->io_reserve_lru);
|
|
|
|
ret = bdev->driver->init_mem_type(bdev, type, man);
|
|
if (ret)
|
|
return ret;
|
|
man->bdev = bdev;
|
|
|
|
ret = 0;
|
|
if (type != TTM_PL_SYSTEM) {
|
|
ret = (*man->func->init)(man, p_size);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
man->has_type = true;
|
|
man->use_type = true;
|
|
man->size = p_size;
|
|
|
|
INIT_LIST_HEAD(&man->lru);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void ttm_bo_global_kobj_release(struct ttm_bo_global *glob)
|
|
{
|
|
|
|
ttm_mem_unregister_shrink(glob->mem_glob, &glob->shrink);
|
|
vm_page_free(glob->dummy_read_page);
|
|
}
|
|
|
|
void ttm_bo_global_release(struct drm_global_reference *ref)
|
|
{
|
|
struct ttm_bo_global *glob = ref->object;
|
|
|
|
if (refcount_release(&glob->kobj_ref))
|
|
ttm_bo_global_kobj_release(glob);
|
|
}
|
|
|
|
int ttm_bo_global_init(struct drm_global_reference *ref)
|
|
{
|
|
struct ttm_bo_global_ref *bo_ref =
|
|
container_of(ref, struct ttm_bo_global_ref, ref);
|
|
struct ttm_bo_global *glob = ref->object;
|
|
int ret;
|
|
|
|
sx_init(&glob->device_list_mutex, "ttmdlm");
|
|
mtx_init(&glob->lru_lock, "ttmlru", NULL, MTX_DEF);
|
|
glob->mem_glob = bo_ref->mem_glob;
|
|
glob->dummy_read_page = vm_page_alloc_contig(NULL, 0,
|
|
VM_ALLOC_NORMAL | VM_ALLOC_NOOBJ,
|
|
1, 0, VM_MAX_ADDRESS, PAGE_SIZE, 0, VM_MEMATTR_UNCACHEABLE);
|
|
|
|
if (unlikely(glob->dummy_read_page == NULL)) {
|
|
ret = -ENOMEM;
|
|
goto out_no_drp;
|
|
}
|
|
|
|
INIT_LIST_HEAD(&glob->swap_lru);
|
|
INIT_LIST_HEAD(&glob->device_list);
|
|
|
|
ttm_mem_init_shrink(&glob->shrink, ttm_bo_swapout);
|
|
ret = ttm_mem_register_shrink(glob->mem_glob, &glob->shrink);
|
|
if (unlikely(ret != 0)) {
|
|
printf("[TTM] Could not register buffer object swapout\n");
|
|
goto out_no_shrink;
|
|
}
|
|
|
|
atomic_set(&glob->bo_count, 0);
|
|
|
|
refcount_init(&glob->kobj_ref, 1);
|
|
return (0);
|
|
|
|
out_no_shrink:
|
|
vm_page_free(glob->dummy_read_page);
|
|
out_no_drp:
|
|
free(glob, M_DRM_GLOBAL);
|
|
return ret;
|
|
}
|
|
|
|
int ttm_bo_device_release(struct ttm_bo_device *bdev)
|
|
{
|
|
int ret = 0;
|
|
unsigned i = TTM_NUM_MEM_TYPES;
|
|
struct ttm_mem_type_manager *man;
|
|
struct ttm_bo_global *glob = bdev->glob;
|
|
|
|
while (i--) {
|
|
man = &bdev->man[i];
|
|
if (man->has_type) {
|
|
man->use_type = false;
|
|
if ((i != TTM_PL_SYSTEM) && ttm_bo_clean_mm(bdev, i)) {
|
|
ret = -EBUSY;
|
|
printf("[TTM] DRM memory manager type %d is not clean\n",
|
|
i);
|
|
}
|
|
man->has_type = false;
|
|
}
|
|
}
|
|
|
|
sx_xlock(&glob->device_list_mutex);
|
|
list_del(&bdev->device_list);
|
|
sx_xunlock(&glob->device_list_mutex);
|
|
|
|
if (taskqueue_cancel_timeout(taskqueue_thread, &bdev->wq, NULL))
|
|
taskqueue_drain_timeout(taskqueue_thread, &bdev->wq);
|
|
|
|
while (ttm_bo_delayed_delete(bdev, true))
|
|
;
|
|
|
|
mtx_lock(&glob->lru_lock);
|
|
if (list_empty(&bdev->ddestroy))
|
|
TTM_DEBUG("Delayed destroy list was clean\n");
|
|
|
|
if (list_empty(&bdev->man[0].lru))
|
|
TTM_DEBUG("Swap list was clean\n");
|
|
mtx_unlock(&glob->lru_lock);
|
|
|
|
MPASS(drm_mm_clean(&bdev->addr_space_mm));
|
|
rw_wlock(&bdev->vm_lock);
|
|
drm_mm_takedown(&bdev->addr_space_mm);
|
|
rw_wunlock(&bdev->vm_lock);
|
|
|
|
return ret;
|
|
}
|
|
|
|
int ttm_bo_device_init(struct ttm_bo_device *bdev,
|
|
struct ttm_bo_global *glob,
|
|
struct ttm_bo_driver *driver,
|
|
uint64_t file_page_offset,
|
|
bool need_dma32)
|
|
{
|
|
int ret = -EINVAL;
|
|
|
|
rw_init(&bdev->vm_lock, "ttmvml");
|
|
bdev->driver = driver;
|
|
|
|
memset(bdev->man, 0, sizeof(bdev->man));
|
|
|
|
/*
|
|
* Initialize the system memory buffer type.
|
|
* Other types need to be driver / IOCTL initialized.
|
|
*/
|
|
ret = ttm_bo_init_mm(bdev, TTM_PL_SYSTEM, 0);
|
|
if (unlikely(ret != 0))
|
|
goto out_no_sys;
|
|
|
|
RB_INIT(&bdev->addr_space_rb);
|
|
ret = drm_mm_init(&bdev->addr_space_mm, file_page_offset, 0x10000000);
|
|
if (unlikely(ret != 0))
|
|
goto out_no_addr_mm;
|
|
|
|
TIMEOUT_TASK_INIT(taskqueue_thread, &bdev->wq, 0,
|
|
ttm_bo_delayed_workqueue, bdev);
|
|
INIT_LIST_HEAD(&bdev->ddestroy);
|
|
bdev->dev_mapping = NULL;
|
|
bdev->glob = glob;
|
|
bdev->need_dma32 = need_dma32;
|
|
bdev->val_seq = 0;
|
|
mtx_init(&bdev->fence_lock, "ttmfence", NULL, MTX_DEF);
|
|
sx_xlock(&glob->device_list_mutex);
|
|
list_add_tail(&bdev->device_list, &glob->device_list);
|
|
sx_xunlock(&glob->device_list_mutex);
|
|
|
|
return 0;
|
|
out_no_addr_mm:
|
|
ttm_bo_clean_mm(bdev, 0);
|
|
out_no_sys:
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* buffer object vm functions.
|
|
*/
|
|
|
|
bool ttm_mem_reg_is_pci(struct ttm_bo_device *bdev, struct ttm_mem_reg *mem)
|
|
{
|
|
struct ttm_mem_type_manager *man = &bdev->man[mem->mem_type];
|
|
|
|
if (!(man->flags & TTM_MEMTYPE_FLAG_FIXED)) {
|
|
if (mem->mem_type == TTM_PL_SYSTEM)
|
|
return false;
|
|
|
|
if (man->flags & TTM_MEMTYPE_FLAG_CMA)
|
|
return false;
|
|
|
|
if (mem->placement & TTM_PL_FLAG_CACHED)
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
void ttm_bo_unmap_virtual_locked(struct ttm_buffer_object *bo)
|
|
{
|
|
|
|
ttm_bo_release_mmap(bo);
|
|
ttm_mem_io_free_vm(bo);
|
|
}
|
|
|
|
void ttm_bo_unmap_virtual(struct ttm_buffer_object *bo)
|
|
{
|
|
struct ttm_bo_device *bdev = bo->bdev;
|
|
struct ttm_mem_type_manager *man = &bdev->man[bo->mem.mem_type];
|
|
|
|
ttm_mem_io_lock(man, false);
|
|
ttm_bo_unmap_virtual_locked(bo);
|
|
ttm_mem_io_unlock(man);
|
|
}
|
|
|
|
static void ttm_bo_vm_insert_rb(struct ttm_buffer_object *bo)
|
|
{
|
|
struct ttm_bo_device *bdev = bo->bdev;
|
|
|
|
/* The caller acquired bdev->vm_lock. */
|
|
RB_INSERT(ttm_bo_device_buffer_objects, &bdev->addr_space_rb, bo);
|
|
}
|
|
|
|
/**
|
|
* ttm_bo_setup_vm:
|
|
*
|
|
* @bo: the buffer to allocate address space for
|
|
*
|
|
* Allocate address space in the drm device so that applications
|
|
* can mmap the buffer and access the contents. This only
|
|
* applies to ttm_bo_type_device objects as others are not
|
|
* placed in the drm device address space.
|
|
*/
|
|
|
|
static int ttm_bo_setup_vm(struct ttm_buffer_object *bo)
|
|
{
|
|
struct ttm_bo_device *bdev = bo->bdev;
|
|
int ret;
|
|
|
|
retry_pre_get:
|
|
ret = drm_mm_pre_get(&bdev->addr_space_mm);
|
|
if (unlikely(ret != 0))
|
|
return ret;
|
|
|
|
rw_wlock(&bdev->vm_lock);
|
|
bo->vm_node = drm_mm_search_free(&bdev->addr_space_mm,
|
|
bo->mem.num_pages, 0, 0);
|
|
|
|
if (unlikely(bo->vm_node == NULL)) {
|
|
ret = -ENOMEM;
|
|
goto out_unlock;
|
|
}
|
|
|
|
bo->vm_node = drm_mm_get_block_atomic(bo->vm_node,
|
|
bo->mem.num_pages, 0);
|
|
|
|
if (unlikely(bo->vm_node == NULL)) {
|
|
rw_wunlock(&bdev->vm_lock);
|
|
goto retry_pre_get;
|
|
}
|
|
|
|
ttm_bo_vm_insert_rb(bo);
|
|
rw_wunlock(&bdev->vm_lock);
|
|
bo->addr_space_offset = ((uint64_t) bo->vm_node->start) << PAGE_SHIFT;
|
|
|
|
return 0;
|
|
out_unlock:
|
|
rw_wunlock(&bdev->vm_lock);
|
|
return ret;
|
|
}
|
|
|
|
int ttm_bo_wait(struct ttm_buffer_object *bo,
|
|
bool lazy, bool interruptible, bool no_wait)
|
|
{
|
|
struct ttm_bo_driver *driver = bo->bdev->driver;
|
|
struct ttm_bo_device *bdev = bo->bdev;
|
|
void *sync_obj;
|
|
int ret = 0;
|
|
|
|
if (likely(bo->sync_obj == NULL))
|
|
return 0;
|
|
|
|
while (bo->sync_obj) {
|
|
|
|
if (driver->sync_obj_signaled(bo->sync_obj)) {
|
|
void *tmp_obj = bo->sync_obj;
|
|
bo->sync_obj = NULL;
|
|
clear_bit(TTM_BO_PRIV_FLAG_MOVING, &bo->priv_flags);
|
|
mtx_unlock(&bdev->fence_lock);
|
|
driver->sync_obj_unref(&tmp_obj);
|
|
mtx_lock(&bdev->fence_lock);
|
|
continue;
|
|
}
|
|
|
|
if (no_wait)
|
|
return -EBUSY;
|
|
|
|
sync_obj = driver->sync_obj_ref(bo->sync_obj);
|
|
mtx_unlock(&bdev->fence_lock);
|
|
ret = driver->sync_obj_wait(sync_obj,
|
|
lazy, interruptible);
|
|
if (unlikely(ret != 0)) {
|
|
driver->sync_obj_unref(&sync_obj);
|
|
mtx_lock(&bdev->fence_lock);
|
|
return ret;
|
|
}
|
|
mtx_lock(&bdev->fence_lock);
|
|
if (likely(bo->sync_obj == sync_obj)) {
|
|
void *tmp_obj = bo->sync_obj;
|
|
bo->sync_obj = NULL;
|
|
clear_bit(TTM_BO_PRIV_FLAG_MOVING,
|
|
&bo->priv_flags);
|
|
mtx_unlock(&bdev->fence_lock);
|
|
driver->sync_obj_unref(&sync_obj);
|
|
driver->sync_obj_unref(&tmp_obj);
|
|
mtx_lock(&bdev->fence_lock);
|
|
} else {
|
|
mtx_unlock(&bdev->fence_lock);
|
|
driver->sync_obj_unref(&sync_obj);
|
|
mtx_lock(&bdev->fence_lock);
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
int ttm_bo_synccpu_write_grab(struct ttm_buffer_object *bo, bool no_wait)
|
|
{
|
|
struct ttm_bo_device *bdev = bo->bdev;
|
|
int ret = 0;
|
|
|
|
/*
|
|
* Using ttm_bo_reserve makes sure the lru lists are updated.
|
|
*/
|
|
|
|
ret = ttm_bo_reserve(bo, true, no_wait, false, 0);
|
|
if (unlikely(ret != 0))
|
|
return ret;
|
|
mtx_lock(&bdev->fence_lock);
|
|
ret = ttm_bo_wait(bo, false, true, no_wait);
|
|
mtx_unlock(&bdev->fence_lock);
|
|
if (likely(ret == 0))
|
|
atomic_inc(&bo->cpu_writers);
|
|
ttm_bo_unreserve(bo);
|
|
return ret;
|
|
}
|
|
|
|
void ttm_bo_synccpu_write_release(struct ttm_buffer_object *bo)
|
|
{
|
|
atomic_dec(&bo->cpu_writers);
|
|
}
|
|
|
|
/**
|
|
* A buffer object shrink method that tries to swap out the first
|
|
* buffer object on the bo_global::swap_lru list.
|
|
*/
|
|
|
|
static int ttm_bo_swapout(struct ttm_mem_shrink *shrink)
|
|
{
|
|
struct ttm_bo_global *glob =
|
|
container_of(shrink, struct ttm_bo_global, shrink);
|
|
struct ttm_buffer_object *bo;
|
|
int ret = -EBUSY;
|
|
int put_count;
|
|
uint32_t swap_placement = (TTM_PL_FLAG_CACHED | TTM_PL_FLAG_SYSTEM);
|
|
|
|
mtx_lock(&glob->lru_lock);
|
|
list_for_each_entry(bo, &glob->swap_lru, swap) {
|
|
ret = ttm_bo_reserve_nolru(bo, false, true, false, 0);
|
|
if (!ret)
|
|
break;
|
|
}
|
|
|
|
if (ret) {
|
|
mtx_unlock(&glob->lru_lock);
|
|
return ret;
|
|
}
|
|
|
|
refcount_acquire(&bo->list_kref);
|
|
|
|
if (!list_empty(&bo->ddestroy)) {
|
|
ret = ttm_bo_cleanup_refs_and_unlock(bo, false, false);
|
|
if (refcount_release(&bo->list_kref))
|
|
ttm_bo_release_list(bo);
|
|
return ret;
|
|
}
|
|
|
|
put_count = ttm_bo_del_from_lru(bo);
|
|
mtx_unlock(&glob->lru_lock);
|
|
|
|
ttm_bo_list_ref_sub(bo, put_count, true);
|
|
|
|
/**
|
|
* Wait for GPU, then move to system cached.
|
|
*/
|
|
|
|
mtx_lock(&bo->bdev->fence_lock);
|
|
ret = ttm_bo_wait(bo, false, false, false);
|
|
mtx_unlock(&bo->bdev->fence_lock);
|
|
|
|
if (unlikely(ret != 0))
|
|
goto out;
|
|
|
|
if ((bo->mem.placement & swap_placement) != swap_placement) {
|
|
struct ttm_mem_reg evict_mem;
|
|
|
|
evict_mem = bo->mem;
|
|
evict_mem.mm_node = NULL;
|
|
evict_mem.placement = TTM_PL_FLAG_SYSTEM | TTM_PL_FLAG_CACHED;
|
|
evict_mem.mem_type = TTM_PL_SYSTEM;
|
|
|
|
ret = ttm_bo_handle_move_mem(bo, &evict_mem, true,
|
|
false, false);
|
|
if (unlikely(ret != 0))
|
|
goto out;
|
|
}
|
|
|
|
ttm_bo_unmap_virtual(bo);
|
|
|
|
/**
|
|
* Swap out. Buffer will be swapped in again as soon as
|
|
* anyone tries to access a ttm page.
|
|
*/
|
|
|
|
if (bo->bdev->driver->swap_notify)
|
|
bo->bdev->driver->swap_notify(bo);
|
|
|
|
ret = ttm_tt_swapout(bo->ttm, bo->persistent_swap_storage);
|
|
out:
|
|
|
|
/**
|
|
*
|
|
* Unreserve without putting on LRU to avoid swapping out an
|
|
* already swapped buffer.
|
|
*/
|
|
|
|
atomic_set(&bo->reserved, 0);
|
|
wakeup(bo);
|
|
if (refcount_release(&bo->list_kref))
|
|
ttm_bo_release_list(bo);
|
|
return ret;
|
|
}
|
|
|
|
void ttm_bo_swapout_all(struct ttm_bo_device *bdev)
|
|
{
|
|
while (ttm_bo_swapout(&bdev->glob->shrink) == 0)
|
|
;
|
|
}
|