Ariff Abdullah e4e61333ff Last (again ?!?) major commit for RELENG_7, featuring total Giant
eradication in/from userland path, countless locking fixes, etc.

- General sleep call through msleep(9) has been converted to condvar(9)
  with better consistencies.
- Heavily guard every possible "slow path" entries (open(), close(),
  few ioctl()s, sysctls), but once it entering "fast path" (io, interrupt
  started), they are free to fly on their own.
- Rearrange locking sequences, resulting better concurrency and
  serialization. Large part doesn't even need locking at all, and will be
  removed in future. Less clutter, except in few places due to lock
  ordering.
- Anonymous mixer object creation/deletion to simplify mixer handling
  beyond typical mixer ioctls.
  Submitted by:		chibis (with modifications)
- Add few mix_[get|set|..] functions to avoid calling mixer_ioctl()
  directly using cryptic arguments.
- Locking fixes to avoid possible deadlock with (still under Giant) USB.
- Better simplex/duplex device handling.
- Recover mmap() functionality for recording, which has been lost
  since 2.2.x - 3.x (the introduction of newpcm). Full-duplex mmap still
  doesn't work (due to VM/page design), but people still can mmap
  both by opening each direction separately. mmaped playback is guarantee
  to work either way.
- New sysctl: "hw.snd.compat_linux_mmap" to allow PROT_EXEC page
  mapping, due to recent changes in linux compatibility layer which
  require it. All linux applications that using sound + mmap() (mostly games)
  require this to be enabled. Disabled by default.
- Other goodies.. too many, that will increase releng7 shareholder value
  and make users of releng6 (and below) cry ;)

* This commit should be atomic. If anything goes wrong (not counting problem
  originated from elsewhere), I will not hesitate to revert everything back
  within 12 hours. This substantial changes itself not a rocket science
  and the process has begun for almost 2 years, and lots of incremental
  changes are already in place during that period of time.
* Some issues does occur in snd_emu10kx (note the 'x') due to various
  internal locking issues and it is currently being worked on by chibis.

Tested by:	chibis (Yuriy Tsibizov), joel, Alexandre Vieira,
          	many innocent souls...
2007-06-16 03:37:28 +00:00

897 lines
24 KiB
C

/*-
* Copyright (c) 1999 Cameron Grant <cg@freebsd.org>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <dev/sound/pcm/sound.h>
#include "feeder_if.h"
SND_DECLARE_FILE("$FreeBSD$");
MALLOC_DEFINE(M_FEEDER, "feeder", "pcm feeder");
#define MAXFEEDERS 256
#undef FEEDER_DEBUG
int feeder_buffersize = FEEDBUFSZ;
TUNABLE_INT("hw.snd.feeder_buffersize", &feeder_buffersize);
#ifdef SND_DEBUG
static int
sysctl_hw_snd_feeder_buffersize(SYSCTL_HANDLER_ARGS)
{
int i, err, val;
val = feeder_buffersize;
err = sysctl_handle_int(oidp, &val, 0, req);
if (err != 0 || req->newptr == NULL)
return err;
if (val < FEEDBUFSZ_MIN || val > FEEDBUFSZ_MAX)
return EINVAL;
i = 0;
while (val >> i)
i++;
i = 1 << i;
if (i > val && (i >> 1) > 0 && (i >> 1) >= ((val * 3) >> 2))
i >>= 1;
feeder_buffersize = i;
return err;
}
SYSCTL_PROC(_hw_snd, OID_AUTO, feeder_buffersize, CTLTYPE_INT | CTLFLAG_RW,
0, sizeof(int), sysctl_hw_snd_feeder_buffersize, "I",
"feeder buffer size");
#else
SYSCTL_INT(_hw_snd, OID_AUTO, feeder_buffersize, CTLFLAG_RD,
&feeder_buffersize, FEEDBUFSZ, "feeder buffer size");
#endif
struct feedertab_entry {
SLIST_ENTRY(feedertab_entry) link;
struct feeder_class *feederclass;
struct pcm_feederdesc *desc;
int idx;
};
static SLIST_HEAD(, feedertab_entry) feedertab;
/*****************************************************************************/
void
feeder_register(void *p)
{
static int feedercnt = 0;
struct feeder_class *fc = p;
struct feedertab_entry *fte;
int i;
if (feedercnt == 0) {
KASSERT(fc->desc == NULL, ("first feeder not root: %s", fc->name));
SLIST_INIT(&feedertab);
fte = malloc(sizeof(*fte), M_FEEDER, M_NOWAIT | M_ZERO);
if (fte == NULL) {
printf("can't allocate memory for root feeder: %s\n",
fc->name);
return;
}
fte->feederclass = fc;
fte->desc = NULL;
fte->idx = feedercnt;
SLIST_INSERT_HEAD(&feedertab, fte, link);
feedercnt++;
/* initialize global variables */
if (snd_verbose < 0 || snd_verbose > 4)
snd_verbose = 1;
/* initialize unit numbering */
snd_unit_init();
if (snd_unit < 0 || snd_unit > PCMMAXUNIT)
snd_unit = 0;
if (snd_maxautovchans < 0 ||
snd_maxautovchans > SND_MAXVCHANS)
snd_maxautovchans = 0;
if (chn_latency < CHN_LATENCY_MIN ||
chn_latency > CHN_LATENCY_MAX)
chn_latency = CHN_LATENCY_DEFAULT;
if (chn_latency_profile < CHN_LATENCY_PROFILE_MIN ||
chn_latency_profile > CHN_LATENCY_PROFILE_MAX)
chn_latency_profile = CHN_LATENCY_PROFILE_DEFAULT;
if (feeder_buffersize < FEEDBUFSZ_MIN ||
feeder_buffersize > FEEDBUFSZ_MAX)
feeder_buffersize = FEEDBUFSZ;
if (feeder_rate_min < FEEDRATE_MIN ||
feeder_rate_max < FEEDRATE_MIN ||
feeder_rate_min > FEEDRATE_MAX ||
feeder_rate_max > FEEDRATE_MAX ||
!(feeder_rate_min < feeder_rate_max)) {
feeder_rate_min = FEEDRATE_RATEMIN;
feeder_rate_max = FEEDRATE_RATEMAX;
}
if (feeder_rate_round < FEEDRATE_ROUNDHZ_MIN ||
feeder_rate_round > FEEDRATE_ROUNDHZ_MAX)
feeder_rate_round = FEEDRATE_ROUNDHZ;
if (bootverbose)
printf("%s: snd_unit=%d snd_maxautovchans=%d "
"latency=%d feeder_buffersize=%d "
"feeder_rate_min=%d feeder_rate_max=%d "
"feeder_rate_round=%d\n",
__func__, snd_unit, snd_maxautovchans,
chn_latency, feeder_buffersize,
feeder_rate_min, feeder_rate_max,
feeder_rate_round);
/* we've got our root feeder so don't veto pcm loading anymore */
pcm_veto_load = 0;
return;
}
KASSERT(fc->desc != NULL, ("feeder '%s' has no descriptor", fc->name));
/* beyond this point failure is non-fatal but may result in some translations being unavailable */
i = 0;
while ((feedercnt < MAXFEEDERS) && (fc->desc[i].type > 0)) {
/* printf("adding feeder %s, %x -> %x\n", fc->name, fc->desc[i].in, fc->desc[i].out); */
fte = malloc(sizeof(*fte), M_FEEDER, M_NOWAIT | M_ZERO);
if (fte == NULL) {
printf("can't allocate memory for feeder '%s', %x -> %x\n", fc->name, fc->desc[i].in, fc->desc[i].out);
return;
}
fte->feederclass = fc;
fte->desc = &fc->desc[i];
fte->idx = feedercnt;
fte->desc->idx = feedercnt;
SLIST_INSERT_HEAD(&feedertab, fte, link);
i++;
}
feedercnt++;
if (feedercnt >= MAXFEEDERS)
printf("MAXFEEDERS (%d >= %d) exceeded\n", feedercnt, MAXFEEDERS);
}
static void
feeder_unregisterall(void *p)
{
struct feedertab_entry *fte, *next;
next = SLIST_FIRST(&feedertab);
while (next != NULL) {
fte = next;
next = SLIST_NEXT(fte, link);
free(fte, M_FEEDER);
}
}
static int
cmpdesc(struct pcm_feederdesc *n, struct pcm_feederdesc *m)
{
return ((n->type == m->type) &&
((n->in == 0) || (n->in == m->in)) &&
((n->out == 0) || (n->out == m->out)) &&
(n->flags == m->flags));
}
static void
feeder_destroy(struct pcm_feeder *f)
{
FEEDER_FREE(f);
kobj_delete((kobj_t)f, M_FEEDER);
}
static struct pcm_feeder *
feeder_create(struct feeder_class *fc, struct pcm_feederdesc *desc)
{
struct pcm_feeder *f;
int err;
f = (struct pcm_feeder *)kobj_create((kobj_class_t)fc, M_FEEDER, M_NOWAIT | M_ZERO);
if (f == NULL)
return NULL;
f->align = fc->align;
f->data = fc->data;
f->source = NULL;
f->parent = NULL;
f->class = fc;
f->desc = &(f->desc_static);
if (desc) {
*(f->desc) = *desc;
} else {
f->desc->type = FEEDER_ROOT;
f->desc->in = 0;
f->desc->out = 0;
f->desc->flags = 0;
f->desc->idx = 0;
}
err = FEEDER_INIT(f);
if (err) {
printf("feeder_init(%p) on %s returned %d\n", f, fc->name, err);
feeder_destroy(f);
return NULL;
}
return f;
}
struct feeder_class *
feeder_getclass(struct pcm_feederdesc *desc)
{
struct feedertab_entry *fte;
SLIST_FOREACH(fte, &feedertab, link) {
if ((desc == NULL) && (fte->desc == NULL))
return fte->feederclass;
if ((fte->desc != NULL) && (desc != NULL) && cmpdesc(desc, fte->desc))
return fte->feederclass;
}
return NULL;
}
int
chn_addfeeder(struct pcm_channel *c, struct feeder_class *fc, struct pcm_feederdesc *desc)
{
struct pcm_feeder *nf;
nf = feeder_create(fc, desc);
if (nf == NULL)
return ENOSPC;
nf->source = c->feeder;
/* XXX we should use the lowest common denominator for align */
if (nf->align > 0)
c->align += nf->align;
else if (nf->align < 0 && c->align < -nf->align)
c->align = -nf->align;
if (c->feeder != NULL)
c->feeder->parent = nf;
c->feeder = nf;
return 0;
}
int
chn_removefeeder(struct pcm_channel *c)
{
struct pcm_feeder *f;
if (c->feeder == NULL)
return -1;
f = c->feeder;
c->feeder = c->feeder->source;
feeder_destroy(f);
return 0;
}
struct pcm_feeder *
chn_findfeeder(struct pcm_channel *c, u_int32_t type)
{
struct pcm_feeder *f;
f = c->feeder;
while (f != NULL) {
if (f->desc->type == type)
return f;
f = f->source;
}
return NULL;
}
static int
chainok(struct pcm_feeder *test, struct pcm_feeder *stop)
{
u_int32_t visited[MAXFEEDERS / 32];
u_int32_t idx, mask;
bzero(visited, sizeof(visited));
while (test && (test != stop)) {
idx = test->desc->idx;
if (idx < 0)
panic("bad idx %d", idx);
if (idx >= MAXFEEDERS)
panic("bad idx %d", idx);
mask = 1 << (idx & 31);
idx >>= 5;
if (visited[idx] & mask)
return 0;
visited[idx] |= mask;
test = test->source;
}
return 1;
}
/*
* See feeder_fmtchain() for the mumbo-jumbo ridiculous explanation
* of what the heck is this FMT_Q_*
*/
#define FMT_Q_UP 1
#define FMT_Q_DOWN 2
#define FMT_Q_EQ 3
#define FMT_Q_MULTI 4
/*
* 14bit format scoring
* --------------------
*
* 13 12 11 10 9 8 2 1 0 offset
* +---+---+---+---+---+---+-------------+---+---+
* | X | X | X | X | X | X | X X X X X X | X | X |
* +---+---+---+---+---+---+-------------+---+---+
* | | | | | | | | |
* | | | | | | | | +--> signed?
* | | | | | | | |
* | | | | | | | +------> bigendian?
* | | | | | | |
* | | | | | | +---------------> total channels
* | | | | | |
* | | | | | +------------------------> AFMT_A_LAW
* | | | | |
* | | | | +----------------------------> AFMT_MU_LAW
* | | | |
* | | | +--------------------------------> AFMT_8BIT
* | | |
* | | +------------------------------------> AFMT_16BIT
* | |
* | +----------------------------------------> AFMT_24BIT
* |
* +--------------------------------------------> AFMT_32BIT
*/
#define score_signeq(s1, s2) (((s1) & 0x1) == ((s2) & 0x1))
#define score_endianeq(s1, s2) (((s1) & 0x2) == ((s2) & 0x2))
#define score_cheq(s1, s2) (((s1) & 0xfc) == ((s2) & 0xfc))
#define score_val(s1) ((s1) & 0x3f00)
#define score_cse(s1) ((s1) & 0x7f)
u_int32_t
chn_fmtscore(u_int32_t fmt)
{
u_int32_t ret;
ret = 0;
if (fmt & AFMT_SIGNED)
ret |= 1 << 0;
if (fmt & AFMT_BIGENDIAN)
ret |= 1 << 1;
if (fmt & AFMT_STEREO)
ret |= (2 & 0x3f) << 2;
else
ret |= (1 & 0x3f) << 2;
if (fmt & AFMT_A_LAW)
ret |= 1 << 8;
else if (fmt & AFMT_MU_LAW)
ret |= 1 << 9;
else if (fmt & AFMT_8BIT)
ret |= 1 << 10;
else if (fmt & AFMT_16BIT)
ret |= 1 << 11;
else if (fmt & AFMT_24BIT)
ret |= 1 << 12;
else if (fmt & AFMT_32BIT)
ret |= 1 << 13;
return ret;
}
static u_int32_t
chn_fmtbestfunc(u_int32_t fmt, u_int32_t *fmts, int cheq)
{
u_int32_t best, score, score2, oldscore;
int i;
if (fmt == 0 || fmts == NULL || fmts[0] == 0)
return 0;
if (fmtvalid(fmt, fmts))
return fmt;
best = 0;
score = chn_fmtscore(fmt);
oldscore = 0;
for (i = 0; fmts[i] != 0; i++) {
score2 = chn_fmtscore(fmts[i]);
if (cheq && !score_cheq(score, score2))
continue;
if (oldscore == 0 ||
(score_val(score2) == score_val(score)) ||
(score_val(score2) == score_val(oldscore)) ||
(score_val(score2) > score_val(oldscore) &&
score_val(score2) < score_val(score)) ||
(score_val(score2) < score_val(oldscore) &&
score_val(score2) > score_val(score)) ||
(score_val(oldscore) < score_val(score) &&
score_val(score2) > score_val(oldscore))) {
if (score_val(oldscore) != score_val(score2) ||
score_cse(score) == score_cse(score2) ||
((score_cse(oldscore) != score_cse(score) &&
!score_endianeq(score, oldscore) &&
(score_endianeq(score, score2) ||
(!score_signeq(score, oldscore) &&
score_signeq(score, score2)))))) {
best = fmts[i];
oldscore = score2;
}
}
}
return best;
}
u_int32_t
chn_fmtbestbit(u_int32_t fmt, u_int32_t *fmts)
{
return chn_fmtbestfunc(fmt, fmts, 0);
}
u_int32_t
chn_fmtbeststereo(u_int32_t fmt, u_int32_t *fmts)
{
return chn_fmtbestfunc(fmt, fmts, 1);
}
u_int32_t
chn_fmtbest(u_int32_t fmt, u_int32_t *fmts)
{
u_int32_t best1, best2;
u_int32_t score, score1, score2;
if (fmtvalid(fmt, fmts))
return fmt;
best1 = chn_fmtbeststereo(fmt, fmts);
best2 = chn_fmtbestbit(fmt, fmts);
if (best1 != 0 && best2 != 0 && best1 != best2) {
if (fmt & AFMT_STEREO)
return best1;
else {
score = score_val(chn_fmtscore(fmt));
score1 = score_val(chn_fmtscore(best1));
score2 = score_val(chn_fmtscore(best2));
if (score1 == score2 || score1 == score)
return best1;
else if (score2 == score)
return best2;
else if (score1 > score2)
return best1;
return best2;
}
} else if (best2 == 0)
return best1;
else
return best2;
}
static struct pcm_feeder *
feeder_fmtchain(u_int32_t *to, struct pcm_feeder *source, struct pcm_feeder *stop, int maxdepth)
{
struct feedertab_entry *fte, *ftebest;
struct pcm_feeder *try, *ret;
uint32_t fl, qout, qsrc, qdst;
int qtype;
if (to == NULL || to[0] == 0)
return NULL;
DEB(printf("trying %s (0x%08x -> 0x%08x)...\n", source->class->name, source->desc->in, source->desc->out));
if (fmtvalid(source->desc->out, to)) {
DEB(printf("got it\n"));
return source;
}
if (maxdepth < 0)
return NULL;
/*
* WARNING: THIS IS _NOT_ FOR THE FAINT HEART
* Disclaimer: I don't expect anybody could understand this
* without deep logical and mathematical analysis
* involving various unnamed probability theorem.
*
* This "Best Fit Random Chain Selection" (BLEHBLEHWHATEVER) algorithm
* is **extremely** difficult to digest especially when applied to
* large sets / numbers of random chains (feeders), each with
* unique characteristic providing different sets of in/out format.
*
* Basically, our FEEDER_FMT (see feeder_fmt.c) chains characteristic:
* 1) Format chains
* 1.1 "8bit to any, not to 8bit"
* 1.1.1 sign can remain consistent, e.g: u8 -> u16[le|be]
* 1.1.2 sign can be changed, e.g: u8 -> s16[le|be]
* 1.1.3 endian can be changed, e.g: u8 -> u16[le|be]
* 1.1.4 both can be changed, e.g: u8 -> [u|s]16[le|be]
* 1.2 "Any to 8bit, not from 8bit"
* 1.2.1 sign can remain consistent, e.g: s16le -> s8
* 1.2.2 sign can be changed, e.g: s16le -> u8
* 1.2.3 source endian can be anything e.g: s16[le|be] -> s8
* 1.2.4 source endian / sign can be anything e.g: [u|s]16[le|be] -> u8
* 1.3 "Any to any where BOTH input and output either 8bit or non-8bit"
* 1.3.1 endian MUST remain consistent
* 1.3.2 sign CAN be changed
* 1.4 "Long jump" is allowed, e.g: from 16bit to 32bit, excluding
* 16bit to 24bit .
* 2) Channel chains (mono <-> stereo)
* 2.1 Both endian and sign MUST remain consistent
* 3) Endian chains (big endian <-> little endian)
* 3.1 Channels and sign MUST remain consistent
* 4) Sign chains (signed <-> unsigned)
* 4.1 Channels and endian MUST remain consistent
*
* .. and the mother of all chaining rules:
*
* Rules 0: Source and destination MUST not contain multiple selections.
* (qtype != FMT_Q_MULTI)
*
* First of all, our caller ( chn_fmtchain() ) will reduce the possible
* multiple from/to formats to a single best format using chn_fmtbest().
* Then, using chn_fmtscore(), we determine the chaining characteristic.
* Our main goal is to narrow it down until it reach FMT_Q_EQ chaining
* type while still adhering above chaining rules.
*
* The need for this complicated chaining procedures is inevitable,
* since currently we have more than 200 different types of FEEDER_FMT
* doing various unique format conversion. Without this (the old way),
* it is possible to generate broken chain since it doesn't do any
* sanity checking to ensure that the output format is "properly aligned"
* with the direction of conversion (quality up/down/equal).
*
* Conversion: s24le to s32le
* Possible chain: 1) s24le -> s32le (correct, optimized)
* 2) s24le -> s16le -> s32le
* (since we have feeder_24to16 and feeder_16to32)
* +-- obviously broken!
*
* Using scoring mechanisme, this will ensure that the chaining
* process do the right thing, or at least, give the best chain
* possible without causing quality (the 'Q') degradation.
*/
qdst = chn_fmtscore(to[0]);
qsrc = chn_fmtscore(source->desc->out);
#define score_q(s1) score_val(s1)
#define score_8bit(s1) ((s1) & 0x700)
#define score_non8bit(s1) (!score_8bit(s1))
#define score_across8bit(s1, s2) ((score_8bit(s1) && score_non8bit(s2)) || \
(score_8bit(s2) && score_non8bit(s1)))
#define FMT_CHAIN_Q_UP(s1, s2) (score_q(s1) < score_q(s2))
#define FMT_CHAIN_Q_DOWN(s1, s2) (score_q(s1) > score_q(s2))
#define FMT_CHAIN_Q_EQ(s1, s2) (score_q(s1) == score_q(s2))
#define FMT_Q_DOWN_FLAGS(s1, s2) (0x1 | (score_across8bit(s1, s2) ? \
0x2 : 0x0))
#define FMT_Q_UP_FLAGS(s1, s2) FMT_Q_DOWN_FLAGS(s1, s2)
#define FMT_Q_EQ_FLAGS(s1, s2) (0x3ffc | \
((score_cheq(s1, s2) && \
score_endianeq(s1, s2)) ? \
0x1 : 0x0) | \
((score_cheq(s1, s2) && \
score_signeq(s1, s2)) ? \
0x2 : 0x0))
/* Determine chaining direction and set matching flag */
fl = 0x3fff;
if (to[1] != 0) {
qtype = FMT_Q_MULTI;
printf("%s: WARNING: FMT_Q_MULTI chaining. Expect the unexpected.\n", __func__);
} else if (FMT_CHAIN_Q_DOWN(qsrc, qdst)) {
qtype = FMT_Q_DOWN;
fl = FMT_Q_DOWN_FLAGS(qsrc, qdst);
} else if (FMT_CHAIN_Q_UP(qsrc, qdst)) {
qtype = FMT_Q_UP;
fl = FMT_Q_UP_FLAGS(qsrc, qdst);
} else {
qtype = FMT_Q_EQ;
fl = FMT_Q_EQ_FLAGS(qsrc, qdst);
}
ftebest = NULL;
SLIST_FOREACH(fte, &feedertab, link) {
if (fte->desc == NULL)
continue;
if (fte->desc->type != FEEDER_FMT)
continue;
qout = chn_fmtscore(fte->desc->out);
#define FMT_Q_MULTI_VALIDATE(qt) ((qt) == FMT_Q_MULTI)
#define FMT_Q_FL_MATCH(qfl, s1, s2) (((s1) & (qfl)) == ((s2) & (qfl)))
#define FMT_Q_UP_VALIDATE(qt, s1, s2, s3) ((qt) == FMT_Q_UP && \
score_q(s3) >= score_q(s1) && \
score_q(s3) <= score_q(s2))
#define FMT_Q_DOWN_VALIDATE(qt, s1, s2, s3) ((qt) == FMT_Q_DOWN && \
score_q(s3) <= score_q(s1) && \
score_q(s3) >= score_q(s2))
#define FMT_Q_EQ_VALIDATE(qt, s1, s2) ((qt) == FMT_Q_EQ && \
score_q(s1) == score_q(s2))
if (fte->desc->in == source->desc->out &&
(FMT_Q_MULTI_VALIDATE(qtype) ||
(FMT_Q_FL_MATCH(fl, qout, qdst) &&
(FMT_Q_UP_VALIDATE(qtype, qsrc, qdst, qout) ||
FMT_Q_DOWN_VALIDATE(qtype, qsrc, qdst, qout) ||
FMT_Q_EQ_VALIDATE(qtype, qdst, qout))))) {
try = feeder_create(fte->feederclass, fte->desc);
if (try) {
try->source = source;
ret = chainok(try, stop) ? feeder_fmtchain(to, try, stop, maxdepth - 1) : NULL;
if (ret != NULL)
return ret;
feeder_destroy(try);
}
} else if (fte->desc->in == source->desc->out) {
/* XXX quality must be considered! */
if (ftebest == NULL)
ftebest = fte;
}
}
if (ftebest != NULL) {
try = feeder_create(ftebest->feederclass, ftebest->desc);
if (try) {
try->source = source;
ret = chainok(try, stop) ? feeder_fmtchain(to, try, stop, maxdepth - 1) : NULL;
if (ret != NULL)
return ret;
feeder_destroy(try);
}
}
/* printf("giving up %s...\n", source->class->name); */
return NULL;
}
u_int32_t
chn_fmtchain(struct pcm_channel *c, u_int32_t *to)
{
struct pcm_feeder *try, *del, *stop;
u_int32_t tmpfrom[2], tmpto[2], best, *from;
int i, max, bestmax;
KASSERT(c != NULL, ("c == NULL"));
KASSERT(c->feeder != NULL, ("c->feeder == NULL"));
KASSERT(to != NULL, ("to == NULL"));
KASSERT(to[0] != 0, ("to[0] == 0"));
if (c == NULL || c->feeder == NULL || to == NULL || to[0] == 0)
return 0;
stop = c->feeder;
best = 0;
if (c->direction == PCMDIR_REC && c->feeder->desc->type == FEEDER_ROOT) {
from = chn_getcaps(c)->fmtlist;
if (from[1] != 0) {
best = chn_fmtbest(to[0], from);
if (best != 0) {
tmpfrom[0] = best;
tmpfrom[1] = 0;
from = tmpfrom;
}
}
} else {
tmpfrom[0] = c->feeder->desc->out;
tmpfrom[1] = 0;
from = tmpfrom;
if (to[1] != 0) {
best = chn_fmtbest(from[0], to);
if (best != 0) {
tmpto[0] = best;
tmpto[1] = 0;
to = tmpto;
}
}
}
#define FEEDER_FMTCHAIN_MAXDEPTH 8
try = NULL;
if (to[0] != 0 && from[0] != 0 &&
to[1] == 0 && from[1] == 0) {
max = 0;
best = from[0];
c->feeder->desc->out = best;
do {
try = feeder_fmtchain(to, c->feeder, stop, max);
DEB(if (try != NULL) {
printf("%s: 0x%08x -> 0x%08x (maxdepth: %d)\n",
__func__, from[0], to[0], max);
});
} while (try == NULL && max++ < FEEDER_FMTCHAIN_MAXDEPTH);
} else {
printf("%s: Using the old-way format chaining!\n", __func__);
i = 0;
best = 0;
bestmax = 100;
while (from[i] != 0) {
c->feeder->desc->out = from[i];
try = NULL;
max = 0;
do {
try = feeder_fmtchain(to, c->feeder, stop, max);
} while (try == NULL && max++ < FEEDER_FMTCHAIN_MAXDEPTH);
if (try != NULL && max < bestmax) {
bestmax = max;
best = from[i];
}
while (try != NULL && try != stop) {
del = try;
try = try->source;
feeder_destroy(del);
}
i++;
}
if (best == 0)
return 0;
c->feeder->desc->out = best;
try = feeder_fmtchain(to, c->feeder, stop, bestmax);
}
if (try == NULL)
return 0;
c->feeder = try;
c->align = 0;
#ifdef FEEDER_DEBUG
printf("\n\nchain: ");
#endif
while (try && (try != stop)) {
#ifdef FEEDER_DEBUG
printf("%s [%d]", try->class->name, try->desc->idx);
if (try->source)
printf(" -> ");
#endif
if (try->source)
try->source->parent = try;
if (try->align > 0)
c->align += try->align;
else if (try->align < 0 && c->align < -try->align)
c->align = -try->align;
try = try->source;
}
#ifdef FEEDER_DEBUG
printf("%s [%d]\n", try->class->name, try->desc->idx);
#endif
if (c->direction == PCMDIR_REC) {
try = c->feeder;
while (try != NULL) {
if (try->desc->type == FEEDER_ROOT)
return try->desc->out;
try = try->source;
}
return best;
} else
return c->feeder->desc->out;
}
void
feeder_printchain(struct pcm_feeder *head)
{
struct pcm_feeder *f;
printf("feeder chain (head @%p)\n", head);
f = head;
while (f != NULL) {
printf("%s/%d @ %p\n", f->class->name, f->desc->idx, f);
f = f->source;
}
printf("[end]\n\n");
}
/*****************************************************************************/
static int
feed_root(struct pcm_feeder *feeder, struct pcm_channel *ch, u_int8_t *buffer, u_int32_t count, void *source)
{
struct snd_dbuf *src = source;
int l, offset;
KASSERT(count > 0, ("feed_root: count == 0"));
/* count &= ~((1 << ch->align) - 1); */
KASSERT(count > 0, ("feed_root: aligned count == 0 (align = %d)", ch->align));
if (++ch->feedcount == 0)
ch->feedcount = 2;
l = min(count, sndbuf_getready(src));
/* When recording only return as much data as available */
if (ch->direction == PCMDIR_REC) {
sndbuf_dispose(src, buffer, l);
return l;
}
offset = count - l;
if (offset > 0) {
if (snd_verbose > 3)
printf("%s: (%s) %spending %d bytes "
"(count=%d l=%d feed=%d)\n",
__func__,
(ch->flags & CHN_F_VIRTUAL) ? "virtual" : "hardware",
(ch->feedcount == 1) ? "pre" : "ap",
offset, count, l, ch->feedcount);
if (ch->feedcount == 1) {
memset(buffer,
sndbuf_zerodata(sndbuf_getfmt(src)),
offset);
if (l > 0)
sndbuf_dispose(src, buffer + offset, l);
else
ch->feedcount--;
} else {
if (l > 0)
sndbuf_dispose(src, buffer, l);
memset(buffer + l,
sndbuf_zerodata(sndbuf_getfmt(src)),
offset);
if (!(ch->flags & CHN_F_CLOSING))
ch->xruns++;
}
} else if (l > 0)
sndbuf_dispose(src, buffer, l);
return count;
}
static kobj_method_t feeder_root_methods[] = {
KOBJMETHOD(feeder_feed, feed_root),
{ 0, 0 }
};
static struct feeder_class feeder_root_class = {
.name = "feeder_root",
.methods = feeder_root_methods,
.size = sizeof(struct pcm_feeder),
.align = 0,
.desc = NULL,
.data = NULL,
};
SYSINIT(feeder_root, SI_SUB_DRIVERS, SI_ORDER_FIRST, feeder_register, &feeder_root_class);
SYSUNINIT(feeder_root, SI_SUB_DRIVERS, SI_ORDER_FIRST, feeder_unregisterall, NULL);