freebsd-nq/sys/amd64/linux32/linux32_machdep.c
Julian Elischer 2630e4c90c Give setrunqueue() and sched_add() more of a clue as to
where they are coming from and what is expected from them.

MFC after:	2 days
2004-09-01 02:11:28 +00:00

1022 lines
24 KiB
C

/*-
* Copyright (c) 2004 Tim J. Robbins
* Copyright (c) 2002 Doug Rabson
* Copyright (c) 2000 Marcel Moolenaar
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer
* in this position and unchanged.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. The name of the author may not be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <sys/param.h>
#include <sys/kernel.h>
#include <sys/systm.h>
#include <sys/lock.h>
#include <sys/malloc.h>
#include <sys/mman.h>
#include <sys/mutex.h>
#include <sys/proc.h>
#include <sys/resource.h>
#include <sys/resourcevar.h>
#include <sys/syscallsubr.h>
#include <sys/sysproto.h>
#include <sys/unistd.h>
#include <machine/frame.h>
#include <vm/vm.h>
#include <vm/pmap.h>
#include <vm/vm_map.h>
#include <amd64/linux32/linux.h>
#include <amd64/linux32/linux32_proto.h>
#include <compat/linux/linux_ipc.h>
#include <compat/linux/linux_signal.h>
#include <compat/linux/linux_util.h>
struct l_old_select_argv {
l_int nfds;
l_uintptr_t readfds;
l_uintptr_t writefds;
l_uintptr_t exceptfds;
l_uintptr_t timeout;
} __packed;
int
linux_to_bsd_sigaltstack(int lsa)
{
int bsa = 0;
if (lsa & LINUX_SS_DISABLE)
bsa |= SS_DISABLE;
if (lsa & LINUX_SS_ONSTACK)
bsa |= SS_ONSTACK;
return (bsa);
}
int
bsd_to_linux_sigaltstack(int bsa)
{
int lsa = 0;
if (bsa & SS_DISABLE)
lsa |= LINUX_SS_DISABLE;
if (bsa & SS_ONSTACK)
lsa |= LINUX_SS_ONSTACK;
return (lsa);
}
int
linux_execve(struct thread *td, struct linux_execve_args *args)
{
struct execve_args ap;
caddr_t sg;
int error;
u_int32_t *p32, arg;
char **p, *p64;
int count;
sg = stackgap_init();
CHECKALTEXIST(td, &sg, args->path);
#ifdef DEBUG
if (ldebug(execve))
printf(ARGS(execve, "%s"), args->path);
#endif
ap.fname = args->path;
if (args->argp != NULL) {
count = 0;
p32 = (u_int32_t *)args->argp;
do {
error = copyin(p32++, &arg, sizeof(arg));
if (error)
return error;
count++;
} while (arg != 0);
p = stackgap_alloc(&sg, count * sizeof(char *));
ap.argv = p;
p32 = (u_int32_t *)args->argp;
do {
error = copyin(p32++, &arg, sizeof(arg));
if (error)
return error;
p64 = PTRIN(arg);
error = copyout(&p64, p++, sizeof(p64));
if (error)
return error;
} while (arg != 0);
}
if (args->envp != NULL) {
count = 0;
p32 = (u_int32_t *)args->envp;
do {
error = copyin(p32++, &arg, sizeof(arg));
if (error)
return error;
count++;
} while (arg != 0);
p = stackgap_alloc(&sg, count * sizeof(char *));
ap.envv = p;
p32 = (u_int32_t *)args->envp;
do {
error = copyin(p32++, &arg, sizeof(arg));
if (error)
return error;
p64 = PTRIN(arg);
error = copyout(&p64, p++, sizeof(p64));
if (error)
return error;
} while (arg != 0);
}
return (execve(td, &ap));
}
struct iovec32 {
u_int32_t iov_base;
int iov_len;
};
#define STACKGAPLEN 400
CTASSERT(sizeof(struct iovec32) == 8);
int
linux_readv(struct thread *td, struct linux_readv_args *uap)
{
int error, osize, nsize, i;
caddr_t sg;
struct readv_args /* {
syscallarg(int) fd;
syscallarg(struct iovec *) iovp;
syscallarg(u_int) iovcnt;
} */ a;
struct iovec32 *oio;
struct iovec *nio;
sg = stackgap_init();
if (uap->iovcnt > (STACKGAPLEN / sizeof (struct iovec)))
return (EINVAL);
osize = uap->iovcnt * sizeof (struct iovec32);
nsize = uap->iovcnt * sizeof (struct iovec);
oio = malloc(osize, M_TEMP, M_WAITOK);
nio = malloc(nsize, M_TEMP, M_WAITOK);
error = 0;
if ((error = copyin(uap->iovp, oio, osize)))
goto punt;
for (i = 0; i < uap->iovcnt; i++) {
nio[i].iov_base = PTRIN(oio[i].iov_base);
nio[i].iov_len = oio[i].iov_len;
}
a.fd = uap->fd;
a.iovp = stackgap_alloc(&sg, nsize);
a.iovcnt = uap->iovcnt;
if ((error = copyout(nio, (caddr_t)a.iovp, nsize)))
goto punt;
error = readv(td, &a);
punt:
free(oio, M_TEMP);
free(nio, M_TEMP);
return (error);
}
int
linux_writev(struct thread *td, struct linux_writev_args *uap)
{
int error, i, nsize, osize;
caddr_t sg;
struct writev_args /* {
syscallarg(int) fd;
syscallarg(struct iovec *) iovp;
syscallarg(u_int) iovcnt;
} */ a;
struct iovec32 *oio;
struct iovec *nio;
sg = stackgap_init();
if (uap->iovcnt > (STACKGAPLEN / sizeof (struct iovec)))
return (EINVAL);
osize = uap->iovcnt * sizeof (struct iovec32);
nsize = uap->iovcnt * sizeof (struct iovec);
oio = malloc(osize, M_TEMP, M_WAITOK);
nio = malloc(nsize, M_TEMP, M_WAITOK);
error = 0;
if ((error = copyin(uap->iovp, oio, osize)))
goto punt;
for (i = 0; i < uap->iovcnt; i++) {
nio[i].iov_base = PTRIN(oio[i].iov_base);
nio[i].iov_len = oio[i].iov_len;
}
a.fd = uap->fd;
a.iovp = stackgap_alloc(&sg, nsize);
a.iovcnt = uap->iovcnt;
if ((error = copyout(nio, (caddr_t)a.iovp, nsize)))
goto punt;
error = writev(td, &a);
punt:
free(oio, M_TEMP);
free(nio, M_TEMP);
return (error);
}
struct l_ipc_kludge {
l_uintptr_t msgp;
l_long msgtyp;
} __packed;
int
linux_ipc(struct thread *td, struct linux_ipc_args *args)
{
switch (args->what & 0xFFFF) {
case LINUX_SEMOP: {
struct linux_semop_args a;
a.semid = args->arg1;
a.tsops = args->ptr;
a.nsops = args->arg2;
return (linux_semop(td, &a));
}
case LINUX_SEMGET: {
struct linux_semget_args a;
a.key = args->arg1;
a.nsems = args->arg2;
a.semflg = args->arg3;
return (linux_semget(td, &a));
}
case LINUX_SEMCTL: {
struct linux_semctl_args a;
int error;
a.semid = args->arg1;
a.semnum = args->arg2;
a.cmd = args->arg3;
error = copyin(args->ptr, &a.arg, sizeof(a.arg));
if (error)
return (error);
return (linux_semctl(td, &a));
}
case LINUX_MSGSND: {
struct linux_msgsnd_args a;
a.msqid = args->arg1;
a.msgp = args->ptr;
a.msgsz = args->arg2;
a.msgflg = args->arg3;
return (linux_msgsnd(td, &a));
}
case LINUX_MSGRCV: {
struct linux_msgrcv_args a;
a.msqid = args->arg1;
a.msgsz = args->arg2;
a.msgflg = args->arg3;
if ((args->what >> 16) == 0) {
struct l_ipc_kludge tmp;
int error;
if (args->ptr == 0)
return (EINVAL);
error = copyin(args->ptr, &tmp, sizeof(tmp));
if (error)
return (error);
a.msgp = PTRIN(tmp.msgp);
a.msgtyp = tmp.msgtyp;
} else {
a.msgp = args->ptr;
a.msgtyp = args->arg5;
}
return (linux_msgrcv(td, &a));
}
case LINUX_MSGGET: {
struct linux_msgget_args a;
a.key = args->arg1;
a.msgflg = args->arg2;
return (linux_msgget(td, &a));
}
case LINUX_MSGCTL: {
struct linux_msgctl_args a;
a.msqid = args->arg1;
a.cmd = args->arg2;
a.buf = args->ptr;
return (linux_msgctl(td, &a));
}
case LINUX_SHMAT: {
struct linux_shmat_args a;
a.shmid = args->arg1;
a.shmaddr = args->ptr;
a.shmflg = args->arg2;
a.raddr = PTRIN(args->arg3);
return (linux_shmat(td, &a));
}
case LINUX_SHMDT: {
struct linux_shmdt_args a;
a.shmaddr = args->ptr;
return (linux_shmdt(td, &a));
}
case LINUX_SHMGET: {
struct linux_shmget_args a;
a.key = args->arg1;
a.size = args->arg2;
a.shmflg = args->arg3;
return (linux_shmget(td, &a));
}
case LINUX_SHMCTL: {
struct linux_shmctl_args a;
a.shmid = args->arg1;
a.cmd = args->arg2;
a.buf = args->ptr;
return (linux_shmctl(td, &a));
}
default:
break;
}
return (EINVAL);
}
int
linux_old_select(struct thread *td, struct linux_old_select_args *args)
{
struct l_old_select_argv linux_args;
struct linux_select_args newsel;
int error;
#ifdef DEBUG
if (ldebug(old_select))
printf(ARGS(old_select, "%p"), args->ptr);
#endif
error = copyin(args->ptr, &linux_args, sizeof(linux_args));
if (error)
return (error);
newsel.nfds = linux_args.nfds;
newsel.readfds = PTRIN(linux_args.readfds);
newsel.writefds = PTRIN(linux_args.writefds);
newsel.exceptfds = PTRIN(linux_args.exceptfds);
newsel.timeout = PTRIN(linux_args.timeout);
return (linux_select(td, &newsel));
}
int
linux_fork(struct thread *td, struct linux_fork_args *args)
{
int error;
#ifdef DEBUG
if (ldebug(fork))
printf(ARGS(fork, ""));
#endif
if ((error = fork(td, (struct fork_args *)args)) != 0)
return (error);
if (td->td_retval[1] == 1)
td->td_retval[0] = 0;
return (0);
}
int
linux_vfork(struct thread *td, struct linux_vfork_args *args)
{
int error;
#ifdef DEBUG
if (ldebug(vfork))
printf(ARGS(vfork, ""));
#endif
if ((error = vfork(td, (struct vfork_args *)args)) != 0)
return (error);
/* Are we the child? */
if (td->td_retval[1] == 1)
td->td_retval[0] = 0;
return (0);
}
#define CLONE_VM 0x100
#define CLONE_FS 0x200
#define CLONE_FILES 0x400
#define CLONE_SIGHAND 0x800
#define CLONE_PID 0x1000
int
linux_clone(struct thread *td, struct linux_clone_args *args)
{
int error, ff = RFPROC | RFSTOPPED;
struct proc *p2;
struct thread *td2;
int exit_signal;
#ifdef DEBUG
if (ldebug(clone)) {
printf(ARGS(clone, "flags %x, stack %x"),
(unsigned int)(uintptr_t)args->flags,
(unsigned int)(uintptr_t)args->stack);
if (args->flags & CLONE_PID)
printf(LMSG("CLONE_PID not yet supported"));
}
#endif
if (!args->stack)
return (EINVAL);
exit_signal = args->flags & 0x000000ff;
if (exit_signal >= LINUX_NSIG)
return (EINVAL);
if (exit_signal <= LINUX_SIGTBLSZ)
exit_signal = linux_to_bsd_signal[_SIG_IDX(exit_signal)];
if (args->flags & CLONE_VM)
ff |= RFMEM;
if (args->flags & CLONE_SIGHAND)
ff |= RFSIGSHARE;
if (!(args->flags & CLONE_FILES))
ff |= RFFDG;
error = fork1(td, ff, 0, &p2);
if (error)
return (error);
PROC_LOCK(p2);
p2->p_sigparent = exit_signal;
PROC_UNLOCK(p2);
td2 = FIRST_THREAD_IN_PROC(p2);
td2->td_frame->tf_rsp = PTROUT(args->stack);
#ifdef DEBUG
if (ldebug(clone))
printf(LMSG("clone: successful rfork to %ld, stack %p sig = %d"),
(long)p2->p_pid, args->stack, exit_signal);
#endif
/*
* Make this runnable after we are finished with it.
*/
mtx_lock_spin(&sched_lock);
TD_SET_CAN_RUN(td2);
setrunqueue(td2, SRQ_BORING);
mtx_unlock_spin(&sched_lock);
td->td_retval[0] = p2->p_pid;
td->td_retval[1] = 0;
return (0);
}
/* XXX move */
struct l_mmap_argv {
l_ulong addr;
l_int len;
l_int prot;
l_int flags;
l_int fd;
l_int pos;
};
#define STACK_SIZE (2 * 1024 * 1024)
#define GUARD_SIZE (4 * PAGE_SIZE)
static int linux_mmap_common(struct thread *, struct l_mmap_argv *);
int
linux_mmap2(struct thread *td, struct linux_mmap2_args *args)
{
struct l_mmap_argv linux_args;
#ifdef DEBUG
if (ldebug(mmap2))
printf(ARGS(mmap2, "%p, %d, %d, 0x%08x, %d, %d"),
(void *)(intptr_t)args->addr, args->len, args->prot,
args->flags, args->fd, args->pgoff);
#endif
linux_args.addr = PTROUT(args->addr);
linux_args.len = args->len;
linux_args.prot = args->prot;
linux_args.flags = args->flags;
linux_args.fd = args->fd;
linux_args.pos = args->pgoff * PAGE_SIZE;
return (linux_mmap_common(td, &linux_args));
}
int
linux_mmap(struct thread *td, struct linux_mmap_args *args)
{
int error;
struct l_mmap_argv linux_args;
error = copyin(args->ptr, &linux_args, sizeof(linux_args));
if (error)
return (error);
#ifdef DEBUG
if (ldebug(mmap))
printf(ARGS(mmap, "%p, %d, %d, 0x%08x, %d, %d"),
(void *)(intptr_t)linux_args.addr, linux_args.len,
linux_args.prot, linux_args.flags, linux_args.fd,
linux_args.pos);
#endif
return (linux_mmap_common(td, &linux_args));
}
static int
linux_mmap_common(struct thread *td, struct l_mmap_argv *linux_args)
{
struct proc *p = td->td_proc;
struct mmap_args /* {
caddr_t addr;
size_t len;
int prot;
int flags;
int fd;
long pad;
off_t pos;
} */ bsd_args;
int error;
error = 0;
bsd_args.flags = 0;
if (linux_args->flags & LINUX_MAP_SHARED)
bsd_args.flags |= MAP_SHARED;
if (linux_args->flags & LINUX_MAP_PRIVATE)
bsd_args.flags |= MAP_PRIVATE;
if (linux_args->flags & LINUX_MAP_FIXED)
bsd_args.flags |= MAP_FIXED;
if (linux_args->flags & LINUX_MAP_ANON)
bsd_args.flags |= MAP_ANON;
else
bsd_args.flags |= MAP_NOSYNC;
if (linux_args->flags & LINUX_MAP_GROWSDOWN) {
bsd_args.flags |= MAP_STACK;
/* The linux MAP_GROWSDOWN option does not limit auto
* growth of the region. Linux mmap with this option
* takes as addr the inital BOS, and as len, the initial
* region size. It can then grow down from addr without
* limit. However, linux threads has an implicit internal
* limit to stack size of STACK_SIZE. Its just not
* enforced explicitly in linux. But, here we impose
* a limit of (STACK_SIZE - GUARD_SIZE) on the stack
* region, since we can do this with our mmap.
*
* Our mmap with MAP_STACK takes addr as the maximum
* downsize limit on BOS, and as len the max size of
* the region. It them maps the top SGROWSIZ bytes,
* and autgrows the region down, up to the limit
* in addr.
*
* If we don't use the MAP_STACK option, the effect
* of this code is to allocate a stack region of a
* fixed size of (STACK_SIZE - GUARD_SIZE).
*/
/* This gives us TOS */
bsd_args.addr = (caddr_t)PTRIN(linux_args->addr) +
linux_args->len;
if ((caddr_t)PTRIN(bsd_args.addr) >
p->p_vmspace->vm_maxsaddr) {
/* Some linux apps will attempt to mmap
* thread stacks near the top of their
* address space. If their TOS is greater
* than vm_maxsaddr, vm_map_growstack()
* will confuse the thread stack with the
* process stack and deliver a SEGV if they
* attempt to grow the thread stack past their
* current stacksize rlimit. To avoid this,
* adjust vm_maxsaddr upwards to reflect
* the current stacksize rlimit rather
* than the maximum possible stacksize.
* It would be better to adjust the
* mmap'ed region, but some apps do not check
* mmap's return value.
*/
PROC_LOCK(p);
p->p_vmspace->vm_maxsaddr =
(char *)LINUX32_USRSTACK -
lim_cur(p, RLIMIT_STACK);
PROC_UNLOCK(p);
}
/* This gives us our maximum stack size */
if (linux_args->len > STACK_SIZE - GUARD_SIZE)
bsd_args.len = linux_args->len;
else
bsd_args.len = STACK_SIZE - GUARD_SIZE;
/* This gives us a new BOS. If we're using VM_STACK, then
* mmap will just map the top SGROWSIZ bytes, and let
* the stack grow down to the limit at BOS. If we're
* not using VM_STACK we map the full stack, since we
* don't have a way to autogrow it.
*/
bsd_args.addr -= bsd_args.len;
} else {
bsd_args.addr = (caddr_t)PTRIN(linux_args->addr);
bsd_args.len = linux_args->len;
}
/*
* XXX i386 Linux always emulator forces PROT_READ on (why?)
* so we do the same. We add PROT_EXEC to work around buggy
* applications (e.g. Java) that take advantage of the fact
* that execute permissions are not enforced by x86 CPUs.
*/
bsd_args.prot = linux_args->prot | PROT_EXEC | PROT_READ;
if (linux_args->flags & LINUX_MAP_ANON)
bsd_args.fd = -1;
else
bsd_args.fd = linux_args->fd;
bsd_args.pos = linux_args->pos;
bsd_args.pad = 0;
#ifdef DEBUG
if (ldebug(mmap))
printf("-> %s(%p, %d, %d, 0x%08x, %d, 0x%x)\n",
__func__,
(void *)bsd_args.addr, (int)bsd_args.len, bsd_args.prot,
bsd_args.flags, bsd_args.fd, (int)bsd_args.pos);
#endif
error = mmap(td, &bsd_args);
#ifdef DEBUG
if (ldebug(mmap))
printf("-> %s() return: 0x%x (0x%08x)\n",
__func__, error, (u_int)td->td_retval[0]);
#endif
return (error);
}
int
linux_pipe(struct thread *td, struct linux_pipe_args *args)
{
int pip[2];
int error;
register_t reg_rdx;
#ifdef DEBUG
if (ldebug(pipe))
printf(ARGS(pipe, "*"));
#endif
reg_rdx = td->td_retval[1];
error = pipe(td, 0);
if (error) {
td->td_retval[1] = reg_rdx;
return (error);
}
pip[0] = td->td_retval[0];
pip[1] = td->td_retval[1];
error = copyout(pip, args->pipefds, 2 * sizeof(int));
if (error) {
td->td_retval[1] = reg_rdx;
return (error);
}
td->td_retval[1] = reg_rdx;
td->td_retval[0] = 0;
return (0);
}
int
linux_sigaction(struct thread *td, struct linux_sigaction_args *args)
{
l_osigaction_t osa;
l_sigaction_t act, oact;
int error;
#ifdef DEBUG
if (ldebug(sigaction))
printf(ARGS(sigaction, "%d, %p, %p"),
args->sig, (void *)args->nsa, (void *)args->osa);
#endif
if (args->nsa != NULL) {
error = copyin(args->nsa, &osa, sizeof(l_osigaction_t));
if (error)
return (error);
act.lsa_handler = osa.lsa_handler;
act.lsa_flags = osa.lsa_flags;
act.lsa_restorer = osa.lsa_restorer;
LINUX_SIGEMPTYSET(act.lsa_mask);
act.lsa_mask.__bits[0] = osa.lsa_mask;
}
error = linux_do_sigaction(td, args->sig, args->nsa ? &act : NULL,
args->osa ? &oact : NULL);
if (args->osa != NULL && !error) {
osa.lsa_handler = oact.lsa_handler;
osa.lsa_flags = oact.lsa_flags;
osa.lsa_restorer = oact.lsa_restorer;
osa.lsa_mask = oact.lsa_mask.__bits[0];
error = copyout(&osa, args->osa, sizeof(l_osigaction_t));
}
return (error);
}
/*
* Linux has two extra args, restart and oldmask. We dont use these,
* but it seems that "restart" is actually a context pointer that
* enables the signal to happen with a different register set.
*/
int
linux_sigsuspend(struct thread *td, struct linux_sigsuspend_args *args)
{
sigset_t sigmask;
l_sigset_t mask;
#ifdef DEBUG
if (ldebug(sigsuspend))
printf(ARGS(sigsuspend, "%08lx"), (unsigned long)args->mask);
#endif
LINUX_SIGEMPTYSET(mask);
mask.__bits[0] = args->mask;
linux_to_bsd_sigset(&mask, &sigmask);
return (kern_sigsuspend(td, sigmask));
}
int
linux_rt_sigsuspend(struct thread *td, struct linux_rt_sigsuspend_args *uap)
{
l_sigset_t lmask;
sigset_t sigmask;
int error;
#ifdef DEBUG
if (ldebug(rt_sigsuspend))
printf(ARGS(rt_sigsuspend, "%p, %d"),
(void *)uap->newset, uap->sigsetsize);
#endif
if (uap->sigsetsize != sizeof(l_sigset_t))
return (EINVAL);
error = copyin(uap->newset, &lmask, sizeof(l_sigset_t));
if (error)
return (error);
linux_to_bsd_sigset(&lmask, &sigmask);
return (kern_sigsuspend(td, sigmask));
}
int
linux_pause(struct thread *td, struct linux_pause_args *args)
{
struct proc *p = td->td_proc;
sigset_t sigmask;
#ifdef DEBUG
if (ldebug(pause))
printf(ARGS(pause, ""));
#endif
PROC_LOCK(p);
sigmask = td->td_sigmask;
PROC_UNLOCK(p);
return (kern_sigsuspend(td, sigmask));
}
int
linux_sigaltstack(struct thread *td, struct linux_sigaltstack_args *uap)
{
stack_t ss, oss;
l_stack_t lss;
int error;
#ifdef DEBUG
if (ldebug(sigaltstack))
printf(ARGS(sigaltstack, "%p, %p"), uap->uss, uap->uoss);
#endif
if (uap->uss != NULL) {
error = copyin(uap->uss, &lss, sizeof(l_stack_t));
if (error)
return (error);
ss.ss_sp = PTRIN(lss.ss_sp);
ss.ss_size = lss.ss_size;
ss.ss_flags = linux_to_bsd_sigaltstack(lss.ss_flags);
}
error = kern_sigaltstack(td, (uap->uss != NULL) ? &ss : NULL,
(uap->uoss != NULL) ? &oss : NULL);
if (!error && uap->uoss != NULL) {
lss.ss_sp = PTROUT(oss.ss_sp);
lss.ss_size = oss.ss_size;
lss.ss_flags = bsd_to_linux_sigaltstack(oss.ss_flags);
error = copyout(&lss, uap->uoss, sizeof(l_stack_t));
}
return (error);
}
int
linux_ftruncate64(struct thread *td, struct linux_ftruncate64_args *args)
{
struct ftruncate_args sa;
#ifdef DEBUG
if (ldebug(ftruncate64))
printf(ARGS(ftruncate64, "%u, %jd"), args->fd,
(intmax_t)args->length);
#endif
sa.fd = args->fd;
sa.pad = 0;
sa.length = args->length;
return ftruncate(td, &sa);
}
int
linux_gettimeofday(struct thread *td, struct linux_gettimeofday_args *uap)
{
struct timeval atv;
l_timeval atv32;
struct timezone rtz;
int error = 0;
if (uap->tp) {
microtime(&atv);
atv32.tv_sec = atv.tv_sec;
atv32.tv_usec = atv.tv_usec;
error = copyout(&atv32, uap->tp, sizeof (atv32));
}
if (error == 0 && uap->tzp != NULL) {
rtz.tz_minuteswest = tz_minuteswest;
rtz.tz_dsttime = tz_dsttime;
error = copyout(&rtz, uap->tzp, sizeof (rtz));
}
return (error);
}
int
linux_nanosleep(struct thread *td, struct linux_nanosleep_args *uap)
{
struct timespec ats;
struct l_timespec ats32;
struct nanosleep_args bsd_args;
int error;
caddr_t sg;
caddr_t sarqts, sarmts;
sg = stackgap_init();
error = copyin(uap->rqtp, &ats32, sizeof(ats32));
if (error != 0)
return (error);
ats.tv_sec = ats32.tv_sec;
ats.tv_nsec = ats32.tv_nsec;
sarqts = stackgap_alloc(&sg, sizeof(ats));
error = copyout(&ats, sarqts, sizeof(ats));
if (error != 0)
return (error);
sarmts = stackgap_alloc(&sg, sizeof(ats));
bsd_args.rqtp = (void *)sarqts;
bsd_args.rmtp = (void *)sarmts;
error = nanosleep(td, &bsd_args);
if (uap->rmtp != NULL) {
error = copyin(sarmts, &ats, sizeof(ats));
if (error != 0)
return (error);
ats32.tv_sec = ats.tv_sec;
ats32.tv_nsec = ats.tv_nsec;
error = copyout(&ats32, uap->rmtp, sizeof(ats32));
if (error != 0)
return (error);
}
return (error);
}
int
linux_getrusage(struct thread *td, struct linux_getrusage_args *uap)
{
int error;
caddr_t sg;
struct l_rusage *p32, s32;
struct rusage *p = NULL, s;
p32 = uap->rusage;
if (p32 != NULL) {
sg = stackgap_init();
p = stackgap_alloc(&sg, sizeof(struct rusage));
uap->rusage = (struct l_rusage *)p;
}
error = getrusage(td, (struct getrusage_args *) uap);
if (error != 0)
return (error);
if (p32 != NULL) {
error = copyin(p, &s, sizeof(s));
if (error != 0)
return (error);
s32.ru_utime.tv_sec = s.ru_utime.tv_sec;
s32.ru_utime.tv_usec = s.ru_utime.tv_usec;
s32.ru_stime.tv_sec = s.ru_stime.tv_sec;
s32.ru_stime.tv_usec = s.ru_stime.tv_usec;
s32.ru_maxrss = s.ru_maxrss;
s32.ru_ixrss = s.ru_ixrss;
s32.ru_idrss = s.ru_idrss;
s32.ru_isrss = s.ru_isrss;
s32.ru_minflt = s.ru_minflt;
s32.ru_majflt = s.ru_majflt;
s32.ru_nswap = s.ru_nswap;
s32.ru_inblock = s.ru_inblock;
s32.ru_oublock = s.ru_oublock;
s32.ru_msgsnd = s.ru_msgsnd;
s32.ru_msgrcv = s.ru_msgrcv;
s32.ru_nsignals = s.ru_nsignals;
s32.ru_nvcsw = s.ru_nvcsw;
s32.ru_nivcsw = s.ru_nivcsw;
error = copyout(&s32, p32, sizeof(s32));
}
return (error);
}
int
linux_sched_rr_get_interval(struct thread *td,
struct linux_sched_rr_get_interval_args *uap)
{
struct sched_rr_get_interval_args bsd_args;
caddr_t sg, psgts;
struct timespec ts;
struct l_timespec ts32;
int error;
sg = stackgap_init();
psgts = stackgap_alloc(&sg, sizeof(struct timespec));
bsd_args.pid = uap->pid;
bsd_args.interval = (void *)psgts;
error = sched_rr_get_interval(td, &bsd_args);
if (error != 0)
return (error);
error = copyin(psgts, &ts, sizeof(ts));
if (error != 0)
return (error);
ts32.tv_sec = ts.tv_sec;
ts32.tv_nsec = ts.tv_nsec;
return (copyout(&ts32, uap->interval, sizeof(ts32)));
}
int
linux_mprotect(struct thread *td, struct linux_mprotect_args *uap)
{
struct mprotect_args bsd_args;
bsd_args.addr = uap->addr;
bsd_args.len = uap->len;
bsd_args.prot = uap->prot;
/* XXX PROT_READ implies PROT_EXEC; see linux_mmap_common(). */
if ((bsd_args.prot & PROT_READ) != 0)
bsd_args.prot |= PROT_EXEC;
return (mprotect(td, &bsd_args));
}